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Designing and developing new biostimulants is a crucial process which requires an
accurate testing of the product effects on the morpho-physiological traits of plants
and a deep understanding of the mechanism of action of selected products. Product
screening approaches using omics technologies have been found to be more efficient
and cost effective in finding new biostimulant substances. A screening protocol based
on the use of high-throughput phenotyping platform for screening new vegetal-derived
protein hydrolysates (PHs) for biostimulant activity followed by a metabolomic analysis
to elucidate the mechanism of the most active PHs has been applied on tomato crop.
Eight PHs (A–G, I) derived from enzymatic hydrolysis of seed proteins of Leguminosae
and Brassicaceae species were foliarly sprayed twice during the trial. A non-ionic
surfactant Triton X-100 at 0.1% was also added to the solutions before spraying.
A control treatment foliarly sprayed with distilled water containing 0.1% Triton X-100
was also included. Untreated and PH-treated tomato plants were monitored regularly
using high-throughput non-invasive imaging technologies. The phenotyping approach
we used is based on automated integrative analysis of photosynthetic performance,
growth analysis, and color index analysis. The digital biomass of the plants sprayed
with PH was generally increased. In particular, the relative growth rate and the growth
performance were significantly improved by PHs A and I, respectively, compared to
the untreated control plants. Kinetic chlorophyll fluorescence imaging did not allow to
differentiate the photosynthetic performance of treated and untreated plants. Finally,
MS-based untargeted metabolomics analysis was performed in order to characterize
the functional mechanisms of selected PHs. The treatment modulated the multi-layer

Frontiers in Plant Science | www.frontiersin.org 1 February 2019 | Volume 10 | Article 47

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2019.00047
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2019.00047
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.00047&domain=pdf&date_stamp=2019-02-08
https://www.frontiersin.org/articles/10.3389/fpls.2019.00047/full
http://loop.frontiersin.org/people/660339/overview
http://loop.frontiersin.org/people/645112/overview
http://loop.frontiersin.org/people/107532/overview
http://loop.frontiersin.org/people/175812/overview
http://loop.frontiersin.org/people/593900/overview
http://loop.frontiersin.org/people/507663/overview
http://loop.frontiersin.org/people/176867/overview
http://loop.frontiersin.org/people/377405/overview
http://loop.frontiersin.org/people/345960/overview
http://loop.frontiersin.org/people/174146/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00047 February 7, 2019 Time: 0:3 # 2

Paul et al. Biostimulant Action of Protein Hydrolysates

regulation process that involved the ethylene precursor and polyamines and affected
the ROS-mediated signaling pathways. Although further investigation is needed to
strengthen our findings, metabolomic data suggest that treated plants experienced
a metabolic reprogramming following the application of the tested biostimulants.
Nonetheless, our experimental data highlight the potential for combined use of high-
throughput phenotyping and metabolomics to facilitate the screening of new substances
with biostimulant properties and to provide a morpho-physiological and metabolomic
gateway to the mechanisms underlying PHs action on plants.

Keywords: protein hydrolysates, integrative image-based high-throughput phenotyping, metabolomics, morpho-
physiological traits, functional biostimulant characterization, ROS signaling

INTRODUCTION

Over the past decade, interest in plant biostimulants (PBs) has
been on the rise, compelled by the growing interest of researchers,
private industry and farmers in integrating these products in the
array of environmentally friendly tools that secure improved crop
productivity and yield stability under environmental stressors
(Ertani et al., 2012, 2013; Haplern et al., 2015; Colla et al., 2017a;
Yakhin et al., 2017; Rouphael et al., 2017a,c, 2018). Based on
the new EU regulation, PBs are defined as ‘CE marked products
which stimulate plant physiological processes independently of the
their nutrient content by improving one or more of the following
characteristics of the plant rhizosphere or phyllosphere: nutrient
use efficiency, tolerance to abiotic stress, crop quality, availability
of confined nutrients in the soil and rhizosphere, humification
and degradation of organic compounds in the soil’ (European
Commission, 2016). Protein hydrolysates (PHs) are an important
category of PBs which are produced by chemical, enzymatic or
by combining chemical and enzymatic hydrolysis of proteins
from animal or plant source (Ertani et al., 2009, 2017; Niculescu
et al., 2009; Calvo et al., 2014; Colla et al. 2015, 2016, 2017a,b).
Over the past 10 years, plant-derived PHs produced through
enzymatic hydrolysis have received huge interest from farmers
due to their high agronomic value and the lack of limitation
in their application on organically produced crops (Colla et al.,
2014; Nardi et al., 2016). PH-based biostimulants can be applied
to plants through foliar application or soil/substrate drenching.
PHs sprayed in foliar way reach mesophyll cells by absorption
through cuticle, epidermal cells and stomata (Fernández and
Eichert, 2009) while in drench application, the absorption occurs
through root epidermal cells and gets redistributed through
xylem (Subbarao et al., 2015). PHs can also be applied as seed
treatments especially for field crops such as wheat, corn, and
soybean (Rouphael et al., 2018). PH application stimulates plant
uptake of macro and micronutrients and helps in rapid plant
growth and biomass accumulation, interfering with the carbon
and nitrogen metabolic activities (Ertani et al., 2009, 2016; Colla
et al., 2017a). PHs can also improve crop tolerance to abiotic
stresses such as drought, salinity, and thermal stress (Ertani et al.,
2013; Lucini et al., 2015; Colla et al., 2017a). Therefore, improving
metabolic and physiological traits by PH-based biostimulant
treatments provides novel strategies for maximizing biomass
yield (Dudits et al., 2016). Development of highly effective

PH-based biostimulants requires an accurate evaluation of the
effects of candidate products on morpho-physiological traits
of selected crops during different developmental stages and
environmental conditions. As conventional screening methods
are time consuming, destructive (e.g., fresh and dry weight
estimation), labor intensive and expensive, high-throughput
plant phenotyping procedures were recently proposed as effective
and high-precision tools for product screening in order to
increase the probability of finding new bioactive substances
in a more cost- and time-effective manner (Povero et al.,
2016; Rouphael et al., 2018; Ugena et al., 2018). ‘Phenomics’
as a technological tool considers systematic management of
complex traits in genome (G) × environment (E) interactions
(Houle et al., 2010). Plant phenotyping systems are fully
automated robotic systems usually installed in a controlled
environment or in semi-controlled greenhouse conditions. The
phenotyping platforms are designed to ensure not only non-
invasive monitoring of plants in throughput of few up to several
hundreds of plants, but also provide means for automated
cultivation and handling of the plants such as automated
watering/weighing or nutrient delivery units (Fahlgren et al.,
2015; Großkinsky et al., 2015). High-throughput phenotyping
systems, which can capture plant growth, morphology, color
and photosynthetic performance using RGB and chlorophyll
fluorescence (ChlF) imaging tools, are highly promising and
essential tools for dissecting physiological components in product
screening and for dynamic quantitative analysis of plant growth
and physiological performance (Rahaman et al., 2015; Awlia et al.,
2016; Rouphael et al., 2018). RGB imaging is used to estimate the
true color of each pixel and by using image processing algorithms
for identification of plant-derived pixels. For identified plant
objects, morphological and geometrical features are quantified
including color properties (Rahaman et al., 2015). The pixel
number-based assessment of plant volume or total leaf area
correlates with fresh and dry weight of above ground plant
biomass and can be thus used to evaluate green/fresh weight
of the plants without cutting and measuring them (Fehér-
Juhász et al., 2014; Fahlgren et al., 2015). Further image-based
automated phenotyping permits time-series measurements that
are necessary to follow the progression of growth performance
and stress responses on individual plants.

