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Abstract

The two alkaloids gramine and hordenine have been known for playing a role in the allelo-

pathic ability in barley (Hordeum vulgare L.). These allelochemicals can be both found in

leaves and roots in some barley cultivars whereas in others one seems to exclude the other.

In this study eighteen accessions of barley from the Middle-East area, one accession from

Tibet and the modern spring cultivar Barke, already used as parental donor in a nested

associated mapping (NAM) population, were screened for their gramine, hordenine and N-

methyltyramine (the direct precursor of hordenine) content in leaves, roots and exudates.

Moreover, the toxicity of the three allelochemicals on root growth inhibition on lettuce (Lac-

tuca sativa L.) was evaluated. Results of this study showed the preferential production of

gramine and hordenine in leaves and roots, respectively, in the nineteen barley accessions.

On the other hand, in the modern barley cultivar Barke, the highest content of hordenine in

roots and the general lack of gramine suggests a favored biosynthesis of the former. Gra-

mine was not detected in the root exudates. In additions, different metabolomic profiles

were observed in wild relatives compared to modern barley genotypes. The results also

showed the phytotoxic effects of the three compounds on root growth of lettuce seedlings,

with a reduction in root length and an increase of root surface area and diameter. In conclu-

sion, this study highlighted the impact of the domestication effects on the production and dis-

tribution of the two allelopathic alkaloids gramine and hordenine in barley.

Introduction

Weeds represent a serious and complex issue in agriculture due to their high ability to interfere

with plant growth and development causing both yield loss and quality [1]. Yet, hand weeding

and mechanical weeding are not always effective and might be labour intensive, expensive and

time consuming; in this context the use of synthetic herbicides was rapidly adopted worldwide

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231976 April 23, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Maver M, Miras-Moreno B, Lucini L,

Trevisan M, Pii Y, Cesco S, et al. (2020) New

insights in the allelopathic traits of different barley

genotypes: Middle Eastern and Tibetan wild-relative

accessions vs. cultivated modern barley. PLoS

ONE 15(4): e0231976. https://doi.org/10.1371/

journal.pone.0231976

Editor: Zhong-Hua Chen, University of Western

Sydney, AUSTRALIA

Received: December 13, 2019

Accepted: April 3, 2020

Published: April 23, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0231976

Copyright: © 2020 Maver et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

http://orcid.org/0000-0002-8162-3618
https://doi.org/10.1371/journal.pone.0231976
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231976&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231976&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231976&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231976&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231976&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231976&domain=pdf&date_stamp=2020-04-23
https://doi.org/10.1371/journal.pone.0231976
https://doi.org/10.1371/journal.pone.0231976
https://doi.org/10.1371/journal.pone.0231976
http://creativecommons.org/licenses/by/4.0/


[2]. Also the chemical herbicide application has some major constraints due to the massive use

of chemicals increased the selection pressure on weed communities [3–5]. Furthermore, prob-

lems as herbicides’ persistence in soil, environmental contamination and pollution are the

main side-effects of this management practice [6,7]. Therefore, since the use of synthetic herbi-

cides has severely affected the sustainability of the agricultural production systems and due to

a lack of new, efficient, environmental and crop safe synthetic compounds [8,9], in the recent

years non-synthetic chemical alternatives have been gained increased interest [1,10].

For the abovementioned reasons, allelopathy, the ability to influence positively or negatively

the surrounding area through the release of allelochemicals, gained centre stage as an attractive

tool to naturally control weeds. Crops that have an allelopathic potential could be strategically

adopted in weed management under field conditions in different ways, from the direct (inter-

cropping and cover cropping systems) and indirect (dead material) release of allelochemicals

[11,12], to the utilization of the latter as bioherbicides [13]. The allelopathic ability has been

well described and characterized only in the last century and firstly defined in 1937 by Hans

Molish [14] even though it has been gradually reconsidered and integrated until the present

days. The up-to-date definition includes negative and positive influence on growth and devel-

opment exerted by plants, micro-organisms, fungi and virus by secreting allelochemicals into

the environment, i.e. chemical compounds belonging mainly to the secondary metabolism

[15,16]. There are several important crops, e.g. Avena sativa L. (oat), Triticum aestivum L.

(wheat), Hordeum vulgare L. (barley), Oryza sativa L. (rice) and Zea mays L. (corn), that have

been known for centuries for their particular trait in suppressing weeds [17]. Even though

exploiting plants with allelopathic traits might contribute to a more environmentally sustain-

able weed management, transfer this useful ability in high yield agronomical plants has to be

evaluated very carefully, since an improved allelopathic effect, as intended as increased pro-

duction of secondary metabolites, might limit high yield outputs [12,18,19]. The ability of bar-

ley to suppress and contrast weed growth has been known for centuries but so far, little is

known about its main allelochemicals which have been demonstrated having phytotoxic effects

[20]. Among them, two alkaloids, gramine (N,N-dimethyl indole methylamine) and hordenine

