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Abstract
The application of spatial Cliff–Ord models requires information about spatial coordi-
nates of statistical units to be reliable, which is usually the case in the context of areal
data. With micro-geographic point-level data, however, such information is inevitably
affected by locational errors, that can be generated intentionally by the data producer
for privacy protection or can be due to inaccuracy of the geocoding procedures. This
unfortunate circumstance can potentially limit the use of the spatial autoregressive
modelling framework for the analysis of micro data, as the presence of locational
errors may have a non-negligible impact on the estimates of model parameters. This
contribution aims at developing a strategy to reduce the bias and produce more reli-
able inference for spatialmodelswith location errors. The proposed estimation strategy
models both the spatial stochastic process and the coarsening mechanism by means
of a marked point process. The model is fitted through the maximisation of a doubly-
marginalised likelihood function of the marked point process, which cleans out the
effects of coarsening. The validity of the proposed approach is assessed by means
of a Monte Carlo simulation study under different real-case scenarios, whereas it is
applied to real data on house prices.
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1 Introduction

Cliff–Ord (Cliff and Ord 1969) spatial models are based on the implicit assumption
that the information about the spatial location of statistical units is accurate.Whilst this
circumstance is the norm in the context of areal data (such as municipalities, counties
or regions), it is rarely met when the observations are points in space (such as firms,
houses or facilities), whose locations may be either missing or affected by locational
errors (see Zimmerman 2008; Zimmerman and Li 2010; Arbia et al. 2019b).

Although geolocation may fail for some units because of technical reasons, incom-
plete positioning arises more frequently in geocoding processes, especially in those
circumstances where coordinates of units are obtained by matching postal addresses
with georeferenced street maps (see e.g. Kravets and Hadden 2007). Clearly, the qual-
ity of the resulting geolocation depends both on the correctness and completeness
of postal addresses, as well as on the effectiveness of matching algorithms and soft-
ware, nonetheless, if position of some units is uncertain, this fact should be properly
considered in the estimation process.

When an incomplete address is geocoded, unit position is conventionally imputed
to the centroid of the area where unit is located, as it can be known from address
information. Such areasmay be counties, municipalities, or, more frequently, ZIP code
areas (Zimmerman 2008). From a statistical point of view, the presence of locational
errors due to coarsened locationsmay have a significant impact on parameter estimates
of spatial models based on the Cliff–Ord approach (Cliff and Ord 1969), as positional
errors lead to downward biased estimates for the spatial autoregressive parameters and
inconsistent estimates for covariates coefficients (Arbia et al. 2016).

This paper tackles the problem of estimating spatial models where part of units is
affected by coarsening. In particular, we focus on the spatial autoregressive model (see
e.g. Cressie 2015, ch. 6). The proposed estimation strategy models both the spatial
stochastic process and the coarsening mechanism by means of a marked point process
whose intensity function is estimated according to the coarsened-data estimator pro-
posed by Zimmerman (2008). The model is then fitted through the maximisation of
a doubly-marginalised likelihood function of the marked point process, which cleans
out the effects of coarsening.

The first marginalisation of the likelihood function allows the dimensionality of the
model to be consistently reduced to non-coarsened points, and it is derived analyti-
cally. The second marginalisation is performed via Monte Carlo simulations over the
locations of coarsened points.

The modelling approach and Monte Carlo experiments presented in the paper
show the validity of the proposed estimation method compared to other estimation
approaches. In particular, the comparison concerns the parameter estimates and the
direct and indirect effects of model covariates on the dependent variable (Arbia et al.
2019a).

The paper is organised as follows. Section 2 describes the modelling approach
and the notation adopted. Section 3 illustrates and discusses the proposed estimation
approach. Section 4 illustrates the results of Monte Carlo simulations where the finite
properties of parameter estimators and estimators of direct and indirect impacts of
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regressors are studied. In Sect. 5 the method is applied to spatial hedonic models for
house prices in Beijing. Section 6 concludes the paper.

2 Modelling approach and notation

Consider n units i = 1, . . . , n for which a quantitative characteristic of interest yi ∈ R

and k regressors xi ∈ R
k are known. Assume that postal addresses are available for

all n units, however only p < n of them are complete, whereas n − p are incomplete.
Assume also, that the n − p units with incomplete addresses can be assigned to, say,
the ZIP areas they actually belong to.

Under these conditions, if a spatial Cliff–Ord model is used for modelling y (a
thorough illustration of the reasonswhy a spatialmodelling approachmaybe necessary
is available e.g. in LeSage and Pace 2009, ch. 2), the coarsening of the n − p unit
locations only affects the specification of the spatial weight matrix, as yi and xi are
known for all units i = 1, . . . , n.

Consider, for example, the following isotropic spatial autoregressive model (SAR):

{
y = ρWy + Xβ + ε

ε ∼ N n(0, σ 2 In)
(1)

where X ∈ R
n×k is the design matrix which includes k regressors, and W ∈ R

n×n is
the usual zero-diagonal spatial weight matrix whose elementswi j take positive values
according to some proximity criterion, whereas equal zero if units i and j are not
considered as neighbours.

It can be verified that, if p/n is the proportion of non-coarsened units, the share of
elements of W not affected by coarsening is only about (p/n)2, whereas all elements
change if W is stochastic (that is, if W is row-standardised).

Although the magnitude of the effects of coarsening on the spatial weight matrix
is the cause of bias of estimators of the autoregressive parameter ρ (Arbia et al.
2016), it is worth stressing that the bias of the estimators of ρ is not just originated
from perturbations in the values of weights within neighbourhoods, but it is mainly
ascribable to modifications in the neighbourhood relations amongst units, as shown
in Santi et al. (2020).

