
Introduction
Resistin is a novel signalling molecule induced during adipogene-
sis [1]. Resistin serum levels increase in obesity and resistin gene
expression is induced during adipocyte differentiation. In addition,
administration of resistin impaires glucose tolerance and insulin
action while neutralization of resistin reduces hyperglycaemia in
the mouse model of diet-induce insulin resistance [1]. Anti-
resistin IgG also potentiate insulin-stimulated glucose uptake sup-
porting the notion that resistin’s effects on glucose metabolism
are antagonistic to those of insulin.

Recently Yura et al. [2] demonstrated resistin gene expres-
sion in trophoblastic tissue. This expression is significantly

higher in term placenta than in first trimester chorionic villi.
Serum resistin levels are similar among non-pregnant women
and those in the first and second trimesters of normal preg-
nancy, but are significantly higher in the third trimester [3]. On
the other hand, resistin gene expression in adipose tissue of
non-pregnant women is rather weak and does not differ from
adipose tissue of pregnant women at term [3]. Based on these
findings, it is reasonable to speculate that resistin production by
the placenta is the main cause of the increase in serum resistin
during gestation.

The increase of serum resistin in the third trimester of preg-
nancy may contribute, with several placental-derived hormones,
to the decreased insulin sensitivity of pregnant women in the
 latter half of pregnancy. The decreased insulin sensitivity can be
related to the development of post-prandial hyperglycaemia,
benefical for the rapid growth of the foetus.

Glucose is a primary substrate for foetal energy metabolism and
in the absence of appreciable gluconeogenesis [4] placental trans-
port constitutes the only supply for the foetus. Insulin stimulates
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glucose uptake by recruitment of insulin-sensitive glucose
trasporters (GLUTs). Among them, GLUT-1 is mainly present in the
micovillous membrane and basal membrane of the syncytiotro-
phoblast in third trimester of gestation [5–7]. Alterations in GLUT-
1 expression may result from changes in plasma glucose or insulin
sensitivity in a variety of cells and tissues [8, 9]. Recent in vitro
experiments suggest that resistin is able to alter glucose uptake in
skeletal as well as in cardiac muscle [10], inhibiting translocation,
activation of glucose transporters vesicle recycling. Exposure of
3T3L1 adipocytes to resistin impairs insulin-stimulated glucose
uptake, whereas exposure to anti-resistin IgG augments glucose
uptake [1]. However, no data are available about the role of resistin
in human pregnancy and on placental glucose transport.

The aim of this study is to determine both the role of resistin
on glucose transport in the human placenta and the type of signal
transduction induced by resistin in GLUT-1 regulation. A cascade
of signalling events is required for glucose uptake. At present, it is
clear that activation of classical mitogen-activated protein kinase
(MAPK), also termed extracellular signal-regulated kinase (ERK),
plays a central role in cellular transformation, up-regulates GLUT-
1 expression, thereby augmenting glucose transport [11, 12]. To
understand the direct biological effect of resistin on placental glu-
cose uptake, we treated trophoblast cells with recombinat resistin
and we examined the effect on 2-3H-deoxyglucose uptake and
GLUT-1 regulation. We demonstrate a direct effect of resistin in
both normal cytotrophoblastic cells and on a choriocarcinoma cell
line (BeWo), which is a widely used model for first trimester tro-
phoblast. Resistin modulates glucose uptake, GLUT-1 messenger
ribonucleic acid (mRNA) and protein expression in placental cells.
The next question concerns which type of signal transduction,
induced by resistin, is involved in GLUT-1 regulation. Previous
studies have demonstrated that the activation of MAP kinases
plays a pivotal role in controlling the action of resistin in several
type of cells [13, 14]. Thus, we investigated the effect of resistin
on MAP kinases signals in trophoblast cells. Our results suggest
that the phosphorylation of ERK1/2 is probably involved in GLUT-1
regulation induced by resistin.