(N,N-dimethyltyramine) were the first compounds proposed to account for the main role in

the allelopathic ability of barley [21,22]. Besides negative effects against weeds and other plants,

there is evidence that gramine and hordenine have also roles in defence in response to abiotic

and biotic stresses. For instance, gramine accumulation has shown to be induced in barley

leaves due to an increase of growth temperature [23], drought [24], attacks of aphids [25–28]

and fungi [29]. Yet, despite several reports based on the induction of gramine production, the

pathway of signal transmission is still largely unknown [29]. On the other hand, hordenine

was demonstrated to trigger the plant defence response through the jasmonate-dependent

defence pathway [30]. Lovett and Hoult (1995) already observed that the domestication pro-

cess and the breeding selection necessary to maintain best agronomic traits within barley

germplasm might have reduced the gramine synthesis in favour of hordenine [31]. Conse-

quently the allelopathic potential of barley against weeds [32,33] is strongly reduced compared

to wild barley relatives [34]. In some cases the ability of accumulating gramine was even lost or

extremely reduced as demonstrated in Proctor, Morex and Barke barley cultivars [35,36]. Con-

versely, wild barley and Middle Eastern landraces that spontaneously grow in that area are

considered the primary center of barley domestication [37,38] and have proven to be a rich

source of genetic variability [39,40], can accumulate gramine. Regarding this, with the

increased availability of genetic and genomic resources for barley [41,42] it is now possible to

investigate the molecular basis of gramine and other secondary metabolites at an unprece-

dented depth. For instance, by tapping into experimental populations between domesticated

and wild barley genotypes, such as NAM population HEB-25 analyzing the parental donors
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selected for the development of the NAM population HEB-25 [43,44], novel insights into the

inheritance of allelopathy in barley can revealed and new strategies toward sustainable weed

management developed. On the basis of these premises the present research aims at i) assess-

ing the gramine, hordenine and N-methyltyramine (the last precursor in hordenine pathway)

content in the root and leaf tissues of 20 wild barley accessions from Middle-East area and the

spring barley elite cultivar Barke, ii) investigating the growth dependent production and exu-

dation profile of the three compounds, and iii) evaluating the phytotoxic effect of gramine,

hordenine and N-methyltyramine on Lactuca sativa L.

Material and methods

Plant materials

Seeds of spring barley elite cultivar Barke (Hordeum vulgare ssp. vulgare, hereafter Hv) and 20

barley accessions (Hordeum identity, HIDs), which comprise 19 wild barley accessions of H.

vulgare ssp. Spontaneum (Hsp), the progenitor of domesticated barley and one Tibetian H. vul-
gare ssp. Agriocrithon (Hag) accession were selected [43]. Wild accessions were chosen as rep-

resentatives of the high genetic diversity that still occurs in the region of the Middle East, one

of the main centres of barley domestication (S1 Table).

Growth conditions and sampling

Barley seeds were germinated in the dark on a filter paper moistened with 0.5 mM CaSO4.

After 4 days, homogeneous seedlings were transferred to a complete nutrient solution (Ca

(NO3)2 x 4H2O 2Mm; MgSO4 x 7H2O 0.5Mm; K2SO4 0.7Mm; KCl 0.1Mm; KH2PO4 0.1mM;

H3BO3 1μM, MnSO4 x H2O 0.5μM; CuSO4 0.2μM; ZnSO4 x 7H2O 0.5μM; (NH4)6Mo7O24 x

4H2O 0.01μM; Fe-EDTA 100μM) and grown hydroponically under continuous aeration for

other 4 days under controlled conditions in a climate chamber with a 14/10 h day/night

regime, 24˚C/19˚C, 70% relative humidity and 250 μmol m-2 s-1 light intensity as described by

[45]. The first leaf and whole root system roots were sampled at 2 and 4 days separately and

extracted in 1 mL of pure methanol for 24 hours under continuous shaking as previously

described by [25].

Chromatographic determination of gramine, hordenine and N-

methyltyramine

Plant tissue extracts were analyzed for their gramine, hordenine and N-methyltyramine con-

tent by a modified method [46], using a Waters ALLIANCE HPLC system with autosampler

coupled to a Waters PDA Detector and a Waters ACQUITY QDA, equipped with an electro-

spray ionization (ESI) interface in positive ionization (PI) mode. A LiChrospher RP-18 col-

umn 250 mm x 4.0 mm, 5μm (Phenomenex, USA) was used as column and a gradient elution

with a flow rate of 0.6 mL min-1 was applied. Two mobile phases, A and B, were used for the

gradient elution: mobile phase A consisted of acetonitrile, 0.1% formic acid (Sigma-Aldrich,

>99%) while mobile phase B consisted of 0.01 M ammonium acetate 0.1%, formic acid

(Sigma-Aldrich, >99%) in water. The gradient started with 10% A and 90% of B, increased to