On the other hand, the biasedness of the estimator of the autoregressive parameter
ρ in model (1) gives rise to biasedness of estimators of the other parameters too. It
can be proved (see Appendix A.1) that

E(β̂ − β|ρ̂) = (XTX)−1XT

⎛
⎝ ∞∑

j=1

ρ jW j

⎞
⎠ Xβ

ρ̂ − ρ

ρ
, (2a)

so that the bias on β j (for any j = 1, . . . , k) gets larger as the relative bias of ρ̂

grows, provided that β j �= 0; whereas the conditional bias of σ̂ 2 has the form (see
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Appendix A.2):

E(σ̂ 2 − σ 2|ρ̂) = − k

n
σ 2 +

[
(QρXβ)T(QρXβ)

n
+ σ 2 tr(QT

ρQρ)

n

]
(ρ̂ − ρ)2

− 2σ 2 tr(Qρ)

n
(ρ̂ − ρ), (2b)

where Qρ ≡(In − X(XTX)−1XT)W (In − ρW )−1. In this case, unlike estimator β̂,
the maximum likelihood estimator σ̂ 2 is biased even if ρ̂ is unbiased, because of the
second term on the right-hand side of Eq. (2b).

Equations (2) show that biasedness of estimator ρ̂ reverberates on estimates of other
parameters, and thus on derived quantities such as covariate impacts (see Sect. 3.2),
confidence intervals, and prediction intervals. This motivates the adoption of estima-
tion methods aiming at reducing the bias of ρ̂ originated from coarsening of unit
locations.

The estimation method proposed in this paper basically reduces the dimensionality
of the model by concentrating the likelihood on the p non-coarsened units, thus lim-
iting the effects of the coarsened locations on model estimates and, at the same time,
exploiting the available information about covariates and zone-based location of the
coarsened units.

The problem ismodelled as amarked point processwhere both the stochastic spatial
process and the coarsening process are specified conditionally on the underlying point
process.

Let (Ω,F , P) be a probability space, and let Z ∈ R
n×2 be a realisation of n

points from a 2-dimensional point process { Z(s, ω) : s ∈ S } defined over a bounded
metric space (S, ‖·‖), where S ⊂ R

2. Let λ : S → R
+ be the intensity function of

{ Z(s, ω) : s ∈ S } defined as:

λ(s) = lim|ds|→0

E(N (s, ds))

ds
,

in which N (s, ds) is the count function for points in the neighbour ds ⊂ S centred in
s ∈ S (see e.g. Illian et al. 2008).

Conditionally on Z , the isotropic SAR (1) is defined for the spatial process y, where
the spatial weight matrix W is row-standardised, and its elements wi j are defined as
follows:

wi j =
{

κ(‖zi−z j‖)∑n
v=1 κ(‖zi−zv‖) if i �= j and

∑n
v=1 κ(‖zi − zv‖) �= 0

0 otherwise
, (3)

for any i, j ∈ {1, . . . , n}, and some non-increasing function κ : R
+
0 → R

+
0 such

that limx→∞ κ(x) = 0. Common choices for κ are κ(d) = α/d, κ(d) = α/d2,
κ(d) = e−αd , κ(d) = e−αd2 , α being some positive constant. Often, a cut-off distance
d̄ is also specified, so that κ(d) = 1{d≤d̄}α/d2. — See Anselin (1988) and Anselin
(2002) for a discussion on the alternative specifications of spatial weight matrices (and
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thus of the decay function κ); whereas LeSage and Pace (2014) and Santi et al. (2020)
analyse the effects of spatial weight matrix misspecification.

The coarsening process can be either dependent on the intensity function λ and the
realisation of the point process { Z(s, ω) : s ∈ S } or independent from them. Here we
just assume that the coarsening is modelled by means of a random vector Φ, which is
a realisation of n Bernoulli random variables independent from the spatial process y
conditionally on the point process Z . Thus, the components Φi of the random vector
Φ are defined as follows:

Φi ∼ B(pi ) (4)

for i = 1, . . . , n, and take value Φi = 0 if point i is coarsened, whereas Φi = 1 if
point i has been correctly geocoded.

Finally, let S = { S1, S2, . . . , SR } be a partition of the space S into R regions such
that, for any unit i with coordinate zi ∈ S, it exists one region Sr such that zi ∈ Sr .1 It
is assumed that, for each coarsened unit i , the region Sr where i is located is known.

To sum up, for all units i = 1, . . . , n the values of the dependent variable yi and
the covariates xi are known. For non-coarsened units i = 1, . . . , p the coordinates
zi ∈ S are known, whereas it is known the coarsening area Sr of each coarsened unit
i = p+1, . . . , n such that zi ∈ Sr . Other missing or unknown information such as the
values of parameters and the coordinates of coarsened units about model (1) should be
either learnt (through estimation) or made it non-relevant (through marginalisation).

Before illustrating our proposal for tackling the estimation problem, we introduce
the notation that will be used throughout the rest of the paper.

We denote by subscript P and subscript C non-coarsened and coarsened points
respectively (that is, points where Φi = 1 and Φi = 0 respectively). Conditionally on
the random vector Φ, SAR (1) can be restated as it follows:

[
yP
yC

]
= ρ

[
WPP WPC

WCP WCC

]
·
[
yP
yC

]
+

[
XP

XC

]
β +

[
εP
εC

]
(5)

provided the original SAR is properly permuted by means of a suitable permutation
matrix PΦ ∈ {0, 1}n×n , that is:

[
yP
yC

]
= PΦ y,

[
WPP WPC

WCP WCC

]
= PΦWPΦ,

[
XP

XC

]
= PΦX ,

[
εP
εC

]
= PΦε.

(6)

Restatement (5) permits observations about coarsened (C) and non-coarsened (P)
points to be organised in block matrices.

1 In fact, this assumption is not crucial in our analysis, and can be easily generalised by assuming S to
be a cover of S such that S ∈ S. This generalisation permits various degrees of incompleteness in postal
addresses to be modelled, including the situation where some units are only known to be located in S. The
estimation method proposed later can be applied with no modifications also to this framework, however,
for the sake of notational simplicity, in the rest of the paper only the case where S is a partition of S is
discussed.
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We also define matrix A≡ In − ρPΦWPΦ ∈ R
n×n , so that:

A =
[
APP APC

ACP ACC

]
=

[
Ip − ρWPP −ρWPC

−ρWCP In−p − ρWCC

]
. (7)

Finally, it can be proved (see e.g. Lu and Shou 2002) that the following relations
hold for the inverse matrix A−1:

A−1 =
[
A−1
PP + A−1

PP APC Ξ̃−1ACP A
−1
PP −A−1

PP APC Ξ̃−1

−Ξ̃−1ACP A
−1
PP Ξ̃−1

]
(8)

where Ξ̃ ≡ ACC − ACP A
−1
PP APC is the Schur complement of APP and

A−1 ≡
[
(A−1)PP (A−1)PC
(A−1)CP (A−1)CC

]

=
[

Ξ−1 −Ξ−1APC A−1
CC

−A−1
CC ACPΞ−1 A−1

CC + A−1
CC ACPΞ−1APC A−1

CC

]
(9)

whereΞ ≡ APP − APC A−1
CC ACP is the Schur complement of ACC (see e.g. Horn and

Johnson 2013).

