
“No-arbitrage one-factor term structure models in zero- or negative-lower-bound
environments”

AUTHORS Andrea Tarelli https://orcid.org/0000-0003-2114-484X

ARTICLE INFO

Andrea Tarelli (2020). No-arbitrage one-factor term structure models in zero- or

negative-lower-bound environments. Investment Management and Financial

Innovations, 17(1), 197-212. doi:10.21511/imfi.17(1).2020.18

DOI http://dx.doi.org/10.21511/imfi.17(1).2020.18

RELEASED ON Wednesday, 25 March 2020

RECEIVED ON Saturday, 18 January 2020

ACCEPTED ON Friday, 28 February 2020

LICENSE

 

This work is licensed under a Creative Commons Attribution 4.0 International

License

JOURNAL "Investment Management and Financial Innovations"

ISSN PRINT 1810-4967

ISSN ONLINE 1812-9358

PUBLISHER LLC “Consulting Publishing Company “Business Perspectives”

FOUNDER LLC “Consulting Publishing Company “Business Perspectives”

NUMBER OF REFERENCES

26

NUMBER OF FIGURES

6

NUMBER OF TABLES

2

© The author(s) 2020. This publication is an open access article.

businessperspectives.org



197

Investment Management and Financial Innovations, Volume 17, Issue 1, 2020

http://dx.doi.org/10.21511/imfi.17(1).2020.18

Abstract

One-factor no-arbitrage term structure models where the instantaneous interest rate 
follows either the process proposed by Vasicek (1977) or by Cox, Ingersoll, and Ross 
(1985), commonly known as CIR, are parsimonious and analytically tractable. Models 
based on the original CIR process have the important characteristic of allowing for a 
time-varying conditional interest rate volatility but are undefined in negative interest 
rate environments. A Shifted-CIR no-arbitrage term structure model, where the in-
stantaneous interest rate is given by the sum of a constant lower bound and a non-neg-
ative CIR-like process, allows for negative yields and benefits from similar tractability 
of the original CIR model. Based on the U.S. and German yield curve data, the Vasicek 
and Shifted-CIR specifications, both considering constant and time-varying risk pre-
mia, are compared in terms of information criteria and forecasting ability. Information 
criteria prefer the Shifted-CIR specification to models based on the Vasicek process. 
It also provides similar or better in-sample and out-of-sample forecasting ability of 
future yield curve movements. Introducing a time variation of the interest rate risk pre-
mium in no-arbitrage one-factor term structure models is instead not recommended, 
as it provides worse information criteria and forecasting performance.
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INTRODUCTION  

AND LITERATURE REVIEW

The seminal contributions by Vasicek (1977) and Cox, Ingersoll, & 
Ross (1985) spawned a vast literature on no-arbitrage dynamic term 
structure models. The original affine one-factor models have inspired 
specifications accounting for multiple factors, which are either exclu-
sively yield-curve related, (e.g., Duffie & Kan, 1996; Dai & Singleton, 
2000; Dai & Singleton, 2002; Duffee, 2002: Joslin, Singleton, & Zhu, 
2011) or also macro-based (e.g., Joslin, Le, & Singleton, 2013; Joslin, 
Priebsch, & Singleton, 2014).

Flexible multi-factor models, especially when allowing for time-varying 
risk premia, are not exempt by overfitting issues. Duffee (2011), Feldhütter, 
Larsen, Munk, & Trolle (2012), and Sarno, Schneider, & Wagner (2016) 
highlight significant difficulties engendered by estimation risk, which 
leads to poor performance in forecasting yield curve movements and out-
of-sample portfolio construction. In particular, they suggest caution in 
the use of specifications accounting for time-varying risk premia and rec-
ommend parsimony in the choice of the number of factors.

One-factor models are still of interest, as they are often preferred 
for their parsimony and analytical tractability in works that do not 
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exclusively focus on the pricing of the yield curve. For instance, they are used in structural models 
of corporate claim valuation (e.g., Longstaff & Schwartz, 1995; Briys & De Varenne, 1997; Collin-
Dufresne & Goldstein, 2001; Ju & Ou-Yang, 2006; Martellini, Milhau, & Tarelli, 2018). As another 
example, the Cox-Ingersoll-Ross (CIR) model has been extensively used to price American options 
under stochastic interest rates (e.g., Medvedev & Scaillet, 2010; Boyarchenko & Levendorskiĭ, 2013).

A drawback of the original CIR model is that it is not compatible with negative interest rates, which 
are nowadays a common fact, especially in Europe. To overcome this issue and preserve the analyt-
ical tractability, the Vasicek interest rate process, which is compatible with negative rates, is often 
preferred. To mention a recent contribution to the American option pricing literature, Battauz & 
Rotondi (2019) justify the choice of a Vasicek interest rate process precisely for this reason. However, 
the Gaussian conditional distribution of interest rates under a Vasicek-type instantaneous interest 
rate process entails unlikely forecast distributions of yields when interest rates are around or slight-
ly below zero. For example, the estimation of the Vasicek model performed in the present paper, 
conditional on the last observation of the German government bond yields available (July 1, 2019), 
leads to an estimate of the end-of-sample instantaneous interest rate of –0.44%, in line with the 
ECB deposit rate of –0.4% on that date, but the conditional probabilities of the instantaneous inter-
est rate being, respectively, below –1% or –2% in one-year time are unreasonably high (28% and 9%).