50% A within 10 minutes and up to 90% A at 25 min, then returned to 10% A in 5 minutes,

plus other 10 minutes of gradient stabilization. The injected volume was 20 μL and the UV-

absorption was monitored at 275 nm with a resolution of 1.2 nm. The optimized parameters of

the QDA interface were: source temperature, 120˚C; vaporizer temperature, 600˚C; drying gas

(nitrogen) temperature, 600˚C; cone voltage, 15V; capillary voltage, 800 V; Gain 1. For the

data collection the SIR modus was adopted by monitoring the m/z 175 and 130 for gramine as
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common main fragment, m/z 166 for hordenine and 121 for N-methyltyramine. The retention

times were 12.1 min, 7.7 min and 6.7 min, for gramine, hordenine and N-methyltyramine,

respectively. All the three standards were purchased from Sigma-Aldrich (>99%) and stock

solution prepared in methanol were used for the quantifications. Limit of detection (LOD) for

gramine, hordenine and N-methyltyramine were 1.42 μM (0.24 mg L-1), 0.23 μM (0.038 mg L-

1) and 0.21 μM (0.033 mg L-1), respectively.

Determination of growth dependent metabolites biosynthesis and

exudation

Four days old barley seedlings of Barke, HID-102 and HID-219 were transferred to 50 mL pots

containing a complete nutrient solution and grown for another 3 days. During these 3 days,

root exudates were collected every 6 hours. Plants were thereby transferred to 15 mL falcon

tubes (one plant per falcon tube) containing 10 mL milliq-water for 4 hours. The trap solutions

were continuously aerated. After 4 hours, the solution containing the exudates was filtered,

frozen at -20˚C, lyophilized and finally resuspended in 0.75 mL of pure methanol. Prior HPLC

analysis samples were again filtered with a 0.45 μm filter (0.45μm Syringe Filters, Phenom-

enex). Leaves and roots of each plant were collected as well and processed as described above.

Untargeted metabolomics

The screening of metabolites of root and shoot extracts of Barke, Solist, HID-380, HID-055

and HID-219 was performed through ultra-high-pressure liquid chromatographic system

(Agilent 1200 series) coupled to a high-resolution mass spectrometry (quadrupole-time-of-

flight mass spectrometry, Agilent 6550 iFunnel) system equipped with a JetStream electrospray

source (UHPLC-ESI/QTOF-MS). Acquisition conditions were optimized in previous experi-

ments [47]. Briefly, an Agilent Zorbax Eclipse-plus C18 column (100 × 2.1 mm, 1.8 μm) was

used for reverse-phase chromatography utilizing a binary gradient of methanol and water for

33 min, with a flow of 200 μL min−1 at 35˚C. The mass spectrometric acquisition was done in

SCAN (100–1,000 m/z) and positive polarity. Raw data were processed by the software Mas-

sHunter Profinder B.06 (from Agilent Technologies) using the “find-by-formula” algorithm.

Features annotation was then based on monoisotopic accurate mass and isotope pattern (exact

masses with accuracy < 5 ppm, relative abundances and m/z spacing) and expressed as overall

identification score. Compounds were putatively annotated using both monoisotopic accurate

mass and isotopes pattern (accurate spacing and isotopes ratio), using the software Profinder

B.07 (Agilent technologies) and the database PlantCyc 12.6 (Plant Metabolic Network, http://

www.plantcyc.org; downloaded April 2018). Thereafter, the raw data were re-processed

against an in-house database, manually curated to include the intermediate biosynthetic com-

pounds and the end products for gramine, hordenine and N-methyltyramine. Elaboration of

metabolomics dare were formerly carried out using Agilent Mass Profiler Professional B.12.06

(from Agilent Technologies) as described by [48]. Compounds were filtered by abundance

(area >10000 counts), normalization at the 75th percentile and baselined to the median of the

control. Unsupervised hierarchical cluster analysis was carried out from the fold-change based

heatmaps, setting the similarity measure as ‘Euclidean’ and using ‘Wards’ as the linkage rule.

Thereafter, the dataset was exported into SIMCA 13 (Umetrics, Malmo, Sweden), UV-scaled

and elaborated for Orthogonal Projections to Latent Structures Discriminant Analysis

(OPLS-DA) supervised modelling. The model parameters (goodness-of-fit R2Y and goodness-

of-prediction Q2Y) were calculated and the model validated through cross-validation CV-A-

NOVA (p< 0.01), whereas overfitting was excluded by permutation testing (n = 100). Outliers

were finally investigated using Hotelling’s T2 (95% and 99% confidence limits for suspect and
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strong outliers, respectively). Variables of Importance in Projection (VIP analysis) was finally

used to identify discriminating compounds (VIP score > 1.6).

Phytotoxicity assays

The phytotoxicity potential of the three metabolites, gramine, hordenine and N-methyltyra-

mine was investigated by measuring the main growth root parameters of lettuce (Lactuca
sativa L.) once treated with the three alkaloids. Seeds of lettuce were placed in petri dishes laid

out with filter paper (Whatman N˚41, Whatman, Maidstone, UK) and soaked with 1 mL of

solution of each alkaloid. The solutions were previously prepared from 5 mM MES buffer in

distilled water adjusted to pH 6.15 by adding NaOH as described in [49], in which gramine,

hordenine and N-methyltyramine were added in order to reach concentrations of 0.5 mM and

1 mM, obtaining different treatments. Controls were also prepared using the buffer alone.