Chlorophyll fluorescence is a popular technique in plant
physiology used for rapid non-invasive measurement of
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photosystem II (PSII) activity. PSII activity is very sensitive
to a range of biotic and abiotic factors and therefore the
chlorophyll fluorescence technique is used as a rapid indicator of
photosynthetic performance of plants in different developmental
stages and/or in response to changing environment (Baker,
2008). The advantage of chlorophyll fluorescence measurements
over other methods for monitoring stresses is that changes in
chlorophyll fluorescence kinetic parameters often occur before
other effects of stress are apparent (Murchie and Lawson,
2013). Chlorophyll fluorescence imagers integrated in high-
throughput phenotyping platforms are becoming important
tools for rapid screening for better photosynthetic performance
and characterization of a plant’s ability to harvest light energy,
which is directly related to plant biomass formation and plant
architecture (Tschiersch et al., 2017).

Nonetheless, the comprehension of biochemical processes
and physiological functions underlying the changes observed
at phenotype level is of primary relevance to scientifically
demonstrate and support the use of plant biostimulants, likely
providing some clues on the best scenarios where these products
can be used. It is expected that in the near future, provided that a
regulatory framework will be implemented at least in the EU and
United States, the information on mechanism/mode(s) of action
will support biostimulants authorization and implementation.
In this regard, metabolomics is being proposed as a close link
between an organism’s genotype and phenotype (Lamichhane
et al., 2018), including plant-environment interactions (Feussner
and Polle, 2015). In fact, recent advances in metabolomics,
data treatment and multi-variate statistics offer the possibility
to achieve a rather inclusive phytochemical profile in biological
systems, including plants, thus opening new opportunities
(Meier et al., 2017; Tsugawa, 2018). This makes metabolomics
a promising tool to elucidate, among others, the mode of
action rather than the physiological processes involved in plant
response to biostimulants.

Taking this background into consideration, the aim of this
study was to unravel the morphological, physiological and
biochemical mechanisms of action for protein hydrolysate-
based biostimulants on tomato plants at early stage of growth
(i.e., vegetative growth) by combining novel high-throughput
plant phenotyping approach and metabolomics. Untreated and
treated tomato plants were compared in terms of photosynthetic
performance through kinetic chlorophyll fluorescence, and plant
growth dynamics via RGB imaging by using high-throughput
and non-invasive imaging technologies developed at Photon
Systems Instruments (PSI, Czechia). Metabolomics analysis was
performed to understand the mode of action of the best
performing substances in improving plant growth. Evaluation
of biostimulant activity at early growth stages of fruiting crops
such as tomato can provide useful information for improving
crop yield under field conditions. Crop traits like early vigor
are associated with earliness of fruit maturity and high shoot
biomass accumulation which have been often positively linked
to increased yield of tomato crop (Kumar et al., 2015; Rouphael
et al., 2017b). Finally, this study was also aimed to set up a
methodology for screening plant biostimulants by combining an
advanced phenotyping platform and metabolomic analysis.

MATERIALS AND METHODS

Plant Material and Growing Conditions
Seeds of tomato (Solanum lycopersicum L. - Hybrid F1 Chicco
Rosso) were sown in trays with 100 ml size of pots containing
freshly sieved soil (Substrate 2, Klasmann-Deilmann GmbH,
Germany) watered to full soil-water holding capacity. Trays with
seeds were stratified for 2 days at 4◦C in the dark. Trays were then
transferred to a climate-controlled chamber (FytoScope FS_WI,
PSI, Drásov, Czechia) with cultivation conditions set at 16 h
day/8 h night regime, temperature set at 22◦C day/20◦C night,
relative humidity set at 60% and light intensity set at 250 µmol
photons m−2 s−1 for cool-white LED and 5.5 µmol photons m−2

s−1 for far-red LED lighting (Figure 1A).

Plant Handling and Biostimulant
Treatment
Prior initiation of automated phenotyping protocol, tomato
plants were manually watered. Seven- and 14-day-old plants
were watered to full saturation with fertilizers: 1.04 g L−1

calcium nitrate (15.5% N; 28% CaO), 0.04 g L−1 ammonium
nitrate (34% N), 0.14 g L−1 monopotassium phosphate
(52% P2O5, 34% K2O), 0.18 g L−1 potassium sulfate (50%
K2O, 45%SO3), 0.5 g L−1 magnesium sulfate (10%N, 16%
MgO), and 0.5 ml L−1 FloraMicro (5% N, 1% K2O, 5%
Ca, 0.01% B, 0.001% Cu, 0.1% Fe, 0.05% Mn, 0.0008%
Mo, 0.015% Zn).

Twenty-one-day-old plants reaching third true leaf stage were
transplanted into 3 L pots filled with a mixture of Substrate
2 Klasmann soil and river sand in 3:1 ratio. Pots with soil
mixture were prepared 1 day in advance of transplantation
and were automatically watered in PlantScreenTM Modular
System to ensure soil moisture reaching 60% container capacity.
For optimizing container capacity, one set of soil pots was
dried for 3 days at 80◦C and another set was saturated with
water and left to drain for 1 day before weighing 100% water
holding capacity (Awlia et al., 2016). Following transplantation,
plants were regularly watered to defined reference weight
(60% container capacity) automatically in PlantScreenTM

Modular System.
Plants were randomly distributed into nine groups with six

biological replicates per group. Eight types of plant-derived
protein hydrolysates (A–G, I) were provided by Italpollina
Company (Rivoli Veronese, Italy). PHs were obtained by the
advanced technology LISIVEG which is based on enzymatic
hydrolysis of vegetal-derived proteins from different plant
sources belonging to families of Leguminosae and Brassicaceae.
Total nitrogen of each PH was as follow: 5.2% (A), 4.6% (B), 3.7%
(C), 4.2% (D), 4.3% (E), 4.2% (F), 4.0% (G), 5% (I). PHs (A–
G) were non-commercial products whereas I was a commercial
biostimulant named ‘Trainer R©’ derived from legume seeds. All
PHs were foliarly sprayed in a water solution containing a non-
ionic surfactant Triton X-100 at 0.1%. A control group sprayed
with distilled water containing 0.1% Triton X-100 was also
included. Foliage sprays were performed twice: 5 DAT (days after
transplantation) referred to as Treatment 1 (T1) and 12 DAT
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FIGURE 1 | Schematic overview of cultivation protocol and automated phenotyping protocol. (A) Plants were cultivated for 20 days prior to transplantation in control
conditions (FS-WI, PSI, Czechia) and were further kept in the same conditions for the next 19 days (DAT, days after transplantation). Eight types of protein
hydrolysates (A–G, I) plus control treatment were applied twice to tomato plants by spraying 5 and 12 days after transplantation. Plant phenotypic measurements
were performed during the experiment using PlantScreenTM Modular System installed in semi-controlled greenhouse environment conditions in PSI Research Center
(PSI, Drásov, Czechia). (B) Plant handling and automated phenotyping protocol. Tomato plants were transferred to PlantScreenTM Modular System and automated
phenotyping protocol was initiated. Prior to and following the protein hydrolysates application, plants were regularly screened using the calibrated top and side view
RGB camera and kinetic chlorophyll fluorescence camera for photosynthetic performance quantification. Plants were regularly watered and weighed using the
automated watering and weighing station.