The aforementioned issue is common to all multi-factor affine term structure models where the 
state variables follow a multivariate Ornstein-Uhlenbeck process and has led several authors to 
study the models where the observed short-term rate is given by the maximum between a shadow 
rate, which distribution is conditionally Gaussian, and a lower-bound rate (e.g., Krippner, 2013; 
Wu & Xia, 2016; Chung, Hui, & Li, 2017). However, because of the non-linearity introduced, these 
models are not as easily tractable as affine models from an analytical and econometric perspectives.

This paper studies the empirical performance of a Shifted-CIR (S-CIR) model, where the instanta-
neous interest rate is given by the sum of a lower-bound level and a strictly positive state variable 
that follows a CIR-type process, entailing a non-zero (possibly negative) lower-bound to the inter-
est rates. This specification is a particular case of more f lexible models, such as the multivariate 
essentially affine models in Duffee (2002) or the semi affine square-root models in Duarte (2004), 
as well as the CIR++ specification in Brigo & Mercurio (2007). Importantly, differing from these 
models, the S-CIR specification is very parsimonious and benefits from the same analytical tracta-
bility of the original CIR model.

Different specifications of the S-CIR model, allowing for either constant or time-varying risk 
premia, are compared to the corresponding Vasicek-type specifications. The models are estimat-
ed using the U.S. and German data, and the comparison is performed according to information 
criteria, as well as in terms of in- and out-of-sample forecasting ability. As opposed to a Vasicek 
specification, the S-CIR model with a constant risk premium is found to be preferred by informa-
tion criteria, to have similar or better in- and out-of-sample yield forecasting ability and, finally, to 
partially  explain the empirically-observed time-varying volatility of interest rates.

This paper also contributes to the literature studying the potential out-of-sample benefits of pre-
dicting the time-variation of bond risk premia through no-arbitrage term structure models (e.g., 
Sarno, Schneider, & Wagner, 2016), which is typically focused on multivariate models. In the con-
text of univariate specifications, the present study shows that a time-varying specification for the 
interest rate risk premium is not recommended in terms of model quality and forecasting ability 
for both the Vasicek and the S-CIR models, finding the introduction of time-varying risk premia 
to be particularly detrimental in the case of Vasicek-based specifications.
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The remainder of the paper is organized as follows. Section 1 introduces the notations and pricing 
formulae of the models considered, provides the details of the dataset used, and describes the es-
timation methodology. Section 2 presents the in- and out-of-sample empirical findings, which are 
summarized and discussed in Section 3. The final section concludes.

1 See Dai and Singleton (2000) for a formal analysis of the invariant transformations applicable to affine term structure models that lead to 
observationally equivalent specifications.

1. METHOD

This section provides the theoretical setting of the 
models considered, then describes the data and the 
methodology adopted in the empirical analysis.

1.1. Model specification  

and bond pricing

In the following, the notations used for the Vasicek 
and S-CIR model specifications are introduced, 
and the corresponding closed-form bond pricing 
formulae are provided.

1.1.1. Vasicek

Consider an Ornstein-Uhlenbeck process for the 
P-dynamics of the state variable :tx

( ) ,t t x tdx x x dt dzθ σ= − +  (1)

where tz  is a standard one-dimensional Wiener pro-
cess defined for 0.t ≥  Express the instantaneous in-
terest rate as an affine function of the underlying 
state variable, i.e., 0 1 ,t tR r r x= +  where 0r  and 1r  
are constants. If the underlying process in (1) is un-
observable, any possible parametrization of 0r  and 

1 0r ≠  leads to observationally equivalent specifica-
tions of the model1. The most common parametriza-
tion, corresponding to the model by Vasicek (1977), 
is obtained by taking 0 0r =  and 1 1.r =  This means 
that the interest rate is coincident with the underly-
ing state variable, i.e., .t tR x=

Given a state-dependent market price of risk

0 1 ,t txλ λΛ = +  (2)

as a consequence of the Girsanov’s the-
orem, the Q-dynamics for tx  is 

( ) ,Q Q Q

t t x tdx x x dt dzθ σ= − +

 where 0

1

Q x

x

x
x

θ σ λ
θ σ λ
−

=
+

 and 1.
Q

xθ θ σ λ= +

Denoting with ( ),B t τ  the time t  price of a ze-
ro-coupon bond maturing at T t τ= +  and im-
posing no-arbitrage restrictions, the following 
Feynman-Kac equation is obtained:

( )
2

2

2

1
,

2

Q Q

t x t

B B B
x x Bx

t x x
θ σ∂ ∂ ∂

+ − + =
∂ ∂ ∂

 

where the boundary condition at maturity implies 

( ),0 1.B t =  The analytic solution to the pricing 
problem is:

( ) ( ) ( )
, ,t

a b x
B t e

τ ττ − −=

where 

( )

( )
2 2

2

1

1 1
2 ,

22

Q
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Q

Q

x

Q QQ

e
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e e

θ τ
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−

− −

 −
= − −  
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− − +  
 

 
( ) 1

.

Q
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e
b

θ τ

τ
θ

−−
=

The zero-coupon yield is thus equal to:

( ) ( ) ( ) ( )1
, log , ,ty t B t a b xτ τ τ τ

τ
= − = +   (3)

where ( ) ( )a
a

τ
τ

τ
=  and ( ) ( )

.
b

b
τ

τ
τ

=

The expected excess return of a zero-coupon bond, 
equal to the product of the diffusion coefficient of 
the bond return process with the market price of 
risk tΛ  in (2), is affine in the state variable :tx

( ) ( )0 1

1 1

.

t t x t

x t

dB B
R

dt B B x

b x

σ

τ σ λ λ

∂ Ε − = Λ =  ∂ 
= − +

 (4)
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1.1.2. Shifted-CIR

Consider a CIR-type P-dynamics for the underly-
ing state variable :tx

( ) .t t x t tdx x x dt x dzθ σ= − +

In the original CIR model, the instantaneous in-
terest rate is ,t tR x=  consider instead an S-CIR 
specification where:

.t tR r x= +

This adds a degree of freedom in the specification 
of the model2, as the conditional volatility of the 
interest rate process is not zero when 0,tR =  but 
it is zero at the level ,r  which represents the lower 
bound of the interest rate process3.