Petri dishes were sealed with Parafilm and incubated in the dark in the climate chamber for 48

hours. Thereafter, the germinated seeds were counted, and the main growth parameters were

measured to calculate the inhibition percentage of the three metabolites investigated on Lac-
tuca sativa L.. Root parameters were assessed by scanning the seedlings with WinRHIZOTM

system (WinRhizo software, EPSON1680, WinRHIZO Pro2003b, Regent Instruments Inc.,

Quebec, Canada).

Statistical analysis and visualization

The results are reported as mean ± SE. The significance of differences among genotypes/times/

treatments means was calculated by One-way ANOVA with post-hoc Tukey HSD with α =

0.05 using R software (version 3.6.0). The following R packages were used: for data visualiza-

tion ggplot2 v.3.2.0 [50] and Agricolae v.1.3–1 for Tukey post-hoc test [51].

Results

UHPLC-QTOF-MS discrimination of wild-relative accessions vs cultivated

modern barley

First of all, the metabolic signatures of the five barley genotypes were investigated using an

untargeted metabolomics approach based on UHPLC-ESI/QTOF-MS profiling, in order to

investigate the differences between the wild-relative accessions and cultivated modern barley.

Overall, this analytical approach allowed annotating more than 2500 compounds, considering

both leaves and roots.

Multivariate statistical techniques have been applied to differentiate barley cultivars at

molecular level. A preliminary hierarchical cluster analysis, based on the fold change of metab-

olites, was produced as unsupervised approach (S1 Fig). As expected, the results showed that

the samples clustered by organ (leaves or roots) more than cultivars. Therefore, to better

understand differences in barley profiling, roots and leaves were analyzed separately.

A supervised OPLS-DA multivariate statistical approaches allowed to perfectly separate the

wild accessions from the cultivated modern barley, in both leaves and roots (Fig 1A and 1B).

The model cross-validation parameters were considered as acceptable. In particular, goodness-

of-fit R2Y was 1 in both cases and prediction ability Q2Y was 0.906 for leaves and 0.881 for

roots. The cross-validation ANOVA resulted in a Fischer’s probability < 0.001 for both

OPLS-DA models, no outlier samples could be observed by Hotelling’s T2 and permutation

test excluded overfitting. Afterwards, the variables importance in projection of the OPLS-DA

model (VIP analysis), which calculate how a variable contributes to the model, were identified

considering VIP scores of> 1.6. VIP compounds are included in S2 Table for leaves and S3
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Table for roots. VIP markers were classified into biochemical classes according to the PlantCyc

database, in order to highlight the classes providing the major contribution to discrimination

in the OPLS-DA supervised model. VIP markers showed secondary metabolites as discrimi-

nant compounds, in the metabolic profiles of leaves and roots from wild-relative accessions

and cultivated modern barley. In fact, alkaloids, phenolic compounds and phytohormones

were the most represented classes responsible for the separation in the OPLS-DA model.

Gramine content in barley tissues

Gramine has been detected in all 20 wild barley accessions, 19 belonging to H. vulgare ssp.

Spontaneum and 1 to H. vulgare ssp. Agriocrithon, both in the first leave and in roots (Table 1).

Gramine could not be detected in the plant tissues of the spring barley elite cultivar Barke

(<LOD). In general, gramine concentration resulted about 50-fold higher in leaves compared

to roots. In leaves, the In group showed the highest gramine content in both the sampling

days, 5.290 μmol g-1 FW after 2 days and 3.687 μmol g-1 FW after 4 days respectively, whereas

H.ag barley (Tibet) shown the significative lowest content both at 2 and 4 days, 2.548 μmol g-1

FW and 2.032 μmol g-1 FW. In roots, Iq-In and T-G groups showed the highest gramine con-

tent at 2 and 4 days (0.066 μmol g-1 FW and 0.095 μmol g-1 FW), whereas H.ag barley (Tibet)

the lowest content at both days, 0.011 μmol g-1 FW and 0.018 μmol g-1 FW respectively. Com-

paring the gramine content at 2 and 4 days, in leaves has been observed a general decreasing

(approx. -20%) whereas in roots the trend is in some cases the opposite. Leaves resulted as the

main plant tissue with the highest content of gramine in barley.

N-methyltyramine content in barley tissues

The direct precursor of hordenine, N-methyltyramine, has been detected in all the barley

plants analyzed (Table 2). In leaves, the highest content was observed in the In group both at 2

and 4 days with 0.024 μmol g-1 FW and 0.027 μmol g-1 FW respectively, whereas the lowest

Fig 1. Supervised OPLS-DA multivariate statistical. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) on barley leaves (A) and

roots (B) phenolic profile according to their origin.

https://doi.org/10.1371/journal.pone.0231976.g001

Table 1. Gramine content measured in the leaf and root extracts of 2 and 4 days old barley plants.

