
cancers

Article

Brain Invasion along Perivascular Spaces by Glioma
Cells: Relationship with Blood–Brain Barrier

Simone Pacioni 1,2,†, Quintino Giorgio D’Alessandris 1,†, Mariachiara Buccarelli 3 ,
Alessandra Boe 4, Maurizio Martini 5, Luigi Maria Larocca 5 , Giulia Bolasco 6,
Lucia Ricci-Vitiani 3, Maria Laura Falchetti 2,‡ and Roberto Pallini 1,*,‡

1 Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del
Sacro Cuore, 00168 Rome, Italy; s.pacioni@tiscali.it (S.P.); giorgiodal@hotmail.it (Q.G.D.)

2 CNR-IBBC, Institute of Biochemistry and Cell Biology, 00015 Rome, Italy; marialaura.falchetti@cnr.it
3 Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 0161 Rome, Italy;

mariachiara.buccarelli@iss.it (M.B.); lriccivitiani@yahoo.it (L.R.-V.)
4 Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; alessandra.boe@iss.it
5 Institute of Human Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS,

Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Maurizio.Martini@unicatt.it (M.M.);
luigimaria.larocca@unicatt.it (L.M.L.)

6 Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL Rome),
00015 Monterotondo, Italy; giulia.bolasco@embl.it

* Correspondence: roberto.pallini@unicatt.it; Tel.: +39-06-3015-5414
† These authors contributed equally to the paper.
‡ These authors shared senior authorship.

Received: 30 October 2019; Accepted: 14 December 2019; Published: 19 December 2019
����������
�������

Abstract: The question whether perivascular glioma cells invading the brain far from the tumor bulk
may disrupt the blood–brain barrier (BBB) represents a crucial issue because under this condition
tumor cells would be no more protected from the reach of chemotherapeutic drugs. A recent in vivo
study that used human xenolines, demonstrated that single glioma cells migrating away from the
tumor bulk are sufficient to breach the BBB. Here, we used brain xenografts of patient-derived glioma
stem-like cells (GSCs) to show by immunostaining that in spite of massive perivascular invasion, BBB
integrity was preserved in the majority of vessels located outside the tumor bulk. Interestingly, the
tumor cells that invaded the brain for the longest distances traveled along vessels with retained BBB
integrity. In surgical specimens of malignant glioma, the area of brain invasion showed several vessels
with preserved BBB that were surrounded by tumor cells. On transmission electron microscopy, the
cell inter-junctions and basal lamina of the brain endothelium were preserved even in conditions in
which the tumor cells lay adjacently to blood vessels. In conclusion, BBB integrity associates with
extensive perivascular invasion of glioma cells.

Keywords: blood–brain barrier; perivascular invasion; glioblastoma; glioma stem-like cells;
brain endothelium

1. Introduction

Malignant gliomas are highly invasive cancers. The sub-cortical white matter and
inter-hemispheric tracts, like the corona radiata and corpus callosum, are major paths for tumor
spreading. However, glioma cells are also known to interact with the blood vessels, mainly in the way
of vessel co-option, a phenomenon whereby the tumor cells organize themselves into cuffs around
normal vessels [1]. In vivo studies showed that the vast majority of tumor cells located outside of the
tumor bulk are in close relationship with the blood vessels, suggesting perivascular invasion [2–4].
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Furthermore, a recent study that used clinically relevant xenograft models demonstrated that human
glioma cells are able to migrate far away from the main tumor mass travelling between the endothelial
cells and the endfeet of astrocytes, where even single glioma cells are sufficient to cause a focal breach
of the blood–brain barrier (BBB) [5]. These results may carry important clinical implications and
may refuel aggressive chemotherapy for treating brain areas of tumor infiltration. However, clinical
experience suggests caution in translating these data directly to patients. For example, the brain
surrounding glioblastoma (GBM) or anaplastic glioma, where histology reveals invasion by tumor
cells, does not enhance on magnetic resonance (MR) after intravenous infusion of the contrast medium
gadolinium (Gd), suggesting a preserved BBB. Then, one main objective of this study is to analyze
the interaction of glioma cells with the brain vasculature. To address this issue, we used orthotopic
xenografts of patient-derived glioma stem-like cells (GSCs) and surgical specimens. More specifically,
we questioned whether the invading perivascular glioma cells do actually disrupt the BBB away
from the tumor bulk, a condition whereby these cells would be no more protected from the reach of
chemotherapeutic drugs.

2. Results

2.1. Association of Glioma Cells with Blood Vessels and Disruption of BBB in Models of Brain Xenograft

We first investigated in in vivo models the extent to which glioma cells associate with blood
vessels in brain regions outside of the main tumor bulk and the relationships between perivascular
invasion and BBB. Orthotopic xenografts were established in athymic rats using either the U87MG
GBM cell line (n, 6), which shows poor ability to invade the brain and thus does not reflect the clinical
situation, or the patient-derived GSC1 and GSC275 cell lines (n, 9), which develop highly infiltrating
brain tumors in vivo similarly to what is seen in patients [6–8]. The GSC1 cell line had been established
from a GBM of the proneural subtype and was molecularly characterized as a Glioma Stem full (GSf),
a genotype that closely resemble the proneural one [9]. The GSC275 cell line had been raised from a
GBM of the mesenchymal subtype and was molecularly characterized as a Glioma Stem restricted
(GSr), resembling the mesenchymal subtype [9].