Introduce a state-dependent market price of risk 
as given by

0
1 .t t

t

x
x

λ λΛ = +  (5)

As a consequence of the Girsanov’s the-
orem, the Q-dynamics for tx  is 

( ) ,Q Q Q

t t x t tdx x x dt x dzθ σ= − +  where

 0

1

Q x

x

x
x

θ σ λ
θ σ λ
−

=
+

 and 1.
Q

xθ θ σ λ= +  

Note that the drift term is affine in the state varia-
bles both under the P- and the Q-measure4.

Denoting with ( ),B t τ  the time t  price of a ze-
ro-coupon bond maturing at T t τ= +  and im-
posing no-arbitrage restrictions, the following 
Feynman-Kac equation is obtained:

( ) ( )
2

2

2

1
,

2

Q Q

t x t t

B B B
x x x B r x

t x x
θ σ∂ ∂ ∂

+ − + = +
∂ ∂ ∂

 

where the boundary condition at maturity implies 

( ),0 1.B t =  The analytic solution to the pricing 

2 As the process tx  is unobservable, similarly to the Vasicek model previusly proposed, any other affine specification of the instantaneous 
interest rate, i.e., 0 1 ,t tR r r x= +  would lead to an observationally equivalent model as long as 1 0.r >

3 The dynamics of the interest rate process could be equivalently written as ( ) .t t r t tdR r R dt R rdzθ σ= − + −
4 In the context of multi-factor term structure models, Duarte (2004) introduces a specification of the market prices of risk such that the 

P-drift of the state variables is a semi-affine (non-linear) function of the state variables themselves. The additional flexibility comes at the 
cost of a harder analytical and econometric tractability.

5 https://research.stlouisfed.org/fred2/

6 The yield curves are fitted for maturities between 1 and 30 years. As the authors discourage extrapolations outside of this range, for the 
short end of the yield curve their dataset is complemented using Treasury Bill rates.

7 https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html

problem is:

( ) ( ) ( )
, ,t

a b x
B t e

τ ττ − −=

where 

( ) ( )( )
2

2

2 2
log ,

2 1

Qh

Q Q

Q h
x

x he
a r

h h e

θ τ

τ

θτ τ
σ θ

 
 = −  + + − 
 

 

( ) ( )
( )( )
2 1

2 1

h

Q h

e
b

h h e

τ

τ
τ

θ

−
=

+ + −
 and 

( )2 22 .Q

xh θ σ= +  Considering ( )a τ  and 

( )b τ  just provided, the zero-coupon yield is giv-
en by the same expression as in (3). Similarly, the 
expected excess return of a zero-coupon bond is 
given by (4), and thus, as for the Vasicek model, it 
is affine in the state variable tx . This result justi-
fies the specification for the market price of risk 

tΛ  in (5).

1.2. Data

The models are estimated using the U.S. month-
ly data from August 1971 until June 2019 and 
German data from January 1960 until July 2019. 
For the U.S. dataset, zero-coupon nominal 
yields for the following maturities are consid-
ered: 3 and 6 months, and from 1 to 10 years 
by 1-year steps. The 3- and 6-month yields were 
obtained from the Treasury Bill rates, available 
on the Federal Reserve Economic Data (FRED) 
website5 (series GS3M and GS6M). The other 
nominal zero-coupon yields are the series fitted 
by Gürkaynak, Sack, & Wright (2007)6, availa-
ble on the website of the Federal Reserve Board7. 
The model is also estimated using German nom-
inal bond yields for the maturities of 3 months 
and 10 years, which are also available on the 
FRED website (series IR3TIB01DEM156N and 
IRLTLT01DEM156N).
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1.3. Estimation methodology

The models are estimated by maximum likelihood 
from the time series of historical bond yields cor-
responding to several different maturities. The 
time t  observation of the bond yield for the matu-
rity iτ  is denoted with ( ), .o

iy t τ  Along the lines 
of Duffee (2002), it is assumed that a number of 
bond yields, equal to the number of state varia-
bles d  in the model, are perfectly observed. The 
other n d−  zero-coupon yields are instead al-
lowed to be observed with errors. As there is only 
one state variable in the specifications considered, 
the yield corresponding to the shortest maturity 

( )1 0.25τ =  is chosen to be perfectly observed, 
which entails that the state variable tx  can be in-
ferred from the observation of ( )1, :oy t τ

( ) ( )
( )
1 1

1

,
.

o

t

y t a
x

b

τ τ
τ
−

=



 

The other 1n −  yields are observed with Gaussian 
observation errors , ,i tη  which are assumed to 
be i.i.d. both in time series and cross-sectionally, 
with variance 

2 :
iτ

σ

( ) ( ) ( ) ( ), ,, , ,o

i i i t i i t i ty t y t a b xτ τ η τ τ η= + = + +  

( )2, 0, ,
ii t N τη σ  ( )2, , .i n=   

The p.d.f. of the errors is ( )
2
,

22

,
2

1
.

2

i t

i

i

i tf e τ

η

σ

τ

η
πσ

−

=

The advantage with respect to a semi-affine speci-
fication (Duarte, 2004) is that the likelihood func-
tion can be analytically characterized, as the con-
ditional distribution ( )1t tf x x −  can be expressed 
in closed form. 

