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Introduction: Obstructive sleep apnea (OSA) is a serious and prevalent medical

condition with major consequences for health and safety. Excessive daytime sleepiness

(EDS) is a common—but not universal—accompanying symptom. The purpose of this

literature analysis is to understand whether the presence/absence of EDS is associated

with different physiopathologic, prognostic, and therapeutic outcomes in OSA patients.

Methods: Articles in English published in PubMed, Medline, and EMBASE between

January 2000 and June 2017, focusing on no-EDSOSA patients, were critically reviewed.

Results: A relevant percentage of OSA patients do not complain of EDS. EDS is a

significant and independent predictor of incident cardiovascular disease (CVD) and is

associated with all-cause mortality and an increased risk of metabolic syndrome and

diabetes. Male gender, younger age, high body mass index, are predictors of EDS.

The positive effects of nasal continuous positive airway pressure (CPAP) therapy on

blood pressure, insulin resistance, fatal and non-fatal CVD, and endothelial dysfunction

risk factors have been demonstrated in EDS-OSA patients, but results are inconsistent

in no-EDS patients. The most sustainable cause of EDS is nocturnal hypoxemia and

alterations of sleep architecture, including sleep fragmentation. These changes are less

evident in no-EDS patients that seem less susceptible to the cortical effects of apneas.

Conclusions: There is no consensus if we should consider OSA as a single disease

with different phenotypes with or without EDS, or if there are different diseases with

different genetic/epigenetic determinants, pathogenic mechanisms, prognosis, and

treatment.The small number of studies focused on this issue indicates the need for

further research in this area. Clinicians must carefully assess the presence or absence of
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EDS and decide accordingly the treatment. This approach could improve combination

therapy targeted to a patient’s specific pathology to enhance both efficacy and long-term

adherence to OSA treatment and significantly reduce the social, economic, and health

negative impact of OSA.

Keywords: continuous positive airway pressure, excessive daytime sleepiness, hypoxia, obstructive sleep apnea,

phenotype, sleep

INTRODUCTION

Obstructive sleep apnea (OSA) is a sleep-related breathing
disorder characterized by repetitive episodes of partial
(hypopneas) or complete (apnea) obstruction of the pharyngeal
airway, causing impaired gaseous exchange, varying degrees
of hypoxia, and hypercapnia, which are usually terminated by
brief arousals from sleep. The repetitive nature of apneas and
hypopneas results in frequent arousals (sleep fragmentation) and
disturbed sleep architecture, that are traditionally considered to
contribute to the prominent—albeit not universal—symptom
of chronic excessive daytime sleepiness (EDS) found in these
patients (1). The American Academy of Sleep Medicine (AASM)
defines EDS as the inability to maintain wakefulness and
alertness during the major waking episodes of the day, with
sleep occurring unintentional or at inappropriate times almost
daily for at least 3 months (2). The Epworth Sleepiness Scale
(ESS) is the most widely used clinical tool to evaluate subjective
trait sleepiness based on a questionnaire testing individual
dozing off attitudes (3). Despite its simple, inexpensive, and
wide application, the ESS poorly correlates with OSA severity at
individual level, and with objective tests of EDS, and is also open
to reporting bias and confounding factors such as age, gender,
psychological factors, and fatigue (4). Objective tools include
in-laboratory—and more expensive and laborious—approaches
(Maintenance of Wakefulness Test—MWT; Multiple Sleep
Latency Test—MSLT) validated for specific diagnostic (MSLT
to characterize suspected hypersomnias of central origin) or
safety-related and medical-legal (MWT to address individual
ability to resist sleep in monotonous conditions) purposes, and
several non-validated psychomotor tests including simulated
driving (5). Among signs/symptoms of AASM diagnostic criteria
of OSA, in addition to EDS, is included fatigue (2): although
frequently noted in combination in OSA and in comorbidity of
OSA with other diseases, fatigue is distinct from EDS, and is a
complex symptom related to the perception of lack of energy.
Distinguishing sleepiness from fatigue can be difficult even for
the most astute clinicians, but the use of assessment tools for EDS
as well as for fatigue, including the Fatigue Severity Scale—FSS,
and other rating scales, may assist in screening/diagnosis (6).

OSA is a prevalent condition affecting 3–7% of adult men and
2–5% of adult women in the general population (7), but these
figures are expected to dramatically increase due to population
aging and weight gain (8). Data indicate that OSA prevalence
can be very high in selected populations, such as people affected
by COPD (9) and even higher rates have been reported in
some European Countries (49.7% men and 23.4% women with
moderate-to-severe OSA in HypnoLaus Study cohort) (10). OSA

