
Article

Multiformalism models for performance engineering

Enrico Barbierato1, Marco Gribaudo2 and Giuseppe Serazzi 3

1 Dip. di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia, Italy;
enrico.barbierato@unicatt.it

2 Dip. di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, via Ponzio 345, 20133 Milano, Italy;
marco.gribaudo@polimi.it

3 Dip. di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, via Ponzio 345, 20133 Milano, Italy;
giuseppe.serazzi@polimi.it

* Correspondence: enrico.barbierato@unicatt.it

Version March 5, 2020 submitted to Future Internet

Abstract: Nowadays, the necessity to predict the performance of cloud and edge computing-based1

architectures has become paramount, in order to respond to the pressure of data growth and more2

aggressive Service Level of Agreements. In this respect, the problem can be analyzed by creating3

a model of a given system and studying the performance indices values generated by the model’s4

simulation. This process requires to take in account a set of paradigms, carefully balancing the benefits5

and the disadvantages of each one. While Queuing Networks are particularly suited to modeling6

cloud and edge computing architectures, however, particular occurrences - such as autoscaling -7

require different techniques to be analyzed. This work presents a review of paradigms designed to8

model specific events in different scenarios, such as Timeout with Quorum-based Join, Approximate9

Computing with Finite Capacity region, MapReduce with Class Switch, Dynamic Provisioning in10

Hybrid Clouds and Batching of requests in e-Health applications. The case studies are investigated11

by implementing models based on the above mentioned paradigms and analyzed with discrete event12

simulation techniques.13

Keywords: Quorum-based Join; Multiformalism; Finite Capacity region; Class Switch14

1. Introduction15

In 2017, the Economist designated the growing diffusion of data as the "the new oil" emergency16

[1], quoting the profit reached in the first quarter of the year generated by the main market actors17

equal to 25 billion dollars. Though the remark was not exactly original (the same perspective had been18

already shared by the mathematician Clive Humby in 2006 [2]) and was far from being an obvious19

analogy [3], it highlighted how applications and services could be characterized in order to maximize20

benefit from this new commodity: i) network access (the capability to grant access to the internet to21

a broad range of devices), ii) service metering (a user is billed accordingly to how much service it is22

consumed), iii) shared architecture (the capability of providing shared resources and infrastructures to23

all sort of users) and iv) provisioning according to demand (it is necessary to provide dynamically the24

requested services). All these requirements converged in a model called cloud computing. In Gartner’s25

2018 Hype Cycle for Cloud Computing 1, it is reported that "Cloud computing has reached the Slope26

of Enlightenment" and Forbes announced it is "the new kid in the block" 2, 5G giving a boost to cloud27

1 https://www.gartner.com/en/documents/3884671
2 https://www.forbes.com/sites/forbestechcouncil/2019/11/15/the-next-evolutionary-step-for-cloud-computing/

#3e04c1646dd7

Submitted to Future Internet, pages 1 – 25 www.mdpi.com/journal/futureinternet

http://www.mdpi.com
https://www.gartner.com/en/documents/3884671
https://www.forbes.com/sites/forbestechcouncil/2019/11/15/the-next-evolutionary-step-for-cloud-computing/#3e04c1646dd7
https://www.forbes.com/sites/forbestechcouncil/2019/11/15/the-next-evolutionary-step-for-cloud-computing/#3e04c1646dd7
http://www.mdpi.com/journal/futureinternet

Version March 5, 2020 submitted to Future Internet 2 of 25

technology in different market areas, such as autonomous cars, virtual reality, health care and smart28

homes.29

It is more and more evident that the capacity to offer services such as servers, databases and30

storage has become a powerful attractor for the main tech players in the world market, including31

Amazon, Microsoft, Google, IBM and Oracle to name a few. An additional aspect concerns security,32

chiefly the ability to shield data in the cloud from any kind of malicious intrusion (ranging from33

hacking to theft) by properly configuring firewalls and VPNs initially and establishing specific policies.34

Moreover, to guarantee an efficient usage of the cloud architecture, it is necessary to define a35

Quality of Service (QoS) policy. In [4], quality is defined as consideration of a few key indicators36

such as i) flexibility (managing a functionality without affecting the system), ii) maintainability, iii)37

performance, and iv) scalability, among others. The authors stress the level of difficulty hidden in38

the choice of the process able to provision a valid QoS agreement for Cloud Computing architectures,39

identifying scheduling, admission control and dynamic resource provisioning the main keys to solving40

to this problem.41

User expectations drive the design of the cloud model, which is articulated through four pillars: i)42

public (a kind of cloud available to a large audience, which deploys services at a low cost), ii) private43

(the access is restricted to the members of a particular organization), iii) community (access is shared44

by organizations sharing analog motivations) and finally iv) hybrid.45

Such pillars present both advantages and disadvantages. Among the former, the most evident is46

the cost cutting in IT companies infrastructures regarding implementation, scalability, maintenance47

and reliability. Having fluid access to an ubiquitous cloud represents another significant landmark.48

The most interesting challenge consists of security and privacy matters, followed by some ambiguities49

in defining the services (this problem has been partially mitigated by the Open Cloud Consortium).50

If cloud computing relies on a centralized architecture (usually, a data center), in edge computing,51

processing occurs at the edge of the network. This choice has been proved to be a viable solution to52

overcome data latency typical of cloud computing, at the cost of limited processing power.53

The two proposed architectures are not mutually exclusive: instead, they complement each other. In54

this sense, fog computing extend the concept of centralized network by taking into account localized55

data centers or fog nodes, deployed in order to store and elaborate data at a shorter distance from the56

source. A fog node can filter which data need to be referred to the central server of the cloud structure57

from that which can be processed locally.58

As the success of a cloud network architecture depends on its performance, it is crucial to identify59

those factors influencing its implementation in order to build a valid model, which can be either60

simulated or studied analytically. The scientific literature provides numerous approaches to this task,61

ranging from stochastic models to machine learning-inspired methods.62

The contribution of this work consists of a survey of specific extensions of Queuing Networks63

formalism and solving methods to efficiently analyze the aforementioned scenarios. To be more specific,64

we start from the observation that Queuing Networks are particularly suited to model cloud and edge65

computing architectures, as this formalism denotes some limitations when taking in account different66

scenarios. For instance, one can imagine a simple auto-scaling scenario, where virtual machines are67

shut down and restated only when needed 3. Restart requires a non-negligible amount of time, and68

when the system is fed with a very low workload, this becomes the main component of the average69

response time. As the workload increases, the chance of finding the system already in on-state increases70

too, resulting in a reduced response time. However, then requests increase, resources start to saturate,71

extending again the average response time. This behavior cannot be modeled easily with queuing72

modeling primitives even if some specific computing techniques (such as Fork/Join, Finite Capacity73

3 See, for example, Overview of autoscale in Microsoft Azure Virtual Machines, Cloud Services, and Web Apps at https://docs.
microsoft.com/en-us/azure/azure-monitor/platform/autoscale-overview

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/autoscale-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/autoscale-overview

Version March 5, 2020 submitted to Future Internet 3 of 25

Regions and Class Switch) and approaches (such as Multiformalism) allow the modeler to take in account74

more complex architectures.75

Table 1 briefly recaps the main characteristics of the case studies presented here, including specific76

characteristics for which special techniques are required and describes the minimal extension that can77

capture such behavior.78

Table 1. Case studies summary

Scenario Solution Section
Timeout with Quorum based Join Fork/Join paradigm 3.1

Approximate Computing with Finite Capacity Region Finite capacity regions 3.2
MapReduce with Class Switch Class Switch 3.3

Dynamic provisioning in Hybrid Clouds Multiformalism 4.1
Batching of requests in e-Health applications Multiformalism 4.2

All the models presented in this work have been solved using JMT4 [5]. All the results have79

been computed with 99% confidence intervals that, for simplicity of presentation, are not graphically80

represented.81

This work is organized as follows. Section 2 takes in account the related work in the scientific82

literature and Section 3 focuses on computing problems that can be addressed with extensions to83

classical Queuing Networks modelling features, while Section 4 describes cases where this formalism84

alone cannot be applied, but where multi-formalism modelling techniques that combine Petri Nets with85

Queuing Networks, can provide meaningful and clear solutions. Both sections include a description of86

some of the known results, explaining how the contribution was able to provide better insights in the87

considered scenarios. Finally, Section 5 draws the conclusions from the paper.88

2. Related Work89

The complex scenarios introduced by cloud computing needs to be analyzed in order to be able90

to predict the future of the current technological landscape. To this respect, Varghese and others91

discuss in [6] some of the current paradigms, including i) the cloud pitfalls, ii) hybrid paradigms, iii)92

micro-clouds and cloudlets, iv) ad-hoc clouds (such as SETI), v) heterogeneous clouds (at high level,93

considering multiple providers and at low level, from the perspective of different processors), vi) fog94

and mobile edge computing and finally vii) serverless computing. The remaining part of the article95

examines the impact on society of next generation cloud paradigms.96

In reviewing the existing work on modeling and simulating cloud and edge computing97

technologies, various aspects need to be included. For instance, an important guideline to driving98

a system performance analysis consists of determine which metrics characterize the considered99

architecture.100

In [7], the authors examine a specific class of services (Infrastructure as a Service or IaaS) discussing101

