
 International Journal of 

Molecular Sciences

Review

Role of Age-Related Mitochondrial Dysfunction
in Sarcopenia

Evelyn Ferri 1,*, Emanuele Marzetti 2,3 , Riccardo Calvani 2,3 , Anna Picca 2,3 ,
Matteo Cesari 1,4 and Beatrice Arosio 1,4

1 Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
matteo.cesari@unimi.it (M.C.); beatrice.arosio@unimi.it (B.A.)

2 Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy;
emarzetti@live.com (E.M.); riccardo.calvani@gmail.com (R.C.); anna.picca1@gmail.com (A.P.)

3 Geriatric Unit, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
4 Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
* Correspondence: evelyn.ferri@guest.unimi.it

Received: 23 June 2020; Accepted: 22 July 2020; Published: 23 July 2020
����������
�������

Abstract: Skeletal muscle aging is associated with a significant loss of skeletal muscle strength
and power (i.e., dynapenia), muscle mass and quality of life, a phenomenon known as sarcopenia.
This condition affects nearly one-third of the older population and is one of the main factors leading
to negative health outcomes in geriatric patients. Notwithstanding the exact mechanisms responsible
for sarcopenia are not fully understood, mitochondria have emerged as one of the central regulators
of sarcopenia. In fact, there is a wide consensus on the assumption that the loss of mitochondrial
integrity in myocytes is the main factor leading to muscle degeneration. Mitochondria are also key
players in senescence. It has been largely proven that the modulation of mitochondrial functions
can induce the death of senescent cells and that removal of senescent cells improves musculoskeletal
health, quality, and function. In this review, the crosstalk among mitochondria, cellular senescence,
and sarcopenia will be discussed with the aim to elucidate the role that the musculoskeletal cellular
senescence may play in the onset of sarcopenia through the mediation of mitochondria.
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1. Introduction

Declines in skeletal muscle mass and function are among the most notable corollary of aging.
Muscle mass reaches its peak between 30 and 40 years of age and starts declining thereafter [1]. Such a
decline is considered a normal phenomenon during aging, but it can rapidly progress in physically
inactive persons as well as in the setting of acute or chronic conditions. In particular, in people with an
inactive lifestyle, the loss of muscle mass can reach 1% to 2% per year from age 50 to 60, and 3% to 5%
per year at older ages [2]. As a result, an inactive person can lose from 30% to 50% of muscle mass
between the ages of 40 and 80 years [2].

The term sarcopenia was coined by Rosenberg [3] from the Greek words “sarx” (flesh) and “penia”
(poverty) to describe the loss of muscle mass with aging. This condition affects nearly one-third of
the older population [2], and is one of the main factors leading to negative health outcomes in older
adults [4]. Over the years, sarcopenia has been better defined through the inclusion of reduced muscle
strength and/or function (i.e., dynapenia) [5–7] in the conceptual framework [8–12]. Indeed, sarcopenia
has recently been formally recognized as a disease by means of a novel ICD-10-MC code [13].

Several cellular and molecular mechanisms are involved in the pathogenesis of age-related muscle
wasting. During aging, a decrease in the number and size of muscle fibers occurs, a process defined
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by Lynch et al. [14] “remodeling of the motor unit in relation to age”. Fiber atrophy and demise,
in turn, result from reduced protein synthesis [15] and impaired muscle regeneration [16]. Other
factors that contribute to muscle loss in advanced age include neuromuscular junction dysfunction,
reduced satellite cell number/function, decreased number of motor units [17], intramuscular adipose
tissue infiltration [18], inflammation [19], insulin resistance [20], mitochondrial dysfunction [21],
and oxidative stress [22].

Although the exact mechanisms responsible for the development and progression of sarcopenia
are not fully understood, mitochondrial dysfunction has emerged as a central pathogenetic factor [23].
Indeed, mitochondria serve a number of vital functions within the cell, including energy production,
regulation of intracellular calcium homeostasis, modulation of cell proliferation, and integration
of apoptotic signaling. Hence, the preservation of well-functioning mitochondria is pivotal for
maintaining cellular homeostasis [24]. When mitochondrial quality control fails, mitochondria lose
their integrity and may cause muscle degeneration [25]. Notably, the accumulation of damaged
mitochondria has shown to trigger motor neuron and muscle fiber death, highlighting their relevance
in the development of sarcopenia [26].

Here, we summarize available evidence supporting mitochondrial dysfunction as a mechanism
contributing to musculoskeletal aging and sarcopenia. We also illustrate the involvement of
mitochondria in cellular senescence with the aim to highlight the relationship between musculoskeletal
cellular senescence induced by mitochondrial dysfunction and the onset of sarcopenia.