Materials and methods

Cell cultures

BeWo choriocarcinoma cells were obtained from the AmericanType Culture
Collection (ATCC, Rockville, MD, USA). Cells were cultured in F12-K
medium (ATCC), containing 10% FBS (Sigma, St. Louis, MO, USA) and 
2% penicillin/streptomycin (Sigma) at 37°C in a humidified atmosphere of
5% CO2 and 95% air.

Placentas were obtained from healthy women immediately after
uncomplicated vaginal delivery at 36–37 weeks of gestation. Maternal
consent was obtained according to the guidelines of the ethics commit-
tee. Cytotrophoblast cells were isolated as detailed elsewhere [15]. Briefly,
placental tissues were rinsed 3 times in cold Dulbecco’s modified Eagle’s
medium (DMEM)-10% FBS (Sigma). After mincing, the tissues were

submitted to repeated enzymatic digestions in Ringer-bicarbonate buffer
containing 0.25% trypsin (Gibco BRL, Grand Island, NY, USA) and DNAse
I (Sigma) at 37°C in a shaking water bath. The supernatants were filtered
through a 42-�m mesh filter and centrifuged (200 g at room temperature
for 7 min.); then the cell suspension was layered over a performed Percoll
(Amersham Pharmacia, Little Chalfont, UK) gradient in Hank’s balanced
salt solution (HBSS; Gibco BRL). The gradient was made from 5% to 70%
Percoll (v/v) by dilutions of 90% Percoll (9 parts Percoll, HBSS 10�, 
1 part) and layered in a 50-ml conical polystirene centrifuge tube. After
centrifugation (200 g at room temperature for 20 min.), the middle layer
was removed, washed and then resuspended in DMEM. Cytotrophoblast
cell viability was (90% by trypan blue dye exclusion. The purity of the cell
preparation was evaluated by immunohistochemical staining for markers
of (i ) macrophages (3%, determined using a polyclonal anti-�1-
 chymotrypsin antibody; Dako, Santa Barbara, CA, USA), (ii ) fibroblasts
(2%, determined using a polyclonal anti-vimentin antibody; Labsystems,
Helsinki, Finland) and (iii ) syncytiotrophoblast (1% determined using an
mAb against low molecular weight cytokeratins; Labsystems, Chicago, IL,
USA). The enriched (95%) cytotrophoblast cells were cultured in DMEM-
10% FBS at 37°C in 5% CO2/95% air.

Bewo and cytotrophoblast cells were cultured for 24, 48 or 72 hrs in
standard medium and counted to evaluate their morphological changes.
Then Both BeWo and cytotrophoblast cells were cultured for 48 hrs and
then treated with human recombinant Resistin (Phoenix Pharmaceutical
Inc., Belmont, CA, USA) for additional 24 hrs.

Glucose transport assays

Glucose uptake was measured using [3H]-2-deoxy glucose (2-DG;
Amersham Biosciences, UK). Briefly, BeWo and normal cytotrophoblast
cells were seeded on plates with 24-wells (8�104 cells/well) and incubated
with resistin (0, 10, 50, 100 ng/ml) for 24 hrs. Then cells were rinsed twice
with glucose-free HEPES buffered saline (HBS) (140 mM NaCl, 20 mM
HEPES-Na, pH 7.4, 2.5 mM MgSO4, 5 mM KCl, 1 mM CaCl2). 2DG uptake
was monitored at room temperature and quantitated using 10 �M 2-DG 
(1 �Ci/ml) for 10 min. during which period the uptake of glucose was 
linear. Cytochalasin B (10 �M), a potent inhibitor of glucose transport medi-
ated via facilitative glucose transporters [16], was used as negative control.
The uptake of glucose into trophoblast cells was terminated by rapidly 
aspirating the radioactive incubation medium, followed by three successive
washes of cells monolayer with ice-cold isotonic saline solution (0.9%
NaCl, w/v). Cell-associated radioactivity was determined by lysing cells with
0.05 NaOH and preparing an aliquot of the lysate for liquid scintillation
counting. Total cell protein was determined by the Bradford method [17].