For the Vasicek specification, it is:

( )
( )( )21

22

1
2

1
,

2

t t

t

x x

t t

t

f x x e

α β

σ

πσ

−

∆

− +
−

−

∆

=

where

 ( )1 ,tx e θα − ∆= −  ,te θβ − ∆=  
2

2 21
.

2

t

t x

e θ

σ σ
θ

− ∆

∆

−
=  

For the S-CIR specification, it is:

( ) ( )
2

1 2 ,t t

q

u v t
t t q t t

t

v
f x x ce I u v

u

− −
−

 
=  

 
 

where

 
( )2

2
,

1 t

x

c
e θ

θ
σ − ∆

=
−

 
2

2
1,

x

x
q

θ
σ

= −  1 ,tt tu cx e θ− ∆
−=  

.t tv cx=  ( ).qI  is the modified Bessel function of 
the first kind of order .q  As in Duffee (2002), the 
conditional time t  log-likelihood is:

( ) ( ) ( )1 1 ,

2

log log log .
n

t t t i t

i

b f x x fτ η−
=

= − + +∑  

The global log-likelihood 
1

T

t

t

L
=

=∑  

can be then numerically maximized 
with respect to the parameter space 

{ }
20 1, , , , , , , , .

nxx r τ τθ σ λ λ σ σΘ =   

A Nelder-Mead simplex algorithm is used and, to 
help the algorithm converge for the S-CIR specifi-
cations, the parameters are first estimated assum-
ing that tx  coincides with the shortest-maturity 
yield shifted by .r−  These first-step estimates are 
then used as starting point for the final estimation 
of the parameters.

2. RESULTS AND DISCUSSION

This section first discusses the findings obtained 
through an in-sample analysis, where the models are 
estimated using the full sample available, and then 
reports the results from an out-of-sample analysis.

2.1. In-sample estimation

Table 1 shows the in-sample parameter estimates 
for the four different specifications considered, 
Vasicek and S-CIR, either considering a con-
stant risk premium (CRP), where the restriction 

1 0λ =  is imposed, or a time-varying risk premium 
(TVRP), where 1 0.λ ≠  These are obtained using 
the full sample available for each of two countries. 
Most estimates are statistically significant, with the 
exception in some cases of the long-run mean .x  
Allowing for a TVRP reduces the significance of the 
estimates of the speed of mean reversion .θ  Under a 
CRP, the constant market price of risk 0λ  is always 
statistically significant. In contrast, its significance 
is particularly reduced for the Vasicek TVRP speci-
fication, but not for the S-CIR TVRP. 1λ  relates the 
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time variation of the market price of risk to the state 
variable. Its standard error is large under all TVRP 
models, which is common in the estimation of aff-
ine term structure models. As expected, the lower 
bound r  for the S-CIR specifications is negative, as 
the 3-month yield takes slightly negative values in at 
least one date in both country samples. Furthermore, 
the estimates for r  are statistically significant and 
identical between the CRP and TVRP specifications 
for the same country. Being the shortest-maturity 
yield perfectly observed by assumption, the standard 
deviations of the observation errors are increasing in 
maturity. Furthermore, they are very similar across 
model specifications.

Table 1. In-sample parameter estimates

(a) U.S. data (1971–2019)

Parameter
Vasicek 

CRP

Vasicek 

TVRP
S-CIR CRP S-CIR TVRP

x
0.0375 0.0427 0.0520 0.0401

(0.0454) (0.0202) (0.0130) (0.0097)

θ 0.0601 0.1368 0.0506 0.0682

(0.0019) (0.0779) (0.0016) (0.0174)

xσ  

0.0189 0.0189 0.0709 0.0710

(0.0006) (0.0007) (0.0036) (0.0043)

0λ  

−0.3252 −0.1352 −0.0724 −0.0700

(0.1449) (0.2406) (0.0087) (0.0121)

1λ
– −4.0517 – −0.2614

– (4.0980) – (0.2478)

r
 

– – −0.0012 −0.0012

– – (0.0005) (0.0006)

0.5σ 0.0025 0.0025 0.0025 0.0025

1σ 0.0067 0.0067 0.0068 0.0067

2σ 0.0082 0.0082 0.0083 0.0083

3σ 0.0093 0.0093 0.0093 0.0093

4σ 0.0101 0.0101 0.0101 0.0101

5σ 0.0106 0.0106 0.0106 0.0106

6σ 0.0110 0.0110 0.0110 0.0111

7σ 0.0114 0.0114 0.0114 0.0114

8σ 0.0117 0.0117 0.0118 0.0117

9σ 0.0120 0.0120 0.0120 0.0120

10σ 0.0122 0.0122 0.0123 0.0123

L  
23031.53 23032.02 23318.35 23318.58

parN
 

15 16 16 17

AIC −46033.06 −46032.04 −46604.69 −46603.15

BIC −45967.78 −45962.40 −46535.05 −46529.16

(b) German data (1960–2019)

Parameter
Vasicek 

CRP

Vasicek 

TVRP
S-CIR CRP S-CIR TVRP

x
0.0324 0.0345 0.0199 0.0282

(0.0286) (0.0255) (0.0108) (0.0244)

θ 0.0613 0.0729 0.0528 0.0286

(0.0045) (0.0566) (0.0046) (0.0255)

xσ  

0.0135 0.0135 0.0529 0.0530

(0.0004) (0.0004) (0.0014) (0.0014)

0λ  

−0.3083 −0.2688 −0.0910 −0.0962

(0.1301) (0.2318) (0.0114) (0.0283)