is linked to an increased risk of related consequences including
motor vehicle accidents, mood disruption, occupational injuries,
and absenteeism (11–13), reduced quality of life (14), impaired
cognition (15, 16), mental health problems (17). Clinical and
epidemiological studies also found an independent association
between OSA and all-cause mortality as well as cardiovascular
disease (CVD)morbidity, andmortality, especially with regard to
hypertension, arrhythmias, stroke, coronary artery disease, heart
failure, and sudden death (18–21). Postulated mechanisms for
CVD complications are complex and incompletely understood,
but include OSA-associated chronic intermittent hypoxia
(CIH), sleep fragmentation, chronic sympathetic activation,
hypercoagulability, systemic inflammation, oxidative stress,
and endothelial dysfunction (22–25). Although EDS has been
regarded as a classical feature of OSA, population-based studies
suggest that complaints of EDS are absent in many patients,
especially where there is an association with CVD (26). This
raises an important question on why sleepiness occurs in some
patients but not others and whether no-EDS patients benefit
from nasal continuous positive airway pressure (CPAP) therapy
that has been demonstrated to be effective in OSA patients with
EDS. Here, we will critically review the current knowledge on the
issue of no-EDS OSA in terms of prevalence, response to therapy,
and potential underlying determinants, trying to examine light
and shadow of this often underestimated but clinically and
epidemiologically relevant facet of OSA.

METHODS

Although there are few studies focused on no-EDS OSA patients,
we tried to critically review the current knowledge in the
literature to assess the state of art of this new argument. Due
to small data in both randomized and non-randomized clinical
trials that investigate non-sleepy OSA patients and due to the
lack of any standard therapy, we could not conduct a systematic
review approach according to PRISMA guidelines. However,
we examined different database such as PubMed, Medline, and
EMBASE. Search terms included randomized control trial, non-
randomized clinical trial, OSA, sleep apnea, sleepiness, EDS, and
non-sleepy patients; inflammation, OSA therapies. Additional
studies were identified by contacting clinical experts.

The Heterogeneity of OSA: Excessive
Daytime Sleepiness Does Not Tell the Full
Story
Diagnosis, assessment of severity, and management of OSA is
based on the apnea hypopnea index (AHI) that is the number
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of apneas and hypopneas per hour of sleep, as determined by
standard overnight polysomnography. According to the AASM,
OSA is defined with an AHI ≥ 5, and is classified as mild
with AHI of 5–15, moderate with AHI of 16–30, and severe
with AHI > 30 (27). However, OSA is recognized as a complex
and heterogeneous disease in symptoms, etiological factors,
comorbidities, and clinical outcomes (28). Although a consensus
on detailed principles for classification remains to be established,
different phenotypes, as defined by the clustering of clinical,
pathophysiologic, cellular, and molecular characteristics, have
been increasingly identified in OSA and may represent potential
prognostic and therapeutic categories of patients that may enable
the development of personalized medicine in OSA (29).

In this context, a number of clinical features, such as
obesity, insulin resistance, and EDS are often present in OSA
patients, but there are also many OSA patients who are not—
or are less—symptomatic, without complaints of EDS (26, 30,
31). This heterogeneity could determine variable consequences
on pathophysiologic mechanisms, long-term outcomes and
response to therapy, and significantly challenges patient risk-
stratification, and accurate management.

However, the definition of EDS and hence the classification
of sleepy subjects in OSA remains a controversial issue. Some
authors questioned the subjective assessment of EDS because
OSA patients may complain of fatigue, tiredness, and lack of
energy rather than sleepiness itself (32). The correlation between
ESS andMSLTmeasures of sleepiness has long been debated, and
has been reported to be weak-to-moderate (3). Of note, EDS is
not a symptom exclusively related to sleep-disordered breathing,
but also, for example, to depression, insomnia, and metabolic
conditions (33). Residual sleepiness in effectively treated OSA
patients may still lead to significant socioeconomic burden,
including driving and job-related accidents (34), reduced quality
of life (35), neurocognitive impairment (36, 37), and all-cause
and cardiovascular morbidity and mortality (38–42). Recently, in
a historical cohort study including 10,149 participants followed-
up for 68 months and evaluating the association between OSA-
related factors other than AHI and risk of CVD outcomes,
EDS resulted as a significant and independent predictor of
the occurrence of CVD events and all-cause mortality (42).
EDS proved to be an independent predictor of road accidents
and near-miss accidents risk in an Italian field study on truck
drivers (11). Furthermore, in the presence of OSA, EDS is
associated with an increased risk of hypertension (43, 44), and
glucose deregulation (45, 46). Therefore, EDS identification and
characterization is important for sleep clinicians not only for
the suspicion/diagnosis of sleep-disordered breathing, but also
for determining appropriate treatment in order to prevent its
detrimental health consequences.