Application Response Time (ART, literally "time taken by the application to respond to other users’102

requests.") as a metric. Specifically, the accounted tasks are described according from two perspectives,103

computation intensive and communication intensive tasks: the former is decomposed in the analysis of104

CPU and memory consumption, the latter being monitored by network tools (or even by using SMNP105

agents). In [8], Qiang Duan considers an extended set of parameters determining the performance106

of a cloud architecture service, such as i)response time, ii) throughput, iii)availability, iv)utilization,107

v) resilience, vi) scalability and vii) elasticity. Hybrid architecture performance is the focus of [9].108

Maheshwari and others review the paramount design parameters such as the proportion of resources109

4 http://jmt.sourceforge.net/Download.html

http://jmt.sourceforge.net/Download.html

Version March 5, 2020 submitted to Future Internet 4 of 25

on edge side vs cloud side and the latency of edge clouds in order to determine measure indices in the110

shape of the average response time and service goodput.111

With respect to the study of computing infrastructures workload in general (including the112

identification of patterns), Calzarossa et al. present [10], an interesting survey on the subject. Workload113

remains a key indicator to correctly match the Quality of Service (QoS) and Quality of Experience114

(QoE) and to adeguately respond to energy saving policies and resource provisioning requests. The115

capacity of performing passive or active data collection (by storing data with logging capacities or116

by deploying ad hoc tools) from an application generates a volume of data that can be exploited for117

monitoring purposes. However, such tasks imply a risk, since collecting big volumes of data can add118

a significant workload to the system, which can be mitigated by choosing appropriated sampling119

techniques, assuming that the sample is correctly selected (this and other issues are discussed in [11].120

The work in [10] reviews also the main techniques used to analyze the system performance, ranging121

from statistical analysis to the usage of graphs and finally stochastic processes.122

Multiformalism is used to model different components of a system whereby the modeler’s123

aim is to compute its performance, through different formalisms. The literature presents several124

methodologies (see [12] for an overview of historical evolution of the field and especially for125

what concerns performance modeling techniques through QN and PNs), each one supported by126

a corresponding tool. For example, SMART [13] is a software package used to design complex127

discrete-state systems, providing both numerical solution algorithms and discrete-event simulation128

techniques. PEPA (Performance Evaluation Process Algebra, [14]) is one of the many extensions of129

Process Algebra (a set of abstract languages capable of describing concurrent systems consisting of a130

set of agents performing one or more actions specifying concurrent behaviors and the synchronization131

between them. Typical examples of process algebras are Communicating Sequential Processes (CSP,132

[15]) and Calculus of Communicating Systems (CCS, [16]). Its novelty consists in the deployment133

of the concept of duration (an exponentially distributed random variable) of an action that makes134

explicit the relationship between the Process Algebra model and a Continuous Time Markov Chain.135

Different components of a system work together by using a kind of cooperation technique. More recent136

approaches include Möbius [17], OsMoSys [18] and SIMTHESys [19].Users who need to design new137

heterogeneous formalisms on Möbius are requested to refer to a meta-model interface called Abstract138

Functional Interface (AFI). Möbius supports Stochastic Activity Networks (SANs), Petri nets and139

Markov chains. OsMoSys can create multiformalism models and workflow management to achieve140

multi-solution. The key idea of OsMoSys relies on meta-modeling and the concept of object-oriented141

paradigms.142

From the point of view of model structure, OsMoSys represents a main metaformalism143

(metametamodel), supports formalism inheritance (at formalism and element level), and can extend144

formalisms by adding new elements. It allows model composition by the inclusion of submodels,145

supporting generic submodels and hidden information and multiformalism models with bridge146

formalisms. Möbius presents a more complex model architecture, where several different model types147

(organized in a logic tree, parameterize and solve a model. OsMoSys supports the development of148

multiformalism models by composition of submodels written in different formalisms by exploiting the149

benefits of metamodeling.150

Multisolution is dealt with Möbius and OsMoSys in a different way. In the former, the solver is151

obtained in the form of an optimized executable model, based on the description given by the user. The152

latter solves models by (semiautomatically) generating a business process, executed by its workflow153

engine, which describes the solution in terms of external solvers activations.154

SIMTHESys (Structured Infrastructure for Multiformalism modeling and Testing of Heterogeneous155

formalisms and Extensions for SYStems, [20]) is a framework for defining new formalisms and156

generating othe related solvers, that allows the combination of more formalisms in the same models.157

The solution architecture of SIMTHESys is designed to automatic generating solvers based on several158

Version March 5, 2020 submitted to Future Internet 5 of 25

formalism families, Exponential Events, Exponential and Immediate Events, Labeled Exponential159

Events Formalisms and so forth).160

In regard to surveys on cloud and edge computing, the literature offers several examples: [21]161

is an exhaustive analysis of the main paradigms, while in [22], the authors classify different fog162

computing-based systems, studying their principal requirements and features. In [23] Mao and others163

review a selection of papers on mobile edge computing by using Task model, Design Objective and164

Proposed Solution as guidance.165

With respect to other paradigms than those reviewed in this paper, Machine Learning algorithms166

have achieved a considerable popularity to predict the performance of cloud architectures. In [24],167

the authors discuss issues related to scaling of VMs resources in cloud computing implementing168

proreactive strategies based on Neural Networks, Linear Regression and Support Vector Regression,169

the latter providing the best accuracy.170

In [25], Ardagna and others evaluate a queuing-based analytical model and a novel fast ad-hoc171

simulator in various scenarios and infrastructure setups. Such approaches are able to predict172

average application execution times with an error of 12% on average. Machine Learning and173

analytical modeling can be combined as discussed in [26], where different hybrid applications, such as174

Transactional Auto Scaler, IRON Model and Chorus, are based respectively on divide and conquer,175

bootstrapping and ensemble techniques.176

3. Queueing Networks techniques177

The focus of this section concerns cloud related features that need advanced Queuing Network178

techniques to be properly modeled. Firstly, this section presents an approach for timeout modelling,179

which is followed by a study of its impact on cloud applications (Section 3.1). Secondly, we propose an180

example of Approximate Computing, exploited to provide complex services in an environment with181

highly variable workload. Note that the reduction of the solutions quality is used to provide service182

level agreements guarantees while posing a limit to the automatic scalability of a cloud deployment183

(Section 3.2). Finally, Big Data techniques, exploiting the parallelization of resources deployed on a184

large number of virtual machines and using paradigms such as MapReduce (Section 3.3), conclude185

this section.186

3.1. Timeout with Quorum based Join187

The implementation of a timeout value can be useful in several situations, for example to188

understand when a particular computing process should be arrested before exhausting the system189

resources or because its execution is taking so long that is preventing the execution of other components.190

In cloud computing it can be used to model either user behavior, as detailed in Section 3.1.1, or specific191

cloud features. In the latter case, two notable examples are Spot Instances on Amazon Web Services,192

and maximum execution times in Function as a Service (FaaS) Serverless deployments.193

Spot instances are very cheap virtual machines that are provided with a bidding process. The user194

places a bid, defining the maximum price she is willing to pay for running the VM. The provider -195

based on its current workload - and the offered price decide whether to assign the VM or not. If the196

user receives a VM, this might be later shut down by the provider, in case of changes in the workload197

that would increase the price of the VMs to an amount larger than the user bid. This event, can be198

modelled as a timeout that might occur after a random amount of time.199

Serverless computing, is currently a very popular cloud software deployment paradigm: users writes200

their applications as a set of functions that exploits other cloud services (such as authentication and201

storage), and that is written in a specific programming language. The cloud provider decides where202

such functions will be run, based on the users’ requests. Due to small overhead, functions can be203

started and parallelized in a relatively quick way, reducing the users costs and increasing the providers204

resource utilization. However, to keep a balance in the overall architecture, all functions executions are205

characterized by a maximum running time. Should they take longer, they will be interrupted, and all206