1λ
– −0.8669 – 0.4677

– (4.2034) – (0.4751)

r
 

– – −0.0045 −0.0045

– – (0.0001) (0.0001)

10σ 0.0123 0.0123 0.0123 0.0123

L  5076.28 5076.30 5315.44 5315.57

parN
 

5 6 6 7

AIC −10142.56 −10140.61 −10618.89 −10617.14

BIC −10119.71 −10113.18 −10591.46 −10585.15

Note: The tables show the maximum-likelihood estimates of 
the model parameters. The standard errors of the estimates 
are in brackets. The likelihood value ,L  the AIC, and the 
BIC criteria are also reported. The sample period for the U.S. 
market (panel (a)) runs from August 1971 until June 2019. 
The sample period for the German market (panel (b)) runs 
from January 1960 until July 2019.

2.2. In-sample model selection

Table 1 also reports the value of the likelihood 
function ,L  as well as the values for the Akaike 
information criterion (AIC) and the Bayesian in-
formation criterion (BIC). Information theory rec-
ommends the choice of the model with the lowest 
value for these two criteria. For both AIC and BIC, 
and for both datasets, the preferred model is the 
S-CIR CRP. Indeed, the S-CIR specification en-
tails a significant increase of the likelihood func-
tion with respect to the Vasicek model, which more 
than counterbalances the increase in the number 
of parameters. Conversely, allowing for TVRP, for 
both the Vasicek and the S-CIR specifications, en-
tails an increase of model complexity that is not 
counterbalanced by the tiny increase of .L

2.3. In-sample moment matching

To provide further evidence on the goodness of fit 
of the models proposed, Table 2 reports the summa-
ry statistics on the average values and volatilities of 
the yields in the dataset, as well as their model-im-



203

Investment Management and Financial Innovations, Volume 17, Issue 1, 2020

http://dx.doi.org/10.21511/imfi.17(1).2020.18

plied counterparts. For the U.S. dataset, all models 
match rather well the average bond yields in the da-
ta, with an almost perfect matching at the short end 
of the yield curve and for the maturities from 5 to 7 
years. For the German dataset, where the maturities 
observed are only two, the matching of the means 
is nearly perfect. The picture is slightly different for 
what concerns the volatilities. For the U.S. dataset, 
the S-CIR specifications underestimate the volatili-
ties at the very short end, but the matching is rath-
er good (within about 0.1%) for maturities of 1 year 
or longer. The Vasicek specifications instead overes-
timate the volatilities across the board. The picture 
is similar for the German dataset, where the S-CIR 
specifications underestimate the volatility for the 
3-month maturity and overestimate it for the 10-year 
maturity. At the same time, the Vasicek model fits 
the short-end volatility very well, but strongly over-
estimates it at the long end. Across the board, in this 
analysis, small differences are entailed by accounting 
for time-varying risk premia in comparison to the 
specifications based on constant risk premia.

Table 2. Data and model-implied averages  

and volatilities of bond yields

(a) U.S. data (1971–2019)

Yield Data
Vasicek 

CRP

Vasicek 

TVRP

S-CIR 

CRP

S-CIR 

TVRP

Avg. 6M bond yield 4.74% 4.74% 4.74% 4.74% 4.74%

Avg. 6M bond yield 4.92% 4.80% 4.80% 4.80% 4.80%

Avg. 1Y bond yield 5.13% 4.93% 4.93% 4.93% 4.93%

Avg. 2Y bond yield 5.37% 5.18% 5.18% 5.17% 5.17%

Avg. 3Y bond yield 5.56% 5.41% 5.41% 5.40% 5.40%

Avg. 4Y bond yield 5.73% 5.62% 5.62% 5.61% 5.61%

Avg. 5Y bond yield 5.88% 5.81% 5.81% 5.81% 5.80%

Avg. 6Y bond yield 6.01% 5.99% 5.99% 5.99% 5.99%

Avg. 7Y bond yield 6.12% 6.16% 6.16% 6.16% 6.16%

Avg. 8Y bond yield 6.23% 6.31% 6.31% 6.32% 6.32%

Avg. 9Y bond yield 6.31% 6.46% 6.46% 6.47% 6.47%

Avg. 10Y bond yield 6.39% 6.59% 6.59% 6.61% 6.61%

Vol. 3M bond yield 1.74% 1.87% 1.88% 1.54% 1.54%

Vol. 6M bond yield 1.71% 1.86% 1.87% 1.53% 1.53%

Vol. 1Y bond yield 1.62% 1.83% 1.84% 1.51% 1.51%

Vol. 2Y bond yield 1.48% 1.78% 1.78% 1.47% 1.47%

Vol. 3Y bond yield 1.37% 1.73% 1.73% 1.43% 1.43%

Vol. 4Y bond yield 1.29% 1.68% 1.68% 1.39% 1.39%

Vol. 5Y bond yield 1.23% 1.63% 1.64% 1.35% 1.35%

Vol. 6Y bond yield 1.19% 1.59% 1.59% 1.30% 1.31%

Vol. 7Y bond yield 1.16% 1.54% 1.55% 1.26% 1.27%

Vol. 8Y bond yield 1.14% 1.50% 1.50% 1.22% 1.23%

Vol. 9Y bond yield 1.12% 1.46% 1.46% 1.18% 1.19%

Vol. 10Y bond yield 1.11% 1.42% 1.42% 1.14% 1.15%

8 Despite the often weak forecasting ability of yield variations for specific maturities, note that no-arbitrage term structure models, as 
opposed to the RW hypothesis, have the important advantage of being able to describe the joint movements of yields corresponding to 
different maturities.