Western blot analysis

BeWo and cytotrophoblast cell cultures were performed for 24 hrs with
resistin (0, 10, 50, 100 ng/ml). GLUT-1 expression was investigated by
Western blot analysis as previously described [18]. Briefly, plasma
 membranes (post-nuclear particulate fraction without cytosolic compo-
nents) from trophoblast cells were prepared by a procedure reported by
Shah et al. [19]. Cell pellet was resuspended in 20 ml of ice-cold buffer
(250 mM sucrose, 20 mM HEPES, pH 7.4, 2 mM EGTA, 3 mM NaN3) con-
taining freshly added protease inhibitors (200 �M pheylmethylsulphonyl-
fluoride and 1 �M leupeptin; Sigma) and homogenized in a 40 ml glass
Dounce homogenizer. The homogenate was centrifuged at 700 g for 5 min.
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to remove nuclei and unbroken cells and the resultant supernatant was
centrifuged at 236,000 � g for 60 min. to pellet cell membranes. The
membranes were resuspended in homogenising buffer and frozen at
�80°C until required. Eighty µg of each sample (total membranes) were
separated on a 12% SDS-polyacrylamide gel, and after electroblotting onto
polyvinylidene fluoride (PVDF) membranes (Millipore, Bedford, MA, USA).
The membranes were incubated with 5% non-fat dry milk in 1 mol/l
Trizma/base, 1.54 mol/l NaCl, 0.05% Tween 20 (TBST, pH 7.4) and then
incubated overnight at 4°C with primary antibody (anti-GLUT-1 polyclonal
IgG antibody; Santa Cruz Biotecnology, Santa Cruz, CA, USA). After incu-
bation with secondary antibody, the immunocomplexes were visualized
performed with ECL-Plus detection System (Amersham) according to the
instruction of the manufacturer. Bands were analysed on the image analy-
sis system Gel Doc 200 System (Biorad Laboratories) and quantified per-
formed with the Quantity One Quantitation Software (Biorad). The levels of
GLUT-1 was estimated versus the constant level of a 53-kD protein pres-
ent in total membranes (�-Tubulin; mouse monoclonal antibody; Sigma).

Moreover, in immunoblot analysis we evaluated both, total and phos-
phorylate ERKs (pERKs). BeWo and cytotrophoblast cells treated with
resistin for 20 min. were collected and lysed with cold lysis buffer (1 mM
MgCl2, 350 mM NaCl, 20 mM HEPES, 0.5 mM EDTA, 0.1 mM EGTA, 1 mM
DTT, 1 mM Na4P2O7, 1 mM PMSF, 1 mM aprotinin, 1.5 mM leupeptin, 20%
glycerol, 1% NP-40). Total cell proteins (80 µg) were subjected to electro-
foresis on 10% polyacrilamide gel and after electroblotting onto PVDF
membrane incubated with 5% non-fat dry milk in TBST 1X and then
exposed overnight at 4°C to TBST containing 0.2–0.4 �g/ml of primary
antibody to total ERK or pERK (anti-ERK polyclonal and anti-pERK mono-
clonal IgG antibodies, Santa Cruz laboratories). Following incubation with
secondary antibody, the immunocomplexes were visualized as described
above. The levels of total or pERK were estimated versus the constant level
of a 42-kD protein present in the cytosolic extract (�-actin; mouse mono-
clonal, Sigma-Aldrich; data not shown).

In a next set of experiments, we investigated effects of a specific
inhibitor of the MAPK-pathway on phophorylation of ERK 1/ 2. BeWo and
cytotrophoblast cells were treated with resistin (10 ng/ml) and/or ERK 1/2
kinase inhibitor (PD98059, 25 �M; Sigma) for 24 hrs and GLUT-1 expres-
sion was studied by Western blot as previously described.