Version March 5, 2020 submitted to Future Internet 6 of 25

USER SERVICE on CLOUD

Time constraint

Figure 1. An application scenario including user-generated timeouts

the partial computation will be lost. This type of behavior can be easily modelled with a timeout event207

of constant duration.208

3.1.1. Description of the problem209

Let us consider the case study presented in Figure 1. In this scenario, a web application is deployed210

over the cloud, and parallelized on K different virtual machines. If the cloud is not able to provide211

an answer within a reasonable time, the user might decide to leave the request before the response is212

delivered. In this scenario, a genetic algorithm is used to solve an optimization problem to propose the213

user with a set of recommendations to download from a media service. The service demands of the214

algorithms, executed by the genetic program, are highly variable: for this reason, the execution time215

might become sometimes very large, forcing the user to leave the application before an actual response216

is provided.217

3.1.2. Fork/Join paradigm218

The Fork/Join paradigm (see [27] for a formal discussion) is one of the most common extensions219

added to conventional Queuing Networks. For instance, one of the most interesting scenarios from220

the point of view of performance analysis consists of a load-balancer requiring to split a request into221

parallel processing units. In this context, a Fork/Join paradigm stems from the need of efficiently222

parallelizing divide-and-conquer algorithms (see [28]), which are usually decomposed into a base case223

(that is immediately solved) and a recursive case, where the problem is decomposed into smaller224

subproblems assumed to be disjunct: in the end, the responses deriving from the solution of each225

subproblem are merged. As a result, the main idea is to fork the initial problem into more subproblems,226

execute them in parallel and finally synchronize them joining the solutions.227

Modern extensions of Fork and Join allow for Quorum based joins. Let us assume a request is split228

into M tasks by a Fork node. A conventional join node would wait for all M tasks to complete the229

executions to reconstruct the request and let it continue through the model. Quorum based joins230

are characterized by an extra parameter Q ≤ M. In this case, the Fork/Join part of the request is231

considered to be finished when the first Q out of M tasks reach the Join node. The late M − Q tasks232

will be simply discarded when they will reach the Join node.233

3.1.3. Model description234

The Queuing Network depicted in Fig. 2 models the application of Fig. 1. It is composed of a235

Fork/Join that splits a request into two tasks: one models the real request execution (upper branch),236

and the other represents the occurrence of timeout due to user abandonment (lower branch). The237

execution of the service demand is modeled by K servers queuing node, while the timeout is modeled238

by a Delay node. The Join node waits until the first task is executed (in this case, the Quorum is239

equal to one). The probability distribution taken into account to describe the service demand is240

hyperexponential with an average duration of 1 second and a coefficient variation of 5. The timeout is241

considered to be deterministic, and arrivals are assumed to be generated according a Poisson process:242

both the duration of the former and the rate of the latter are varied during the study of the model. The243

two loggers L1 and L2 in Fig. 2 track the instant of time the request in execution flows through them244

Version March 5, 2020 submitted to Future Internet 7 of 25

Figure 2. Model of a cloud application with user’s timeout

and allow to compute the probability P(Timeout) that a request ended due to timeout. In particular,245

since the Join has zero duration, a request that ends due to timeout will have the same timestamps246

recorded by both the loggers.247

0

5

10

15

20

25

30

Re
qu

es
t r

es
po

ns
e

tim
e

[s
.]

0

5

10

15

20

25

30
Re

qu
es

t r
es

po
ns

e
tim

e
[s

.]

Figure 3. Response times with (left) and without (right) timeout of 10s, for λ = 1.8 r/s, and K = 2 VMs

3.1.4. Model results248

We start considering requests arriving at rate λ = 1.8 r/s, and a timeout T = 10s. It is interesting249

to compare the behavior denoted on the right of Fig. 3, where the spikes generated by the services are250

not depending on a timeout variable and the scenario shown on the left, where the timeout is cutting251

the service times of the requests exceeding it.252

This effect is further investigated in Fig. 4, where the response time distribution for different number253

K of VMs, ranging from 1 to 3 and an arrival rate of λ = 0.9 r/s is presented. Although for K = 1 the254

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2 4 6 8 10

P[
R

<
t]

Response time [s].

K = 1 K = 2 K = 3

Figure 4. Distributions of Response Time with Timeout=10 sec and λ = 0.9 r/s for a variable number
K of VMs

Version March 5, 2020 submitted to Future Internet 8 of 25

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35
Re

sp
on

se
 T

im
e

[s
.]

Timeout [s]

K = 1 K = 2 K = 3

Figure 5. Behavior of Response Time for timeout ranging from 1s to 30s, λ = 0.9 r/s for a variable
number K of VMs

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 1 2 3 4 5 6 7

Co
st

Number of VMs (K)

l = 0.5 l = 0.9 l = 1.8 l = 2.8

Figure 6. Trade-off between deployment cost (number K of VMs) and user satisfaction for different
arrival rates λ.

system is stable and characterized by an average utilization U = 0.9, most of the requests will undergo255

a timeout (the steep rises at time t = 10s): users are then either be served very quickly, or they quit the256

system otherwise. With K = 3, timeout almost never occurs, while K = 2 seems to be a reasonable257

tradeoff between deployment cost and user experience, where most of the requests are served on time,258

and only less than 10% are subject to timeouts.259

The effect of the deployment on a different number of VMs is then investigated in Fig. 5, for increasing260

timeout durations. With only one VM (K = 1), the users are almost always subject to timeouts, and261

its value basically defines the time requests will take before being discarded due to abandonment.262

Parallel deployments (K = 2 and K = 3), are instead only marginally influenced by timeouts, since in263

any case, most of the users will be served before the event occurs.264

Finally, Fig. 6, studies the trade-off user satisfaction and deployment cost, by defining a metric:265

cost = 1 − U + P(Timeout) where U is the average utilization of the VMs and P(Timeout) is the266

probability that a timeout event occurs, as identified by the two loggers. When the system is deployed267

on a small number of VMs, the utilization is very high (hence, 1 − U is close to zero), but also the268

timeout probability is close to P(Timeout) ≈ 1. Conversely, when the system is deployed on a large269

number K of VMs, the time probability is close to P(Timeout) ≈ 0, but also the utilization is very low,270

making 1 − U ≈ 1. The best configuration of the system, is thus the one that minimizes this cost. For271

an arrival rate of λ = 0.9 r/s this occurs at K = 2, while for λ = 1.8 r/s and λ = 2.8 r/s respectively at272

K = 3 and K = 4. Note that in these cases, respectively K = 1 and K = 2 could have not been used273

since in such circumstances the system would have not been stable. For λ = 0.5 r/s, the best solution274

seems to be K = 1, since having a second VM does not sufficiently decreases the timeout probability.275

Version March 5, 2020 submitted to Future Internet 9 of 25

3.2. Approximate Computing with Finite Capacity Region276

The evolution of hardware and software architectures is making approximate computing an277

emerging technology with great potential. This computing paradigm is based on a very simple278

concept: an approximate result obtained in a short amount of time is very often sufficient to achieve279

the objectives of the application with the required accuracy. Essentially, this method trades off accuracy280

of results with the requested time for their computation.281

Examples of applications range from parallel search engines to data analytics, video streaming282

compression, statistical analysis of large data sets, MapReduce transactions, and special hardware283

implemented for this purpose, e.g., Neural Network Accelerators.284

The wide range of applications requires the implementation of many approximation techniques.285

Among them all, the one based on the parallel execution of several tasks of an application and a286

stopping condition based on the accuracy level required is very popular. Deploying Approximate287

Computing in a cloud computing scenario is particularly relevant, as this approach allows to contain288

the costs of autoscaling algorithms by imposing a threshold to the acquired VM numbers (without289

affecting the performance and maintaining the system responsiveness to the requests’ bursts. The VMs290

parallelism degree is not increased, at the cost of lowering down the results quality).291

In the following, we show a simple model of Approximate Computing based on parallel292

computations, implemented with a Fork primitive, and a control condition based on the accuracy level293

required, implemented with a Join primitive and advanced synchronization [29].294

Thus, Approximate Computing has the potential to benefit a wide range of application frameworks295

e.g. data analytics, scientific computing, multimedia and signal processing, machine learning and296

MapReduce, and so forth.297

3.2.1. Description of the problem298

A car navigation system designed to meet the needs of the users of a smart city must be adaptive299

to the highly variable conditions set by traffic, municipality constraints and other unexpected events.300

Typically, a pipeline of various stages is used. The first one is the Alternative Route Planning that consists301

of the identification of k alternative paths from source to destination. This step is referred to as the302

K-Shortest Paths with Limited Overlap [30] problem, since the alternative paths should overlap less than303

a given threshold. The shortest path in terms of distance or average traveling time might not be the304

optimal one, as several other parameters may have a significant influence on the computation of the305

best solution. Examples of conditions that must be considered are i) traffic status, ii) layout of the306

road map, iii) municipality constraints, iv) transient work in progress, v) car accidents, vi) severe307

climate conditions, and other unexpected events. Consequently, the computation times required by the308

algorithms are highly variable non only because of the different numerical algorithms implemented309

but also for those other variables considered.310

To be effective, the mean response time R (i.e., the time spent by a request in execution in the Fork/Join311

region plus the time spent at the Fork waiting to enter the region) of this step for the computation of the312

best route must be ≤ 3 sec. To achieve this performance goal, sub-optimal solutions are computed313

considering only the results of the first k algorithms of N that completed their executions. The model is314

used to investigate the impact on the best route computation time of the variability of the execution315

times of the N algorithms and of the subset size k.316

3.2.2. Finite capacity regions317

In this case, Queueing Network models contain nodes that include, in turn, regions applying318

specific policies (finite capacity constraints or FCC). A policy denotes upper bounds on the number319

of requests that can reside in its service nodes at the same time. Ready customers (contraposed to320

customers that are waiting at terminals) wait to enter into a FCC and, once they are inside, compete to321

acquire the available resources. An interesting case occurs when the population belongs to multiple322