(b) German data (1960–2019)

Yield Data
Vasicek 

CRP

Vasicek 

TVRP

S-CIR 

CRP

S-CIR 

TVRP

Avg. 10Y bond yield 4.59% 4.59% 4.59% 4.59% 4.59%

Avg. 10Y bond yield 5.74% 5.73% 5.73% 5.73% 5.74%

Vol. 3M bond yield 1.34% 1.34% 1.34% 1.18% 1.18%

Vol. 10Y bond yield 0.66% 1.01% 1.01% 0.89% 0.89%

Note: The first column of the tables reports the average 
values of the yields for the different maturities available in 
the datasets, as well as their annualized volatilities. The other 
columns, for the four model specifications considered, report 
the corresponding model-implied quantities. The volatilities 
for the S-CIR specifications are evaluated at the average 
value of the model-implied state variable .tx  The sample 
period for the U.S. market (panel (a)) runs from August 1971 
until June 2019. The sample period for the German market 
(panel (b)) runs from January 1960 until July 2019.

2.4. In-sample forecasting ability

Dynamic term structure models can be used to 
forecast yield variations. For all the models con-
sidered, the time t  expected yield variation over 
an interval t∆  is:

( ) ( )
( )( )( )

, ,

1 .

t

t

t

E y t t y t

b x x e θ

τ τ

τ − ∆

+ ∆ − =  

= − −

 

To assess the in-sample forecasting ability of 
a model, these variations can be compared 
with the corresponding observed yield varia-
tions, ( ) ( ), , .o oy t t y tτ τ+ ∆ −  Panels (a) and 
(b) of Figure 1 show the forecasting root-mean-
squared errors (RMSE) for a forecasting period 

6t∆ =   months relative to the RMSE under the 
hypothesis that the yields follow a random walk 
(RW), i.e., when the yield variation forecast is 
null. When the ratio is lower than 1, the model 
improves the forecasts obtained under the RW 
hypothesis. The fact that the ratio is often great-
er than 1 is not surprising, as previous evidence 
(e.g., Duffee, 2002) showed that even 3-factor 
affine term structure models have weak fore-
casting ability8. However, for both samples, all 
models seem to have better forecasting ability 
than the RW for short-maturity yields. While 
all models (except the S-CIR TVRP for the 
German dataset) perform slightly worse than 
the RW for long-maturity yields, especially for 
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the U.S. dataset, the Vasicek TVRP model per-
forms significantly worse than all the others. 
For what concerns the German dataset, in line 
with the results obtained on moment matching, 
the Vasicek specification allows better forecast-
ing yield variations on the short end on the yield 
curve, while the S-CIR specification performs 
relatively better for long-maturity yields.

2.5. In-sample volatility forecasting

An interesting feature of CIR-based interest rate 
models is that the conditional volatility of the 
instantaneous interest rate is time-varying (Cox, 
Ingersoll, & Ross, 1985). In particular, in the 
S-CIR specification proposed, the conditional var-
iance over a time interval t∆  is:

[ ] [ ]

( ) ( )
2 2

2
21 .

2

t t t t t t t

t t tx x
t

Var R R Var R

x e e e xθ θ θσ σ
θ θ

+∆ +∆

− ∆ − ∆ − ∆

− = =

= − + −
 

Conversely, the conditional variance under the 
Vasicek-based models is constant:

[ ] [ ] ( )
2

21 .
2

tx
t t t t t t tVar R R Var R e θσ

θ
− ∆

+∆ +∆− = = −  

Panels (a) and (b) of Figure 2 show the model-im-
plied in-sample annualized conditional volatilities 
of the instantaneous interest rate and the empiri-
cal annualized volatility of the 3-month rate ob-
served over 36 months following the forecasting 
date. Note that, as CRP and TVRP models of the 

(a) In-sample: U.S. (b) In-sample: Germany

(c) Out-of-sample: U.S. (d) Out-of-sample: Germany

Note: For the different maturities considered (3 months to 10 years), the figure shows the ratio between the root-mean-
squared errors of yield variations forecast obtained with the different models considered (RMSE ) and the root-mean-
squared errors of yield variations obtained under the random walk hypothesis ( )RWRMSE .  The forecasting horizon is 6t∆ =  
months.

Figure 1. In-sample and out-of-sample 6-month-ahead yield variation forecasting ability  
in comparison to the random walk hypothesis
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same type provide indistinguishable forecasts, 
only one line per type is plotted. As can be no-
ticed, the S-CIR model shows some forecasting 
ability of the short-term rate volatility. The 

2R  
obtained from regressing the realized volatility 
on the S-CIR volatility forecasts are 45.5% (U.S.) 
and 30.2% (Germany), while the 

2R  is obvious-
ly 0 when regressing the realized volatility on the 
Vasicek forecasts.

2.6. Out-of-sample estimation

The out-of-sample analysis is performed by es-
timating the models over an expanding window 
starting from the beginning of the sample and 

9 For the in-sample analysis, considering two different cases is not necessary, as the maximum-likelihood estimates obtained for r  are 
negative (Table 1), and the constraint would not affect.

having an initial sample size of 240 monthly ob-
servations. Monthly increments then expand 
the window up to the end of the sample. In the 
out-of-sample analysis, the S-CIR specifications 
are estimated under two different cases: a con-
strained one, where the lower bound is non-pos-
itive ( )0 ,r ≤  and an unconstrained one, where 
r  is allowed to be positive. The first one has the 
main purpose of allowing a CIR-like model to ac-
commodate for negative interest rates, while the 
second one is more flexible, as the lower bound r  
can be positive if this best fits the data9. Figure 3 
shows the time series of the estimates obtained for 
the Vasicek specifications, while Figures 4 and 5, 
respectively, refer to the S-CIR constrained and 

Note: The figure shows the monthly annualized volatility forecasts obtained with the Vasicek and Shifted-CIR models. As 
constant risk premium and time-varying risk premium specifications of the same model type provide indistinguishable 
forecasts, only one line per type is reported. The empirical annualized volatility of the 3-month rate over 36 months following 
the forecasting date is also shown.