To visualize the pattern of brain invasion, the tumor cells were transduced to express GFP. Brain
vasculature was stained with biotinylated Lectin Lycopersicon esculentum [10], a specific marker of
endothelial cells. To assess the BBB, we used antibodies against the rat BBB (clone SMI-71), glucose
transporter-1 (Glut-1), and zonula occludens (ZO)-1 protein (Supplementary Figure S1). SMI-71
selectively stains the rat endothelial barrier antigen (EBA). This antigen is localized at the luminal side
of brain endothelial cells [11] and its expression is highly decreased or even lost in areas of reduced BBB
integrity [12]. Glut-1, a major glucose transporter across the mammalian BBB, is widely recognized
as a specific marker of brain endothelium [13,14]. ZO-1 protein [15] is a key component of tight
junctions (TJs) between adjacent endothelial cells, which primarily determine BBB permeability [16–19].
Alteration of ZO-1 expression causes TJ disorganization and leads to BBB disruption [5,20,21]. To detect
vascular permeability, sections were stained with anti-rat IgG that highlights extravasated mouse
immunoglobulins [22]. In brain xenografts, extravasation of these immunoglobulins correlates with
vascular permeability, as assessed with Gd-enhanced MR [23].

Using these methods, we found that the U87MG xenografts elicited a strong neo-angiogenesis in
the brain within 400 microns from the outer edge of the tumor (Supplementary Figure S2A). In this
region, the newly formed vessels showed highly disrupted BBB, as demonstrated by the nearly absent
SMI-71 staining and low ZO-1 expression (Supplementary Figure S2B–F and Supplementary Table S1).
Only a few U87MG cells were able to invade the brain crossing the tumor-brain interface. Interestingly,
these cells were nearly always associated with blood vessels showing some degree of BBB preservation
(Supplementary Figure S2C–E). As expected, peritumor regions with reduced expression of SMI-71
and ZO-1 showed an intense anti-IgG staining, suggesting extravasation (Supplementary Figure S3
and Supplementary Table S1).
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Differently from the U87MG cells, GSC1 cells developed highly infiltrating brain xenografts.
Tumor cells invaded the homolateral striatum and piriform cortex and extended contralaterally through
the corpus callosum, anterior commissure, and septal nuclei. Analysis of the brain–tumor interface
showed a great amount of cells invading into the brain using the white matter and blood vessels as
scaffolds (Figure 1A). In the brain surrounding the xenograft, the vast majority of GSCs were associated
with blood vessels in contact with the vascular surface (Figure 1B,C). GSCs laid outside the endothelial
covering wrapping themselves around the abluminal surface or even fully encasing the blood vessels.
Notably, such massive perivascular spreading of GSCs outside the main tumor mass occurred mainly
along vessels with preserved BBB (Figure 1B,C and Supplementary Table S1). In particular, the SMI-71
reaction, which lacked almost completely in U87MG xenograft, was preserved in the vessels outside
the tumor bulk of GSC1 xenografts. An inverse relationship was found between the density of tumor
cells and SMI-71 staining, whereby in the tumor core, where tumor cell density was the highest, the
vasculature expressed SMI-71 at very low levels (Figure 1D,E). Interestingly, GSCs laid around vessels
with preserved BBB even at long distances from the tumor bulk. For example, in the caudate-putamen
contralateral to the grafting site about 80 percent of vessels showing perivascular tumor infiltration had
preserved BBB (Figure 1F,G). The BBB was preserved even in those vessels surrounded by multilayered
tumor cells, as demonstrated by SMI-71 and ZO-1 staining (Figure 1H,I). In GSC275 brain xenografts,
we found perivascular tumor cells spreading at distant sites from the bulk of the tumor (Supplementary
Figure S4). Importantly, even in the brain xenografts of the GSr subtype or mesenchymal-like cells, the
BBB of vessels surrounded by tumor cells was not disrupted.
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Figure 1. Brain xenografts of GSC1 cells. (A) Fluorescence microscopy of the brain–tumor interface 
showing invading glioma stem-like cells (GSCs) and remarkable angiogenesis. Scale bar, 150 μm. 
(B,C) GSCs extensively spread around vessels that maintained their SMI-71 expression. Scale bar in 
B, 150 μm. Scale bar in C, 50 μm. (D) In the core of GCS xenografts (left panel), the vessels showed a 
consistent reduction of SMI-71 immunostaining, whereas in the infiltrated brain away from the 
tumor bulk (right panel) the expression of SMI-71 by the blood vessels was preserved. Scale bars, 100 
μm. (E) Diagram showing the relationship between tumor cells density and SMI-71 expression by 
endothelial cells, as assessed by automated image analysis (each point represents an average of 7–12 
areas; r, Pearson correlation coefficient). (F) Representative vessels showing peri-vascular spreading 
of GSCs (green) and various degrees of BBB disruption on SMI-71 immunostaining (white). Scale 
bars, 50 μm. (G) Bar diagram showing that the percent of vessels with perivascular tumor cells and 
preserved SMI-71 expression (SMI71+) was significantly higher in the caudate-putamen contralateral 
to the xenograft (lCPU) compared to the homolateral caudate-putamen (rCPU) and 
claustrum-amygdaloid area (rCLA-AA). Bars represent mean+sem; (H,I) Immunofluorescence 
microscopy showing that the expression of ZO-1 (white arrows) is well preserved even in vessels 
surrounded by multilayered GSCs. Scale bars, 25 μm. 