Version March 5, 2020 submitted to Future Internet 10 of 25

classes. In this case, the constraints undertaken are the following: i) one bounding the number of323

customers in a region for a specific class and ii) a shared one limiting the number of customers without324

class distinctions. FCC allows to capture the occurrence of performance saturation effects determined,325

for example, by memory constraints.326

3.2.3. Model description327

Figure 7. Layout of the model for the computation of the best route

The layout of the model is shown in Fig. 7. It consists of a Fork/Join region with a capacity limited328

of one request. Each arriving request is split at the Fork into six tasks that are executed in parallel. Each329

task represent a different algorithm for the route computation and is executed by a dedicated processor330

represented by a Delay node.331

In this specific case, it is assumed that the storage does not origin a bottleneck, since all the nodes332

exploit a local content and their execution follow a fairness policy.333

The parameters of the service demands of the six algorithms are reported in Table 2. Their mean334

values are highly variable (from 1 to 5 sec.) and their coefficients of variation vary from 0.5 to 5.

Table 2. Service demands [sec], coefficients of variation, and distributions of the computation times of
the six algorithms

Component Parameters
mean Coeff. of Var. distribution

Algorithm 1 1 cv=5 hyperexp
Algorithm 2 3 cv=3 hyperexp
Algorithm 3 1 cv=1 exp
Algorithm 4 2 cv=1 exp
Algorithm 5 4 cv=0.7 Erlang
Algorithm 6 5 cv=0.5 Erlang

335

The data of Table 2 have been assumed to consider a good variety of computation times. For336

the sake of simplicity, and without affecting the accuracy of the model, we limit the capacity of the337

Fork/Join region to one request, i.e., only the tasks generated by one request can be executed in the338

region. Requests that arrive when another one is in execution wait at Fork node.339

A typical characteristic of car navigation systems is the presence of fluctuations in the arrival flow of340

requests. The arrival rate considered in the study is λ = 2 req/sec with the exponential distribution of341

the interarrival times.342

The request exits the Fork/Join region when at least k algorithms have completed their executions. The343

Join implements a synchronization rule referred to as Quorum k.344

Version March 5, 2020 submitted to Future Internet 11 of 25

3.2.4. Model results345

Fig. 8 shows the behavior of the mean response times and of the 95th percentiles for the346

computation of the best routes with respect to the number of algorithms considered from k = 1 ÷ 6 .347

The mean values are obtained with 99% confidence intervals. As can be seen from the figure, it is

Figure 8. Mean response times and 95th percentiles for the computation of the best route waiting at the
Join the first k algorithms that completed their executions.

348

sufficient to decrease the number k of algorithms waiting for synchronization at the Join from six to349

five to obtain a 51% reduction in the mean response time (from 7.81 to 3.82 sec) and of 52% of the 95th350

percentile (from 15 to 7.15 sec). With k = 4 the mean response time is 2.19 sec. and the 95th percentile351

is 4.41 sec. This value meets the 3 sec threshold. The accuracy of the results provided was positively352

assessed by the data collected in various periods of the day with representative traffic requests.353

3.3. MapReduce with Class Switch354

MapReduce is one of the first techniques used to support Big Data applications. From the original355

proposal by Apache foundation, which was supported by the Hadoop project, several different356

extensions have been proposed. All the techniques however are based on very similar principles. In357

short, (see fig. 9), all the data that need to be processed (which might consist of Exabytes of data),358

are split into chunks that are distributed over a large set of participating nodes. Each node, beside359

storing part of the data, can also perform operations on it. Using specific software patterns, complex360

operations can be performed to obtain insight information from the considered Big Data collection.361

MapReduce is the simplest of these patterns: first, the Map operation applies a function to each entry362

of the database, generally performing searching and sorting tasks. The Reduce phase, collects the363

intermediate results to produce the final answer. The number of chunks does not necessarily needs to364

correspond to the number of nodes: in many best practices, the number of chunks is much higher than365

the number of nodes to increase the parallelism, so that faster nodes can start working on new chunks366

while the slower ones are still finishing their job.367

MapReduce is closely related to Cloud computing, since VMs represents the most natural way of368

acquiring nodes to support the parallel execution process.369

3.3.1. Description of the problem370

Sizing a MapReduce application is a non-trivial task. Indeed, increasing the number of nodes371

decreases the running time of the application. However, due to the hyperbolic decrease and the372

increasing synchronization complexity, after a given point (depending on the application and on373

its demands), performance improvements becomes negligible at first, up to another point, where374

increasing the nodes makes only the system’s behavior worse. Performance model are thus of375

paramount importance to correctly decide the optimal number of resources, to obtain the best results376

Version March 5, 2020 submitted to Future Internet 12 of 25

Map
• Chunk 1
• Chunk 2
• ...
• Chunk NMap

Reduce
• Chunk 1
• Chink 2
• ...
• Chunk NReduce

VM nodes

USER Result

Figure 9. A MapReduce application deployed on Cloud

Figure 10. Model of a MapReduce application

with the least expense.377

While fork/join paradigms are the basis for modeling MapReduce such as Big Data processing378

environments, they cannot capture the fact that the same processing nodes are used in different ways379

for different stages of the algorithm (i.e. Map and Reduce). The Class Switch feature, introduced in the380

next section, becomes the key tool to model such behavior.381

3.3.2. Class Switch382

One of the main assumptions adopted when working with simple QNs, concerns the type of383

customers, which are assumed identical from a statistical point of view. However, when regarding a384

real system, this assumption doesn’t necessarily hold as more parameters, such as the service time and385

the routing probabilities, must be taken in account. Therefore, it is necessary to postulate the existence386

of different types of customers by introducing the terms of chain and class. The former identifies a387

situation where a customer belongs to the same type during the entire execution. The latter denotes388

instead a temporary classification: from this perspective, a customer is able to change from a class to a389

different one while executing within the system according to a probability. The type of class plays an390

important role in characterizing the customer service time (in each node) and the routing probability.391

Classes can be partitioned into chains, which prevents the case where a job switches from classes392

that are part of different chains. A class switch operation, allows a customer in chain to change its393

appearance to the server, by presenting itself with another class.394

Version March 5, 2020 submitted to Future Internet 13 of 25

3.3.3. Model description395

A simple MapReduce application is presented in fig. 10. In particular, we consider N users, that396

every Z = 100s (modelled by delay node Users) submit a map-reduce job to the system. There are397

two classes in the system, representing respectively the Map and Reduce stages of the application.398

All requests starts in the Map phase, and are characterized by the corresponding class. The Map_fork399

node splits the job into M_Map tasks, which are then rejoined in node Map_join. The class switch node400

CS_M->R changes the class of the job to the Reduce stage, which is immediately split into M_Red reduce401

tasks in node Reduce_Fork. The job is finished when all the Reduce tasks terminate: this is modelled402

by the join operation performed by node Reduce_join, immediately followed by class switch node403

CS_R->M that restores requests to the starting Map class. All tasks are served by the K server queueing404

node VMs modeling the cloud environment running the application. The service time of the all the405

VMs is assumed to be exponential, with a different duration D_Map and D_Red respectively for the Map406

and Reduce stages. In the next experiments, we assume M_Map = 64, M_Red = 32, D_Map = 1s and D_Red407

= 2s.408

3.3.4. Model results409

The system is studied for a different number of users N, starting with N = 10 and up to N = 50,410

for different parallelization levels K (corresponding to the number of acquired VMs). Fig. 11 shows

0

100
200
300
400
500
600
700
800
900

1000

0 20 40 60 80 100

Av
er

ag
e

nu
m

be
r o

f M
ap

pe
r

Number of VMs

N = 10 N = 20 N = 30 N = 40 N = 50

0

100
200
300
400
500
600
700
800
900

1000

0 20 40 60 80 100

Av
er

ag
e

nu
m

be
r o

f R
ed

uc
er

Number of VMs

N = 10 N = 20 N = 30 N = 40 N = 50

Figure 11. Average number of mappers (left) and reducer (right), for different number of users N, and
K VMs.