referred to as Treatment 2 (T2). For 24 h prior to and post
spraying, humidity in the cultivation chamber was kept at 85%
relative humidity. For foliar spray treatments, 2 ml of given PH
was diluted in 500 ml distilled water with 0.1% Triton X-100 and

60 ml of solution was applied by homogenous foliar spray over
the entire plant surface per plant replica. Soil of each pot was
covered with aluminum foil during and upon spraying and was
removed prior to the next phenotypical analysis in PlantScreenTM
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FIGURE 2 | Color segmented side view Red Green Blue (RGB) images of tomato plants prior to and upon PHs application. (A) Side view (120◦) RGB image of the
tomato plants over the time of phenotyping period (D1–D15). (B) Projected shoot area over time of phenotyping period. Values represent the average of six biological
replicates per treatment. Error bars represent standard deviation. T1 and T2 correspond to days of protein hydrolysates application by foliar spraying. (C) Digital
biomass quantified over time of phenotyping period. Values represent the average of six biological replicates per treatment. Error bars represent standard deviation.
T1 and T2 correspond to days of protein hydrolysate application by foliar spraying. (D) Comparison of relative growth rate for the different treatments quantified over
phenotyping period following the protein hydrolysate treatments (DAT 6–DAT 15). Values represent the average of six biological replicates per treatment. Error bars
represent standard deviation.

Modular System (Figure 1B). Right after foliar spray treatment,
plants were taken back to fytoscope FS-WI.

Phenotyping Protocol and Imaging
Sensors
Plant phenotypic measurements were performed using
PlantScreenTM Modular System installed in semi-controlled
greenhouse environment conditions in PSI Research Center
(PSI, Drásov, Czechia). The platform was operated in a closed

imaging loop that is within climatized environment with
temperature ranging between 21 and 24◦C. The platform is
equipped with four robotic-assisted imaging units, automatic
height measuring light curtain unit, an acclimation tunnel,
and a weighing and watering unit. Plants set in individual
transportation disks were transported to the individual units by
a moving belt toward individual imaging and handling units.
Twenty-two-day-old plants were randomly distributed into six
batches, each batch containing 11 plants. Plant imaging started
1 DAT (day 1 of phenotyping) and continued until 15 DAT (day
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FIGURE 3 | Photosynthetic performance of tomato plants visualized by kinetic chlorophyll fluorescence imaging in all protein hydrolysate treatments. Representative
images of chlorophyll fluorescence for tomato plants prior to and upon PHs treatment. False-color images of maximum fluorescence value (FM) for tomato plants
over phenotyping period (days 1–15) are shown.

15 of phenotyping). Plants were imaged using the following
protocol. Briefly, plants were manually transferred from the
climate-controlled growth chamber to the manual loading
station of the PlantScreenTM Modular System, transported to the
acclimation tunnel through an automatic height measuring unit
and dark adapted in an acclimation tunnel for 15 min prior to
imaging. Successively, plants were automatically phenotyped for
around 30 min per batch using kinetic chlorophyll fluorescence
imaging measurement for photosynthetic performance analysis
and top view and multiple angle side view Red Green Blue (RGB)
imaging for morphological and growth analysis. Finally, plants
were automatically transported to the watering and weighing
unit for maintaining precise soil water holding capacity at 60%.
After the end of the phenotyping protocol, plants were manually
moved back to the climate-controlled growth chamber until
the subsequent phenotyping day. Using the automatic timing
function of PlantScreenTM Scheduler (PSI, Drásov, Czechia),
the phenotyping protocol was programmed to always start at
the same time of the diurnal cycle (after 3 h of illumination in
the climate-controlled growth chamber). Phenotyping protocol

was recorded twice prior to biostimulant application in days 1
and 3 (pre-T measurements); three times post first biostimulant
application in days 6, 8, and 10 (post T1 application) and
twice post second biostimulant application in days 13 and 15
(post T2 application). The acquired images were automatically
processed using Plant Data Analyzer (PSI, Drásov, Czechia) and
the raw data exported into CSV files were provided as input for
further analysis.

Kinetic Chlorophyll Fluorescence
Imaging
Kinetic chlorophyll fluorescence (ChlF) measurements were
acquired using an enhanced version of the FluorCam FC-800MF
pulse amplitude modulated (PAM) chlorophyll fluorometer (PSI,
Czechia) (Awlia et al., 2016) with an imaging area in top view
position of 800 mm × 800 mm as described in Tschiersch et al.
(2017). Photosynthetic performance in the plants was assessed
by quantifying the rate of photosynthesis at different photon
irradiances using the light curve protocol (Henley, 1993; Rascher
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FIGURE 4 | Spider plots of photosynthetic parameters deduced from kinetic chlorophyll fluorescence imaging on whole plant level in all treatments. Minimal
fluorescence in dark-adapted state (Fo), maximum fluorescence in dark-adapted state (Fm), maximum quantum yield of PSII photochemistry for the light-adapted
state (Fv

′/Fm
′), the photochemical quenching coefficient that estimates the fraction of open PSII reaction centers (qP), steady-state non-photochemical quenching

(NPQ) and electron transport rate (ETR) were measured using the light curve protocol for tomato plants prior to and upon PHs treatments. The data are shown for
the protein hydrolysate treated plants after normalization to respective values obtained in the control treatment at various time points of phenotyping period. Data are
mean of six independent plants per treatment. Lss1, Lss2 and Lss3 represent actinic photon irradiance measurements taken at 170, 620, and 1070 µmol photons
m−2 s−1, respectively.

et al., 2000) which was proven to provide detailed information on
ChlF under stress, information on photosynthetic performance in
many studies dealing with plants’ stress and to quantify the rate
of photosynthesis at different light irradiances (Digruber et al.,
2018) (Supplementary Figure S1). Protocol described previously
(Awlia et al., 2016) was optimized for the tomato plants from
early to later developmental stage. Finally, three actinic light
irradiances (Lss1- 170 µmol photons m−2 s−1, Lss2 – 620 µmol
photons m−2 s−1, Lss3 - 1070 µmol photons m−2 s−1) with a
duration of 30 s in the light curve protocol were used to quantify
the rate of photosynthesis.