  

Figure 1. Brain xenografts of GSC1 cells. (A) Fluorescence microscopy of the brain–tumor interface
showing invading glioma stem-like cells (GSCs) and remarkable angiogenesis. Scale bar, 150 µm.
(B,C) GSCs extensively spread around vessels that maintained their SMI-71 expression. Scale bar in B,
150 µm. Scale bar in C, 50 µm. (D) In the core of GCS xenografts (left panel), the vessels showed a
consistent reduction of SMI-71 immunostaining, whereas in the infiltrated brain away from the tumor
bulk (right panel) the expression of SMI-71 by the blood vessels was preserved. Scale bars, 100 µm.
(E) Diagram showing the relationship between tumor cells density and SMI-71 expression by endothelial
cells, as assessed by automated image analysis (each point represents an average of 7–12 areas; r,
Pearson correlation coefficient). (F) Representative vessels showing peri-vascular spreading of GSCs
(green) and various degrees of BBB disruption on SMI-71 immunostaining (white). Scale bars, 50 µm.
(G) Bar diagram showing that the percent of vessels with perivascular tumor cells and preserved
SMI-71 expression (SMI71+) was significantly higher in the caudate-putamen contralateral to the
xenograft (lCPU) compared to the homolateral caudate-putamen (rCPU) and claustrum-amygdaloid
area (rCLA-AA). Bars represent mean+sem; (H,I) Immunofluorescence microscopy showing that the
expression of ZO-1 (white arrows) is well preserved even in vessels surrounded by multilayered GSCs.
Scale bars, 25 µm.
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2.2. Perivascular Invasion and Disruption of BBB in Human Specimens of Gliomas

While the U87MG xenograft model confirmed that glioma cells invading along perivascular
spaces breach the BBB outside the tumor bulk [5], brain xenografts of patient-derived GSCs gave quite
different results. Then, we aimed at investigating the relationship between perivascular spreading
and BBB disruption in tumor specimens from 21 patients suffering from glioma (Supplementary
Table S2). Differently from in vivo models, where fluorescently labelled tumor cells can be easily traced
through the brain, in human specimens the tumor cells are much more difficult to stain with specific
markers [8]. Here, we used the antibody targeting Collapsin Response Mediator Protein 5 (CRMP5) that
was recently proposed as a selective tumor marker for glioma cells [24,25]. Previously, we validated
this antibody on patient-derived GSCs with mutant IDH1 [26]. Here, we used surgical specimens
of low-grade glioma (WHO grade II astrocytoma and oligodendroglioma) with mutant IDH1/2 and
showed a co-staining of the tumor cells with anti-IDH1 and anti-CRMP5 antibodies (Supplementary
Figure S5 and Supplementary Table S2).

Tumor regions with variable degree of BBB permeability and vascularity on Gd-enhanced MR were
located during surgery by navigational systems (Figure 2A,B). On Gd-enhanced MR, BBB disruption is
evidenced by diffusion of IV-administered Gd, which diffuses from the blood to the brain interstitium.
Perfusion imaging, commonly referred to as dynamic susceptibility contrast (DSC), shows increased
vascularity in the most malignant portion of the tumor. On patients’ samples, the BBB was assessed
by immunofluorescence using anti-Glut1, anti-ZO-1, and anti-Claudin-5 antibodies. Claudin-5 is a
membrane protein and component of tight junction strands that serve as a physical barrier to prevent
solutes and water from passing freely between epithelial or endothelial cell sheets [27].

As expected, in low-grade glioma (WHO grade II astrocytoma and oligodendroglioma), where
Gd-enhanced MR indicates no BBB disruption, the ZO-1 immunofluorescence showed a continuous
signal lining the Glut-1 positive vessels (Supplementary Figure S6 and Supplementary Table S3).
Anaplastic astrocytoma and oligodendroglioma (WHO grade III) are likely to represent the ideal
specimens to assess the relationship between perivascular tumor invasion and BBB disruption. In
these malignant gliomas, only some areas enhanced on Gd-MR, whereas variable portions of tumor
do not show any Gd-enhancement, suggesting BBB preservation (Figure 2A,B). As expected, regions
with Gd-enhancement showed tumor cells surrounding vessels with disrupted BBB (Figure 2C–E and
Supplementary Table S3). Conversely, in tumor regions that did not enhance on Gd-MR, in which
fluid-attenuated inversion recovery (FLAIR)-MR revealed a hyperintense signal suggesting tumor
invasion, the BBB appeared well preserved on immunohistochemistry in spite of the many tumor
cells coming in contact with the vascular surface (Figures 2E and 3, and Supplementary Figure S7).
Interestingly, the number of glioma cells that came in close spatial relationship with the vascular
endothelium was significantly greater in vessels with preserved BBB, suggesting that perivascular
invasion and BBB integrity are related phenomena (Figure 3E). In GBM tumors, the area of surgical
resection that enhanced brightly on Gd-MR showed perivascular tumor cells associated with BBB
disruption (Figure 4, Supplementary Figure S8 and Supplementary Table S3). Again, in GBM regions
with hyperintense FLAIR signal that did not enhance on Gd-MR, the BBB of vessels surrounded by
tumor cells was not disrupted, as demonstrated by the continuous ZO-1 immunoreaction of Glut-1
positive vessels and by Claudin-5 expression of lectin-positive vessels (Figure 4C,D, Supplementary
Figures S7 and S8A–D).
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Figure 2. Perivascular invasion and disruption of blood–brain barrier (BBB) in anaplastic glioma. (A), 
FLAIR T2–weighted, Gd-enhanced T1-weighted, and DSC perfusion magnetic resonance (MR) 
images showing a left frontal tumor that shows a hyperintense signal in the fluid-attenuated 
inversion recovery (FLAIR) sequences. The small area of Gd enhancement (yellow arrows) and low 
T2 signal (red arrow) suggests focal breach of BBB with increased vascularity. (B) 
Neuro-navigational procedure for selecting tumor regions with or without Gd enhancement (red and 
blue insets, respectively). (C) Histology and immunohistochemistry of Gd-enhancing (red inset) and 
non-enhancing (blue inset) areas of the tumor (anaplastic oligodendroglioma). Left panels, H&H 
staining. Right panels, double anti-CD31 (green) and anti-IDH1 (red) immunofluorescence. Scale 
bars, 100 μm. (D,E) Immunofluorescence with the anti-CRMP5 antibody for tumor cells (green) and 
with anti-Glut-1 (red) and anti-ZO-1 (white) antibodies for BBB in a tumor region showing 
Gd-enhancement (D) and in a region without Gd-enhancement (E). The arrows point out tumor cells 
adjacent to vessels with normal ZO-1 expression. Scale bars, 25 μm. 