411

the average number of tasks in execution in the VMs for the Map and the Reduce stage. As expected,412

it grows with the number of users N, and decrease with the number of K VMs. It is interesting413

however to note how the decay is not linear, but not even clearly hyperbolic: this is due to the different414

configurations of the Map and Reduce stages.415

Fig. 12, shows an exploitation of the model to determine the best number of VMs to support a given416

number of users N. In particular, it explains how the model can be used to size the system to achieve417

a target average response time τ = 200s. When the number of users is very low (N = 10), even a418

small amount of VMs (K = 8) is able to provide average response time much lower than the threshold.419

However, with a population of N = 50, at least K = 24 VMs are necessary to achieve acceptable420

performances. It is also interesting to see that for K ≥ 64, all the considered configurations have421

basically the same lowest performances: this is due to the fact that each job is split into M_Map = 64422

tasks. If no other job is currently running, with K ≥ 64 all tasks can be executed in parallel in one shot.423

4. Multiformalism QN/PN techniques424

According to multiformalism, different part of a system can be modeled by using different425

formalisms flavors (the choice depends on the modeler’s familiarity with one or more languages). In426

this way, it is possible to lower the learning curve and match the user abstraction as a result. The model427

so derived can be solved by defining the proper combination of formalisms by mapping the model428

Version March 5, 2020 submitted to Future Internet 14 of 25

0

50
100
150
200
250
300
350
400
450
500

0 20 40 60 80
Re

sp
on

se
 ti

m
e

[s
.]

Number of VMs

N = 10 N = 20 N = 30 N = 40 N = 50 Thr.

Figure 12. Determining the optimal number of VMs to obtain an average response time R below a
given threshold (τ = 200s. in this example).

concepts into solvers primitives. Multiformalism has proven to be successful in different areas such as429

biology, fault-tolerant computing and disaster recovery. As a result, this interdisciplinary aspect has430

created interesting links between different communities of modelers. A variety of different software431

tools have been implemented to date. With regard to JMT, the considered multiformalism approach432

allows the integration of Queueing Networks (QN) and Generalized Stochastic Petri Nets (GSPN, see433

[31] for the theoretical background of this formalism).434

4.1. Hybrid Cloud435

A hybrid cloud consists of an on-premises infrastructure, based on a private cloud, and resources436

acquired as-a-service from a public cloud provider. Among the various factors motivating a boost437

in the diffusion of these architectures are high security, controlled performance, large scalability, fast438

adoption of new technologies, and cost savings.439

The problem of scalability in hybrid clouds is typically addressed through the dynamic440

provisioning of resources from the public cloud. The model presented in the following case study441

addresses this problem by implementing an algorithm that dynamically routes the requests to the442

public cloud when the load on the private component exceeds a threshold value.443

4.1.1. Description of the problem444

This case study concerns a model of an IT infrastructure based on a hybrid cloud. More precisely,445

it focuses on modeling the process for dynamic resource provisioning. This method is able to acquire446

virtual machines (VMs) on-demand from the public cloud when requests exceed the capacity set as a447

threshold on the private cloud. The multiformalism model implemented consists of elements of Petri448

Nets and Queueing Networks. The hybrid cloud scenario considered is represented in Fig. 13 .449

The incoming requests are processed by the user interface of the application and, after some formal450

and security check, are sent to the Load Controller module. To satisfy the performance requirements,451

the software architecture of the app has been designed assuming that a dedicated VM of the local cloud452

is assigned to each request in execution. Since several highly fluctuating workloads share the resources453

of the private cloud, a limit is set on the maximum number of VMs dedicated to this application. When454

this threshold is reached, the new VMs are acquired on-demand from a public cloud.455

The impact of this threshold on global response time and throughputs of both the two clouds needs456

to be investigated. The objective of the study is the identification of the computational capacity, in457

terms of number of cores and power, of the servers of the private cloud that are required to satisfy the458

performance target with cost savings. In fact, VMs with the same computational power as a private459

provided by the public cloud are much more expensive. Therefore, to save costs, the VMs provided by460

the public cloud are much less powerful than the private ones. Thus, there is a tradeoff between the461

VMs provided by the private and public clouds, performance and the infrastructure costs.462

Version March 5, 2020 submitted to Future Internet 15 of 25

Internet

Private
Cloud

load
controller

Public
Cloud

Company

Figure 13. The hybrid cloud scenario considered.

4.1.2. Model description463

The layout of the model is shown in Fig. 14. The workload consists of two classes of customers:464

the incoming requests, representing the user demands of computation time, and the VMs (the tokens),465

representing the number of VMs available in the private cloud.466

The JoinPrivate transition is enabled when a request arrives in Arriving place and there is at

Figure 14. Layout of the model for the dynamic provisioning of VM in a Hybrid cloud.

467

least one token available in MaxVM place. Each time the transition is activated, a VM of the private468

cloud is assigned to the request and the value of MaxVM is decreased by one. When this value is zero,469

the Inhibitor arc from MaxVM place and JoinPublic transition activate the latter and the request is470

addressed to the public cloud. When a request has been completely executed in the private cloud, the471

Rel transition routes it to Sink1 and a token is sent to the MaxVM place incrementing the number of472

VMs available.473

The two clouds are represented by two delay stations since there is no competition for an available VM474

in both the clouds. The arrival rate of the requests to be considered in the study is λ = 50 req/sec. This475

value has been assigned by the application designers since it is representative of a medium/high load476

that according to the business plan should be achieved in a year. The fluctuations of arrivals has been477

modeled with a cv = 4 of the hyper-exponential distribution of interarrival times. The mean service478

demands of the private cloud is 2.5 sec while those of the public cloud is 7.5 sec. The high variability479

of service times was considered assuming their distributions as hyper-exponential with cv = 6. The480

time required by the processing of a request in the other infrastructure components, such as the user481

interface and the load controller, are negligible compared to the service demands of the VMs, therefore482

they have been considered as small increases in their values.483

Version March 5, 2020 submitted to Future Internet 16 of 25

4.1.3. Model results484

The behavior of the algorithm for dynamic provisioning of virtual machines is highlighted in Fig.485

15 that shows the trend of the number of VMs in execution in the two clouds private (a) and public (b)486

in the interval 0÷50 sec. The arrival rate is λ= 50 req/sec and the threshold of the VMs in the private

Figure 15. Behavior of the number of VMs in execution in the private (a) and public (b) clouds in the
interval 0÷50 sec. The threshold for the VMs in the private cloud is 96 and the arrival rate of requests
is λ= 50 req/sec.

487

cloud is 96. As can be seen in Fig. 15a, when the number of requests in execution in the private cloud488

is greater than 96, the provisioning of the new VMs is dynamically routed to the public cloud (see e.g.,489

the interval 45-50 sec in Fig. 15b).490

The number of requests in execution in the two clouds as a function of the maximum number of VMs

Figure 16. Number of requests in execution in the private (solid line) and public (dashed line) clouds
vs max number of VMs in the private cloud.

491

MaxVM that can be provisioned in the private cloud is shown in Fig. 16. The range of MaxVM evaluated is492

16÷128. The mean response time R of the system as a function of the MaxVM is depicted in Fig. 17.493

With 96 VMs the average response time is close to 4 sec, a value that is considered acceptable as a494

performance target with the associated costs. As can be seen in Fig. 16, 87 VMs are in execution in the495

private cloud and 133 in the public cloud with MaxVM = 96.496

Version March 5, 2020 submitted to Future Internet 17 of 25

Figure 17. Global Response time vs maximum number of VMs in the private cloud.

The costs of the infrastructure can be evaluated considering the throughput of the two clouds as a497

function of MaxVM (see Fig. 18).498

Figure 18. Throughput of private (solid line) and public (dashed line) cloud vs maximum number of
VMs in the private cloud.

4.2. Batching in IoT-based healthcare499

The proliferation of IoT in the health care scenario has introduced new problems, which have been500

faced for effective use of their potential. Important benefits can be obtained in all areas of e-Health, in501

particular in those that use IoT integrated in information infrastructures enabling the use of ubiquitous502

computing technologies. Patients can be monitored anytime anywhere, either in special hospital wards503

or remotely, through the use of wearable sensors and smart medical devices.504

Sensors may detect a variety of patient physiological signals, such as, temperature, pulse, oxygen505

saturation, blood pressure and glucose, ECG, EEG, as well as other body motion related variables that506

can help accurately monitoring patient movements. Among the potential benefits that can be achieved507

by body sensors, and more generally by IoT smart devices, in e-Health monitoring are the high rate of508

data transmission and the minimization of end-to-end data delivery time. The interconnections among509

the various components of the networks, e.g., IoT devices, intelligent medical devices, edge and fog510

systems, hospital and cloud servers, patients and medical staff, are implemented through cabled or511

wireless networks with low-power communication protocols.512

The following case study focuses on body sensor networks, and more specifically on the study of513

the trade-off that exists between performance of the network (data delivery time) and the energy514

consumed by the data exchange (the cost of transmission).515

The implemented model is derived from a more complex version of [32] that considers a516

completely different scenario: the smart monitoring of fog computing infrastructures. The key feature517

of these models is the dynamic management of the buffer of requests based on the intensity of arrivals518

Version March 5, 2020 submitted to Future Internet 18 of 25

and the expiration of a periodic trigger. With the multiformalism models it is possible to implement519

algorithms with dynamic behavior as a function of the workload characteristics.520

4.2.1. Description of the problem521

Fig. 19 shows the target e-Health scenario considered. The data collected from body sensors are522

transmitted through wireless or wired connections to the Hedge nodes located as close as possible,523

where they are pre-processed and then sent to the fog nodes (if any) or to the hospital servers for their524

complete processing.525

The data arriving at the hospital servers are subject to fluctuations generated by the different

IoT devices

Edge nodes Fog nodes

Edge layer Servers layer

servers

...
...

sensors

Fog layer

Network

cloud

hospital

Figure 19. The considered e-Health scenario.