Visible RGB Imaging
To assess digital biomass of the plants, RGB imaging was done
from top view (RGB2) and side view from multiple angles
(RGB1) (Supplementary Figure S2). The RGB imaging unit
implemented in PlantScreenTM Modular System is a light isolated
box equipped with a turning table with precise angle positioning,
two RGB cameras (top and side) mounted on robotic arms and
each supplemented with LED-based lighting source to ensure
homogenous illumination of the imaged object. Imaged area in
top view position is 800 mm × 800 mm, imaged area from
side view is 1205 mm × 1005 mm (height × width). Here we
acquired side view images from three different angles (0, 120,

and 240◦) for side view RGB analysis. RGB images (resolution
2560 pixels × 1920 pixels) of the plants were captured using the
GigE uEye UI-5580SE-C - 5 Megapixels QSXGA Camera with
1/2′′ CMOS Sensor (IDS, Germany) from top and side view. For
side view projections, line scan mode was used with a resolution
−2560× 2956 px/scan, 200 lines per second. Lighting conditions,
plant positioning and camera settings were fixed throughout
the experiment. Raw RGB images were processed as described
previously (Awlia et al., 2016) with some modifications for side
view RGB image processing algorithms. Projected shoot area
(PSA) for side view was calculated as average of plant specific
pixels extracted from three side view images acquired from 0,
120, and 240◦ angles. PSA extracted from top and side view
projections was used to estimate shoot biomass. Briefly side view
and top view RGB images of the plants were used for calculation
of plant volume, using the formula from Klukas et al. (2014):

V =
√

A2
S (average) × A2

t

where As and At are the projected areas from side-view (at
different angles) and top-view images, respectively. Volume was
termed as “digital biomass,” as reported in a work from Rahaman
et al. (2017). Digital biomass was used to calculate relative growth
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rate (RGR) between two timepoints T1 and T2 as follows:

RGR = (ln W2 − ln W1)/(T2 − T1)

In addition, height and width of the plants were calculated from
the binary side view images. For shoot greenness evaluation, six
hues of green were automatically generated using as input images
all the original RGB images captured during the phenotyping
period (DAT 1–DAT 15). These six most representative hues
were selected and used to estimate the variations in shoot colors
and are shown in RGB color scale as a percentage of the shoot
area (pixel counts).

Sample Harvest
Ninteen DAT (19th day of phenotyping) plant material was
harvested. For metabolomic analysis of tomato plants treated
with biostimulants A, B, I, and control plants third and fourth
fully expanded leaves from the top of each plant were harvested.
The non-commercial biostimulants A and B were selected for the
metabolomic analysis based on the higher morpho-physiological
traits and were compared to the commercial biostimulant (I)
as well as to the untreated control treatment. Final biomass of
each plant was determined by measuring fresh weight and dry
weight of remaining shoot in a ventilated oven at 65◦C until
constant weight.

Untargeted Metabolomics
Leaf samples (1.0 g) were extracted using an Ultra-Turrax (Ika
T-25, Staufen, Germany), in 10 mL of 0.1% HCOOH in 80%
aqueous methanol. The extracts were centrifuged (12,000 × g),
then filtered through a 0.22 µm cellulose membrane directly into
amber vials for analysis. Thereafter, untargeted metabolomics
were carried out through an UHPLC chromatographic system
coupled to a hybrid quadrupole-time-of-flight mass spectrometer
(UHPLC/QTOF-MS). The metabolomic platform included a
1290 ultra-high-performance liquid chromatograph, a G6550
iFunnel Q-TOF mass spectrometer and a JetStream Dual
Electrospray ionization source (all from Agilent technologies,
Santa Clara, CA, United States). The analysis was carried
out as previously described (Rouphael et al., 2016). Briefly,
chromatographic separation was achieved in reverse phase
mode, using an Agilent Zorbax Eclipse-plus C18 column
(100 mm × 2.1 mm, 1.8 µm) and a linear gradient (5–95%
methanol in water, 34 min run time) foe elution, with a flow
of 220 µL min−1 at 35◦C. The mass spectrometric acquisition
was done in positive polarity and extended linear dynamic range
SCAN (100–1000 m/z).

Features deconvolution and post-acquisition processing were
done in Agilent Profinder B.06. After mass and retention time
alignment, compounds annotation was achieved using the ‘find-
by-formula’ algorithm based on monoisotopic accurate mass,
isotopes spacing and isotopes ratio, with a mass accuracy
tolerance of <5 ppm. The database PlantCyc 12.5 (Plant
Metabolic Network1) was used for annotation purposes. Based
on the strategy adopted, identification was carried out according

1http://www.plantcyc.org

to Level 2 (putatively annotated compounds) of COSMOS
Metabolomics Standards Initiative2.

A filter-by-frequency post-processing filter was applied to
retain only those compounds that were present in 75% of
replications within at least one treatment. The classification
of differential compounds into biochemical classes was carried
following PubChem (NCBI3) and PlantCyc information.

Data Management and Statistical
Analysis
The data processing pipelines Plant Data Analyser (PSI,
Drásov, Czechia) includes pre-processing, segmentation, feature
extraction and post-processing. Values for projected shoot area
were calculated from images taken in the visible light spectrum
and correspond to volume estimation which were used as a proxy
for the estimated biomass of the plants. Data were processed
using MVApp application (mmjulkowska/MVApp: MVApp.pre-
release_v2.0; Julkowska et al., unpublished). Using the MVApp,
outliers were identified with the interquartile range rule as
plants whose volume had a value 1.5 times away from the
mean. Those plants were removed from the data set. Statistical
differences between treatments and time points were determined
by one-way analysis of variance (ANOVA) with post hoc Tukey’s
Honest Significant Difference (HSD) test (P-value < 0.05)
performed using appropriate scripts in MVApp tool. Data are
displayed as mean ± standard deviation of the six independent
plants per treatment.

Interpretation of metabolomic data was formerly carried
out using Mass Profiler Professional B.12.06 as previously
described (Salehi et al., 2018). Briefly, compound abundance
was Log2 transformed and normalized at the 75th percentile
and baselined against the median. Unsupervised hierarchical
cluster analysis was formerly carried out using the fold-change
based heatmap, setting similarity measure as ‘Euclidean’
and ‘Wards’ linkage rule. Thereafter, the dataset was
exported in SIMCA 13 (Umetrics, Malmo, Sweden), UV-
scaled and elaborated for Orthogonal Projections to Latent
Structures Discriminant Analysis (OPLS-DA) modeling. This
latter multivariate supervised statistic allowed separating
variance into predictive and orthogonal (i.e., ascribable to
technical and biological variation) components. Outliers
were excluded using Hotelling’s T2 and adopting 95% and
99% confidence limits, for suspect and strong outliers,
respectively. Model cross validation was done through CV-
ANOVA (p < 0.01) and permutation testing (N = 300) was
used to exclude overfitting. Model parameters (goodness-
of-fit R2Y and goodness-of-prediction Q2Y) were also
produced. Finally, Variable Importance in Projection
(VIP) analysis was used to select the metabolites having
the highest discrimination potential. A subsequent fold-
change analysis was performed from VIPs to identify
extent and direction of the changes in accumulation related
to the biostimulants.