Quantitative real-time RT-PCR

mRNA studies have been done both on BeWo and primary cytotrophoblast
cells cultures. Total cellular RNA was extracted performed with ‘QuickPrep’
Total RNA Extraction Kit (Amersham Biosciences) according to the manu-
facturer’s protocol. Briefly, cell pellets, obtained from BeWo and cytotro-
phoblast cells grown with resistin (0, 10, 50, 100 ng/ml) for 24 hr, were
suspended in Lithium Chloride solution, �-mercaptoethanol and extraction
buffer. Then, samples were homogenized and incubated for 10 min. in ice
with Caesium Trifluoroacetate (CsTFA) solution. After centrifugation at
14,000 rpm for 15 min., RNA pellets were washed and dissolved in 50 �l
of DEPC-treated water. RNA concentration was evaluated by monitoring
absorbance at 260/280 nm.

Quantitative expression of the GLUT-1 gene was performed by real-time
PCR using the i-Cycler iQTM system (Bio-Rad Laboratories, Hercules, CA,
USA). For the target gene and the endogenous housekeeping gene encod-
ing for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a primer pair
and Taqman probe, which hybridizes to the region between primers, were
designed performed with Beacon Designer 2 v. 3.00 software (Premier
Biosoft International, Palo Alto, CA, USA) and synthesized by MWG Biotech
(Florence, Italy) (Table 1). Quantitative PCR was performed in a 50-�l vol-

ume containing the following reagents: 25 �l of the Platinum Quantitative
RT-PCR ThermoScript reaction mix (Invitrogen Inc., Milan, Italy), 1.5 U of
ThermoScript Plus/Platinum Taq mix (Invitrogen), each primer pair and
Taqman probe at concentration of 0.5 �M, 5 �l of total RNA sample and
distilled water up to final volume. Samples were subjected to an initial step
at 52°C for 45 min. for RT; 94°C for 5 min. to inactivate the ThermoScript
Plus reverse transcriptase and to activate the Platinum Taq polymerase; and
50 cycles, each consisting of 15 sec. at 94°C and 1 min. at 59°C.
Fluorescent data were collected during the 59°C annealing/extension step
and analysed with the iCycler iQTM software (Bio-Rad). Each reaction was
run in quadruplicate. Mean threshold cycle (Ct) was determined for each
transcript and was plotted versus RNA concentration input to calculate the
slope. Amplification efficiency for all genes was then determined [20, 21].
For relative quantification of the target genes, each set of primer pairs and
Taqman probe were used in combination with that of GAPDH gene in sepa-
rate reactions. The relative mRNA expression levels of the target genes in
each sample were calculated using the comparative cycle time (Ct) method
[22]. Briefly, the target PCR Ct value (i.e. the cycle number at which emitted
fluorescence exceeds 10 � the standard deviation [S.D.] of baseline emis-
sions as measured from cycles 3 to 15) is normalized to the GAPDH PCR Ct

value by subtracting the GAPDH Ct value from the target PCR Ct value,
which gives the �Ct value. From this �Ct value, the relative mRNA expres-
sion level to GAPDH for each target PCR can be calculated using the follow-
ing equation: relative mRNA expression = 2�(Ct target-Ct GAPDH).

To assess the validity of GAPDH as a reference gene for comparative
studies of gene expression with and without resistin treatment, an absolute
quantification of GAPDH transcripts was performed. To this end, a stan-
dard curve was constructed by plotting serial dilutions of a cloned GAPDH
gene fragment (range 1012 to 106 copies/reaction) and used to quantify
GAPDH mRNA in samples of RNA extracted from BeWo and cytotro-
phoblast cells treated or not with resistin (50 ng of total RNA for each sam-
ple). The results were expressed as GAPDH copies per �g of total RNA.
Similar amounts of GAPDH mRNA were found in cells grown in absence or
in presence of resistin (1.2 � 1011 versus 0.9 � 1011 copies/�g of RNA).
This finding demonstrated that resistin does not affect GAPDH expression
in BeWo choriocarcinoma cells.