3 Estimation strategy

3.1 Model fitting

The reduced form of model (5) based on inversion (8) permits the following equation
to be derived:2

yP = ρWPP yP + XPβ + εP + APC Ξ̃−1
[
ACP A

−1
PP (XPβ + εP ) − (XCβ + εC )

]
.

(10)

Left-hand side term of Eq. (10) together with the first three terms of the right-
hand side perfectly describe a SAR amongst correctly geo-referenced points, sharing
the same parameters of the complete model (1). Unfortunately, the last term on the
right-hand side makes things more complicated.

The fourth term on the right-hand side of Eq. (10) proves that, in general, any subset
of observations of a SAR does not follow a SAR. Indeed, it makes the estimation
process of a SAR with coarsened points particularly tricky, since Eq. (10) includes
blocks of matrix A which depend on the (unknown) coordinates of the coarsened
points.

As previously stated, the estimation strategy proposed in this paper relies on a
double marginalisation of the likelihood function of the SAR (1). In particular, the

2 See the Appendix A.3 for a proof.
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former marginalisation should be made with respect to yP , thus concentrating the
information about coarsened points into a lower dimensional space.A similar approach
to the marginalisation of the SAR has already proved to be successful in the context
of variance estimation in 2-dimensional systematic sampling (see Espa et al. 2017).
The latter marginalisation should instead be made with respect to the point process
of non-coarsened points ZP , so as to include direct and indirect effects of positional
errors in the (marginal) probability distribution of yP .

The first marginalisation can be derived in closed form from the reduced form of
model (1) based on inversion (9), and equals

yP = Ξ−1XPβ + Ξ−1εP − Ξ−1APC A−1
CC (XCβ + εC ),

which implies that:

E(yP |Z , Φ) = Ξ−1XPβ + ρ Ξ−1WPC A−1
CC XCβ, (11a)

cov(yP |Z , Φ) = σ 2 Ξ−1(Ip + ρ2 WPC (AT
CC ACC )−1WT

PC )(Ξ−1)T, (11b)

so that the log-likelihood function lnL(ρ, β, σ 2|y, X , Z , Φ) of the of the model (1)
marginalised with respect to yP equals:

lnL(ρ, β, σ 2|yP , X , Z , Φ) = − p

2
ln(2πσ 2) + ln |Ξ |

−1

2
ln |Ip + ρ2 WPC (AT

CC ACC )−1WT
PC |

− 1

2σ 2 (Ξ yP − Xβ − ρWPC A−1
CC XCβ)T ·

·(Ip + ρ2 WPC (AT
CC ACC )−1WT

PC )−1 ·
·(Ξ yP − Xβ − ρWPC A−1

CC XCβ). (12)

The second marginalisation requires the intensity function λ to be estimated, so as
to characterise the first-order properties of the spatial point process { Z(s, ω) : s ∈ S }
and, in turn, the probabilistic law of the spatial weight matrix W under coarsened
geocoding.

The point process { Z(s, ω) : s ∈ S } along with the coarsening process
{ Φi : i = 1, . . . , n } defines a bivariate point pattern (Illian et al. 2008).3 Accord-
ing to Zimmerman (2008), for any s ∈ S, the intensity function λ : S → R

+ of the
spatial point pattern affected by incomplete geocoding can be estimated as follows:

λ̂(s) =
n∑

i=1

[φ̂(zi )]−1Kh(s − zi ), (13)

3 Such bivariate point process is either a Cox process or an inhomogeneous φ-thinned process, according
to whether φ is stochastic or not (see Illian et al. 2008, ch. 6). In this paper φ (and thus the probabilities
P(Φi = 1), i = 1, . . . , n) are treated as non-random, however all the results presented in the paper holds
also if φ is a realisation of a random field (see Zimmerman 2008, for details).
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where Kh is some kernel function with bandwidth h, zi is the observed location of unit
i , and φ̂ is an estimate of the geocoding propensity function φ : S → (0, 1], whose
reciprocal (1/φ̂) is used as the weighting criterion of the kernel estimator.

As for Kh , Zimmerman (2008) uses a Gaussian kernel whose bandwidth is auto-
matically selected by minimising the mean-square error statistic defined in Diggle
(1985) through cross-validation (Berman and Diggle 1989).

In operative terms, Zimmerman (2008) estimates the intensity function λ through
the R (R Core Team 2020) function density.ppp of package spatstat (Bad-
deley et al. 2015), whereas the bandwidth is computed by means of the function
bw.diggle (of package spatstat as well). Monte Carlo simulations illustrated
in Sect. 4 and the application to real data discussed in Sect. 5 use the same functions.

The geocoding propensity function φ can be estimated in various ways, according
to the available information about the coarsening process. In this paper, the values of
the coarsening probabilities in (4) are assumed to be such that pi = φ(zi ), given the
coordinate zi ∈ S of the unit i . It follows that:

φ̂(s) =
∑R

r=1
∑n

i=1 Φi1{zi∈Sr }1{s∈Sr }∑R
r=1

∑n
i=1 1{zi∈Sr }1{s∈Sr }

, (14)

so that φ̂ is constant over each region Sr ∈ S, and equals the proportion of non-
coarsened points in Sr .

The solution we propose in this paper consists in five steps which are summarised
in Algorithm 1.