Figure 2. Perivascular invasion and disruption of blood–brain barrier (BBB) in anaplastic glioma.
(A), FLAIR T2–weighted, Gd-enhanced T1-weighted, and DSC perfusion magnetic resonance (MR)
images showing a left frontal tumor that shows a hyperintense signal in the fluid-attenuated inversion
recovery (FLAIR) sequences. The small area of Gd enhancement (yellow arrows) and low T2 signal
(red arrow) suggests focal breach of BBB with increased vascularity. (B) Neuro-navigational procedure
for selecting tumor regions with or without Gd enhancement (red and blue insets, respectively).
(C) Histology and immunohistochemistry of Gd-enhancing (red inset) and non-enhancing (blue
inset) areas of the tumor (anaplastic oligodendroglioma). Left panels, H&H staining. Right panels,
double anti-CD31 (green) and anti-IDH1 (red) immunofluorescence. Scale bars, 100 µm. (D,E)
Immunofluorescence with the anti-CRMP5 antibody for tumor cells (green) and with anti-Glut-1 (red)
and anti-ZO-1 (white) antibodies for BBB in a tumor region showing Gd-enhancement (D) and in a
region without Gd-enhancement (E). The arrows point out tumor cells adjacent to vessels with normal
ZO-1 expression. Scale bars, 25 µm.
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Figure 3. Perivascular invasion and disruption of BBB in anaplastic glioma. (A), FLAIR T2–weighted 
(top left), Gd enhanced T1-weighted (top center), and DSC perfusion (top right) MR images showing 
a left intrinsic fronto-basal tumor that shows an inhomogeneous hyperintense signal in the FLAIR 
sequence and an area of Gd enhancement with increased vascularity (yellow arrow). 
Neuro-navigation selecting tumor regions with or without Gd enhancement (red and blue insets, 
respectively; lower panel). (B), Histology of Gd-enhancing (red inset) and non-enhancing (blue inset) 
areas of the tumor (anaplastic oligodendroglioma). H&H staining. Scale bar, 100 μm. (C,D), 
Immunofluorescence with the anti-CRMP5 antibody for tumor cells (green) and with anti-Glut-1 
(red) and anti-ZO-1 (white) antibodies for BBB in a tumor region showing Gd-enhancement (C) and in 
a region without Gd-enhancement (D). The arrows point out tumor cells adjacent to vessels showing 
ZO-1 expression. Scale bars, 25 μm. (E), Graph showing the density of perivascular CRMP5 tumor 
cells in regions of anaplastic gliomas (n, 4) with preserved (BBB+) or disrupted BBB (BBB-), as 
assessed by ZO-1 immunohistochemistry. **, p < 0.0001 (Student-t test). 

Figure 3. Perivascular invasion and disruption of BBB in anaplastic glioma. (A), FLAIR T2–weighted
(top left), Gd enhanced T1-weighted (top center), and DSC perfusion (top right) MR images showing
a left intrinsic fronto-basal tumor that shows an inhomogeneous hyperintense signal in the FLAIR
sequence and an area of Gd enhancement with increased vascularity (yellow arrow). Neuro-navigation
selecting tumor regions with or without Gd enhancement (red and blue insets, respectively; lower
panel). (B), Histology of Gd-enhancing (red inset) and non-enhancing (blue inset) areas of the tumor
(anaplastic oligodendroglioma). H&H staining. Scale bar, 100 µm. (C,D), Immunofluorescence with the
anti-CRMP5 antibody for tumor cells (green) and with anti-Glut-1 (red) and anti-ZO-1 (white) antibodies
for BBB in a tumor region showing Gd-enhancement (C) and in a region without Gd-enhancement
(D). The arrows point out tumor cells adjacent to vessels showing ZO-1 expression. Scale bars, 25 µm.
(E), Graph showing the density of perivascular CRMP5 tumor cells in regions of anaplastic gliomas
(n, 4) with preserved (BBB+) or disrupted BBB (BBB-), as assessed by ZO-1 immunohistochemistry.
**, p < 0.0001 (Student-t test).
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Figure 4. Perivascular invasion and disruption of BBB in glioblastoma. (A), FLAIR T2–weighted (top 
left panel) and Gd enhanced T1-weighted (top right and lower panels) MR images showing a small 
left frontal tumor that shows a hyperintense signal in the FLAIR sequence and ring enhancement on 
Gd-MR. Neuro-navigation for selecting tumor regions with or without Gd enhancement (red and 
blue insets, respectively). (B) Histology of Gd-enhancing (red inset) and non-enhancing (blue inset) 
areas of the tumor. H&H staining. Scale bar, 100 μm. (C,D) Immunofluorescence with the 
anti-CRMP5 antibody for tumor cells (green) and with anti-Glut-1 (red) and anti-ZO-1 (white) 
antibodies for BBB in a tumor region showing Gd-enhancement (C) and in a region without 
Gd-enhancement (D). Note the strong ZO-1 expression by a vessel surrounded by tumor cells with 
gemistocytic appearance. Scale bars, 25 μm. 