Immunocytochemistry

BeWo cells were treated for 24 hrs with resistin (0, 10, 50, 100 ng/ml) and
then fixed with 4% paraformaldheide (15 min. at 4°C). After washing 
3 times for 5 min. each in phosphate buffer 0.01 M pH 7.6 added with NaCl
0.9% w/v (PBS) at room temperature, cells were incubated in 3% v/v
Normal Donkey Serum (Jackson Immunoresearch; West Grove, PA, USA)
in PBS for 30 min. at room temperature to block non-specific binding.

Afterwards cells were incubated for 60 min. at room temperature with
the primary antibody against GLUT-1 (Rabbit Polyclonal RB-078-A from
NeoMarkers; Fremont, CA, USA) diluted at 1:50 v/v in PBS. Cells were washed
4 times for 8 min. each and blocked again with Normal Donkey Serum.

A secondary anti-rabbit antibody (Donkey 711-096-152 from Jackson
ImmunoResearch; West Grove, PA, USA) was used diluted 1:200 in PBS
and cells were incubated for 30 min. in the dark at room temperature.

After numerous washings, cells were incubated with TOTO-3 iodide
(642/660 from Invitrogen) diluted 1:4000 for 30 min. in the dark at room
temperature to mark nuclei.

Slides were coverslipped performed with Vectashield Mounting
Medium (Vector; Burlingame, CA, USA) and cells were visualized under a
motorized Leica DM6000 microscope. Fluorescence was detected with a
Leica TCS-SL confocal microscope.
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Assay of ERK phosphorylation

Assay for ERK phosphorylation has been done both on BeWo and primary
cytotrophoblast cells. ERK1/2 kinases are characterized by the requirement
of phosphorylation for full activation and the quantitative determination of
phospho(p)-ERK1/2 in BeWo and cytotrophoblast cell lysates was per-
formed by an Enzyme Immunometric Assay (EIA) kit (Assay Designs, Inc.,
Ann Arbor, MI, USA) after treatment with resistin (0, 10, 100 ng/ml) for 10,
20, 30 and 60 min. This kit uses a monoclonal antibody to ERK immobilized
on a microtitre plate to bind pERK in the standards or sample. After a short
incubation, the excess sample or standard is washed out and a rabbit poly-
clonal antibody to pERK was added. This antibody binds to the pERK cap-
tured on the plate. After incubation, the excess antibody is washed out and
goat anti-rabbit IgG conjugated to Horseradish peroxidase is added, which
binds to the polyclonal pERK antibody. Excess conjugated is washed out and
substrate is added. After 30 min., the enzyme reaction is stopped and the
colour generated is read at 450 nm. The measured optical density is directly
proportional to the concentration of pERK.

Statistical analyses

The results are presented as the mean ± S.E. The data were analysed using
one-way ANOVA followed by a post hoc test (Bonferroni test). Statistical
significance was determined at P < 0.05.

Results

It is known that isolated mononuclear trophoblast cells changed
their morphological aspect during culture from uniformally dis-
tributed cells (24 hrs) to aggregates of two or more cells (48 hrs)
and to multinucleated groups (72 hrs of culture). To formally
demonstrate the in vitro formation of multinucleated cells, Bewo

and cytotrophoblast cells were cultured for 24, 48 and 72 hrs,
removed from the plates (by gentle trypsinization and scraping)
and counted in a hemotocytometer (Table 2).