Algorithm 1 (Double-marginalisation estimation)

1. the geocoding propensity function φ is estimated over S through estimator (14);
2. the intensity function λ of the coarsened point process Z is estimated according

to Zimmerman (2008) through estimator (13);
3. the likelihood of SAR (1) marginalised with respect to yP is derived from (11); we

denote that likelihood function by L(ρ, β, σ 2|yP , X , Z , Φ);
4. the likelihood L(ρ, β, σ 2|yP , X , Z , Φ) is marginalised with respect to ZP , that

is:

L(ρ, β, σ 2|yP , X , ZP , Φ) =
∫
Sn−p

L(ρ, β, σ 2|yP , X , ZP , zC , Φ) �̂(zC |ZP ) dzC

(15)
where �̂ : Sn−p → R

+ is the conditional probability density function of ZC |ZP

implied by the estimated intensity function λ̂;
5. marginal likelihood L(ρ, β, σ 2|y, X , ZP , Φ) is maximised with respect to ρ, β

and σ 2.

As anticipated, marginalisation (15) has to be performed numerically since it seems
impossible to compute it analytically. Anyway, two issues may make the outlined
method computationally unfeasible.

Firstly, the high-dimensional integration space in (15) may substantially deteriorate
the performances of Monte Carlo integration methods.
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Secondly, the need to evaluate integral (15) at every step of the optimisation pro-
cedure dramatically exacerbates the problem outlined in the previous point.

In order to overcome both problems (and the second in particular), we rely on
the cross-entropy algorithm for the optimisation of noisy functions (Rubinstein and
Kroese 2004). Unlike other numerical optimisation methods such as the Expectation-
Maximisation algorithm (Dempster et al. 1977; Robert and Casella 2004), at each
iteration the cross-entropy algorithm simultaneously performs themarginalisation and
the optimisation of the likelihood function L(ρ, β, σ 2|y, X , ZP , ZC , Φ). This leads
to a substantial reduction of the computational burden required by the optimisation
routine.

Results of Monte Carlo simulations discussed in the next section have been
performed adopting the same parameters and instrumental distributions of the cross-
entropy algorithm as described in Bee et al. (2017), where themethod has been applied
to maximum likelihood estimation of generalised linear multilevel models (the only
exception is in the number N of draws, as it will be clarified later).

3.2 Impact estimators

According to LeSage and Pace (2009), the effects of covariates on the dependent
variable of a SAR do not solely depend on regression coefficients β, as the spatially-
lagged dependent variable induces an indirect effect resulting from the autoregressive
parameter ρ and the spatial weight matrix W . It follows that the overall impact of a
regressor on the value of the dependent variable can be decomposed in a direct and
an indirect impact, which, however, it is not constant amongst all units. For these
reasons, averages of total (T (β)), direct (D(β)), and indirect (M(β)) impacts are
usually computed (LeSage and Pace 2009):

T (β) = n−1 ιTn (I − ρW )−1ιnβ, (16a)

D(β) = n−1 tr(I − ρW )−1β, (16b)

M(β) = T (β) − D(β). (16c)

According to the model we have described in Sect. 2, some elements of the spatial
weightmatrixW are uncertain when geocoding is not complete. It follows that impacts
should be estimated via Monte Carlo simulations, where the weight matrices are
defined according to the realisations of a point process Z with estimated intensity
function λ̂. Thus, the Monte Carlo estimators of the impact measures (16) can be
defined as follows:

(̂A−1) = 1

N

N∑
k=1

(I − ρ̂Wk)
−1, T̂ (β̂) = n−1 ιTn (̂A−1)ιnβ̂,

D̂(β̂) = n−1 tr (̂A−1)β̂, M̂(β̂) = T̂ (β̂) − D̂(β̂).
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Since Monte Carlo estimation of matrix (̂A−1) may be computationally demanding,
because of the inversions of the weight matrices Wk , a truncated geometric series of
(I − ρ̂Wk)

−1 may reduce substantially the computational burden of the simulation:

(̂A−1) = 1

N

N∑
k=1

m∑
h=0

ρ̂hWh
k .

where m represents the truncation order.

3.3 Asymptotics and generalisations

As stated in the introduction, this paper aims at proposing an estimation method for
spatial models à la Cliff–Ord (Cliff and Ord 1969), where a portion of data is affected
by coarsening, thus the primarily interest is devoted to the parameters of the model,
as well as other measures of covariates’ effects (like, e.g. direct, indirect and total
impacts, which are discussed in Sect. 3.2).

The double marginalisation performed in Algorithm 1 derives from the following
marginalisation of the probability density function of the marked point process:

fYP |ZP (yP |zP ) =
∫ [∫

fYP ,YC |ZP ,ZC (yP , yC |zP , zC ) dyC

]
�(zC |zP) dzC , (17)

where conditioning of all probability density functions with respect to the coarsening
vector Φ has been omitted for notational simplicity, and �(zC |zP ) = fZC |ZP (zC |zP )

has been denoted consistently to the notation of Eq. (15). The inner integral of Eq. (17)
corresponds to the first marginalisation described at point 3 of Algorithm 1, whereas
the outer integral determines the marginalisation of Eq. (15).

The inner integral of Eq. (17) is a marginalisation of a model whose maximum
likelihood estimators have been proved to be consistent by Lee (2004), provided that
specific requirements on the asymptotic specificationof the spatialweightmatrixW are
satisfied. Yet, the asymptotic behaviour of the double-marginal estimator depends also
on both the geocoding propensity function estimator (14) and the intensity function
estimator (13); both estimators are consistent, and their asymptotic properties are
discussed in Zimmerman (2008), however this is not enough to guarantee that the
double-marginal estimator is consistent too. The reason for this is that the spatial
weight matrix is built according to both the spatial point pattern and the coarsening
process, and its asymptotic behaviour is fully determined by the properties of that two
processes. To our knowledge, at the moment, there are no theoretical results which can
be exploited in order to prove (or refuse) the consistency of double-marginal estimator.

As for the applicability of the double-marginal estimator, it is worth pointing out
that it can be easily adapted or generalised to other coarsening mechanisms, point
processes, or stochastic spatial processes, as it is only required that the model can be
identified and marginalised. Thus, if a spatial model other than the SAR is consid-
ered, Algorithm 1 changes in step 3, where the likelihood function of the model is
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marginalised with respect to non-coarsened units, whereas the rest of the algorithm
does not change.