2.3. Relationships of Invading Glioma Cells and Perivascular Astrocytes in GSC Brain Xenografts and 
Patients’ Tumors  

Perivascular astrocytes with their endfeet are commonly thought to represent an obstacle for 
the migration of glioma cells around the endothelial wall. Invasion along blood vessels would imply 
insertion of the tumor cells between the endfeet and the endothelial wall with breach of the BBB [5]. 
Alternatively, perivascular spreading of glioma cells might occur outside the astrocyte covering 
without displacement of astrocytes and disruption of BBB. We then examined the relationship 
between glioma cells, astrocytes, and blood vessels using cell type-specific markers and confocal 
microscopy in GSC xenografts and human specimens. In GSC xenografts, we found a variety of 
spatial relationships between perivascular astrocytes, glioma cells, and endothelial cells that 
included, 1) astrocytic covering maintenance, glioma cells laying outside the astrocyte layer, BBB 
marker expression maintained by the endothelial cells (Figure 5A, upper panel), 2) displacement of 
astrocytes, glioma cells coming in direct contact with the endothelium that maintained its BBB 

Figure 4. Perivascular invasion and disruption of BBB in glioblastoma. (A), FLAIR T2–weighted (top
left panel) and Gd enhanced T1-weighted (top right and lower panels) MR images showing a small
left frontal tumor that shows a hyperintense signal in the FLAIR sequence and ring enhancement on
Gd-MR. Neuro-navigation for selecting tumor regions with or without Gd enhancement (red and blue
insets, respectively). (B) Histology of Gd-enhancing (red inset) and non-enhancing (blue inset) areas
of the tumor. H&H staining. Scale bar, 100 µm. (C,D) Immunofluorescence with the anti-CRMP5
antibody for tumor cells (green) and with anti-Glut-1 (red) and anti-ZO-1 (white) antibodies for BBB in
a tumor region showing Gd-enhancement (C) and in a region without Gd-enhancement (D). Note the
strong ZO-1 expression by a vessel surrounded by tumor cells with gemistocytic appearance. Scale bars,
25 µm.

2.3. Relationships of Invading Glioma Cells and Perivascular Astrocytes in GSC Brain Xenografts and
Patients’ Tumors

Perivascular astrocytes with their endfeet are commonly thought to represent an obstacle for the
migration of glioma cells around the endothelial wall. Invasion along blood vessels would imply
insertion of the tumor cells between the endfeet and the endothelial wall with breach of the BBB [5].
Alternatively, perivascular spreading of glioma cells might occur outside the astrocyte covering without
displacement of astrocytes and disruption of BBB. We then examined the relationship between glioma
cells, astrocytes, and blood vessels using cell type-specific markers and confocal microscopy in GSC
xenografts and human specimens. In GSC xenografts, we found a variety of spatial relationships
between perivascular astrocytes, glioma cells, and endothelial cells that included, 1) astrocytic covering
maintenance, glioma cells laying outside the astrocyte layer, BBB marker expression maintained by
the endothelial cells (Figure 5A, upper panel), 2) displacement of astrocytes, glioma cells coming in
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direct contact with the endothelium that maintained its BBB marker expression (Figures 3 and 5A,
middle panel) glioma cells displacing both astrocytes and endothelial cells with reduced BBB marker
expression (Figure 5A, lower panel). Immunohistochemistry of human specimens confirmed the GSC
findings, that perivascular glioma cells could either respect the astrocyte covering and BBB integrity
(Figure 5B, upper panel), or displace the astrocytic endfeet away from the vasculature coming in direct
contact with endothelial cells, which lose their BBB marker expression (Figure 5B, lower panel).
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Figure 5. Relationships of invading glioma cells and perivascular astrocytes. (A), In GSC brain
xenografts, perivascular tumor cells (green) either lay outside the astrocyte covering without astrocyte
displacement and BBB disruption (top panel, arrow), or displace the astrocytes coming in direct contact
with the endothelium that maintains its SMI-71 expression (middle panel, arrow), or displace completely
the astrocytes with partial loss of SMI-71 expression (lower panel). Scale bars, 50 µm. (B) In surgical
specimens of GBM, tumor cells (green) were found outside the astrocyte covering with only minor
displacement of astrocytes and preservation of ZO-1 expression (top and middle panels, arrows) or
displace completely the astrocytes and disrupt the vessel wall, which loses ZO-1 expression (lower
panel). Scale bars, 50 µm.
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2.4. Characterization of Tumor Endothelium in Malignant Glioma by Transmission Electron Microscopy