2. Mitochondria and Aging

Several evolutionarily conserved biological pathways have been indicated as the main drivers
of aging [27]. Such pathways, collectively known as hallmarks of aging, include mitochondrial
dysfunction, genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis,
deregulated nutrient-sensing, cellular senescence, stem cell exhaustion, and altered intercellular
communication [27]. Previous studies showed that mitochondrial dysfunction arising from the
abnormal accumulation of mitochondrial DNA (mtDNA) induced the early appearance of several
age-related phenotypes, including sarcopenia, in mice [28–30]. However, whether laboratory rodents
genetically engineered to accumulate lower amounts of mtDNA mutations during aging are protected
against sarcopenia remains to be proven.

Researchers have proposed several theories to explain the functional decline associated with
age-related mitochondrial dysfunction (Table 1). In particular, the notion that a shift in redox status
towards oxidation leading to progressive cellular decline has gained momentum [31]. In this regard,
when the defense system is no longer able to cope with the enhanced rate of oxidant production,
cellular, and subcellular environments become more susceptible to damage [31]. For this reason, older
persons activate a compensatory mechanism of upregulation of antioxidant enzymes to counteract the
increasing generation of reactive oxygen species (ROS) [32]. However, despite the overactivation of
antioxidant pathways, a positive correlation between age and oxidative damage is well-established with
advancing age [33]. The persistence of sustained oxidative stress in spite of upregulated antioxidant
activity suggests that antioxidant defense mechanisms may be overwhelmed in advanced age [33].

MtDNA copy number also varies during aging and might be considered a biomarker that mirrors
alterations within the aged human body [34–36]. A new quantitative, highly sensitive droplet digital
PCR method has allowed observing a mild gradual age-related reduction of the mtDNA copies in
stimulated peripheral blood mononuclear cells in a sample ranging in age between 23 and 113 years [37].
Interestingly, centenarians with lower levels of frailty showed a significantly higher number of mtDNA
molecules and fewer mtDNA deletions compared with those with more severe frailty [37].
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Table 1. The Main Mitochondrial Theories of Aging.

Theory Main Findings Reference

The Free Radical Theory of Aging The aging process is caused by cumulative
oxidative damage to cells by free radicals Harman [31]

The Superoxide Theory
Superoxide dismutase is an antioxidant
defense against superoxide, the origin of

most reactive oxygen species (ROS)
McCord and Fridovich [38]

The Oxidative Stress Theory
Oxidative stress is defined as an excessive

accumulation of pro-oxidative features
and ROS

Sies and Cadenas [39]

The Mitochondrial Free Radical
Theory of Aging

Mitochondria is the main source of free
radicals and the key target for oxidative

damage
Miquel et al. [40]

The Free Radical Theory of Frailty
Oxidative damage does not correlate with

chronological age but rather with their
frailty state

Vina et al. [41]

3. Mitochondria and the Skeletal Muscle

Skeletal muscle is highly represented in the human body and is responsible for intentional
movements and postural maintenance [42,43]. It has also a crucial role in some less obvious processes,
such as thermal regulation, nutritional balance, glucose uptake, and endocrine activity [44,45].

The skeletal muscle of humans and other mammals consists of different cell types,
i.e., multinucleated myofibers (or myotubes) and satellite cells, all wrapped in the sarcolemma [46,47].
A single myofiber is a postmitotic highly differentiated cell, which contains numerous peripheral
nuclei, myofilaments, the sarcoplasmic reticulum, and finally the mitochondria, which represent the
actual machinery providing energy to the movement [48].

3.1. Mitochondria Localization in Skeletal Myofibers

Ultrastructural studies have identified in human and rodent muscles different subsets
of mitochondria localized within the skeletal myotubes: subsarcolemmal, perinuclear,
and intermyofibrillar mitochondria [49–51]. Every subtype of mitochondria has peculiar biochemical
and proteomic specializations. In particular, subsarcolemmal mitochondria have a role in gene
expression and resistance to ROS, whereas intermyofibrillar mitochondria are concerned with processes
such as oxidative phosphorylation and the modulation of Ca2+ flux [52]. Para-vascular mitochondria
are specific to vessels, but have also recently been found in skeletal myocytes [53]. The peculiarities of
human skeletal muscle mitochondria are their dynamic behavior within the myofiber [54], and their
connectivity and/or ramification in the muscle, that is determined by mtDNA and could be subject to
change in response to aerobic oxidative metabolism [55,56].