Figure 2. In-sample and out-of-sample short-term  

rate volatility forecasting

(a) In-sample: U.S. (b) In-sample: Germany

(c) Out-of-sample: U.S. (d) Out-of-sample: Germany
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Note: The figure shows out-of-sample parameter estimates obtained for the Vasicek specifications with constant (CRP) and 
time-varying risk premia (TVRP). The initial estimation window is made of 240 monthly observations, starting on August 
1971 for the U.S. dataset and on January 1960 for the German dataset. The X-axis values represent the end of the estimation 
window. 

tx  represents the end-of-estimation-period value of the unobservable state variable.

Figure 3. Out-of-sample parameter estimates for the Vasicek models

(a) Vasicek CRP: U.S. (b) Vasicek CRP: Germany

(c) Vasicek TVRP: U.S. (d) Vasicek TVRP: Germany
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Note: The figure shows out-of-sample parameter estimates obtained for the S-CIR specifications with constant (CRP) and time-
varying risk premia (TVRP). The lower bound to the interest rate r  is constrained to be non-positive. The initial estimation 
window is made of 240 monthly observations, starting on August 1971 for the U.S. dataset and on January 1960 for the 
German dataset. The X-axis values represent the end of the estimation window. 

tx  represents the end-of-estimation-period 
value of the unobservable state variable.

Figure 4. Out-of-sample parameter estimates for the S-CIR models with non-positive lower bound

(a) S-CIR constrained CRP: U.S. (b) S-CIR constrained CRP: Germany

(c) S-CIR constrained TVRP: U.S. (d) S-CIR constrained TVRP: Germany
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unconstrained specifications. Panels (a) and (b) 
refer to the cases with constant risk premia, re-
spectively for U.S. and Germany, while panels (c) 
and (d) represent the cases with time-varying risk 
premia. Unsurprisingly, the time series of param-
eter estimates are more stable under CRP than un-
der TVRP, especially for what concerns the esti-
mates for 0λ  and 1.λ  In some cases, under TVRP, 
also the estimates for the long-run mean x  and 
for the speed of mean reversion θ  are more unsta-
ble than under CRP. However, as can be noticed in 
Figures 4 and 5, the estimates for r  in the S-CIR 
specifications are very stable and nearly identical 
between the CRP and TVRP cases. In the S-CIR 
constrained model (Figure 4), the lower bound 
0r ≤  is always either at 0 or slightly negative, 

which allows estimating the model even when 
interest rates are slightly negative. In the uncon-
strained case (Figure 5), the lower bound r  is well 
above zero in both markets for sub-samples end-
ing before 2007, reaching values as high as 3% in 
some cases. Beyond the fact that the S-CIR spec-
ification allows to estimate the model even under 
mildly negative interest rates, the unconstrained 
specification improves the fitting of the condition-
al interest rate volatility by estimating the level at 
which the instantaneous volatility of the interest 
rate vanishes. In the original CIR model, as well 
as in the constrained S-CIR for most sub-samples, 
this level is equal to 0. In the following paragraphs, 
it will be clear whether this additional flexibility 
allows improving out-of-sample forecasts.

2.7.	Out-of-sample forecasting ability

Panels (c) and (d) of Figure 1 show the ratio, for a 
6-month forecasting horizon, between the RMSE 
of the out-of-sample yield forecasts and the RMSE 
under the random walk hypothesis. Two results 
are very strong and common to both datasets. 
First, the TVRP variants of all models have weak-
er forecasting ability than their CRP counter-
parts. This is especially true for the Vasicek mod-
el. Second, all unconstrained specifications of the 
S-CIR model outperform the corresponding con-
strained ones. For the U.S., the Vasicek and the 
S-CIR CRP unconstrained model are those with 
the best forecasting ability, being the best per-
formers respectively at the short and the long end 
of the yield curve. For Germany, the S-CIR CRP 
unconstrained model is by far the best performer.

2.8.	Pre-2008	out-of-sample	
forecasting ability

It is legitimate to wonder whether the evidence on 
the forecasting ability of the different models is 
different when considering periods when interest 
rates are either far above zero or always close to 
the zero level. In order to address this issue, the 
out-of-sample analysis is repeated over two dif-
ferent sub-samples, one ending before the 2008 
financial crisis, i.e., in December 2007, and an-
other one starting from January 2008. Panels (a) 
and (b) of Figure 6 refer, respectively, for U.S. and 
Germany to the pre-2008 period. It is important 
pointing out that over this first sub-sample, the 
constrained S-CIR model coincides with a regu-
lar CIR model, as the estimate of the lower bound 
r  is equal to 0 at all times (see the time series of 
the estimates in Figure 4). For the unconstrained 
S-CIR model, instead, r  is strictly positive over 
this sub-sample. For both datasets, a common re-
sult is that models with constant risk premia have 
a rather similar forecasting ability and outperform 
the corresponding models with time-varying risk 
premia. The Vasicek model is the best performer 
for the U.S. dataset, followed by the unconstrained 
S-CIR model, which has similar performances 
for long maturities and then by the constrained 
S-CIR model. For what concerns the German da-
taset, for short maturities, the best performer is 
the constrained Shifted-CIR model, followed by 
the Vasicek and the unconstrained S-CIR mod-
el. For long maturities, the forecasting abilities of 
the specifications with constant risk premia are 
indistinguishable.