A special case is represented by the spatial Durbinmodel (SDM), which generalises
the SAR model by including some (or all) spatially lagged covariates amongst the
regressors. In this case, bothAlgorithm1 and likelihood function (12) are validwithout
modifications, provided that the design matrix X is properly redefined so as to include
extra covariates.

The family of Cliff–Ord spatial models consists of other specifications which some-
how include other forms of spatial dependence or allows for other specifications of the
covariate effects. An extensive review of the existing Cliff–Ord spatial models can be
found in Cressie (2015), Anselin (1988), and LeSage and Pace (2009). Here it is worth
reminding the general nesting spatial model (GNSM) defined in Elhorst (2014):

⎧⎪⎨
⎪⎩
y = ρWy + αιn + Xβ + WXθ + u

u = λWu + ε

ε ∼ N n(0, σ 2 In)

(18)

Although the GNSM (18) is not identifyable, it deserves consideration, as it includes
the main Cliff–Ord spatial models as special cases, if one or more restrictions are
apllied to its parameters.—For example, the SDM is obtained when λ = 0, whereas
the SAR model (1) results if λ = 0 and δ = 0 (the constant vector ιn can be included
into the design matrix X ).

The full log-likelihood of the GNSM (18) can be proved to be:

lnL(ρ, λ, α, β, δ, σ 2) = −n

2
ln(2πσ 2) + ln |Aρ | + ln |Aλ|

−[Aλ(Aρ y − αιn − Xβ − WXθ)]T[Aλ(Aρ y − αιn − Xβ − WXθ)]
2σ 2 , (19)

where Aρ = In − ρW and Aλ = In − λW .
The likelihood of models nested in GNSM can be derived from (19), whereas the

first analytical marginalisation can be derived through inversions (8) and (9). Once the
first marginalisation has been derived, Algorithm 1 can be applied just as illustrated
above.

4 Monte Carlo simulations

The performances of the proposed estimation approach in finite samples have been
studied bymeans ofMonte Carlo simulations. The complication of both the modelling
setting and estimation method considerably widens the variety of scenarios which
should be considered for studying the estimators’ properties in finite samples.

In this section twelve different scenarios are considered:

(A) a point pattern with n = 250 points is generated over an irregular area S according
to an inhomogeneous Poisson process with the intensity function λ represented
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Fig. 1 Intensity function λ used for generating the point process (left) and the realisation of the process for
n = 250 with hexagonal partition (R = 17) of the space (right)

in Fig. 1. The surface S is partitioned into R = 17 hexagonal regions of equal
size excepting for border zones (see Fig. 1). The SAR includes two regressors
(generated as realisations of a standard normal distribution) and a constant term,
so that X ∈ R

n×3. The parameters of the SAR are ρ = 0.5, β = [1, 1,−1]T,
σ 2 = 1, whereas the spatial weight matrix W is computed according to (3),
and κ(x) = 1{x≤0.5} (note that sides of hexagons measure 1.5). Each unit of the
point pattern is independently coarsened with probability 0.4, hence the expected
number of coarsened units is E(p) = E(ΦTιn) = 0.4 · n = 100. Simulations are
based on N = 300 replications, each of which share the same point pattern and
design matrix X . Models are fitted through the cross-entropy algorithm for noisy
functions (Rubinstein and Kroese 2004) as implemented in Bee et al. (2017), but
for the number of draws (denoted by N in Bee et al. 2017) which equals 200 for
the first iteration and 100 for subsequent iterations instead of 1000 for all iteration
as suggested in Bee et al. (2017). Simulations have been performed by means of
the software R (R Core Team 2020), whereas cross-entropy optimisation has been
carried out through the R package noisyCE2 (Santi 2020);

(B) the same simulation settings as in point (A), except that ρ = 0.3;
(C) the same simulation settings as in point (A), except that ρ = 0.7;
(D) the same simulation settings as in point (A), except that σ 2 = 2;
(E) the same simulation settings as in point (A), except that n = 500 and κ(x) =

1{x≤√
1/8}. Function κ has been redefined so that the average number of neighbours

per unit is the same as in case (A);
(F) the same simulation settings as in point (A), except that n = 1000 and κ(x) =

1{x≤0.25}. Function κ has been redefined so that the average number of neighbours
per unit is the same as in case (A);

(G) the same simulation settings as in point (A), except that φ(s) ∝ 0.8 λ(s). Function
φ is set so that the coarsening probability ranges between 0.2 and 0.75, whereas
its average equals 0.4, in line with all the other simulation scenarios;

(H) the same simulation settings as in point (A), except that φ(s) ∝ −0.8 λ(s). Func-
tion φ is set so that the coarsening probability ranges between 0.04 and 0.60,
whereas its average equals 0.4, in line with all the other simulation scenarios;
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(I) the same simulation settings as in point (A), except that each unit of the point
pattern is independently coarsened with probability 0.1 (instead of 0.4), hence the
expected number of coarsened units is E(p) = E(ΦTιn) = 0.1 · n = 25;

(J) the same simulation settings as in point (A), except that each unit of the point
pattern is independently coarsened with probability 0.2 (instead of 0.4), hence the
expected number of coarsened units is E(p) = E(ΦTιn) = 0.2 · n = 50;

(K) the same simulation settings as in point (A), except that each unit of the point
pattern is independently coarsened with probability 0.8 (instead of 0.4), hence the
expected number of coarsened units is E(p) = E(ΦTιn) = 0.6 · n = 150;

(L) the same simulation settings as in point (A), except that the sides of hexagons
measure 1, thus the number of regions is R = 29.

For each scenario five estimation methods are considered:

– the maximum likelihood estimator based on a dataset where locations of all units
are known, and there is no coarsening. Hereinafter this estimator is referred to as
NCM, which stands for non-coarsened model;

– the proposed estimator based on double marginalisation (hereinafter DME);
– the maximum likelihood estimator of the SAR based only on non-coarsened units
(hereinafter PDM, which stands for purged data model). In this case the weight
matrix is computed using the same κ function as the data generating process, but
no standardisation is performed;

– the maximum likelihood estimator of the SAR based only on non-coarsened units.
Unlike the previous case, the spatial weightmatrix is row-standardised (hereinafter
SPDM, which stands for standardised PDM);

– the maximum likelihood estimator of the SAR based on all points. Location of
coarsened points is imputed to the centroids of regions where points are located,
and a row-standardised weight matrix is derived according to the same κ function
as the data generating process. Hereinafter, this method is referred to as CIP, which
stands for centroid imputed position.