Transmission electron microscopy (TEM) was performed in 4 human specimens, that included one
grade II astrocytoma, one grade III astrocytoma, and 2 GBM (Cases 2, 4, 20, and 21 in Supplementary
Table S2). Tumor areas showing various degree of enhancement on Gd-MR were dissected during
surgery by MR-assisted neuro-navigation. Blood vessels were analyzed for ultrastructural evidence
of permeability routes, including inter-endothelial junctions, basal lamina, and astrocytic endfeet.
In grade II astrocytoma, the ultrastructure of vascular endothelium appeared preserved (Figure 6A
and Supplementary Figure S9). In those regions of grade III astrocytoma and GBM that showed
a hyperintense FLAIR signal without enhancement on Gd-MR, the tissue ultrastructure appeared
less conserved, though the inter-endothelial junctions looked still structured with astrocytic endfeet
covering the basal lamina (Figure 6B). The vascular endothelium was characterized by focal points
at cells’ inter-junctions structured with the classical “kissing point” and basal lamina wrapped by
astrocytic endfeet. In these regions, several tumor cells, which could be recognized because of their
high heterogeneity, were found anchored to blood vessels (Figure 6C). The inter-endothelial junctions
were maintained, however, processes of tumor cell appeared juxtaposed to blood vessels. Both the basal
lamina and endothelial cell appeared enlarged and swollen, however, the endothelial cell junctions
were well visible. Where the tumor cells lay juxtaposed to a capillary, both the basal lamina and
the endothelial cell appeared thickened and swollen, however, the endothelial cell–cell junctions
were still present showing the classical electron density beneath the cell’s membrane (Figure 6C).
Regions of grade III astrocytoma and GBM with Gd-enhancement on MR, showed phenomena like
erythrocyte extravasation and lack of neuronal tissue. In these regions, the basal lamina appeared
thickened, a few axonal fibers were still preserved but the overall tissue morphology appeared highly
degenerated. Inter-endothelial junctions with enlarged distensions that may represent sections through
trans-endothelial channels, were seen in vessels from Gd-enhancing regions, however, large gaps in
the endothelial layer were not seen in GBM vessels.

Interestingly, in the GBM that recurred after radio-chemotherapy, tumor cells with highly
heterogeneous morphology arranged themselves to form tubular networks that enclosed erythrocytes
within their luminal side, suggesting vascular mimicry (Supplementary Figure S10).

To summarize, in malignant gliomas TEM analysis of the FLAIR hyperintense regions without
Gd-enhancement on MR showed that the ultrastructure of the brain endothelium, in particular the cell
inter-junctions and basal lamina, were preserved even in the condition where tumor cells laid adjacent
to blood vessels.
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Figure 6. Transmission electron microscopy (TEM) analysis of human glioma specimens. (A) 
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Figure 6. Transmission electron microscopy (TEM) analysis of human glioma specimens.
(A) Representative image of well-structured capillary (Cap)-enclosing erythrocytes (Er) in a low
grade astrocytoma (WHO grade II). Tissue and myelinated axonal fibers are still preserved (Myel).
Nu, nucleus of endothelial cell. High magnification insets (a1,a2), both indicate “kissing” points of
endothelial cell (Ec) tight junctions (asterisk), and astrocytic endfeet (Ast) covering the basal lamina
(BL). (B) Panel showing a capillary (Cap) in a region of anaplastic astrocytoma (WHO grade III)
without Gd-enhancement. The inter-endothelial junctions are maintained at both sides (asterisks)
of endothelial cell nucleus (Nu). Insets (b1,b2) show respectively the luminal part of the vessel (lu)
coated by the endothelial wall (Ec), the basal lamina (BL) and the astrocytic endfeet (Ast). (C) panel
representative of region of anaplastic astrocytoma (WHO grade III) without Gd-enhancement. Low
magnification micrograph showing processes of tumor cell juxtaposed to a blood vessel (Cap) that
enclose an erythrocyte (Er). In high magnification insets (c1,c2), both the basal lamina (BL) and the
endothelial cell (arrowhead) appear enlarged and swollen, although endothelial cell junctions are still
present (asterisk in inset c2).

3. Discussion

A novel and unexpected finding of this study is that GBM tumor cells invade the perivascular
spaces more extensively and for the longest distances along vessels with preserved BBB. We found that
disruption of the BBB results in extravasation of serum-borne molecules, nodular growth of the tumor,
and decreased brain invasion. Recently, Watkins and colleagues used GBM xenolines to demonstrate
that human glioma cells are able to invade extensively the brain far from the tumor bulk spreading
along the perivascular spaces and, more importantly, that in this process glioma cells displace the end
feet of astrocytes breaching the BBB [5]. Potentially, these results carry a high translational impact,
given that the invading tumor cells would be no more protected from chemotherapy agents, including
those drugs that under normal conditions do not cross the BBB. Our findings on brain xenografts of
human GBM cells only partly supported the observations by Watkins et al. Specifically, in U87MG
xenografts, where rare tumor cells are able to invade the brain away from the main tumor bulk, the
BBB is highly disrupted. In brain xenografts of patient-derived GSCs, the occurrence of glioma cells
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traveling along the perivascular spaces away from the tumor bulk is quite common, however, the event
that these cells do breach the BBB is infrequent. A much more common condition is that in which GSCs
migrate along vessels with preserved BBB. Surprisingly, those glioma cells that migrated for longest
distances, like the contralateral caudate-putamen, were spatially associated with vessels showing
preserved BBB. Therefore, the observation that glioma cells are able to displace the endfeet of astrocytes
and to breach the BBB can be confirmed only in the U87MG brain xenografts that represents a poor
model of human pathology. In the patient-derived GSC model, we observe a variety of interactions
between glioma cells and perivascular astrocytes, most of which do not imply disruption of the BBB.

Differences in in vivo models may be influential in explaining such discrepant results. For example,
the xenolines used by Watkins et al. were grown in the subcutaneous tissue, an environment that is not
protected against serum-borne molecules. Growing in the subcutaneous tissue may induce a tumor
phenotype more aggressive towards the BBB. As a support to this concept, we found that the human
U87MG cells, which are serum cultured cells, do breach the BBB extensively.