526

type of physiological signals detected and the health conditions of the patients. Indeed, different527

type of measured variables require a different frequency at which a detected signal is available for528

transmission. For example, in body temperature the sampling rate can be one per minute, in a pulse529

oxygen monitoring the rate can be one per second, while in other variables, like ECG or EEG, it can be530

of the order of several hundreds per second. Also, when a patient’s health condition is assessed as531

critical, new sensors are activated and the detection rate of other monitored variables can be increased532

under the control of edge or fog nodes. Among the many problems that need to be addressed, this533

case study concerns the following:534

• identification of the amount of data that must be considered in each transmission to hospital535

servers in order to satisfy the performance requirement in term of end-to-end data delivery time536

and minimize the energy consumption of the operations;537

538

• identification of potential critical health conditions of patients that need urgent investigation, i.e.,539

fast response time.540

The former problem requires studying the trade-off between the time required to deliver the detected541

signal to the servers in the upper-layer of the medical infrastructure, and the cost associated with the542

transmission operation. The immediate transmission of a detected signal minimizes its end-to-end543

response time from either the hospital servers or the cloud. However, the set up costs of the connection544

cannot be shared with other signals. The technique of batching the data of several signals to be545

Version March 5, 2020 submitted to Future Internet 19 of 25

transmitted in a single operation is used to approach this problem. The impact on end-to-end delivery546

time of different batch sizes, and thus on the number of operations required to transmit the signals547

detected by a set of sensors, must be studied. Knowing the number of sensors connected to an edge548

system and the type of signals detected, it is possible to derive the arrival rate of the requests to the549

hospital servers. Then, once pre-processing is complete, the data are stored in a buffer where are ready550

to be transmitted. The management of this buffer is crucial to achieve the two objectives described551

above.552

The implemented algorithm considers the number and types of signals detected by the sensors553

connected to the edge nodes, the fluctuations of arriving traffic considered regular and the arrival554

patterns that must be transmitted with priority as they can be associated with a patient in critical555

conditions. The most important elements of the implemented model simulating this algorithm are556

described in the next section.557

4.2.2. The Model558

Multiformalism models allow the exploitation of Queueing Networks and Petri Net primitives to559

represent each concept with the most appropriate technique. In order to describe the dynamic behavior560

of the batching algorithm we used the PN primitives while the QN primitives were used to represent561

the other components of the e-Health infrastructure.562

The layout of the model is shown in Fig. 20. The workload consists of two classes: signals detected by

Figure 20. Layout of the model for the smart batching of signals in the e-Health scenario considered.

563

sensors (referred to as requests) and a token, needed to model the periodic/triggered management of564

the requests.565

The key feature of the model is the algorithm that manages the transmission requests batch. To ensure566

that the model and the presentation of the algorithm remain as simple as possible, we adopted several567

assumptions that have a minimal impact on the performance but that greatly simplify the description568

of other parts of the model.569

The set of physiological signals detected by each patient is the same, and each edge system monitors570

several patients. The computational power of the hospital servers has been oversized compared to571

the processing time required by signals. In the model we do not explicitly represent the fog systems572

since their processing time per request is negligible compared to the service time required by the Edge573

nodes. Moreover, they were considered as small increases in the service times of the Edge nodes.574

The global arrival rate λ of data generated by sensors is modeled by all the source Sensors as a single575

Version March 5, 2020 submitted to Future Internet 20 of 25

aggregated Poisson process of rate λ. This flow is evenly distributed among the Edge systems modeled576

with Edge queuing nodes. The times required to process the data of a signal, i.e., the service time577

of a visit by an Edge node, are exponentially distributed with mean DEdge = 200 ms. At the end578

of this processing phase, the requests are buffered, i.e., routed to the place Buffer, and ready to be579

transmitted. They are transmitted to the hospital servers (or the cloud servers) that must perform580

their complete analysis requiring a service time exponentially distributed with mean Dserver = 500 ms.581

Requests follow two paths: one for Regular requests, and one for Urgent requests. The requests in the582

buffer are managed according to two different policies:583

• The buffer is emptied (i.e., the requests that are in the buffer are transmitted) periodically with a584

period defined according to the number and type of signals detected by all sensors. Requests are585

assumed to belong to patients under Regular conditions and are sent at the end of the period;586

• The buffer is emptied when the number of requests in the buffer reaches a threshold value β,587

i.e. the maximum batch size. In this case, requests with such a high arrival rate are assumed to588

indicate the presence of a critical condition for one or more patients. Therefore, requests in the589

buffer are considered Urgent and must be sent immediately without waiting for the end of the590

emptying period.591

The periodic transmission of Regular requests is modeled by the loop between places and transitions592

Waiting, Periodic, Transmitting and Reset. The deterministic firing time of transition Periodic593

represents the duration of the clock for the transmissions of the requests arrived in Buffer. This value594

is computed by analyzing the detection rate of the sensors in normal operating conditions. According595

to the configuration analyzed, we considered 15 sec as constant firing time of the transition Periodic596

(i.e., as periodic empty cycle time). As soon as the empty cycle expires, a token is transferred to place597

Transmitting where two alternatives are possible. If there are requests in the buffer, the immediate598

transition Regular will be enabled and will transfer them to the transmission channel. When the599

buffer is empty, either because all requests have been transferred or because no requests arrived in the600

periodic time frame, the immediate transition Reset fires, due to an Inhibitor arc that connects it to the601

Buffer, and restarts the timer.602

The Urgent requests are managed by the immediate transition Urgent that is connected to place603

Buffer with an input arc of weight β. When the threshold value β is reached, the batch of requests in604

the Buffer are immediately transmitted to the hospital server. Note that also the arc that exits the605

transition Urgent has weight β, since the entire batch of requests is sent to the server.606

4.2.3. Model Results607

We considered several configurations of the system by modifying the global arrival rate λ, the608

threshold β of Urgent requests, and the empty buffer cycle time. In this section, we limit the description609

of the results to those that emphasize the impact of the dynamic management of the buffer of requests610

on the performance of the system and related costs.611

The arrival rates of the requests considered in the study are λ = 0.1 ÷ 1.9 req/sec. The interarrival612

times are exponentially distributed. These values were assumed to be representative of the potential613

number of patients in an emergency ward of small or medium sized hospitals.614

Fig. 21 shows the behavior of the System Response Time R, i.e., the end-to-end time required by a615

signal from its detection to the completion of its processing by the hospital server, for the complete616

range of arrival rates. The family of curves refers to different values of β, from 2 to 20, i.e., the threshold617

for the identification of Urgent batches of requests will be transmitted immediately.618

With a λ increase we model an increase in the number of sensors or in the detection rate and the619

workload managed by Edge nodes is also greater. For small values of β (2 and 5) there is an initial620

decrease of R. This is because with such small sizes nearly all batches are considered Urgent and621

therefore most requests are transmitted almost immediately when they join the Buffer. With larger622

values of β (10, 15 and 20) this initial decrease of R as λ increases is not present. When λ becomes623

Version March 5, 2020 submitted to Future Internet 21 of 25

Figure 21. System Response Time vs arrival rate of requests for various values β of the batch sizes for
Urgent requests.

greater than 0.1 the value of R starts to increase from the beginning. With these batches sizes, R begins624

to decrease for larger λ values than those obtained with smaller β. The motivation for this behavior625

is that as λ increases, the number of requests in the buffer increases as well, and if β has higher626

values the threshold is reached with less probability and the number of batches transmitted when the627

period expire is greater. However, with further increases of λ the threshold is reached more easily and628

therefore there is a shorter waiting time for the requests in the buffer, i.e., the Urgent requests increase.629

When λ is greater than 1.5 req/sec, R increases for all β since the response time of the highly utilized630

hospital server becomes the dominant part of its value.631

According to the objectives of the study, the R values should be analyzed together with the cost (energy632

consumption) for transmissions. It is assumed that the cost is directly proportional to the number of633

times a batch is transmitted, i.e., a buffer is emptied. Indeed, the greater the number of times and the634

sizes of the transmitted requests at the same time, the better the energy efficiency of the system. In635

Fig. 22 the transmissions per second are shown for all the values of the considered λ. As expected,

0

0,2

0,4

0,6

0,8

1

1,2

0 0,5 1 1,5 2

Tr
an

sm
is

si
on

 R
at

e
[t

/s
]

Arrival rate [r/s]

b = 20 b = 15 b = 10 b = 5 b = 2

Figure 22. Batch transmissions per second vs arrival rate of requests for various values β of the batch
sizes of Urgent requests.