Clearly, theNCMestimates are obtained under the ideal condition of no-uncertainty
about unit locations, they are thus expected to be the most efficient amongst the others
considered in the simulations.

PDM and SPDM are only based on correctly-georeferenced units, however all the
information about dependent and independent variables is lost for coarsened units,
which are not involved in the estimation process. This results in smaller effective
sample size, in an alteration of part of the elements of the spatial weight matrixW due
to row-standardisation, as well as in an alteration of the dependence structure amongst
all units induced by the inversion of matrix In − ρW .

On the other hand, the CIP estimates use all the information about dependent and
independent variables, whereas the imputation of the unit locations typically alters the
actual neighbourhood relations both amongst coarsened units, and between coarsened
and non-coarsened units.

DME is compared to all the estimation methods in order to verify whether it pro-
duces estimates which are more efficient than those obtained through PDM, SPDM
and CIP. NCM estimates are used as the high benchmark.
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Results of simulations are summarized in terms of relative root mean squared error
(RRMSE) and relative bias in Tables 1, 2 and 3. For reasons of space, impacts estimates
about the first regressor only are reported, since estimates on other regressors’ impacts
are similar.

As expected, in all scenarios the NCM estimator is the best performer for all param-
eters both in terms of bias and RMSE, and it is not commented in the following if not
for the purpose of making comparisons to other estimation approaches.

Estimates in Tables 1, 2 and 3 show two general results which basically hold under
all scenarios.

Firstly, the estimates obtained fromall estimationmethods are rather stable under all
simulation settings for most parameters and impacts. The only remarkable exception
is represented by the estimates of the error variance, which are rather sensitive with
respect to the value of parameter ρ and σ 2.

Secondly, the rank of estimation methods in terms of both bias and RMSE is basi-
cally the same whatever the scenario we consider, although some differences emerge
amongst parameters.

If covariate coefficients are considered (that isβ0,β1,β2), DMEestimator is the best
performer in terms of relative bias. On the other hand, the CIP estimator exhibits the
smallest RRMSE, followed by the SPDM estimator, whereas larger RRMSEs result
from DME and PDM estimator. Anyway, both in case of relative bias and RRMSE,
differences amongst estimators are rather small, if we consider covariates coefficients
β1 and β2, whereas larger variability emerges for β0.

Things change if the autoregressive parameterρ is considered. In this case, theDME
clearly outperforms all other estimators both in terms of relative bias and RRMSE in
all considered scenarios, whereas the second-best estimator is SPDM estimator fol-
lowed byCIP andPDMestimators.Unlike regressors coefficients, differences amongst
estimation methods are large in terms of relative bias and RRMSE.

If the error dispersion parameter σ is considered, the four estimation methods
for coarsened data can be gathered into two groups. The former includes the best
performers which are DME and SPDM, the latter consists in CIP and PDM estimators,
which almost double the relative bias and the RRMSE of estimators in the other group.
Interestingly, estimators of each group exhibit very similar relative bias and RRMSE.

The performances of estimators on assessing impacts of covariates clearly reflect
the statistical performances on parameters ρ, β1, and β2. Thus CIP, PDM, and SPDM
estimators perform well in estimating the direct impact, whereas the DME definitely
outperforms the others when indirect impact is estimated. The efficiency of DME on
indirect impact estimation is large enough to make DME the most efficient estimator
also for the total impact. Analogous results hold also in terms of bias.

Although relative performances of estimators are pretty stable amongst scenarios
considered in the simulations, it is worth analysing more in depth the results of the
simulations.

The comparison between results of scenarios B, A and C enables to assess the effect
of parameter ρ on the estimators, which turns out to be marked for all parameters
and most estimation methods. In particular, as ρ gets larger (note that ρ(B) = 0.3,
ρ(A) = 0.5, ρ(C) = 0.7), both the relative bias (in absolute value) and the RRMSE of
ρ̂ decrease for all estimation methods except for PDM, whereas the absolute value of
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the relative bias and the RRMSE grow for all the other parameters as ρ gets larger.
The magnitude of relative bias and the RMSE of impact estimators grow as well with
ρ for all estimation methods with the exception of the indirect impact of PDM which
is basically independent of ρ.

The effect of σ 2 can be assessed by comparing scenario A (where σ = 1) and
scenario D (where σ = 2). The increase in the variance error leads to greater RRMSE
for both the regressor coefficients and the direct impacts, whereas the RRMSE of the
autoregressive parameter ρ and other impacts (indirect and total) remain basically
unchanged. On the other hand, both the relative bias and the RRMSE of σ̂ improve
substantially.

It is worth noting that the relative bias and the RRMSE of the estimators of the
autoregressive parameter ρ and the error dispersion parameter σ are associated. In
particular, the larger (ρ̂ − ρ)/ρ, the smaller the relative bias and the RRMSE of σ̂ .
Such a relation is fully consistent with with the relation in Eq. (2b), where the negative
bias of ρ̂ entails a positive bias of σ̂ .

An analogous relation emerges for the regression coefficients β0, β1, β2, according
to Eq. (2a), however in this case the magnitude of the effect is not particularly marked,
probably due to the fact that Eq. (2a) is linear in ρ̂, unlike Eq. (2a), which is quadratic.

The effect of the sample size n emerges if the results of scenario A (n = 250), E
(n = 500) and F (n = 1000) are compared. As expected, both the relative bias, and the
RRMSE of all estimators of non-coarsened model (NCM) gets smaller (in absolute
value) as n increases. On the other hand, none of the other estimators show a similar
pattern, as neither the relative bias nor the RRMSE exhibits any convergent trend.

If scenarios A (φ(s) = 0.4), G (φ(s) ∝ 0.8 λ(s)), and H (φ(s) ∝ −0.8 λ(s)) are
compared, no clear pattern emerges, although it seems that RRMSE tends to slightly
increase as we move from scenario G to A, and from A to H, suggesting that better
estimates can be obtained if coarsening is more frequent in areas where the intensity
of the point process is higher (scenario G), whereas the opposite is true if the intensity
of the point process and the coarsening probability are inversely related (scenario H).