Effects of resistin on 2DG uptake in trophoblast cells

Uptake of 2DG in both BeWo and nomal cytotrophoblast cells was
linear over the 30-min. assay period (Fig. 1). In the presence of
10-�M cytochalasin B, an inhibitor of facilitative glucose trans-
port, 2DG uptake was suppressed by over 90% and over 78% in
Bewo and cytotrophoblast cells, respectively (Fig. 1).

As shown in Figure 2, treatment with resistin (10 ng/ml, con-
centration that is reached in vivo) for 24 hrs led to a stimulation of
2-DG uptake, while higher concentrations (50–100 ng/ml) signifi-
cantly impaired basal glucose uptake.

GLUT-1 expression in trophoblast cells

To study whether the effects of resistin on basal glucose uptake
were due to the regulation of GLUT-1 expression, we analysed the
changes in GLUT- 1 protein and mRNA levels.

Western blotting analysis showed that there was a significant
increase of GLUT-1 expression after incubation with resistin at dose
of 10 ng/ml, whereas starting from 50 ng/ml there was a reduction
of protein expression (Fig. 3). The mRNA for GLUT-1 was quantified
by real-time RT-PCR. We observed constitutive expression of GLUT-
1 mRNA in Bewo and cytotrophoblast cells. The intensity of GLUT-
1 mRNA was normalized with the internal control, the GAPDH gene.
As shown in Figure 4 (A and B), GLUT-1 mRNA was increased after
treatment with resistin at dose of 10 ng/ml, but when BeWo cells
were exposed to higher concentrations of resistin (50–100 ng/ml) a
significant reduction in GLUT-1 mRNA was observed.

Table 1 Primers and fluorescent probes used in real-time PCR

aAbbreviations: 6FAM, 6-carboxyfluorescein;
TAMRA,6-carboxy-N,N,N’,N’-tetramethylrhodamine;
Texas Red, trademark product from Molecular Probes; BHQ2, Black Hole Quencer 2.

Gene Primer or probe Sequencea

GLUT-1 GLUT-1a CAGACATGGGTCCACCGCTAT

GLUT-1b CCAGCAGGTTCATCATCAGCATT

GLUT-1pr 6FAM-ATCCTGCCCACCACGCTCACCACG-TAMRA

GAPDH GAPDHa GGACCTGACCTGCCGTCTAG

GAPDHb TAGCCCAGGATGCCCTTGAG

GAPDHpr TexasRed-CCTCCGACGCCTGCTTCACCACCT-BHQ2



Fig. 2 Effect of resistin (0–100 ng/ml) on glucose uptake in BeWo cells 
(A) and in human cytotrophoblast cells (B). Glucose uptake was measured
using 10 �M [3H]-2-deoxy glucose (1 �Ci/ml) for 10 min. Data are
expressed as percentage of untreated cells (resistin 0 ng/ml; controls): 
*P < 0.05; Res: resistin.
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Immunocytochemistry

Immunocytochemistry of BeWo cells treated and non-treated with
resistin showed a reaction product characterized by microspots-like
appearance. The reaction product was mainly localized at the level
of the plasma membranes.

It was possible to observe an increase in GLUT-1 expression in
cells treated with 10 ng/ml of resistin in comparison to non-treated

Table 2 Morphologic changes of cultured BeWo and cytotrophoblast cells

*Percentage of 200 counted cells.

BeWo Cytotrophoblast cells

Time of culture

24 hrs 48 hrs 72 hrs 24 hrs 48 hrs 72 hrs

Single cells* 82 ± 6 38 ± 9 8 ± 2 79 ± 7 38 ± 4 5 ± 1

Aggregates* 13 ± 3 32 ± 5 12 ± 4 15 ± 2 38 ± 6 10 ± 2

Syncytia* 5 ± 1 30 ± 4 80 ± 5 6 ± 1 24 ± 2 85 ± 6

Fig. 1 Basal glucose uptake in (A) human choriocarcinoma cells
(BeWo) and in (B) human cytotrophoblast cells. Glucose uptake was
measured using [3H]-2-deoxy glucose for 30 min. Cytochalasin B 
(10 �M), a potent inhibitor of glucose transport, was used as negative
control. Values are means ± S.E. of three different experiments.



cells (Fig. 5), whereas it was difficult to appreciate an evident 
difference in GLUT-1 expression between cells treated with 10 ng/ml
and those treated with 50 ng/ml (data not shown).