Gramine

μmol g-1 (±SE) FW

Leaf Root

Origin group 2d 4d 2d 4d

Barke <LOD <LOD 0.005b (±0.002) 0.015b (±0.005)

H.ag (Tibet) 2.548c (±0.191) 2.032c (±0.305) 0.011b (±0.006) 0.018b (±0.004)

I-J 3.482bc (±0.225) 2.745bc (±0.217) 0.049ab (±0.011) 0.032b (±0.004)

In 5.290a (±0.262) 3.687a (±0.223) 0.030ab (±0.008) 0.028b (±0.011)

Iq-In 3.791bc (±0.180) 3.121abc (±0.170) 0.066a (±0.007) 0.056ab (±0.004)

L-WS 4.329bc (±0.225) 3.257ab (±0.183) 0.065a (±0.008) 0.054b (±0.007)

T-G 4.033b (±0.218) 3.372ab (±0.143) 0.045ab (±0.006) 0.095a (±0.020)

T-NS 3.545bc (±0.196) 2.621bc (±0.134) 0.040ab (±0.006) 0.056ab (±0.006)

Gramine content measured in the leaf and root extracts of 2 and 4 days old barley plants (spring modern Barke and wild-relative accessions barley divided in origin

groups). The specific origin of the barley accessions are listed in S1 Table. Data are expressed as mean ± SE, n = 10. Letters following the means indicate significant

differences, One-way ANOVA with post-hoc Tukey HSD with α = 0.05.

https://doi.org/10.1371/journal.pone.0231976.t001
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content was detected in H.ag barley (Tibet) at 2 days (0.009 μmol g-1 FW) and in Barke at 4

days (0.003 μmol g-1 FW). In general, a not uniform decrease was observed in leaves (from

-15% to -70%) a part of an increase in H.ag barley (Tibet). In roots, the highest content was

detected in the In group in both the sampling days with 0.689 μmol g-1 FW and 1.137 μmol g-1

FW respectively, whereas the lowest content of N-methyltyramine was detected in the modern

cv Barke, (0.224 μmol g-1 FW and 0.191 μmol g-1 FW at 2 and 4 days, respectively). In this case

an increase was observed only in T-G group. In general, N-methyltyramine content has been

observed being about 50-fold higher in roots compared to leaves, resulting as the main plant

tissue with the highest content of this metabolite.

Hordenine content in barley tissues

Hordenine has been detected in all the barley accessions and in Barke (Table 3) but could not

be detected in Barke leaves (<LOD). In leaves, the In group revealed the highest content at 2

Table 2. N-methyltyramine content measured in the leaf and root extracts of 2 and 4 days old barley plants.

N-methyltyramine

μmol g-1 (±SE) FW

Leaf Root

Origin group 2d 4d 2d 4d

Barke 0.010b (±0.002) 0.003c (±0.001) 0.224d (±0.032) 0.191d (±0.010)

H.ag (Tibet) 0.009b (±0.004) 0.025ab (±0.011) 0.815bc (±0.022) 0.687bc (±0.218)

I-J 0.016ab (±0.002) 0.008c (±0.001) 0.689cd (±0.086) 0.581bcd (±0.086)

In 0.024a (±0.004) 0.027a (±0.002) 1.389a (±0.102) 1.137a (±0.099)

Iq-In 0.018ab (±0.002) 0.009c (±0.002) 1.069ab (±0.124) 0.713b (±0.064)

L-WS 0.019ab (±0.001) 0.009c (±0.001) 0.604cd (±0.043) 0.453bcd (±0.031)

T-G 0.014ab (±0.001) 0.012bc (±0.003) 0.485cd (±0.059) 0.506bcd (±0.064)

T-NS 0.018ab (±0.001) 0.008c (±0.001) 0.535cd (±0.030) 0.392bcd (±0.035)

N-methyltyramine content measured in the leaf and root extracts of 2 and 4 days old barley plants (spring modern Barke and wild-relative accessions barley divided in

origin groups). The specific origin of the barley accessions are listed in in S1 Table. Data are expressed as mean ± SE, n = 10. Letters following the means indicate

significant differences, One-way ANOVA with post-hoc Tukey HSD with α = 0.05.

https://doi.org/10.1371/journal.pone.0231976.t002

Table 3. Hordenine content measured in the leaf and root extracts of 2 and 4 days old barley plants.

