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Abstract 

Neuromuscular disorders, disuse, inadequate nutrition, metabolic diseases, cancer and aging 

produce muscle atrophy and this implies that there are different types of molecular triggers and 

signaling pathways for muscle wasting. Exercise and muscle contractions may counteract 

muscle atrophy by releasing a group of peptides, termed myokines, to protect the functionality 

and to enhance the exercise capacity of skeletal muscle. In this review, we are looking at the 

role of myokines in the recovery of permanent denervated and elderly skeletal muscle tissue. 

Since sub-clinical denervation events contribute to both atrophy and the decreased contractile 

speed of aged muscle, we saw a parallel to spinal cord injury and decided to look at both 

groups together. The muscle from lifelong active seniors has more muscle bulk and more slow 

fiber-type groupings than those of sedentary seniors, demonstrating that physical activity 

maintains slow motoneurons that reinnervate the transiently denervated muscle fibers. 

Furthermore, we summarized the evidence that muscle degeneration occur with irreversible 

Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may 

be permanently disconnected from the peripheral nervous system. In these patients, suffering 

with an estreme case of muscle disuse, a complete loss of muscle fibers occurs within five to 

ten years after injury. Their recovered tetanic contractility, induced by home-based Functional 

Electrical Stimulation, can restore the muscle size and function in compliant Spinal Cord Injury 

patients, allowing them to perform electrical stimulation-supported stand-up training. 

Myokines are produced and released by muscle fibers under contraction and exert both local 

and systemic effects. Changes in patterns of myokine secretion, particularly of IGF-1 isoforms, 

occur in long-term Spinal Cord Injury persons and also in very aged people. Their modulation 

in Spinal Cord Injury and late aging are also key factors of home-based Functional Electrical 

Stimulation - mediated muscle recovery. Thus, Functional Electrical Stimulation should be 

prescribed in critical care units and nursing facilities, if persons are unable or reluctant to 

exercise. This will result in less frequent hospitalizations and a reduced burden on patients’ 

families and public health services. 
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 During aging, several morpho-functional changes occur 

in skeletal muscle, i.e., the generalized loss of muscle 

mass, reduced myofiber size, and the progressive 

reduction in muscle strength, leading to a pathologic 

condition known as sarcopenia and dynapenia.1-3 This 

progressive age-related muscle wasting process is 

associated with an increased prevalence of falls, a 

greater incidence of diseases and the loss of functional 

independence.4,5 Inadequate nutrition, disuse, 

neuromuscular disorders, and metabolic diseases are 

among the many possible causes for the age-related 

decline in skeletal muscle mass. Several interventions 

have been suggested to counteract sarcopenia, that 

imply different types of molecular triggers and signaling 
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pathways for muscle wasting.6,7 In particular, exercise 

and muscle contractions, whether volitional or induced 

by Electrical Stimulation (ES), may counteract muscle 

atrophy by releasing a group of peptides, termed 

myokines, to protect the functionality and to enhance 

the exercise capacity of skeletal muscle.8-10 This review 

summarizes the potential positive effects of exercise-

induced myokines looking at the role of myokines and 

of other molecular mechanisms in the recovery of 

denervated and elderly muscle tissue. 

Muscle plasticity after Aging or Spinal Cord 

Injury and home based Functional Electrical 

Stimulation 

In recent years, we have performed basic research and 

clinical trials on the use of electrostimulation to provoke 

positive muscle plasticity adaptations after Spinal Cord 

Injury (SCI). These studies investigated the use of long 

impulse electrical stimulation as a treatment for long-

term permanently denervated human muscles, i.e., 

home-based Functional Electrical Stimulation 

(hbFES).11,12 Purpose developed electrical stimulators 

and very large electrodes that are now both 

commercially available (https://www.schuhfried.com/ 

umbraco/Surface/AuthenticationSurface/Login?returnUr

l=%2Fportal) were designed and implemented to 

achieve our goals.13,14 Those studies demonstrated a 

tremendous improvement in muscle trophism and an 

increase in external muscle power. 13-19 Muscle strength 

was indeed improved to the point that individuals could 

stand up with assistance from direct electrical 

stimulation of the denervated muscles as well as 

perform in-place stepping and walk 100-200 m. The 

hbFES rehabilitation program was initiated relatively 

late after denervation (more than 8 month after SCI) 