2http://cosmos-fp7.eu/msi.html
3https://pubchem.ncbi.nlm.nih.gov/
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FIGURE 5 | Unsupervised hierarchical cluster analysis carried out from metabolomic profiles following application of selected protein hydrolysates. Dendrograms
were produced on the basis of fold-change heat-maps using metabolites profile gained from UHPLC-ESI/QTOF untargeted metabolomic profiling. The Wards’
linkage rule and Euclidean similarity were chosen to produce dendrograms.

RESULTS AND DISCUSSION

High-Throughput Phenotyping of Tomato
Plant Growth
Visible light Red Green Blue (RGB) digital imaging based on
using cameras sensitive in visible spectral range (400–750 nm)
allows non-invasive dynamic quantification of shoot biomass,
measurement of a wide range of plant morphological parameters
and analysis of shoot color. Multiple angle side view images
(Figure 2 and Supplementary Figure S2) and simple image
stacks acquired from top view were used to calculate plant volume
that is an approximate of digital biomass of the plants throughout
the cultivation period. Regularly acquired multiple time points
measurements were used to asses dynamic changes in plant
morphology, color and calculate growth rates.

In general, tomato plants treated with PHs showed better
shoot biomass production in comparison with the untreated
control plants (Figure 2). Top view projected shoot area was
increased in tomato plants treated with PHs A and E post first
foliar treatment (Supplementary Table S1). For A treatment
this correlated with PSA extracted from multiple angle side

view RGB images (Supplementary Table S2) with B treatment
improving the PSA in period between the two foliar treatments.
In terms of morphological features extracted from both top and
side view images such as compactness, height and width of the
plants, treatments A, B, D, E and F gave an increase of height
and width of plants (Supplementary Tables S3, S4). The digital
biomass of the plants sprayed with PHs increased (Figure 2C),
especially in the case of A treatment where the improved growth
performance was significantly compared to untreated control
plants from the 8th day of phenotyping, 3 days post first foliar
spraying, respectively (Supplementary Table S5). The same trend
was recorded when the growth dynamics was considered by
evaluating plant growth rates. We quantified relative growth rates
from DAT 6–DAT 15 representing growth performance of the
plants following the two PH treatments that were applied on DAT
5 and DAT 12 (Figure 2D). For A, E and I treatment, growth
rates were improved when compared to control plants, however,
the effect of A and E treatment could not be discriminated from
the effects of the other PHs. Interestingly, the treatment I was
identified as the one with highest growth rate among all PHs.
Overall among all treatments, the best growth performance trend
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FIGURE 6 | Score plot of Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS-DA) supervised modeling carried out on metabolomic profiles
following application of selected protein hydrolysates. The variation between groups was separated into predictive and orthogonal components (i.e., that ascribable
to technical and biological variation). The OPLS model was cross-validated using CV-ANOVA (p < 0.01) and permutation tested to exclude over fitting. Furthermore,
the presence of outliers was investigated according to Hotelling’s T2 method (i.e., the distance from the origin in the model) using 95 and 99% confidence limits for
“suspect” and “strong” outliers, respectively. The pattern observed in the score plot was used to identify discriminant compounds based on Variable of Importance in
projection (VIP) analysis.

in terms of biomass and growth rate was observed for tomato
plants treated with treatment A, whereas tomato plants treated
with PH named C were smaller with slower growth dynamics.
This further correlated with analysis of dry and fresh weights
of tomato shoots that were harvested following the end of the
phenotyping period (r = 0.87∗ and 0.85∗ for fresh and dry
weight, respectively).

We further evaluated the variation in shoot green colors
over the phenotyping period by using greenness hue abundance
automatically computed from color-segmented RGB images
(Supplementary Figure S3). We calibrated the analysis
algorithms by using RGB images from all treatments and all
days of phenotyping as described previously in Awlia et al.
(2016). Dynamic changes in green hues during the plant
growth were observed, however, no significant differences
in the green hues were detected between the treatments
(Supplementary Table S6).

High-Throughput Phenotyping of
Photosynthetic Performance in Tomato
Plants
Chlorophyll fluorescence imaging has become one of the
most powerful and popular tools in plant biology for rapid
non-invasive measurement of Photosystem II (PSII) activity.
Because PSII activity is very sensitive to a wide range of
stimuli, chlorophyll fluorescence imaging can be used as rapid
indicator of plant photosynthetic performance in different
developmental stages, and in response to environmental changes
(Murchie and Lawson, 2013).

To assess the physiological status of tomato plants treated
with the biostimulants, we used the automated chlorophyll
fluorescence imaging setup (Figure 3 and Supplementary Figure
S1) and quantified the rate of photosynthesis at different photon
irradiances using the light curve protocol (Henley, 1993; Rascher
et al., 2000). From the measured fluorescence transient states,
the basic ChlF parameters were derived (i.e., Fo, Fm, Ft, and Fv),
which were used to calculate range of parameters characterizing
plant photosynthetic performance (i.e., Fv

′/Fm
′, NPQ, qP, and

8PSII) (for overview refer to Paul et al., 2011; Awlia et al.,
2016; Tschiersch et al., 2017). In addition, ETR parameter was
calculated which refers to photosynthetic electron transport rate
of photosystem II and indicates the efficiency of linear electron
flow route in the photosynthetic machinery for producing energy
rich molecules ATP and NADPH.

We selected six of the parameters to characterize dynamically
photosynthetic function of PSII in the tomato plants prior to and
post biostimulant treatment: the minimal level of fluorescence
measured in dark-adapted state (Fo), the maximum level of
fluorescence measured in dark-adapted state (Fm), the maximum
quantum yield of PSII photochemistry in the light-adapted
state (Fv

′/Fm
′), the photochemical quenching coefficient that

estimates the fraction of open PSII reaction centers (qP), steady-
state non-photochemical quenching (NPQ) and PS II operating
efficiency (8PSII) used for calculation of electron transport rate
(ETR). ETR is a process correlated to the quantum yield of the
CO2 assimilation mechanisms and to the overall photosynthetic
capacity of the plants (Genty et al., 1989). As shown in Figure 4,
the selected fluorescence parameters varied partially between the
individual days following the PH treatment, however, we could
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not observe any trend among the treatments. In addition, we were
not able to detect any significant changes in the ChlF parameters
assessed (Supplementary Table S7). This was the case for all
treatments at any photon irradiances used.

Kinetic chlorophyll fluorescence imaging used for non-
invasive quantitative analysis of PSII fluorescence emission is
especially suited to monitor physiological traits via changes
in photochemistry. In the field of automated high-throughput
phenotyping, PAM Chl fluorescence imaging is still not widely
used in the imaging sensor platforms, however, a range of studies
already demonstrated the broad potential of the technique to
measure quantitatively physiological state of the plants and to
diagnose the reactions of the plants to stress even before visible
symptoms become apparent (Paul et al., 2011; Awlia et al.,
2016; Tschiersch et al., 2017). Biostimulants have shown to
increase photosynthetic efficiency, improve the efficiency of light
utilization and dissipation of excitation energy in PSII antennae
as well as an increase in photosynthetic pigments (Yakhin et al.,
2017). The fact that in our case the application of the PHs
did not result in improved photochemistry parameters, although
the biomass of the biostimulant treated plants increased, might
be associated with the beneficial action of PHs on stomatal
conductance rather than on the PSII directly. This might improve
net CO2 assimilation rate and consequently biomass production.
Another putative mechanism involved in the stimulation of plant
growth and productivity of PH-treated tomato plants could be
the occurrence of smaller and more responsive stomata that are
proposed to be able to sustain higher photosynthetic activities
(Rouphael et al., 2017d).