Our results suggest that BBB breach, exposure to serum-borne molecules, and infiltrative tumor
growth are closely related phenomena. In U87MG brain xenografts, which show nodular growth
with poor invasive behavior, a massive extravasation of immunoglobulins occurred both in the tumor
core and in the periphery. From this, we can infer that the tumor cells are chronically exposed to
serum-borne molecules. Perivascular U87MG tumor cells, owing to the preferential exposure to
serum-borne molecules, change their metabolism and growth pattern and such changes are maintained
even when the tumor cells are removed from their vascular association and secondarily grafted onto
the brain of naive recipients [28]. Differentiation conditions, like treatment with serum, reduce the
invasive behavior of GSCs [29]. It is known that serum is often used as an inducer of differentiation
in in vitro GBM cell models and that the time to serum exposure affects the degree of differentiation,
whereby GBM neurospheres exposed to serum for long time show highly reduced infiltrating growth
in brain xenografts [30].

Glioma heterogeneity is reflected in the variable amount of BBB preservation across WHO grades
and also in the very same histotype [31]. Thus, in human specimens of glioma (WHO grade II to
IV), we assessed tumor areas with various degrees of BBB disruption, as revealed by the amount
of Gd enhancement on MR, that were targeted intraoperatively by navigational systems. Tumor
specimens were analyzed using both immunofluorescence and TEM. In anaplastic astrocytoma and
oligodedroglioma (WHO grade III), the great majority of the tumor did not enhance on Gd-MR,
suggesting a preserved BBB. In these areas, however, immunohistochemistry showed several tumor
cells travelling along peri-vascular spaces without BBB breach. The same result was found in those
regions of GBM that showed a hyperintense FLAIR signal but did not enhance on Gd-MR, suggesting
brain invasion without BBB disruption. Importantly, TEM showed that the BBB ultrastructure, in
particular the inter-endothelial junctions and basal lamina, can be preserved even in those vessels that
lay adjacent to tumor cells.

Future studies on the molecular profiling of endothelial cells, pericytes, and astrocytes in
primary brain tumor will reveal previously unknown features of the BBB. For example, genetic and
transcriptomic analyses of normal brain endothelial cells have shown the activation of WNT–β-catenin
and sonic hedgehog (SHH)-dependent signaling within the BBB (for review see Arvanitis et al.,
2019 [31]). Performing single-cell RNA sequencing of brain endothelial cells, pericytes, and glia,
isolated by specific marker expression, in primary brain tumor and comparing it with normal BBB will
reveal more unique properties of the brain neurovascular unit and yield novel therapeutic strategies.
Molecular approaches, like GLUT1 targeting and RNA interference to reduce the expression levels
of tight junction proteins, can be employed to transiently modulate BBB permeability testing the
hypothesis that serum-borne molecules may induce differentiation of glioma cells in vivo.



Cancers 2020, 12, 18 13 of 17

4. Materials and Methods

4.1. Compliance with Ethical Standards

Experiments involving animals were approved by the Ethical Committee of the Università
Cattolica del Sacro Cuore (UCSC), Rome (Pr. No. CESA/P/51/2012). This report was drafted according
to the ARRIVE guidelines. All patients provided written informed consent to the study according to
research proposals approved by the Institutional Ethics Committee of Fondazione Policlinico Gemelli,
UCSC (Prot. 4720/17).

4.2. Culture of Tumor Cells and Lentiviral Infection

The U87MG human GBM cell line was purchased from the American Type Culture Collection
(Manassas, VA) and cultured in DMEM 4.5 g/L glucose (ThermoFisher Scientific, Waltham, MA, USA)
supplemented with 10% Fetal Bovine Serum (ThermoFisher Scientific). The patient-derived GSC1 and
GSC275 cell lines were cultured under serum-free conditions [6,7]. Cells were grown at 37 ◦C in a
humidified atmosphere of 5% CO2–95% air. Cells were regularly controlled to exclude mycoplasma
contamination (Mycoalert Detection Kit, Lonza, Basel, Switzerland). Lentiviral transduction of green
fluorescent protein (GFP) was performed as described [32].

4.3. Intracranial Xenografts of GFP Expressing U87MG, GSC1, and GSC275 Cells

Immunosuppressed athymic rats (male, 250–280 g; Charles River, Milan, Italy) were used for
brain xenografts [26] (Supplementary materials and methods).

4.4. Fluorescence Microscopy and Immunofluorescence of Brain Tumor Xenografts

The brains were serially sectioned (40 µm thickness) on the coronal plane, blocked in PB with
10% BSA, 0.3% Triton X-100 for 45 min, and incubated overnight at 4 ◦C with primary antibodies
(Supplementary materials and methods) [33,34]. Monoclonal antibodies used were as follows, mouse
anti-Glucose Transporter GLUT1 antibody (1:100; Abcam, Cambridge, UK), mouse anti-Rat Blood-Brain
Barrier (Clone SMI-71; 1:500; Biolegend, San Diego, CA, USA), mouse anti-Claudin-5 (1:100; Thermo
Fisher Scientific, Waltham, MA, USA). Polyclonal antibodies used were as follows, rabbit anti-Glucose
Transporter GLUT1 antibody (1:200; NovusBio, Centennial, CO, USA), rabbit anti-ZO-1 (1:100; Thermo
Fisher Scientific, Waltham, MA, USA), goat anti-GFAP (1:1000; Thermo Fisher Scientific, Waltham,
MA, USA), rabbit anti-GFAP (1:1000; Dako Italia, Milan, Italy). For detecting brain microvessels,
sections were incubated with Lectin from Lycopersicon esculentum (tomato) biotin conjugate (1:500;
Sigma-Aldrich, St. Louis, MO, USA) together with primary antibodies (Supplementary materials and
methods). To detect vascular permeability in brain xenografts, sections were incubated with Alexa
Fluor 555 donkey anti-rat IgG (1:100; Abcam, Cambridge, UK) together with other primary antibodies
(Supplementary materials and methods). Immunofluorescence was observed with a laser confocal
microscope (Leica SP5 or Olympus FV1200). Image analysis was performed with Leica Application
Suite X software and ImageJ software (NIH).