because of clinical constraints and/or the belief that 

electrical stimulation of denervated muscles is 

ineffective and may actually interfere with eventual 

myofiber reinnervation. These ideas are still maintained 

by some experts despite recent evidence that 

electrostimulation may indeed enhance nerve growth 

and appropriate muscle reinnervation. 20-22 Alternative 

options will hopefully be realized with the future stem 

cells approaches.23 Management based on in vivo 

protocols, such as the induction of muscle regeneration 

by injection of anesthetics in local anoxic conditions or 

ex-vivo techniques such as the proliferation of 

autologous myoblasts derived from patient’s muscle 

biopsies, is still to be fully explored by pre-clinical and 

clinical research.24-28 Although myokines will certainly 

have a main role, we leave to the experts in the field 

discussion of these approaches. The aim of the present 

review is to contribute the experience of muscle 

specialists (biologists, physiologists, and rehabilitation 

experts) to first the impact of denervation-reinnervation 

processes on shaping aging muscle fibers and then to 

the role of myokines in the overall process of muscle 

aging and in its effective countermeasures. Ten years of 

experience in hbFES for SCI patients13,14 were 

translated with positive results in trials for rejuvenation 

of skeletal muscles of elderly persons.29-38 Myokines are 

produced and released by muscle fibers during 

contraction exercise and exert both local and systemic 

effects.10 Changes in patterns of myokines secretions 

during hbFES-induced muscle recovery in both long-

term SCI persons and old people were observed, 

particularly with Insulin-like Growth factor 1 (IGF-1), 

suggesting that they are key factors of muscle recovery 

mediated by hbFES. 

Role of myokines in volitional physical activity 

and hbFES to counteract muscle aging decay 

The scientific literature on the aging nervous system is 

immense, in particular, the works on the decay of 

cognition and mobility. However, the impact of muscle 

denervation on aging skeletal muscle fibers is a 

relatively orphan topic. 39-42 This is mainly related to the 

undetermined molecular nature of the trophic factors 

released by motor neurons to the muscle fibers of the 

different types of motor units.43 It is well known that 

such mechanisms contribute to neuromuscular junction 

development and maintenance; however, if and what 

chemical trophic factors influence the synchronized 

expression of the hundreds of nuclei belonging to a 

single muscle fiber remains a subject of hypotheses, 

while the synchronized spread of muscle action 

potential seems to be a more rational mechanism.43 Two 

reviews provide an excellent summary of what is known 

or hypothesized about this subject.1,44 It is well 

established that physical exercise and dietary proteins, 

as well as the intake of specific amino acids, are able to 

counteract the processes related to the progression of 

muscle mass loss. This may have beneficial effects on 

improving the anabolic response of muscle in the 

elderly.45 However, the world record series of Master 

athletes shows an almost linear decay in muscle power 

that starts at age 30 years and declines to zero, 

theoretically at approximate 110 years of age. It is worth 

stressing that this occurs despite the fact that these 

record-holding sportsmen are the best that the human 

species can provide at any time point in terms of both 

genetic sport talents and the capacity and opportunity to 

train with the best possible advice.46 A series of 

investigations on counteracting muscle decay involving 

active or sedentary seniors and SCI patients can be 

found in which myokines play the main role in 

explaining the results after Electrical Stimulation. The 

studies show that volitional exercise and h-bFES are 

crucial for maintaining both motor neurons and muscle 

fibers,20-,22,47 despite some doubts present in the 

literature.48-50 In addition to a progressive loss of muscle 

mass, aging presents also a conspicuous reduction in 

myofiber plasticity with alterations in muscle-specific 

transcriptional mechanisms.1,30,31 During the aging 

process, protein synthetic rates decrease and an increase 

in protein degradation follows, affecting characteristics 
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of muscle fibers.51 Recently, it was demonstrated that 