Metabolomics Analysis of Tomato
Leaves for Understanding the Mode of
Action of Selected PHs
A metabolomic approach was used, following phenotyping
analysis, aimed to strengthen at the molecular level the
effects of the PHs on morpho-physiological traits and plant
growth. Indeed, the understanding of the mechanisms through
which PHs act on a plant can effectively support their
actual implementation into agricultural practices and possibly
suggest specific contexts for their optimal and profitable use.
With this aim, an untargeted UHPLC/QTOF-MS analysis was
performed and multi variate statistics used to point out
similarities/dissimilarities among metabolomic profiles of the
PH-treated plants. The combination of a high-performance
untargeted profiling, together with a rather comprehensive
database (PlantCyc), resulted in a large dataset (overall, almost
1600 compounds annotated). A large chemical diversity was
represented within the dataset, including compounds from a wide
variety of biochemical classes and metabolic processes. The whole
dataset, together with individual compounds’ abundance and
composite mass spectra, is provided in supplementary material
(Supplementary Table S8).

As a first step of interpretation, a fold-change based
hierarchical clustering was carried out (Figure 5). This
unsupervised approach allowed producing two main clusters,
one comprising all replications from the control and another

including all PH-treated samples. In this latter, two further
sub-clusters were evident, with products A and B being mixed
together and with treatment I representing a separate sub-cluster.
This unsupervised (i.e., naïve) classification of metabolomic
profiles, based on individual fold-change values for each
compound annotated, suggested that the PH treatments imposed
a change in the plant metabolomic profile, and that treatments A
and B induced a more comparable effect whereas treatment I had
a more distinctive effect.

To better identify the specific responses induced in plants
following the PH treatments, a supervised OPLS-DA multivariate
modeling was carried out. This discriminant analysis approach
allows discriminating among groups into score plot hyperspace,
by separating predictive and orthogonal components (i.e., those
components ascribable to technical and biological variation)
of variance. Looking at the OPLS-DA score plot (Figure 6),
the outcome of this supervised approach was in agreement
with hierarchical clusters. Indeed, the control clustered in a
separate region of score plot hyperspace, treatment with products
A and B were separated but still closer to each other, and
treatment I was confirmed to have the most distinctive profile.
The model parameters of the OPLS-DA regression were excellent,
being R2Y and Q2Y 0.94 and 0.63, respectively. The model
was validated (CV-ANOVA P = 0.009) and overfitting could be
excluded through permutation testing (N = 100). Furthermore,
the Hotelling’s T2 showed that suspect and strong outliers could
be excluded. Given the more than acceptable model parameters,
the variable selection method called VIP (Variable Importance
in Projection) was used to explain the differences observed. The
most discriminating compounds (i.e., the markers possessing a
VIP score > 1.4) were exported and subjected to fold-change
analysis against the control, to identify the trends of regulation
altered by the treatments. The discriminant compounds, together
with their VIP score and fold-change values, were grouped into
chemical classes and are provided in Table 1. Interestingly,
few biochemical classes included the most of discriminant
metabolites. In more detail, low molecular weight phenolic
compounds, poly-hydroxy fatty acids, membrane lipids (glyco-
and phospholipids), hydroxy-carotenoids and phytohormones
(polyamines) were the most represented.

From an overall perspective, the metabolomic changes
imposed by the PH treatment can be correlated to relatively
few processes, all of them converging toward the ROS-related
plant signaling network. Among plant growth regulators,
1-aminocyclopropane-1-carboxylate (ACC), i.e., the direct
precursor of ethylene, was found up accumulated in treated
plants. Considering that ethylene is not detectable by our
metabolomic approach, the increase of ACC suggests and
increase in ethylene itself. The effects of ethylene on growth
and development have been found to vary, depending on
other phytohormone profile, CO2 and light (Small and
Degenhardt, 2018). Although usually related to senescence and
fruit ripening, ethylene has been reported to play many other
regulations in plants, including flowering and overall plant
growth, cell division and root initiation, as well as modulation
of secondary metabolites light (Schaller, 2012; Small and
Degenhardt, 2018). In fact, at relatively low concentration,
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TABLE 1 | Discriminant metabolites as identified by variables of importance in projection (VIP) analysis following OPLS-DA modeling on metabolomic profile of treated
plants.

Class Metabolite VIP score [A] vs. [control] [B] vs. [control] [I] vs. [control]

Score SE Log FC Regulation Log FC Regulation Log FC Regulation

Phenolics 3.5-dihydroxyanisole 1.409 0.769

1.3.5-trimethoxybenzene 1.405 0.286 2.8 Up 5.5 Up 1.7 Up

4-hydroxybenzaldehyde 1.418 r0.820

3.6.7.4′-
tetramethylquercetagetin
3′-O-beta-D-glucoside

1.540 r0.883

3-phenylpropanoate 1.457 0.308 0.3 Up 5.5 Up 1.7 Up

3-hydroxybenzaldehyde 1.418 0.820

Gallocatechin 1.372 0.548 0.2 Up 3.6 Up 4.5 Up

Leucocyanidin 1.372 0.548 0.2 Up 3.6 Up 4.5 Up

Epigallocatechin 1.372 0.548 0.5 Up 3.6 Up 4.3 Up

Glucosinolates 3-(7′-methylthio) heptylmalate 1.308 0.304 3.1 Up 1.2 Up 1.8 Up

2-(7’-methylthio) heptylmalate 1.308 0.304 3.7 Up 1.2 Up 1.8 Up

Lipids Oleate 1.367 0.497 −29.4 Down 0.2 Up 3.9 Up

Colneleate 1.515 0.219 −3.9 Down −4.0 Down 2.0 Up

4-coumaryl alcohol 1.456 0.313 0.3 Up 5.5 Up 1.7 Up

Germacra-1(10).4.11(13)-trien-
12-ol

1.315 0.777 −8.7 Down −5.1 Down 0.4 Up

Dammarenediol II 1.428 0.899 6.2 Up 6.2 Up 6.0 Up

1-16:0-2-18:3-diacylglycerol-
trimethylhomoserine

1.365 0.919 1.0 Up 1.1 Up 0.7 Up

1-16:0-2-18:2-
digalactosyldiacylglycerol

1.394 1.122

Sitosterol 1.317 1.095 −0.5 Down −1.1 Down −0.5 Down

(12Z.15Z)-9.10-
epoxyoctadeca-12.15-dienoate

1.515 0.219 −3.9 Down −4.0 Down 2.0 Up

An epoxy-octadeca-dienoate 1.515 0.219 −3.9 Down −4.0 Down 2.0 Up

A dihydroxyoctadeca-dienoate 1.371 0.724 0.6 Up −0.4 Down 1.5 Up

9.10-12.13-
diepoxyoctadecanoate

1.316 0.617 11.6 Up 1.2 Up 6.9 Up

16-alpha-hydroxygypsogenate-
28-beta-D-glucoside

1.319 0.684 0.6 Up 8.8 Up 1.5 Up

2-hydroxyhexadecanoate 1.413 0.883

2-trans-6-trans-farnesyl
monophosphate

1.397 0.571 4.5 Up 4.6 Up 0.7 Up

Geranyl monophosphate 1.376 0.378 3.2 Up 3.1 Up 1.6 Up

(9S)-HPODE/(13S)-HPODE 1.371 0.724 0.6 Up −0.4 Down 1.5 Up

3–beta;-D-galactosyl-sn-
glycerol

1.369 1.015

A 2-acyl-sn-glycero-3-
phosphoethanolamine
(n-C14:1)