Hordenine

μmol g-1 (±SE) FW

Leaf Root

Origin group 2d 4d 2d 4d

Barke <LOD <LOD 0.409a (±0.039) 0.225a (±0.021)

H.ag (Tibet) 0.018b (±0.001) 0.006c (±0.002) 0.179abc (±0.032) 0.177ab (±0.125)

I-J 0.017b (±0.002) 0.010bc (±0.001) 0.020c (±0.005) 0.019b (±0.003)

In 0.029a (±0.004) 0.018b (±0.004) 0.232ab (±0.047) 0.148ab (±0.026)

Iq-In 0.014b (±0.002) 0.006c (±0.001) 0.157bc (±0.032) 0.107ab (±0.030)

L-WS 0.018b (±0.002) 0.011bc (±0.002) 0.232ab (±0.027) 0.090b (±0.014)

T-G 0.010b (±0.002) 0.012bc (±0.002) 0.239ab (±0.020) 0.125ab (±0.009)

T-NS 0.015b (±0.002) 0.007c (±0.001) 0.241ab (±0.041) 0.112ab (±0.019)

Hordenine content measured in the leaf and root extracts of 2 and 4 days old barley plants (spring modern Barke and wild-relative accessions barley divided in origin

groups). The specific origin of the barley accessions are listed in in S1 Table. Data are expressed as mean ± SE, n = 10. Letters following the means indicate significant

differences, One-way ANOVA with post-hoc Tukey HSD with α = 0.05.

https://doi.org/10.1371/journal.pone.0231976.t003
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and 4 days (0.029 μmol g-1 FW and 0.018 μmol g-1 FW respectively) whereas the lowest content

of hordenine was determined in T-G group at 2 days (0.010 μmol g-1 FW) and in H.ag barley

(Tibet) and Iq-In group at 4 days (0.006 μmol g-1 FW) (Table 3). In roots, the highest content

of hordenine was observed in Barke for both the sampling days (0.409 μmol g-1 FW and

0.225 μmol g-1 FW at 2 and 4 days, respectively). In both the tissues a general but not uni-

formed decrease was observed (from -30% to -60%) a part of the T-G group in leaves. The

root-to-leaf ratio of hordenine content is around 10, confirming roots as the main plant tissue

for the highest content of this metabolite.

Growth dependent metabolites biosynthesis and release

A detailed characterization of the production of the three metabolites, gramine, hordenine and

N-methyltyramine has been carried out in leaves, root and exudates within 3 days after germi-

nation in Barke, HID-102 and HID-219. This analysis confirmed and mainly showed that hor-

denine and its precursor N-methyltyramine (NMT) were released from the roots of all the

barley lines, having a significant decrease starting already after six hours (t1). Barke also

showed the highest content of hordenine in roots than NMT along all the samplings, whereas

the opposite trend was observed in the wild barley accessions. In leaves, the content of both the

compounds was fairly significant constant in mostly of the samplings, but in Barke leaves, hor-

denine could not be detected (Fig 2).

Fig 2. Growth dependent N-methyltyramine (NMT) and hordenine biosynthesis and release. N-methyltyramine (NMT) and hordenine content monitored in

indicated tissues or exudates every 6 hours after 4 days of germination of (A, B) spring modern Barke and (C, D) wild-relative accessions barley HID-102 and (E, F)

HID-219. Data are expressed as mean ± SE, n = 5, where t0 = 4 days after germination and t1 = t0+6 hours. Letters following the means indicate significant differences,

One-way ANOVA with post-hoc Tukey HSD with α = 0.05.

https://doi.org/10.1371/journal.pone.0231976.g002
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Gramine could not be detected in exudates but only in leaves and roots of wild barley acces-

sions (Barke <LOD) (Fig 3). In particular, a very similar trend of hordenine production, in

both the tissues, has been observed, with a decrease in leaf but an increase in root (only signifi-

cant in HID-219) (Fig 3).

Metabolomic targeted analysis

The metabolomic targeted analysis of roots were performed in barley roots of Barke, HID-055,

HID-219 and HID-380 (Fig 4), focusing on the main and known compounds involved in the

gramine biosynthesis pathway, i.e. regarding the main precursors of gramine, the amino acid

tryptophan, no significant differences were observed among all the lines analyzed (Fig 4A).

MAMI (N-methyl-aminomethylindole), the direct precursors of gramine, was the highest in

Barke (Fig 4B) whereas gramine was the highest in HID-055, while it could be not detected in

Barke (<LOD); HID-219 and HID-380 showed intermediate gramine concentration, around

45% lower than HID-055 (Fig 4C).

Phytoxicity essays

The phytoxic effects of gramine, hordenine and N-methyltyramine were assessing main root

parameters of lettuce (Lactuca sativa L.) in the presence of the three compounds at different

concentrations (Table 4). After 48h, it can be seen that, in terms of mean root length, 1 mM

hordenine has led to the highest inhibition percentage (-25.03%), followed by 1mM Gramine

(-14.90%) and 1 mM N-methyltyramine (-6.39%); only in the presence of gramine a negative

Fig 3. Growth dependent gramine biosynthesis and release. Gramine content monitored in (A, B) leaf and (C, D) root, respectively, every 6 hours after germination of

wild-relative accessions barley HID-102 (L-WS) and HID-219 (Asia). Data are expressed as mean ± SE, n = 5. Letters following the means indicate significant

differences, One-way ANOVA with post-hoc Tukey HSD with α = 0.05.

https://doi.org/10.1371/journal.pone.0231976.g003
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inhibition percentage both at 0.5 and 1 mM was observed. Concerning the mean root surface

and diameter, a general increase (approximately 20–25%) with all the treatments applied, com-

pared to the control, was observed.