Resistin-activated ERK 1/2 phosphorylation

To better understand the molecular mechanisms in resistin-
induced GLUT-1 trophoblast regulation, we investigated the possible
involvement of MAP Kinases. MAP activation results in phosphory-
lation of multifunctional protein kinases, including ERKs. The EIA
assay of ERK activity showed the maximal increase of ERK 1/2
phosphorylation in Bewo cells treated with resistin (10 ng/ml) after
20 min. (4.7 ng/mg of proteins/10�5 versus control 3.2 ng/mg of
proteins/10�5, P < 0.01) with a decrease at 60 min. (3.3 ng/mg of
proteins/10�5 versus control 3.0 ng/mg of proteins/10�5) (Fig. 6).
Treatment of normal cytotrophoblast cells with resistin (10 ng/ml)
led to phosphorylation of ERK1 and ERK2, with a maximal increase
at 30 min. ERK1 and ERK2 phosphorylation returned towards
baseline at approximately 60 min. (data not shown).

The Western blot analysis of dose-response experiments
showed the increase in ERK1/2 phosphorylation after 20 or 30
min. (Fig. 7) only at 10 ng/ml of resistin. As shown in Figure 7,
total ERK1 and ERK2 expressions were not affected by resistin
treatment, suggesting a specific role of this adipokine in the regu-
lation of phosphorylation process. Similar results were obtained
with normal cytotrophoblast cells (data not shown).

To clarify whether ERK blockage in BeWo and nor392mal cytotro-
phoblast cells is involved in resistin-induced GLUT-1 expression, 
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Fig. 3 Analysis of GLUT-1 expression in plasma membranes of BeWo and cytotrophoblast cells treated with resistin (0–100 ng/ml) for 24 hrs. 
A representative experiment of Western blot analyses (GLUT-1 protein and �-tubulin) in BeWo (A) and normal cytotrophoblast cells (B). Results of
densitometric analyses. The level of GLUT-1 in BeWo (C) and normal cytotrophoblast cells (D) was estimated in comparison with the constant level
of �-tubulin and expressed as a percentage of the control (0 ng/ml resistin = 100%). Results are means ± S.E. of six independent experiments.
Significance versus untreated cells: *P < 0.05; O.D.: optical density; Res: resistin.

Fig. 4 Quantitative mRNA expression of GLUT-1 in BeWo (A) and
cytotrophoblast cells (B) treated with resistin (0–100 ng/ml). Total RNA
was extracted and levels of GLUT-1 mRNA were measured by Real-
time PCR. Data shown are means ± S.E. of three independent experi-
ments. The results are presented as the fold increase of mRNA expres-
sion with normalization to GAPDH. Res: resistin.



Fig. 5 Analysis of GLUT-1 expression by
confocal micro-scopy in BeWo cells
treated (10 ng/ml) and non-treated
(control) with resistin. The analysis
revealed Glut-1 localization in plasma
membrane with a microspots-like
appearance. An increase of Glut-1
expression is observed in treated cells
in comparison to non-treated cells.

Fig. 6 Time-dependent effect of resistin
(0–50 ng/ml) on phosphorylation of
ERK1/2 protein in BeWo cells. Cell
extracts were analysed for the levels of 
p-ERK by immunoenzymatic assay as
described in Materials and Methods.
Results are expressed as ng/mg of pro-
tein. Values are means ± S.E. of three
separate experiments with triplicate
determinations. Significance versus
untreated cells (control; CTR: resistin 
0 ng/ml): *P < 0.05; Res: resistin.
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trophoblast cells were incubated with a well-defined ERK kinase
inhibitor: PD98059. As shown in Figure 8, PD98059 (25 �g/ml)
significantly reduced the resistin-induced GLUT-1 expression.