1.357 0.447 3.1 Up 9.4 Up 1.9 Up

A 1-acyl-sn-glycero-3-
phosphoglycerol
(n-C14:1)

1.346 0.288 −0.4 Down −0.4 Down −1.8 Down

3.4-dihydroxy-5-iall-trans/i-
hexaprenylbenzoate

1.323 0.679 −3.1 Down 9.3 Up 6.1 Up

4.4-dimethyl-5-alpha-cholest-
7-en-3-beta-ol/4.4-dimethyl-5-
alpha-cholesta-8-en-3-beta-ol

1.317 1.095 −0.5 Down −1.1 Down −0.5 Down

1.2-dipalmitoyl-
phosphatidylglycerol-
phosphate

1.317 0.506 −9.4 Down −7.5 Down 1.4 Up

(6E)-8-oxogeranial 1.315 0.666 −1.8 Down −1.8 Down −1.5 Down

(Continued)
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TABLE 1 | Continued

Class Metabolite VIP score [A] vs. [control] [B] vs. [control] [I] vs. [control]

Score SE Log FC Regulation Log FC Regulation Log FC Regulation

(2E.6E)-farnesal 1.315 0.777 −8.7 Down −5.1 Down 0.4 Up

4-alpha-carboxy-4-beta-
methyl-5-alpha-cholesta-8-en-
3-beta-ol

1.312 0.670

Carotenoids 4-methylocta-2.4.6-trienedial 1.456 0.313 0.6 Up 5.5 Up 1.7 Up

5.6-epoxy-3-hydroxy-5.6-
dihydro-12′-apo-beta;-caroten-
12′-al

1.500 0.534 −0.28646278 Down −1.0 Down −1.3 Down

18′-hydroxy-chi;
chi;-caroten-18-oate

1.304 0.646 −9.2 Down −1.5 Down −1.5 Down

Hormones 1-aminocyclopropane-1-
carboxylate

1.419 0.241 2.9 Up 2.9 Up 1.8 Up

Salicylaldehyde 1.418 0.820

Others Triferuloyl spermidine 1.503 0.350 0.6 Up 2.8 Up 1.7 Up

Sinapoyltyramine 1.516 0.366 0.6 Up −0.4 Down 1.8 Up

Thiamin 1.450 0.539 4.6 Up 4.5 Up 0.4 Up

S-adenosyl 3-(methylthio)
propylamine

1.431 0.440 −6.1 Down 9.2 Up 6.1 Up

Methyl-1.4-benzoquinone 1.418 0.820

N-acetylneuraminate 1.384 0.363 −1.4 Down −1.5 Down −1.5 Down

Menaquinol-8 1.367 0.491

Pyropheophorbide a 1.361 0.302 −1.1 Down −1.0 Down −1.2 Down

Discriminant metabolites (VIP > 1.4) are provided together with individual scores, their standard error (SE) and metabolite fold-change (FC) Log values, as compared to
control; missing values denote fold-change values < 1.5.

ethylene has been reported to stimulate leaf growth (Dubois
et al., 2018) and to promote yields (Habben et al., 2014).
Scientific evidence suggests that such ethylene-dependent
regulation of plant growth is related redox signaling pathways
(Caviglia et al., 2018).

Notably, polyamine conjugates (namely sinapoyltyramine and
triferuloyl spermidine, both up accumulated in treated plants)
were additional plant growth regulators being induced by the
treatments. Polyamines are preferentially detected in actively
growing tissues and have been implicated in the control of
cell division, embryogenesis, root formation, fruit development
and ripening, and responses to biotic and abiotic stresses
(Kumar et al., 1997; Gill and Tuteja, 2010; Agudelo-Romero
et al., 2013; Rouphael et al., 2016). However, these metabolites
are also reported to affect H2O2 signature under salt stress
(Gémes et al., 2017) in a coordinate manner with ethylene
(Hou et al., 2013).

Even though a clear trend could not be observed, a wide
alteration of the profile of membrane lipids was observed in
our experiments. Such modulation might be the consequence of
the altered signature in signaling compounds and antioxidants.
Nevertheless, it is important to consider that membrane lipids
play an important role in secondary signaling cascades which
control plant adaptation processes (Hou et al., 2016). The
concurrent changes in antioxidant compounds such as phenolics
and carotenoids, suggests a fine tuning of the ROS-mediated
signaling in tomato following application of the biostimulants.
Indeed, such secondary metabolites are well known to play a

pivotal role in plant defense against oxidative stress (Shalaby and
Horwitz, 2015; Lucini et al., 2018; Rouphael et al., 2018). Such
interplay between polyamines, ROS and ethylene was reported to
alleviate the decrease of plant biomass under stress conditions
(Gémes et al., 2017) and might have had a role also in our
experiments. Consistently with our findings, it is interesting to
note that such support to biomass accumulation was not related
to photosynthetic efficiency (Gémes et al., 2017) and was linked
to the accumulation of phenolic compounds (Gémes et al., 2016).

Unlike mammals, plants produce the most of ROS in
chloroplast, under a controlled multi-level antioxidant-
scavenging system that includes thiols, antioxidant enzymes
and low molecular weight antioxidants to manage their
accumulation and transmit oxidative signals. While the
concept that deleterious and irreversible oxidation driven by
ROS is embed in literature, the scientific consensus is now
shifting toward the recognition of the positive roles of ROS
as essential components of chloroplast-nucleus retrograde
signaling pathways (Foyer et al., 2017; Foyer, 2018). Since H2O2
is relatively more stable than superoxide and singlet oxygen
(both having short half-lives), this compound is believed the
likely candidate to diffuse over any distances within the cell.
Such redox signals interact with the phytohormone signaling
network to regulate plant growth and defense processes (Foyer,
2018). This production of ROS is essential not only to convey
communication regarding the redox pressure within the electron
transport chain, but also to trigger short-term genetic responses
(Foyer, 2018).
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Within this redox-mediated multi-layer signaling process,
carotenoids (together with glutathione and tocopherols) are
among the most effective 1O2 scavengers; in fact, alteration in
carotenoid oxidized forms has been recorded in our experiments.
Coherently, the down accumulation of pheophorbide a, i.e., a
precursor of chlorophylls, is a known process plant uses to control
ROS production in the photosynthetic organs, given the fact
that the photoreduction of oxygen to the superoxide radical is
related to a reduced electron transport in PSI (Ghandchi et al.,
2016) Although the link between the application of our PHs
and biostimulants activity tomato could not be fully elucidated,
a general consensus toward ROS-phytohormone interplay can
be postulated, based on the differential metabolites identified
by metabolomics. Such multi-level signaling might have played
a role in determining the differences in growth observed
through phenotyping.