Discussion

The two allelochemicals gramine and hordenine are the main alkaloids identified in barley

with previously demonstrated allelopathic potential [20]. Nevertheless, only the hordenine

pathway has been entirely characterized, having as a main precursor the amino acid tyrosine

[52]. On the other hand, for gramine only tryptophan as the first amino acid and the last meth-

ylation steps are known within the biosynthetic pathway [36]. At the same time, a significant

decrease or even a complete loss in gramine production in modern and cultivated barley if

compared to wild-relatives barley has been demonstrated, most likely due to the domestication

process [18,35,36,53]. Such a decrease of the biosynthesis has however not been observed for

hordenine. Therefore, analyzing wild-relatives and barley landraces, which are still present

and grown in the domestication area in the Middle-East [54] might provide new insights

about these aspects. Indeed, in this study, wild barley accessions with the elite cv Barke, as

parental donors involved in the development of the NAM population “Halle Exotic Barley”

(HEB-25) [44], have been characterized for gramine, hordenine and N-methyltyramine bio-

synthesis. N-methyltyramine, although it has been isolated from barley in 1950 [55], only

recently, taking advantage of new methodologies and lower limit of detections, i.e. by

HPLC-ESI-MS/MS, it has been quantified [56]. Allelochemicals can be found in different parts

within the plants while their production and release can also be induced by abiotic and biotic

stress [16]. Depending on the kind of interactions the plant has to establish with the environ-

ment, allelochemicals are mainly produced and/or released from specific part of plants, i.e.
leaves and stems for plant-insects/pests and roots for plant-rhizosphere, plant-plant interac-

tions. Indeed root exudates, in addition to being important in plant interactions, can be

released actively by roots as response as defense mechanisms, and through several ways, i.e.
diffusion, vesicle transport and ion channels [57], although for allelochemicals this process has

Fig 4. Metabolomic targeted analysis. Metabolomic targeted analysis of (A) Tryptophan, (B) N-methyl-aminomethylindole (MAMI) and

(C) Gramine in barley roots 6 days after germination. Data are expressed as mean area ± SE, n = 3. Letters following the means indicate

significant differences, One-way ANOVA with post-hoc Tukey HSD with α = 0.05.

https://doi.org/10.1371/journal.pone.0231976.g004

Table 4. Phytotoxicity effects of gramine, hordenine and N-methyltyramine on lettuce root.

Treatment Mean root length

(±SE) (cm)

Inhibition

percentage

Mean root surface area

(±SE) (cm2)

Inhibition

percentage

Mean root diameter

(±SE) (mm)

Inhibition

percentage

Control 1.21a (±0.03) - 0.20d (±0.01) - 0.54b (±0.01) -

Gramine 0.5 mM 1.15ab (±0.04) -5.38% 0.23bc (±0.01) +15.52% 0.66a (±0.01) +21.88%

Hordenine 0.5 mM 1.21a (±0.04) +0.10% 0.24ab (±0.01) +19.65% 0.64a (±0.01) +18.98%

N-methyltyramine 0.5

mM

1.28a (±0.04) +5.86% 0.27a (±0.01) +33.43% 0.68a (±0.01) +26.33%

Gramine 1 mM 1.03bc (±0.04) -14.90% 0.21cd (±0.01) +1.21% 0.64a (±0.01) +17.39%

Hordenine 1 mM 0.91c (±0.03) -25.03% 0.20d (±0.01) -1.38% 0.70a (±0.01) +28.74%

N-methyltyramine 1

mM

1.14ab (±0.05) -6.39% 0.23bc (±0.01) +15.11% 0.67a (±0.01) +24.50%

Phytotoxicity effects of gramine, hordenine and N-methyltyramine on mean root length, mean root surface area and mean root diameter. Data are expressed as

mean ± SE. Letters following the means indicate significant differences, One-way ANOVA with post-hoc Tukey HSD with α = 0.05

https://doi.org/10.1371/journal.pone.0231976.t004
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not been well characterized yet if compared to the above-ground interactions [58]. The meta-

bolomic analysis carried out in either roots and leaves clearly evidenced distinct signatures

between wild relative accessions and modern barley. Although it can be postulated that these

differences go far beyond the mere allelopathic activity, it is clear that secondary metabolism is

responsible for such discrimination. In particular, alkaloids (together with phenolics) were

among the most represented discriminating compounds. Target analysis evidenced that,

among the three alkaloids evaluated, hordenine and its direct precursor N-methyltyramine

were detected in the root exudates of wild relative accessions and modern Barke barley even if

their concentrations decreased significantly with time (Fig 2). Gramine on the other hand

could not be detected (Fig 2). It is interesting to note that while gramine was not detected in

the root exudates, this alkaloid was measured in root extracts (Fig 3C and 3D). In this respect

it should be highlighted that alkaloids like gramine and hordenine cannot simply diffuse

through a phospholipid bilayer like the plasma membrane of healthy root cells [49]. However,

it has been reported that the root release of gramine in the rhizosphere could be guaranteed by

an altered cell membrane permeability like that induced by phenolic compounds or the activa-

tion of a specific transmembrane transport mechanism triggered by a particular stress [57,58].