636

with batch size β = 2 the number of transmissions per second are the highest, while the minimum for637

Version March 5, 2020 submitted to Future Internet 22 of 25

β = 20. However, to have a meaningful result, these values should be taken in account together with638

the System Response Times. To this end, the metric System Power, introduced in [33] and combining639

the throughput X of a system with its response time R, is considered. This metric is the ratio X/R640

of throughput and response time, and captures the level of efficiency in executing a workload. The641

maximum Power corresponds to the optimal operating point for the system, i.e., the point in which642

the throughput is maximized with the minimum response time. In our system, we have considered643

the ratio of transmissions/sec and System Response Time. Fig. 23 shows the ratio of the two metrics of644

Fig.s 22 and 21.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 0,5 1 1,5 2

Sy
st

em
 P

ow
er

 (R
/X

)

Arrival Rate [r/s]

b = 20 b = 15 b = 10 b = 5 b = 2

Figure 23. System Power vs arrival rate of requests for various values β of the batch sizes of Urgent
requests.

645

The optimal operating points of the system are clearly identified as a function of the batch size β646

for the Urgent requests and the global arrival rate of signals.647

5. Conclusions and future work648

In recent decades, Queuing Networks and Petri Nets techniques have rapidly developed in order649

to respond to the needs of more and more complex applications. Furthermore, the growing availability650

of computational resources and large capacity memories have greatly enhanced the power of these651

formalisms within the boundaries of their semantics. However, taking into account these factors, it is652

clear that the implicit limitations of QNs and PNs make the analysis of many of the current problems653

unsuitable.654

Indeed, in such cases, the idea that as a function of the characteristic of the problem, there exists a655

technique that is more suitable than others to solve the problem considered is no longer valid. New656

methods and tools must be considered in order to broaden the spectrum of scenarios and issues that657

can be studied and resolved.658

To this end, the contribution proposed by this work consists of the review of specific paradigms659

applied to complex scenarios, providing more insight into the interpretations of the experimental660

results, realized with the support of JMT, a dedicated suite of tools for the performance evaluation and661

modeling of systems.662

From a critical perspective, it is interesting to open a debate comparing the results achieved in the663

previously discussed case studies and work from existing literature. With respect to timeout modeling,664

Holvoet et al.[34] discuss the requirements that a software modeling approach should meet. In this665

work, the authors introduce a new formalism called Object Petri Nets (OPN) based on Colored Petri666

Nets (CPNs, see [35]), proposing a new kind of transition called timeout transition, which is in turn667

based on non-deterministic input arcs, and timeout output arcs. Enabledness and transition ability to668

Version March 5, 2020 submitted to Future Internet 23 of 25

occur are two distinct concepts: in the former, the transition is enabled if a proper number of tokens669

are available from all but the “non-deterministic input places”, while the latter is bound to happen if it670

has been enabled for timeout time without having taken place. In this case, tokens are withdrawn from671

all but the “non-deterministic input places”; finally, the tokens are shifted only through the timeout672

output arcs.673

With the exception of Wyse’s work in [36] (where the author presents REACT, a tool for the674

evaluation of approximate computing techniques), literature about approximated computing modeling675

is relatively limited. To the best of our knowledge, we believe that the case study discussed in 3.2 is a676

novel contribution in this area of research.677

Modeling of the Map Reduce paradigm, on the other hand, reflects the business requirements678

related to the need to develop a strategy capable of allocating the optimal number of resource by679

minimizing, in parallel, the involved costs in deploying complex architectures. In this sense, Hadoop’s680

performance analysis represents a crucial indicator that can be evaluated only through a valid model.681

In contrast to the approach used in 3.3, in [37], the authors make use of JMT to develop simulation682

models based on finite capacity region (FCR) deploying QN and Stochastic Well formed Nets (SWNs).683

It is worth noting that some behaviors, such as the dynamic container allocation, are rather complex to684

abstract, though the results achieve 9% of accuracy.685

Multiformalism is a solid approach meant to augment the modeling capability of complex systems.686

Both the case studies presented in section 4 can be compared to different techniques used to model687

dynamic provisioning and e-healthcare scenarios discussed, though it has be noted that both consider688

one single formalisms, reducing in this way, the degree of freedom of the modeler in choosing the689

most suitable formalism to model a specific aspect of a problem. In [38], the authors deployed a690

hybrid model consisting of an M/M/c model and multiple M/M/1 models to provision computing691

resources within a virtualized application, while [39] presents a modeling architecture composed of an692

M/M/1/B queue for each fog node with identical service time, a M/M/C queue with infinite waiting693

buffer and a M/M/c/K queue characterizing each private node in the private cloud datacenter.694

Future work is likely to follow two directions. Firstly, by providing users with more complex695

metrics not directly obtainable from single formalisms. This would allow a better understanding of696

the results produced by the models. For example, these metrics could be oriented to the study of a697

system’s energy consumption or concerning the evaluation of the efficiency of complex algorithms698

implementing approximate computing or genetic programming techniques.699

Secondly, by comparing the single formalisms-based models with those using multiformalism700

presented in this work, it is possible to note that the latter approach allows a greater elasticity on701

modeling the dynamic aspects that take into consideration complex algorithms not based on system702

variables (for example, this is not feasible within the QN paradigm: though the load depending routing703

factor can be used, it is rather limited).704

References705

1. Economist. "The world’s most valuable resource is no longer oil, but data". www.economist.com/706

leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data. [Online; accessed707

15-January-2020].708

2. Guardian. "Tech giants may be huge, but nothing matches big data". https://www.theguardian.com/709

technology/2013/aug/23/tech-giants-data, 2013. [Online; accessed 19-december-2019].710

3. Flender, S. "Data is not the new oil". https://towardsdatascience.com/data-is-not-the-new-oil-711

bdb31f61bc2d, 2019. [Online; accessed 19-december-2019].712

4. Ramadan, H.; Kashyap, D. "Quality of Service (QoS) in Cloud Computing. International Journal of713

Computer Science and Information Technologies, 2017, pp. 318–320.714

5. Bertoli, M.; Casale, G.; Serazzi, G. JMT: performance engineering tools for system modeling. SIGMETRICS715

Perform. Eval. Rev. 2009, 36, 10–15. doi:http://doi.acm.org/10.1145/1530873.1530877.716

www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.theguardian.com/technology/2013/aug/23/tech-giants-data
https://www.theguardian.com/technology/2013/aug/23/tech-giants-data
https://www.theguardian.com/technology/2013/aug/23/tech-giants-data
https://towardsdatascience.com/data-is-not-the-new-oil-bdb31f61bc2d
https://towardsdatascience.com/data-is-not-the-new-oil-bdb31f61bc2d
https://towardsdatascience.com/data-is-not-the-new-oil-bdb31f61bc2d
https://doi.org/http://doi.acm.org/10.1145/1530873.1530877

Version March 5, 2020 submitted to Future Internet 24 of 25

6. Varghese, B.; Buyya, R. Next Generation Cloud Computing: New Trends and Research Directions. Future717

Generation Computer Systems 2017. doi:10.1016/j.future.2017.09.020.718

7. Sajjad, M.; Ali, A.; Khan, A.S. Performance Evaluation of Cloud Computing Resources. Performance719

Evaluation 2018, 9.720

8. Duan, Q. Cloud service performance evaluation: status, challenges, and opportunities–a survey from the721

system modeling perspective. Digital Communications and Networks 2017, 3, 101–111.722

9. Maheshwari, S.; Raychaudhuri, D.; Seskar, I.; Bronzino, F. Scalability and performance evaluation of edge723

cloud systems for latency constrained applications. 2018 IEEE/ACM Symposium on Edge Computing724

(SEC). IEEE, 2018, pp. 286–299.725

10. Calzarossa, M.C.; Massari, L.; Tessera, D. Workload Characterization: A Survey Revisited. ACM Computing726

Surveys 2016, 48. doi:10.1145/2856127.727

11. Megyesi, P.; Molnár, S. Analysis of Elephant Users in Broadband Network Traffic. 2013, Vol. 8115.728

doi:10.1007/978-3-642-40552-5_4.729

12. Casale, G.; Gribaudo, M.; Serazzi, G., Tools for Performance Evaluation of Computer Systems: Historical730

Evolution and Perspectives. In Performance Evaluation of Computer and Communication Systems. Milestones731

and Future Challenges: IFIP WG 6.3/7.3 International Workshop, PERFORM 2010, Vienna, Austria, October 14-16,732