4.5. Clinical Material

Tumor specimens were obtained during craniotomy surgery. All patients provided written
informed consent to the study according to research proposals approved by the Institutional
Ethics Committee of Fondazione Policlinico Gemelli, UCSC (Prot. 4720/17). The study was
conducted in accordance with the principles set forth in the World Medical Association Declaration
of Helsinki and later amendments. Tumor regions showing hyper-intense FLAIR signal and various
degrees of enhancement on Gd-MR were located during surgery using a neuro-navigational system
(SthealthStation S7, Medtronic, Minneapolis, MN, USA). Specimens were fixed in 4.5% formalin
for 48 h at 4 ◦C, post-fixed in 30% sucrose, and sectioned (40–50 µm) by a cryostat. Slices were
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incubated overnight at 4 ◦C in PB with 0.3% Triton X-100 and 0.1% NDS with Lectin from Lycopersicon
esculentum (tomato) biotin conjugate (1:500; Sigma-Aldrich, St. Louis, MO, USA) together with
primary antibodies. Sections were incubated overnight at 4 ◦C in PB with 0.3% Triton X-100 and
0.1% NDS with Lectin from Lycopersicon esculentum (tomato) biotin conjugate (1:500; Sigma-Aldrich,
St. Louis, MO, USA) in combination with other antibodies. Monoclonal antibodies used were as
follows, mouse Anti-IDH1 (R132H; clone HMab-1, 1:50, Sigma Aldrich, St. Louis, MO, USA); rat
anti-Collapsin Response-Mediated Protein 5 (CRMP5, 1:50, Millipore, Billerica, MA, USA); mouse
anti-Claudin-5 (1:100; Thermo Fisher Scientific, Waltham, MA, USA). Polyclonal antibodies used were
as follows, rabbit anti-Glucose Transporter GLUT1 antibody (1:200; NovusBio, Centennial, CO, USA);
rabbit anti-ZO-1 (1:100; Thermo Fisher Scientific, Waltham, MA, USA); goat anti-GFAP (1:1000; Thermo
Fisher Scientific, Waltham, MA, USA).

4.6. Antigen Retrieval and Auto-Fluorescence Removal in Brain Tumor Xenografts and Human Specimens

To unmask CRMP5, ZO-1, and Claudin5 antigens, and to reduce the masking effect of formalin
fixation specific procedures were needed before immunostaining (Supplementary materials and
methods).

4.7. Transmission Electron Microscopy (TEM)

Specimens were fixed with 2% (w/v) PFA, 2.5% Glutaraldehyde (TAAB) in 0.1 M Phosphate Buffer
overnight at 4 ◦C. Samples were carefully washed in 0.1 M Na Cacodylate buffer pH 7.1 (Science
Service), postfixed in 1% OsO4 (TAAB) supplemented with 1.5% Potassium Ferrocyanide for 2 h on
ice (Science Service), and counterstained with 1% aqueous Uranyl Acetate ON at 4 ◦C. Samples were
subsequently dehydrated in Ethanol and infiltrated with propylene oxide/Durcupan (Science Service)
(1:1) followed by pure resin embedding and polymerization for 72 h at 60 ◦C. Ultrathin sections were
cut (Ultracut S, Leica, Mannheim, Germany) and observed with a Transmission Electron Microscope
(TEM) Jeol 1010 equipped with a MSC 791 CCD camera (Gatan).

4.8. Statistical Analysis

Comparison between density of vascular structures and distance from the tumor margin was
performed using Student’s t-test. Correlation between GFP expressing tumor cells and SMI-71
expressing vessels was evaluated using regression analysis and the Spearman correlation test.
All P-values are based on 2-tailed tests and differences were considered significant when p < 0.5.
StatView v5.0 was used (SAS Institute, Cary, NC, USA).

5. Conclusions

Previous findings showing that single glioma cells disrupt the BBB far away from the tumor bulk
are not confirmed in brain xenografts of patient-derived GSCs and in surgical specimens of malignant
glioma. The present study suggests a model of malignant glioma where phenomena like BBB disruption
and exposure to serum-borne molecules elicit a nodular growth of the tumor bulk. Conversely, BBB
preservation and perivascular growth characterize brain invasion outside the tumor bulk.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/1/18/s1,
Supplementary materials and methods: Supplementary Figure S1: Immunostaining of brain vasculature and
BBB in the athymic rat. Supplementary Figure S2: Brain xenografts of U87MG cells. Supplementary Figure S3:
Extravasation of IgG in the brain of athymic rats. Supplementary Figure S4: Brain xenografts of GSC275 cells.
Supplementary Figure S5: Validation of CRMP5 as specific marker for glioma cells. Supplementary Figure S6:
Immunostaining of BBB in glioma without Gd-enhancement on MR. Supplementary Figure S7: Immunostaining
of BBB in regions of malignant glioma without Gd-enhancement on MR. Supplementary Figure S8: Perivascular
invasion and disruption of BBB in glioblastoma. Supplementary Figure S9: Navigational MR selection of tumor
areas for TEM analysis. Supplementary Figure S10: TEM analysis of human GBM specimens. Supplementary
Table S1: Summary of findings of BBB immunostaining on brain xenografts. Supplementary Table S2: Clinical and
pathological features of patients’ tumors. Supplementary Table S3: Summary of findings of BBB immunostaining in
Gd-enhanced and Gd-unenhanced regions of human glioma. Appendix: Supplementary Materials and Methods.
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