The comparison between scenarios A, I, J and K allows one to assess the effect of
the proportion of coarsened units on the estimators. The coarsening function φ of all
scenarios is constant over the domain S, and it is defined so that the expected share
of coarsened points equals 10%, 20%, 40% and 60% for scenarios I, J, A and K,
respectively. The results of the simulations shows that the estimators of all methods
(except NCM, obviously) deteriorates in terms of efficiency as the coarsening proba-
bility gets larger. If the autoregressive parameter ρ is considered, a strong bias towards
zero emerges as the coarsening probability increases, in line with the empirical and
theoretical results provided inArbia et al. (2016). Clearly, the relative biases of indirect
and total impacts derive from the behaviour of the estimators for ρ.

It is worth noting that the DME estimators are more efficient and less biased than
other estimation methods, however such advantage tends to diminish as the proportion
of coarsened points exceeds 50%.MonteCarlo simulations based on 80%of coarsened
units (not presented in this paper for the sake of brevity) have shown that DME and
CIP estimators have has similar performances, whereas they are about 20%–40%more
efficient than other estimation methods.
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Jarque−Bera test
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Fig. 2 Normal quantile-quantile plot of parameter estimates from scenario A. In each plot the p-value of
the Jarque-Bera normality test (Jarque and Bera 1980) has been annotated

Finally, if the size of the regions is reduced (scenario L vs. A), the effects of
coarsening are more limited, and this turns in to an improved efficiency and relative
bias for all the estimators. This is an expected result, since the loss of information due
to coarsening is lower if the regions where points are located are smaller.

As for the distribution of double-marginal estimators, the goodness of fit to the
Gaussian distribution is generally fairy good. See Fig. 2 for an example based on
simulations from scenario A.

5 Application to hedonic models for house prices

In this section, the estimation method based on double marginalisation is applied to
an hedonic model for house prices in Beijing.

The dataset used for fitting the model consists of a sample of 361 transactions
made freely available by Qichen (2019) and collected through web-scraping from
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Fig. 3 Map of the central districts of Beijing (Changping, Chaoyang, Daxing, Dongcheng, Fangshan,
Fengtai, Haidian, Mentougou, Shijingshan, Shunyi, Tongzhou, Xicheng) and location of houses considered
in the model. Position of correctly located houses is drawn with a cross, whereas (unreliable) position of
coarsened locations is drawn by means of a circle

bj.lianjia.com. For each transaction, it is available information on sale price,
the number of living anddrawing rooms, the number of bathrooms, the type of building,
the construction time, the type of building structure, whether the house is close to a
subway station, and whether the elevator is available. Moreover, the Beijing’s district
and the geographical coordinates where houses are located are available.

Figure 3 shows themap of points where the houses are located. A group of 65 points
(about 18%) in the map has been marked differently because in those cases longitude
and latitude are not consistent with the district where the house should be located. For
this reason, those points are considered as coarsened.

Table 4 shows the estimates of regression coefficients and total impacts for a SAR
model where the logarithm of house price is regressed over the covariates listed before.
The spatial weight matrices has been defined according to the k-nearest neighbour cri-
terion with k = 20. The model has been fitted through the double-marginal estimator
(DME), the standardised purged data model (SPDM) and the centroid imputed posi-
tion model (CIP). The NCM model has not been considered, as correct locations of
coarsened units is not available, whereas the purged data model (PDM) has not been
fitted since in case of equally weighted matrices W based on k-nearest neighbour
criterion the SPDM and the PDM models are equivalent.

Results in Table 4 exhibit a good agreement in terms significance and sign of
point estimates amongst the three estimation methods, nevertheless differences in
magnitudes between several regression coefficients emerge. The estimates of the
autoregressive parameter ρ are rather different from one method to another; as sim-
ulations pointed out, as we move from the DME estimator to the CIP estimator and
from the latter to the SPDM estimator, the point estimates of ρ tends to get closer and
closer to zero.
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Table 4 Autoregressive parameter ρ and regression coefficients β j estimates of a SAR model on log-
transformed prices of 361 houses in Beijing

Regressor DME SPDM CIP

Autoregressive parameter ρ 0.575∗∗∗ 0.398 0.500∗∗∗
Intercept 1.325∗∗∗ 2.411∗∗∗ 1.729∗∗∗
Two living rooms 0.299∗∗∗ 0.258∗∗∗ 0.361∗∗∗
More than two living rooms 0.608 0.519∗∗∗ 0.602

Two drawing rooms 0.108 0.079 0.087

More than two drawing rooms 0.773∗∗∗ 0.742∗∗ 0.577∗
More than one bathroom 0.319∗∗∗ 0.391∗∗∗ 0.379∗∗∗
Building type 2 0.111 0.252 0.169

Building type 3 0.000 −0.002 −0.017

Building type 4 0.020 0.014 0.048

Building type “other” 0.367 0.352 0.428∗
Construction time in (1989, 1999] 0.109 0.094 0.145∗∗∗
Construction time in (1999, 2019] −0.006 −0.013 0.038

Renovation condition 2 0.441∗∗ 0.434∗ 0.400∗∗∗
Renovation condition 3 0.411∗∗∗ 0.377∗∗∗ 0.346∗∗∗
Renovation condition 4 0.506∗∗∗ 0.477∗∗∗ 0.434∗∗∗
Building structure type 6 0.084 0.080 0.105

Other type of building structure 0.183 0.169 0.135

Elevator 0.356∗∗∗ 0.321∗∗∗ 0.273∗∗
Subway station 0.185∗∗ 0.224∗∗∗ 0.228∗∗∗

The locations of 65 houses (18%) are coarsened, thus the model has been fitted through DME, SPDM and
CIP
∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

6 Conclusions

The estimationmethod proposed in this paper for tackling the problem of incompletely
geocoded data is based on a modelling approach which integrates the point process,
the coarsening process and the spatial process through a marked point process model
whose likelihood function is then marginalised twice so as to clean out the effects of
coarsening.