CONCLUSION

The use of PBs in particular vegetal-derived protein hydrolysates
(PHs) in agriculture has greatly increased in the last decade
mostly due to their multifaceted properties. Highly efficient and
effective PH-based biostimulant products can be obtained using
the ‘omics’ sciences. A novel approach based on the use of
high-throughput phenotyping technologies and metabolomics
was successfully tested on tomato crop for identifying new
PHs with biostimulant activity and for studying the PH
effects on plants at metabolic level. Dynamic monitoring of
plant performance by high-throughput phenotyping system has
proven to be a powerful tool for substance screening on the
basis of morpho-physiological traits quantification. The effects
of PHs on tomato phenotype were more evident on digital
biomass. Metabolomics followed by multivariate analysis allowed
elucidating the metabolic signatures imposed by the specific
PH treatments. PH treatments affected the metabolic profile of
tomato leaves via the modulation of a complex signaling process
that involved the direct precursor of ethylene and polyamine
conjugates. The coordinated action of plant growth regulators
together with antioxidant compounds such as carotenoids and
phenolics, might have affected the ROS-mediated signaling
pathways. Although further assays under defined conditions
would strengthen our findings, the discriminant compounds
pointed out by this approach suggest that treated plants might
experience a metabolic reprogramming following the application
of the tested biostimulants.
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FIGURE S1 | Schematic of the kinetic ChlF protocol in the PlantScreenTM Modular
System. ChlF kinetics were captured with a PAM-based chlorophyll fluorometer.
Images of the individual transient states were recorded. Corresponding frames
were averaged for the measured parameters (Fo, Fm, Fm

′, F t, and Fp) or
calculated from the captured frames to compute the relative parameters such as
Fv/Fm, 8PSII, Fv

′/Fm
′, NPQ, and others. Automated ChlF image processing

consisted of image segmentation by mask application, background subtraction
and feature extraction. The signals from all pixels of each segment were averaged
at each given time point. MF refers to the measuring flash, and yellow arrows
indicate the saturation pulses that transiently saturated the electron transport
chain. Lss1, Lss2, and Lss3 represent actinic photon irradiance measurements
taken at 170, 620, and 1070 µmol photons m−2 s−1, respectively.

FIGURE S2 | Schematic of top and side view RGB image processing. Original
RGB images were automatically processed using the PlantScreenTM Analyzer
software to correct for barrel distortion caused by the fisheye lens, subtract the
background and crop to isolate the plants within the imaged area, producing a
binary (black and white) image. The binary images represent the plant surface
(white) and background (black). Non-plant pixels, such as pots, were automatically
removed to extract only plant pixels. Morphological analysis was conducted after
separating the background from the plant shoot tissue. To evaluate color of plant
shoot, RGB images were color-segmented to extract the green hues.

FIGURE S3 | Variation in shoot colors of tomato plants. Dynamic relative changes
in greenness hue abundance over the phenotyping period in control tomato plants
and plants treated with protein hydrolysates (A–G, I). The six most representative
color hues are shown in RGB color scale as percentage of the shoot area (pixel
counts) of six biological replicates per treatment.

TABLE S1 | Projected shoot area (PSA) of the tomato plants extracted from top
view RGB images starting 3 days after the first PH application (day after
transplanting, DAT = 8). Values are expressed as number of green pixels and
represent the average of six biological replicates per treatment ± standard
deviation. Within the same row and for the specified day different letters indicate
significant difference according to one-way ANOVA post hoc Tukey’s test
(p < 0.05).

TABLE S2 | Projected shoot area (PSA) of the tomato plants extracted from
multiple side view RGB images starting 3 days after the first PH application (day
after transplanting, DAT = 8). Values are expressed as number of green pixels and
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represent the average of six biological replicates per treatment ± standard
deviation. Within the same row and for the specified day different letters indicate
significant difference according to one-way ANOVA post hoc Tukey’s test
(p < 0.05).

TABLE S3 | Width of the tomato plants extracted from multiple side view RGB
images starting 3 days after the first PH application (day after transplanting,
DAT = 8). Values are expressed as number of green pixels and represent the
average of six biological replicates per treatment ± standard deviation. Within the
same row and for the specified day different letters indicate significant difference
according to one-way ANOVA post hoc Tukey’s test (p < 0.05).

TABLE S4 | Height of the tomato plants extracted from multiple side view RGB
images starting 3 days after the first PH application (day after transplanting,
DAT = 8). Values are expressed as number of green pixels and represent the
average of six biological replicates per treatment ± standard deviation. Within the
same row and for the specified day different letters indicate significant difference
according to one-way ANOVA post hoc Tukey’s test (p < 0.05).

TABLE S5 | Digital biomass of tomato plants treated with different protein
hydrolysates starting 3 days after the first PH application (day after transplanting,
DAT = 8). Values are expressed as number of green pixels and represent the
average of six biological replicates per treatment ± standard deviation. Within the
same row and for the specified day different letters indicate significant difference in
digital biomass, according to one-way ANOVA post hoc Tukey’s test (p < 0.05).

TABLE S6 | Variation in shoot colours of tomato plants treated with different
protein hydrolysates at 15 days after transplanting. The values for 6 most
representative colour hues are shown as percentage of the shoot area (pixel
counts). Values represent the average of six biological replicates per
treatment ± standard deviation. Within the same row and for the specified day
different letters indicate significant difference according to one-way ANOVA
post hoc Tukey’s test (p < 0.05).

TABLE S7 | Photosynthetic performance of tomato plants at 15 days after
transplanting. Photosynthetic parameters deduced from kinetic chlorophyll
fluorescence imaging on whole plant level in all protein hydrolysate treatments.
Minimal fluorescence in dark-adapted state (Fo), maximum fluorescence in
dark-adapted state (Fm), maximum quantum yield of PSII photochemistry for the
dark-adapted (Fv/Fm), the photochemical quenching coefficient that estimates the
fraction of open PSII reaction centers (qP), steady-state non-photochemical
quenching (NPQ) and electron transport rate (ETR) were measured using the light
curve protocol for tomato plants prior and upon PHs application. Values represent
the average of six biological replicates per treatment ± standard deviation. Within
the same row and for the specified day different letters indicate significant
difference according to one-way ANOVA post hoc Tukey’s test (p < 0.05). Lss1,
Lss2, and Lss3 represent actinic photon irradiance measurements taken at 170,
620, and 1070 µmol photons m−2s−1 PAR values, respectively.

TABLE S8 | List of compounds identified by UHPLC-ESI QTOF-MS metabolomics
in tomato plants (Level 2 of COSMOS standards - http://cosmos-fp7.eu/msi.html).
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