2.9. Post-2008	out-of-sample	
forecasting ability

Panels (c) and (d) of Figure 6 refer to the post-2008 
period when interest rates have been close to the 
zero level most of the time. For the U.S. dataset, 
the S-CIR specifications have better forecast-
ing ability than the Vasicek specification, with a 
slight edge for the unconstrained S-CIR model. 
Interestingly, while allowing for a time variation 
of the risk premia is strongly detrimental for the 
Vasicek model, it provides a slight benefit to the 
S-CIR models. For the German dataset, the un-
constrained S-CIR model is again the best per-
former, followed by the constrained S-CIR and 
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Note: The figure shows out-of-sample parameter estimates obtained for the S-CIR specifications with constant (CRP) and 
time-varying risk premia (TVRP). The lower bound to the interest rate r  is not constrained. The initial estimation window 
is made of 240 monthly observations, starting on August 1971 for the U.S. dataset and on January 1960 for the German 
dataset. The X-axis values represent the end of the estimation window. tx  represents the end-of-estimation-period value of 
the unobservable state variable.

Figure 5. Out-of-sample parameter estimates for the S-CIR models  
with an unconstrained lower bound

(a) S-CIR unconstrained CRP: U.S. (b) S-CIR unconstrained CRP: Germany

(c) S-CIR unconstrained TVRP: U.S. (d) S-CIR unconstrained TVRP: Germany
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Note: For the different maturities considered (3 months to 10 years), the figure shows the ratio between the root-mean-
squared errors of yield variations forecast obtained with the different models considered (RMSE) and the root-mean-squared 
errors of yield variations obtained under the random walk hypothesis ( )RWRMSE .  The forecasting horizon is 6t∆ =  months. 
For the U.S. dataset, the analysis is performed over two out-of-sample sub-samples respectively ranging from August 1991 
to December 2007 and from January 2008 to June 2019. For the German dataset, the analysis is performed over two out-of-
sample sub-samples, respectively, ranging from January 1980 to December 2007 and from January 2008 to July 2019.

Figure 6. Out-of-sample 6-month-ahead yield variation forecasting ability in comparison  
to the random walk hypothesis (sub-samples pre-2008 and post-2008)

(a) Sub-sample 1991–2007: U.S. (b) Sub-sample 1980–2007: Germany

(c) Sub-sample 2008–2019: U.S. (d) Sub-sample 2008–2019: Germany

the Vasicek model. Allowing for time-varying risk 
premia improves the performance only for the 
constrained S-CIR.

2.10. Out-of-sample volatility 

forecasting

Panels (c) and (d) of Figure 2 show the out-of-sam-
ple volatility forecasts as opposed to the 3-month 
rate realized volatility. The picture is similar to the 
in-sample analysis, where the Vasicek model, ex-
cept than for the decreasing trend due to the varia-
tion of the out-of-sample estimates for ,xσ  cannot 
predict the time variation of the interest rate vola-

tility. Conversely, the S-CIR specifications explain 
a significant part of the empirical variability, with 
an 

2R  of 51.5% (constrained) and 50.7% (uncon-
strained) for the U.S. and of 47.2% (constrained) 
and 49.9% (unconstrained) for Germany.

3. DISCUSSION

Under the assumption of constant risk premia, both 
considering U.S. and German data, the S-CIR spec-
ification is better than the Vasicek model in terms 
of information criteria. It also better matches the 
volatility of interest rates, both unconditionally and 
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conditionally, especially for the U.S. sample. The 
in-sample forecasting ability is similar between the 
Vasicek and S-CIR specification, with a slight edge 
in favor of the first for short maturities and of the 
second for long maturities. In the out-of-sample 
analysis, the forecasting ability of the S-CIR specifi-
cation is also comparable to or stronger than that of 
the Vasicek specification in most cases, again with 
better performances over long maturities. The out-

of-sample findings also suggest that, as opposed to a 
regular CIR model, the additional flexibility of the 
S-CIR model, allowing to define a nonzero inter-
est rate level at which the volatility vanishes, can be 
beneficial even when the interest rates are far above 
zero. Finally, according to nearly all the above met-
rics and criteria considered, introducing a time var-
iation of the risk premia is harmful, especially when 
considering a Vasicek specification.

CONCLUSION

This paper empirically studies a Shifted-CIR (S-CIR) specification for the no-arbitrage pricing of the 
yield curve as a tractable one-factor alternative to the Vasicek process. This specification is particularly 
interesting if interest rates can assume mildly negative values when a traditional zero-lower-bound CIR 
model is undefined.

For both Vasicek and S-CIR models, the empirical analysis recommends assuming a constant market 
price of interest rate risk. Indeed, introducing a time-varying risk premium reduces the significance of 
the estimates, the model quality in terms of AIC and BIC criteria, as well as the in- and out-of-sample 
forecasting ability. These detrimental effects are particularly strong for the Vasicek model.

The information criteria identify the S-CIR-type models as preferred to Vasicek-type ones. The two types 
of models have similar in-sample yield forecasting ability, while in out-of-sample, there seems to be a 
slight edge in favor of the S-CIR model when the lower bound is not constrained and thus allowed to be 
positive. The S-CIR specification also entails a conditional time-varying interest rate volatility, which 
explains a significant fraction of the empirically-observed time variation of interest rate volatilities.
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