Monte Carlo simulations for the spatial autoregressive model have shown that the
proposed method is basically equivalent to other methods in terms of bias and RMSE
in the estimation of regressor coefficients, whereas it returns more efficient and less
biased estimates for the spatial autoregressive parameter, the error variance, the indi-
rect impacts, and the total impacts. Gains in efficiency and biasedness are substantial
and they clearly emerge under the various simulation settings. The proposed method-
ology can be generalised in various directions to account for other forms of data
incompleteness typically emerging when analysing large spatial datasets related to
individual economic agents.
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A Proofs

A.1 Proof of Equation (2a)

The reduced form of model (1) is:

y = (In − ρW )−1Xβ + (In − ρW )−1ε, (20)

if we define A≡ In − ρW , it follows that:

y ∼ N
(
A−1Xβ, σ 2(ATA)−1

)
,

thus, the log-likelihood function of the model is

lnL(ρ, β, σ 2) = −n

2
ln(2πσ 2) + ln |A| − 1

2σ 2 (Ay − Xβ)T(Ay − Xβ).

The maximum likelihood estimation of the SAR model is often carried out by
concentrating the likelihood function with respect to ρ (LeSage and Pace 2009). Thus,
the first order condition on β depends on the point estimate of ρ as it follows:

β̂ = (XTX)−1XT Ây.

where Â≡ In − ρ̂W . It follows that:

β̂ = (XTX)−1XTAy + (XTX)−1XT( Â − A)y
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= (XTX)−1XTAy + (XTX)−1XT(ρ̂ − ρ)Wy

= (XTX)−1XTA(A−1Xβ + A−1ε) + (XTX)−1XT(ρ̂ − ρ)W (A−1Xβ + A−1ε)

= β + (XTX)−1XTε + (XTX)−1XT(ρ̂ − ρ)W (A−1Xβ + A−1ε)

where y has been substituted by its reduced form.
The expected value of the error term E(ε) = 0 and the geometric series expansion

A−1(In − ρW )−1 = ∑∞
j=0 ρ jW j motivate the following calculations:

E(β̂ − β|ρ̂) = (XTX)−1XT(ρ̂ − ρ)W A−1Xβ

= (XTX)−1XTW

⎛
⎝ ∞∑

j=0

ρ jW j

⎞
⎠ Xβ(ρ̂ − ρ)

= (XTX)−1XT

⎛
⎝ ∞∑

j=1

ρ jW j

⎞
⎠ Xβ

ρ̂ − ρ

ρ
.

This completes the proof. ��

A.2 Proof of Equation (2b)

First of all, note that, according to the notation introduced in Appendix A.1:

ÂA−1 = [A + ( Â − A)]A−1 = In − (ρ̂ − ρ)W A−1. (21)

Secondly, define H ≡ In − X(XTX)−1XT, and note that the first order condition
on σ 2 leads to the following estimator:

σ̂ 2 = 1

n
( Ây − X β̂)T( Ây − X β̂),

which can be restated as it follows:

σ̂ 2 = 1

n
(H Ây)T(H Ây),

since Ây − X β̂ = Ây − X(XTX)−1XT Ây = H Ây.
Thirdly, note that HX = X − X(XTX)−1XTX = 0, thus the reduced form (20)

and the Eq. (21) allow us to write:

H Ây = H ÂA−1(Xβ + ε)

= H(In − (ρ̂ − ρ)W A−1)(Xβ + ε)

= −(ρ̂ − ρ)HW A−1Xβ + Hε − (ρ̂ − ρ)HW A−1ε

= −(ρ̂ − ρ)QρXβ + Hε − (ρ̂ − ρ)Qρε.
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Finally, note that H is symmetric and idempotent, thus:

E(nσ̂ 2|ρ̂) = n E((H Ây)T(H Ây))

= (ρ̂ − ρ)2(QρXβ)T(QρXβ) + E(εTT THε) − (ρ̂ − ρ) E(εTHTQρε)

− (ρ̂ − ρ) E(εTQT
ρHε) + (ρ̂ − ρ)2 E(εTQT

ρQρε)

Note that H is a projection matrix, thus it is symmetric (H = HT) and idempotent
(HH = H ), and this also implies that HQρ = Qρ . It follows that:

E(nσ̂ 2|ρ̂) = n E((H Ây)T(H Ây))

= (ρ̂ − ρ)2(QρXβ)T(QρXβ) + E(εTHε) − (ρ̂ − ρ) E(εTHTQρε)

− (ρ̂ − ρ) E(εTQT
ρHε) + (ρ̂ − ρ)2 E(εTQT

ρQρε)

= (ρ̂ − ρ)2(QρXβ)T(QρXβ) + σ 2 tr(H)

− 2σ 2(ρ̂ − ρ) tr(Qρ) + σ 2(ρ̂ − ρ)2 tr(QT
ρQρ),

from the fact that tr(H) = n − k, Eq. (2b) follows. ��
A.3 Proof of Equation (10)

According to (6), Eq. (5) can be restated as follows:

PΦ y = ρPΦWPΦ y + PΦXβ + PΦε,

hence, the reduced form of PΦ y is:

PΦ y = A−1(PΦXβ + PΦε), (22)

where A is defined in Eq. (7).
If the inversion (8) is used for A, the block of non-coarsened observations of Eq. (22)

becomes:

yP = (A−1
PP+A−1

PP APC Ξ̃−1ACP A
−1
PP )(XPβ+εP )+(−A−1

PP APC Ξ̃−1)(XCβ+εC ).

(23)
Now, both sides of (23) are premultiplied by APP , and terms rearranged as follows:

APP yP = XPβ +εP + (APC Ξ̃−1ACP A
−1
PP )(XPβ +εP )− (APC Ξ̃−1)(XCβ +εC ).

(24)
Finally, APP is replaced by its definition (7), whereas matrix APC Ξ̃−1 is gathered
from third and fourth term on the right hand side of (24):

yP − ρWPP yP = XPβ + εP + APC Ξ̃−1
[
ACP A

−1
PP (XPβ + εP ) − (XCβ + εC )

]
,

if term ρWPP yP is added to both sides of the previous equation, Eq. (10) is obtained.
��
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