Two different types of skeletal muscle fibers are known according to the different isoforms of
structural proteins: the myosin heavy chain and the tropomyosin [57]. The most common are type I or
slow-twitch myofibers, and type II, or fast-twitch myofibers. This last type is further divided into type
II A and type II X [58,59]. Red muscles mainly consist of slow types II A and I fibers and rely mostly
on aerobic oxidative metabolism, while white muscles are made up of fast type II B fibers and adopt
glycolysis [60,61]. Interestingly, in anaerobic glycolytic fibers, mitochondria are associated with the
sarcomere I-band, whereas in oxidative fibers, mitochondria are mainly accumulated in I-band and
A-band [62]. Moreover, in fast-oxidative or fast intermediate myofibers which can be found in red
muscles, all triads are associated with mitochondria causing Ca2+ release from sarcoplasmic reticulum
and ATP production [63,64].

3.2. Mitochondria Dynamics in the Skeletal Muscle

Changing metabolic demands induce modifications in the shape and dynamics of mitochondria
residing in skeletal muscle [65]. A constant balance is maintained between the amount of short
and elongated fused mitochondria. This balance results in fusion and fission processes as well
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as on the activity of shaping proteins [66,67]. A major process regulating metabolic plasticity is
mitophagy [68]. The latter involved an organelle-specific form of macro-autophagy that drives
dysfunctional mitochondria towards degradation. The quality control system of mitophagy guarantees
the maintenance of the cellular structure and mitochondrial integrity. Mitochondrial fission precedes
mitophagy: elevated ROS levels and loss of mitochondrial membrane potential are two key events
triggering mitophagy [69]. Mitophagy and fusion/fission events are dysregulated when muscle atrophy
develops [70], during which muscle protein degradation is accentuated [71,72]. In such circumstances,
mitochondria become shorter and fragmented, and mitophagy flux is upregulated [73,74].

4. Mitochondria and Sarcopenia

Mitochondria have been indicated as the main actors in the development of sarcopenia
(Figure 1) [25,75].
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SASP: Senescence-Associated Secretory Phenotype.

The absence of mtDNA histones and the lack of an efficient proofreading system are thought to be
responsible for a progressive increase of somatic mtDNA mutations over the life course [27]. The load
of mtDNA mutations and deletions is substantial in muscle fibers mostly affected by sarcopenia [76].
The accrual of mtDNA damage results in the synthesis of dysfunctional components of the electron
transport chain, which in turn leads to defective ATP production and further ROS generation [31].

Another aspect to take into account is the central position of mitochondria in the regulation of
apoptosis. Indeed, these organelles are involved in the integration of both intrinsic and extrinsic
apoptotic pathways [77]. Notably, in mtDNA-mutator mice, the accumulation of mtDNA mutations is
associated with and, perhaps, responsible for the upregulation of apoptotic signaling in several tissues,
including the muscle [28]. This finding is in keeping with the idea that the enhancement of myonuclear
apoptosis in the aging muscle may be due to mitochondrial dysfunction and oxidative stress [78].

Reduced activity of the major regulator of mitochondrial biogenesis, i.e., the peroxisome
proliferator-activated receptor gamma coactivator-1α (PGC1-α) [79], may partially explain the altered
mitophagy [80] and the decreased inactivity of cytochrome C oxidase observed in sarcopenia [81].
Mitochondrial biogenesis is a multistage process involving changes in the expression of more than
1000 genes and the activation of several transcriptional coactivators, to generate newly synthesized
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organelles. Several factors (e.g., inactive lifestyle, fasting, oxidative stress, inflammation) can negatively
affect mitochondrial biogenesis [82].

Another major consequence of age-related mitochondrial dysfunction is the progressive decline
in mitochondrial bioenergetics that is manifested by a reduction in maximum oxygen uptake [83].
In the aged skeletal muscle, the decrease in the number and function of mitochondria correlates
with bioenergetics insufficiency [69]. In this regard, PGC-1α has been described not only as a master
regulator of mitochondrial biogenesis but also as a mediator of the transcriptional outputs. Further,
adenosine monophosphate-activated protein kinase (AMPK) and silent mating type information
regulation 2 homolog sirtuin 1 (SIRT1), two of the best known metabolic sensors, can directly affect
PGC-1α activity through phosphorylation and deacetylation, respectively. Insights from in vivo
transgenic models clearly suggest that AMPK, SIRT1, and PGC-1α might act as an orchestrated network
to control cellular energy expenditure and improve metabolic fitness [84].

PGC-1α may also prevent muscle atrophy through the regulation of autophagy [85]. With aging,
PGC-1α levels dramatically fall in the skeletal muscle [86], while the maintenance of PGC-1α expression
preserves muscle mass during sarcopenia, cachexia, denervation, and fasting [85,87]. This phenomenon
seems to be mediated by the promotion of mitochondrial turnover and quality control [85,87].