A decomposition process of plant material should be also counted. In this context, it is inter-

esting to note that the gramine presence in soil caused by its leaching from the leaf surface

thanks to the rain has been yet described [59]. Generally, both gramine and hordenine have a

preferred localization within specific plant organs: gramine has been mainly detected in the

first leaf (Table 1) whereas hordenine was highly present in roots (Table 3). This is particularly

consistent among all the 20 wild-relative barley accessions studied [43], confirming that wild

barley still maintain active both the pathways compared to the modern Barke, in which only

the hordenine pathway seems still active. In particular, wild barley accessions from In origin

group (Southwestern Iran area) have a high content of these compounds (Tables 1–3), espe-

cially for further applications regarding their allelopathic potential in breeding programs, as

successfully reported in rice [60]. However, we cannot exclude a translocation of the three

metabolites from shoots to roots and vice versa and/or a tissue-dependent biosynthesis with-

out mobilization within the plant. Indeed, it has been observed that sorgoleone is mainly pro-

duced and accumulated only in root hairs of Sorghum spp [61,62]. A different finding was

found for modern spring barley Barke, in which gramine could not be detected in leaves but

only in roots (Table 1), while we observed the highest content in roots for hordenine (Table 3).

Barke was previously demonstrated as a modern cultivar with a very low gramine content in

leaves even though the gene responsible for the last steps of gramine biosynthesis is present

and active [36] as also confirmed by the presence of the gramine precursor MAMI by targeted

metabolomics analysis (Fig 4). However, from this study it seems that the hordenine pathway

has been unintentionally favored against gramine biosynthesis in Barke, as a possible conse-

quence of the domestication or for a “higher” metabolic cost that could have decreased high

yields [18]. Gramine and hordenine were already suggested in the last decades as one of the

main allelopathic alkaloids in barley responsible for its ability to suppress weeds [18,20,21,63].

Since N-methyltyramine was also detected in the roots exudates in this study, a comparison of

the phytotoxic effects of the three compounds involved were also evaluated on lettuce as a tar-

get plant, commonly and widely used plant to test allelopathic and phytotoxic effects [64–66].

Interestingly, hordenine at a concentration of 1 mM (equivalent to approx. 10 μmol g-1) was

much more efficient in reducing the mean root length than gramine at the same concentration

(Table 4). However, only gramine was also able to inhibit root elongation at a lower concentra-

tion (0.5 mM, equivalent to approx. 5 μmol g-1, Table 4). Regarding the hordenine precursor

N-methyltyramine, the phytotoxic effects are generally lower compared to hordenine and gra-

mine (Table 4). These results are in contrast with previous studies, in which gramine was
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demonstrated to have greater inhibition effects than hordenine [21,67,68]. Yet, these studies

observed the toxic effect on different target species. Concentrations used in this phytotoxicity

tests were approx. ten times greater than those detected in the root exudates of the barley lines

tested (Fig 2). However, in soil conditions allelochemicals could be found more concentrated

due to the localized active release in very small rhizosphere soil solutions (a few tens of μL) or

localized tissue decomposition. Furthermore, we used buffered alkaloid solutions with MES

which might have modified their toxicity [49]. It has in fact been demonstrated that the pres-

ence of MES, although having the advantage of more pH stability, could affect roots processes

like root exudation [69]. It was also observed that, while the mean root length decreased in the

presence of the three allelopathic compounds, the mean root surface and diameter increased,

resulting in shorter but thicker roots (Table 4) as previously observed for coumarin on alfalfa

[70] and for rye allelochemicals on cucumber seedlings [71]. These results suggest that gra-

mine, hordenine and N-methyltyramine could affect the root development on susceptible

plants like lettuce. Negative effects, i.e. inhibition of cell division, cell wall destabilization or

expansion of the vascular cylinder and cortex cell layer, due to hormone-unbalance or cell wall

peroxidases enhancement, or alteration of cell wall composition [72–74], prove their ability as

phytotoxic compounds.

Conclusions

While the mechanisms underpinning the biosynthesis and accumulation of gramine and hor-

denine in barley tissues remain to be fully elucidated, this study identified the most promising

wild barley genotypes to embark in such investigations. For example, our data can guide the

selection of families within the NAM to be subjected to further genetic characterization. Like-

wise, this material and our data can be exploited to formulate and test hypothesis on the wider

biological significance of secondary metabolites, such as their implication in modulating the

plant microbiota both above- and below-ground.
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