age-associated loss of OPA1 in muscle impacts muscle 

mass, metabolic homeostasis, systemic inflammation, 

and epithelial senescence.52 It is generally accepted that 

the failure to repair damage is a contributory cause of 

functional impairment with aging,8,9,53,54 and also 

promotes the detrimental replacement of functional 

contractile muscle with fibrous tissue.51 Volitional 

physical exercise can reverse these damaging processes 

in both aging and cancer cachexia.53,57-60 Interestingly, it 

has been shown that both acute and prolonged resistance 

exercise stimulates the proliferation of satellite cells in 

healthy sedentary subjects, though blunted in elderly 

people.53,57-60 The increased levels of myostatin,61 a 

negative regulator of muscle mass, may explain this 

fact.62,63 An increase in autophagy in the muscle of 

athletic people has been reported,64-67 suggesting that 

exercise may activate an important system that 

detoxifies muscle cells. Another major factor that is 

associated with physical exercise is IGF-1.68 Its 

production by muscle increases after 5–10 min of 

moderate to high-intensity exercise.69,70 The evidence 

suggests that training and regular exercise modulate 

expression of myokines (e.g., IL-6) and IGF-1, thereby 

regulating  functional autophagy, and thus increasing 

muscle strength and attenuating sarcopenia.71,72 There is 

strong evidence that IGF-1 secretion by muscle fibers 

also influences synaptogenesis in the brain,73 and at the 

neuromuscular junctions.74,75 Further, agrin (along with 

other proteins such as MuSK, rapsyn, ChAT, Hb9, 

munc18, etc.) is important to denervation/reinnervation 

processes.76,77 Because elderly people are often reluctant 

or unable to participate adequately in physical 

exercise,78 an alternative approach with Electrical 

Stimulation was designed and implemented. Krenn et 

al.,79 designed a stimulator that especially addresses the 

requirements of elderly people. Subjects in the study 

were exposed to regular neuromuscular ES training for a 

period of 9 weeks. The outcome was an increase in 

muscle strength, associated with an increase in 

abundance of fast fibers, which indeed are the first to 

respond to ES and are related to the power of skeletal 

muscle.30 In addition, with ES an increase in expression 

of IGF-1 factors as well as markers of both satellite cell 

proliferation and extracellular matrix remodeling was 

detected along with downregulation in the expression of 

proteases just as occurs during volitional physical 

exercise.31 Furthermore, Mosole et al.,80 recently 

demonstrated that ES modulate also the Calcium (Ca2+)-

handling proteins, NFAT, and related proteases. The 

aims were to study the molecular mechanisms that 

support functional muscle improvement by ES. Indeed, 

Ca2+ cycling and activation of specific molecular 

pathways are essential in contraction-induced muscle 

adaptation. This study attains human muscle sections 

and total homogenates prepared from biopsies obtained 

before (control) and after 9 weeks of training by ES on a 

group of elderly volunteers. Evidence for activation of 

kinase/ phosphatase pathways after ES was obtained. 

Moreover, expression of Sarcalumenin, Calsequestrin, 

and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) 

isoforms was regulated by training. The conclusions 

were that neuromuscular ES applied to Vastus lateralis 

muscle of sedentary seniors combines fiber remodeling 

with activation of Ca2+-Calmodulin molecular pathways 

and modulation of the key Ca2+-handling proteins.80 

Collagen expression was also reported to be remodelled 

during both volitional physical exercise and ES; indeed, 

expression of three different forms of collagen was 

upregulated in electrically stimulated muscle.30  

However, the increase in collagen expression seems not 

to stimulate fibrosis as is shown by both morphological 

evidence and at the level of important fibrosis 

modulators, namely the increase in expression of 

miR29.77 Several longitudinal studies have shown that 

regular exercise is beneficial to the aged population.1,82 

The Interreg IVa project recruited therapy-stable 

sedentary seniors with a normal lifestyle who were 

trained for 9 weeks with either volitional exercise by leg 

press,83 or Electrical Stimulation.29-31,77 Functional tests 

of trained subjects showed that LP and ES induced 

improvements in both leg muscle force and mobility 

tests.84,85 ES significantly increased the size of fast type 

muscle fibers, together with a significant increase of 

Pax7 and NCAM positive satellite cells. Furthermore, 

muscle biopsies did not present evidence of muscle 

damage and/or inflammation.31 Altogether, the results 

demonstrated that physical exercise, either voluntary or 

induced by ES, improves functional performance and 

the structural properties of aged muscles 

Conclusive Remarks 

Functional electrical stimulation using long biphasic 

impulses and large surface electrodes is able to restore 

muscle mass, force production and movement in 

humans even after years of complete irreversible 

denervation. Patients suffering with flaccid paraplegia 

(complete and permanent denervation of lower 

extremity muscles, e.g., conus and cauda equina 

syndrome) are especially good candidates for these 

approaches if hbFES managements start from 1 to 6 

years after SCI.13,14 Electrical stimulation-induced up-

regulation of myokines is an essential mechanism to 

achieve this goal. Furthermore, we recently 

demonstrated that two-years of hbFES also improve the 

thickness of the stimulated skin in conus and cauda 

equina syndrome patients, providing a valuable anti-

decubitus effect.86,87 Thus, pilot human studies and the 

application of existing experimental knowledge support 

the use of h-bFES to improve the condition of long-term 

denervated muscles.88 Taking the idea 2 steps further, in 

the future, we may thereby prepare the muscle in SCI 

patients for bridging and reconnecting it to the central 

motor control unit. Neither volitional training nor 

hbFES may stop the aging process as we have learned 

from the Master Athletes.46 However, detrained elderly 
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persons may significantly improve their muscle 

structure and function to a level that allows safer and 

increased mobility. Our results show that ES is a safe 

home-based method able to counteract atrophy of fast 

type muscle fibers, a biomarker of skeletal muscle aging 

in sedentary seniors.30,31 If seniors are unable or 

reluctant to perform a volitional physical activity, the 

electrical stimulation-induced up-regulation of 

myokines is an important contributing mechanism. 

Adding h-bFES to good nutrition and exercise where 

possible (e.g., volitional Full Body In-Bed Gym)12,89,90 

will allow the elderly and SCI patients (even those that 

will be stimulated by the recently developed soft 

subdural implants for the delivery of electrochemical 

neuromodulation therapies to the spinal cord) 91-103 to 

look forward to increased autonomy and quality of life, 

and the prospect of better professional and social 

integration. In case of severe muscle atrophy in the 

older elderly, commercially available neuromuscular 

electrical stimulators may improve mobility with 

substantial reductions of fall risk and of the severity of 

secondary medical problems. Thus, hbFES should be 

prescribed in critical care units and nursing facilities, if 

persons are unable or reluctant to exercise. This will 

result in less frequent hospitalizations and a reduced 

burden on patients’ families and public health services.  
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