Role of Physical Training in Sarcopenia

The concerted activation of PGC-1α and SIRT1, co-localized in mitochondria, seems to be
downstream of AMPK signaling in response to muscle contraction [88]. The interaction between
PGC-1α and SIRT1 also suggests a role for SIRT1 in exercise-induced mitochondrial biogenesis [89].
Indeed, moderate long-term exercise stimulates metabolic adaptations in aged skeletal muscle through
the activation of PGC-1α, AMPK, and SIRT1 pathways [90]. In fact, exercise training induces AMPK
activation through the elevation of AMP/ATP ratio [91], which in turn induces mitochondrial biogenesis
via PGC-1α activation [92].

These observations confirm the hypothesis that endurance exercise training may affect a specific
set of functions (e.g., oxidative metabolism and mitochondrial biogenesis) and overall muscle
metabolism [93]. Studies have shown that the skeletal muscle of older individuals undergoing
an intense session of physical exercise produces a large amount of ROS [94]. At the same time, regular
exercise tends to maintain low levels of oxidative damage and prevents sarcopenia [94]. It is likely
that the excess ROS generated by boosts of physical exercise promotes the upregulation of antioxidant
capacities, as a sort of "oxidative stress vaccination" [95]. Indeed, the stress imposed by exercise training
is recognized as the most effective stimulus for mitochondrial biogenesis as part of redox-sensitive
adaptation [96–98], resulting in enhanced mitochondrial function across the life course [99,100].

To date, exercise training is one of the best examples of mitohormesis, which is the phenomenon
that occurs when an acute exposure to stress stimulates adaptive mitochondrial responses improving
mitochondrial function and resistance to stress [101]. This implies that exercise training exerts
a mitohormetic effect, positively influencing the maintenance and improvement of mitochondrial
function, the antioxidant capacity, and the proteostasis. In turn, these adaptations contribute to the
prevention of the age-related decline in skeletal muscle function, improving strength and muscle
mass [33,101].

5. Mitochondria, Cellular Senescence and Sarcopenia

Cellular senescence is one of the most discussed mechanisms of aging. It can potentially be used
to explain the cellular and molecular background at the basis of the muscle loss occurring with aging.
At first, cellular senescence appeared to mainly be a consequence of the telomere shortening [102],
but this assumption has gradually been evolved by numerous studies showing that the senescent
phenotype derived also from other stresses such as oxidative stress, genomic damage, and activation
of inflammatory features (Figure 1) [103].
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Interestingly, mitochondria altered in function and morphology, and responsible for high levels of
ROS, were found in senescent muscular cells [104]. In particular, impaired mitochondrial fission/fusion
processes seem to affect the cell’s ability to degrade dysfunctional mitochondria, causing ROS-induced
DNA damage and senescence [105]. Many studies associate the presence of a great amount of
mitochondrial ROS with accumulated single-strand breaks in telomere regions, thus accelerating
telomere erosion and cellular senescence [106,107]. Counteracting mitochondrial ROS generation,
the rate of telomere shortening decelerates, the lifespan of muscular cells is extended and the muscle
homeostasis is restored [104,108,109], delaying the onset of sarcopenia.

Additionally, several studies have shown that senescent cells accumulated in numerous aged
tissues [110–112] may contribute to the worsening of the chronic inflammation status underlying
the aging process (i.e., inflammaging) [113]. In turn, the inflammaging may contribute to muscle
decline by impairing stem cell function and accelerating cellular senescence [113]. Evidence has
shown that mitochondrial interventions at multiple regulation steps of the electron transport chain
induce a senescent-like phenotype lacking the expression of pro-inflammatory senescence-associated
secretory phenotype (SASP) elements, e.g., IL-6 and IL-8 [114,115]. Many of these pro-inflammatory
cytokines have been found to alter the gene expression program of satellite cells, deeply affecting
muscle regeneration [116] and contributing to the age-dependent decline in muscle function [117].
Moreover, a moderate musculoskeletal inflammatory status is able to induce muscle catabolism, a
phenomenon particularly enhanced in cachexia and sarcopenia [118].

6. Conclusions

Sarcopenia is a complex geriatric condition that is associated with a variety of negative
health-related outcomes. Noticeably, the age-related muscle wasting is potentially preventable
and treatable, which has instigated a growing interest around its pathophysiology. Several processes,
both systemic and muscle-specific, have been shown to play a role in the pathogenesis of sarcopenia.
Yet, a full comprehension of the etiology of sarcopenia is far from being reached. In this complex
scenario, mitochondrial dysfunction in skeletal myocytes is recognized as a major driver of sarcopenia.
Further research is necessary to understand whether mitochondrial dysfunction in muscle arises
from primary organelle defects or defective quality control. Moreover, the tcontribution of systemic
processes (e.g., inflammation) to muscle mitochondrial dysfunction remains to be fully elucidated.
Answers to these open research questions will enable the development of targeted, person-tailored
interventions against one of the most burdensome conditions of old age.
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