Discussion

Recently, Yura et al. [2] demonstrated resistin gene expression in
trophoblastic tissue, which was significantly higher in term pla-
centa as compared with that in the chorionic villi of the first
trimester. These findings suggested the possibility that the pla-
centa might secrete resistin into the maternal circulation. In fact,
plasma resistin levels of pregnant women at term were signifi-
cantly higher than those of non-pregnant women [3], whereas
plasma resistin levels of non-pregnant women were similar to
those of the first and second trimesters of normal pregnancy.
However, the exact mechanisms behind the increase in serum
resistin during pregnancy have not been clarified. Based on Yura’s

results [2] and the fact that there is an increase in placental
mass with gestation, it is reasonable to speculate that resistin
production by the placenta is the main cause of the increase in
serum level resistin. On the other hand, considering that the
adipose tissue mass increases during pregnancy and that the
expression of resistin in adipose tissue of pregnant women at
term does not differ from that of non-pregnant women [23],
resistin production by adipose tissue might be one of the
causes for the increased serum resistin level in pregnancy. Such
changes in resistin levels could contribute to the decrease
insulin sensitivity in the latter half of pregnancy [24] beneficial
for the rapid growth of the foetus.

Glucose is the primary substrate for foetal energy metabolism
and in the absence of appreciable gluconeogenesis [25], placental
transport constitues the only supply for the foetus. Glucose transport
across the human placenta takes place by facilitated carrier-mediated
diffusion [26, 27]. The kinetic characteristics of glucose transport
have been determined in human syncytiotrophoblast cell membranes
[28, 29] and are consistent with the presence of high-capacity
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transport systems in both the maternal and foetal-facing plasma
membranes with affinities in the 25–30 mmol/l range.

Northern blotting has been used to identify human tissues
expressing the facilitative glucose transporter isoforms: GLUT1
and GLUT3 have been shown to be present in high levels in
homogenates of human term placenta [30, 31]. However, a quan-

titative estimate of the glucose transporter proteins demonstrated
the absence of significant amounts of GLUT3 protein and the pres-
ence of GLUT-1 protein in human syncytiotrophoblast [32].
Immunohistochemical data have demonstrated that GLUT-1 pro-
tein is abundant on both the microvillous and basal membrane of
the syncytiotrophoblast [33]. We confirmed these observations

Fig. 7 Western blot analysis of phos-
phorylated and total ERK expression
in BeWo treated with resistin (0–
50 ng/ml) for 20 min. (A) A represen-
tative Western blot analysis for phos-
phorylated and total ERK in BeWo
cells. (B) Densitometric analysis. The
level of total and p- ERK protein after
resistin treatment was estimated in
comparison with the constant level of
�-actin and expressed as a percentage
of the control (untreated cells =
100%). Results are means ± S.E. 
of five independent experiments.
Significance versus untreated cells
(control: resistin 0 ng/ml): *P < 0.05;
Res: resistin.

Fig. 8 Effect of ERK1/2 inhibitor on
resistin-induced GLUT-1 proliferation.
A representative experiment of Western
blot analyses and densitometric analy-
sis of GLUT-1 expression in plasma
membranes of BeWo cells treated with
resistin (10 ng/ml) and/or ERK 1/2
kinase inhibitor (PD98059; 25 �M) for
24 hrs. The levels of GLUT-1 in BeWo
cells were estimated in comparison
with the constant level of �-tubulin and
expressed as a percentage of the con-
trol (CTR: 0 ng/ml resistin = 100%).
Results are means ± S.E. of six inde-
pendent experiments. Significance ver-
sus untreated cells: *P < 0.05; O.D.:
optical density.
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