2010, Revised Selected Papers; Hummel, K.A.; Hlavacs, H.; Gansterer, W., Eds.; Springer: Berlin, Heidelberg,733

2011; pp. 24–37. doi:10.1007/978-3-642-25575-5_3.734

13. Ciardo, G.; Jones, III, R.L.; Miner, A.S.; Siminiceanu, R.I. Logic and stochastic modeling with SMART.735

Perform. Eval. 2006, 63, 578–608. doi:10.1016/j.peva.2005.06.001.736

14. Hillston, J. Tuning Systems: From Composition to Performance. The Computer Journal 2005, 48, 385–400.737

doi:10.1093/comjnl/bxh097.738

15. Hoare, C.A.R. Communicating sequential processes; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1985.739

16. Milner, R. Communication and concurrency; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1989.740

17. Sanders, W.H.; Courtney, T.; Deavours, D.; Daly, D.; Derisavi, S.; Lam, V. Multi-Formalism and741

Multi-Solution-Method Modeling Frameworks: The Mobius Approach, 2007.742

18. Vittorini, V.; Iacono, M.; Mazzocca, N.; Franceschinis, G. The OsMoSys approach to multi-formalism743

modeling of systems. Software and System Modeling 2004, 3, 68–81.744

19. Barbierato, E.; Gribaudo, M.; Iacono, M., Multiformalism and Multisolution Strategies for Systems745

Performance Evaluation; 2015; pp. 201–222. doi:10.1002/9781119131151.ch8.746

20. Barbierato, E.; Iacono, M.; Gribaudo, M. Multiformalism and multisolution strategies for system performances747

evaluation; Prentice-Hall, Inc.: USA, 2015.748

21. Khan, W.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Generation749

Computer Systems 2019, 97. doi:10.1016/j.future.2019.02.050.750

22. Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.; Morrow, M.; Polakos, P. A Comprehensive Survey on751

Fog Computing: State-of-the-art and Research Challenges. IEEE Communications Surveys & Tutorials 2017,752

PP. doi:10.1109/COMST.2017.2771153.753

23. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. Mobile Edge Computing: Survey and Research Outlook.754

ArXiv 2017, abs/1701.01090.755

24. Ajila, S.; Bankole, A. Using Machine Learning Algorithms for Cloud Client Prediction Models in a Web756

VM Resource Provisioning Environment. Transactions on Machine Learning and Artificial Intelligence 2016, 4.757

doi:10.14738/tmlai.41.1690.758

25. Ardagna, D.; Barbierato, E.; Evangelinou, A.; Gianniti, E.; Gribaudo, M.; Pinto, T.B.M.; Guimarães, A.;759

Couto da Silva, A.P.; Almeida, J.M. Performance Prediction of Cloud-Based Big Data Applications.760

Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering; Association761

for Computing Machinery: New York, NY, USA, 2018; ICPE ’18, p. 192–199. doi:10.1145/3184407.3184420.762

26. Didona, D.; Romano, P. Hybrid Machine Learning/Analytical Models for Performance Prediction: A763

Tutorial. Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering;764

Association for Computing Machinery: New York, NY, USA, 2015; ICPE ’15, p. 341–344.765

doi:10.1145/2668930.2688823.766

27. Conway, M.E. A Multiprocessor System Design. Proceedings of the November 12-14, 1963, Fall Joint767

Computer Conference; Association for Computing Machinery: New York, NY, USA, 1963; AFIPS ’63 (Fall),768

p. 139–146. doi:10.1145/1463822.1463838.769

https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1145/2856127
https://doi.org/10.1007/978-3-642-40552-5_4
https://doi.org/10.1007/978-3-642-25575-5_3
https://doi.org/10.1016/j.peva.2005.06.001
https://doi.org/10.1093/comjnl/bxh097
https://doi.org/10.1002/9781119131151.ch8
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.14738/tmlai.41.1690
https://doi.org/10.1145/3184407.3184420
https://doi.org/10.1145/2668930.2688823
https://doi.org/10.1145/1463822.1463838

Version March 5, 2020 submitted to Future Internet 25 of 25

28. Blumofe, R.D.; Leiserson, C.E. Scheduling Multithreaded Computations by Work Stealing. Proceedings of770

the 35th Annual Symposium on Foundations of Computer Science; IEEE Computer Society: USA, 1994;771

SFCS ’94, p. 356–368. doi:10.1109/SFCS.1994.365680.772

29. Arcari, L.; Gribaudo, M.; Palermo, G.; Serazzi, G. Performance-Driven Analysis for an Adaptive773

Car-Navigation Service on HPC Systems. SN Computer Science 2020, 1. doi:10.1007/s42979-019-0035-7.774

30. Chondrogiannis, T.; Bouros, P.; Gamper, J.; Leser, U. Alternative Routing: K-Shortest Paths with Limited775

Overlap. Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic776

Information Systems; Association for Computing Machinery: New York, NY, USA, 2015; SIGSPATIAL ’15.777

doi:10.1145/2820783.2820858.778

31. Balbo, G., Introduction to Generalized Stochastic Petri Nets. In Formal Methods for Performance Evaluation:779

7th International School on Formal Methods for the Design of Computer, Communication, and Software Systems,780

SFM 2007, Bertinoro, Italy, May 28-June 2, 2007, Advanced Lectures; Bernardo, M.; Hillston, J., Eds.; Springer781

Berlin Heidelberg: Berlin, Heidelberg, 2007; pp. 83–131. doi:10.1007/978-3-540-72522-0_3.782

32. Pinciroli, R.; Gribaudo, M.; Roveri, M.; Serazzi, G., Capacity Planning of Fog Computing Infrastructures783

for Smart Monitoring; 2018; pp. 72–81. doi:10.1007/978-3-319-91632-3_6.784

33. Kleinrock, L. Power and Deterministic Rules of Thumb for Probabilistic Problems in Computer785

Communications. Conference Record, International Conference on Communications; , 1979; pp.786

43.1.1–43.1.10.787

34. Holvoet, T.; Verbaeten, P., Using Petri Nets for Specifying Active Objects and Generative Communication;788

2001; pp. 38–72. doi:10.1007/3-540-45397-0_2.789

35. Jensen, K. Coloured Petri Nets. Petri Nets: Central Models and Their Properties; Brauer, W.; Reisig, W.;790

Rozenberg, G., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1987; pp. 248–299.791

36. Wyse, M. Modeling Approximate Computing Techniques. 2015.792

37. Bernardi, S.; Gianniti, E.; Aliabadi, S.; Perez-Palacin, D.; Requeno, J. Modeling Performance of Hadoop793

Applications: A Journey from Queueing Networks to Stochastic Well Formed Nets. 2016, Vol. 10048, pp.794

599–613. doi:10.1007/978-3-319-49583-5_47.795

38. Bi, J.; Zhu, Z.; Tian, R.; Wang, Q. Dynamic Provisioning Modeling for Virtualized Multi-tier Applications796

in Cloud Data Center. 2010, pp. 370–377. doi:10.1109/CLOUD.2010.53.797

39. El Kafhali, S.; Salah, K. Performance Modeling and Analysis of Internet of Things enabled Healthcare798

Monitoring Systems 2019. 8, 48–58. doi:10.1049/iet-net.2018.5067.799

© 2020 by the authors. Submitted to Future Internet for possible open access publication800

under the terms and conditions of the Creative Commons Attribution (CC BY) license801

(http://creativecommons.org/licenses/by/4.0/).802

https://doi.org/10.1109/SFCS.1994.365680
https://doi.org/10.1007/s42979-019-0035-7
https://doi.org/10.1145/2820783.2820858
https://doi.org/10.1007/978-3-540-72522-0_3
https://doi.org/10.1007/978-3-319-91632-3_6
https://doi.org/10.1007/3-540-45397-0_2
https://doi.org/10.1007/978-3-319-49583-5_47
https://doi.org/10.1109/CLOUD.2010.53
https://doi.org/10.1049/iet-net.2018.5067
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Queueing Networks techniques
	Timeout with Quorum based Join
	Description of the problem
	Fork/Join paradigm
	Model description
	Model results

	Approximate Computing with Finite Capacity Region
	Description of the problem
	Finite capacity regions
	Model description
	Model results

	MapReduce with Class Switch
	Description of the problem
	Class Switch
	Model description
	Model results

	Multiformalism QN/PN techniques
	Hybrid Cloud
	Description of the problem
	Model description
	Model results

	Batching in IoT-based healthcare
	Description of the problem
	The Model
	Model Results

	Conclusions and future work
	References