Although EDS affects around 12% of the general population
(47), and several studies report higher ESS scores in OSA
patients compared with controls (48), other epidemiological
reports have questioned the association between EDS and OSA
(49, 50). Using data from the Wisconsin Sleep Cohort study,
Young et al. estimated a prevalence of 19% of EDS, assessed
with three subjective questions on sleepiness, among 30–60
year-old adults with OSA (AHI ≥ 5) (50). In a large US

community-based cohort, a minority (<50%) of middle-aged
and older subjects with moderate-to-severe sleep disordered
breathing (AHI ≥ 15) reported subjective sleepiness (51).
Conversely, a study conducted in Europe found up to 60%
of OSA middle-aged patients as having EDS (48), and a
retrospective cross-sectional study in an Asian middle-aged
population documented a relatively high prevalence (87.2%)
of EDS, assessed with the MSLT, among OSA patients (52).
The discrepancy in the prevalence data might be explained by
the complex interplay of several factors, including the use of
subjective or objective measures of EDS, differences in sample
sizes, patient selection, OSA severity, ethnicity, accompanying
comorbidities, and many other—often still unrecognized—
factors impacting OSA presentation and implication. For
example, aging is associated with a reduction in the symptom
of EDS in male patients with OSA (53), and with different
factors contributing to sleepiness compared with middle-aged
OSA populations (54), thus suggesting that OSA in the elderly
may be a distinct phenotype where the impact and related
therapeutic implication of EDS seem to be attenuated. Recently,
by using symptom-based cluster analysis in order to characterize
the clinical presentations of OSA, the conventional figure
of OSA symptomatic, sleepy patients was not the dominant
phenotype in the cohorts analyzed, and patients without
complaint of hypersomnolence (“minimally symptomatic, non-
sleepy”) had a high prevalence of CV comorbidities (26,
55).

Therefore, the identification of less symptomatic and no-
EDS OSA subjects may be particularly important in the
clinical practice because of the high prevalence and the
different association with comorbidities that may require tailored
treatment.

The OSA Dilemma: How to Treat No-EDS
Patients
Nasal CPAP therapy is the treatment of choice for severe OSA.
CPAP keeps the upper airway open during sleep, and thus
counteracts the negative suction pressure during inspiration
that promotes upper airway collapse in OSA patients, and
consequently normalizes sleep disturbance (56), improving
daytime sleepiness, sympathetic tone, and quality of life in
patients withOSA (57–59). In addition, CPAP therapy can reduce
blood pressure (60, 61), insulin resistance (62), and endothelial
dysfunction (63). Observational studies also showed that CPAP
use is associated with reduced risk of fatal and non-fatal CVD
events in patients with severe and moderate OSA (64–66).
However, the positive effects of CPAP therapy are not consistent
across the spectrum of OSA patients. Variable results have been
documented regarding CPAP effect on blood pressure, with
clinically significant reduction observed mostly in hypertensive
patients and in severe OSA (67, 68). Due to the high incidence of
hypertension and CVD complications in OSA and the potential
CVD benefit associated with blood pressure reduction, one could
speculate that CPAP would be useful in all subjects with OSA,
irrespective of sleepiness symptoms. However, short-term CPAP
treatment did not significantly reduce blood pressure and CVD
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risk in patients with severe OSA but without daytime sleepiness
(69–73). The recent MOSAIC (Multicenter Obstructive Sleep
Apnoea Interventional Cardiovascular) trial randomized 391
patients with no history of EDS or daytime symptoms of OSA to
receive either CPAP or standard care for 6 months. The primary
outcomes were changes in ESS score and the vascular risk, as
measured by the Pocock calculated 5-year fatal cardiovascular
risk score. CPAP treatment was associated with cost-effective
reduction in daytime symptoms but did not reduce calculated
cardiovascular risk (74). No treatment effect of CPAP was
found on risk markers of cardiac dysfunction (75, 76), and
markers of systemic inflammation interleukin (IL)-6, IL-10, C
reactive protein (CRP), tumor necrosis factor (TNF)-α (77). The
feasibility of long-term CPAP treatment in this group represents
another important issue that has been addressed by few studies
yielding conflicting results. Indeed, while EDS has been suggested
as one of the most important determinants of adherence to CPAP
because the EDS relief encourages patients to use the therapy,
no-EDS patients with OSA might be less motivated to comply
with CPAP because they do not experience subjective benefit
from the treatment. Although the few studies focused on no-
EDS OSA patients yielded conflicting results, a good adherence
to long-term CPAP therapy has been recently reported in no-
EDS, moderate-to-severe OSA patients, where OSA severity and
the presence of hypertension were predictors of CPAP adherence
(78).

Therefore, the management of no-EDS subjects, which are an
important proportion of OSA patients and are more likely to
present CVD, still constitutes a critical challenge mainly about
whether or not CPAP should be recommended in this group
of asymptomatic or minimally symptomatic subjects. Differently
from OSA patients with EDS, the available evidence do not
convincingly support CPAP use in no-EDS patients with OSA,
and there is no clearly established rationale for treatment of such
patients.

It should be acknowledged, however, that some clinical
trials in no-EDS OSA patients found that long-term (>1 year)
CPAP treatment is associated with a small reduction of blood
pressure in hypertensive patients (73, 79), and of CVD events
in patients with coronary artery disease after adjustment for
baseline comorbidities (80). However, the magnitude of these
effects was less than in the EDS subjects. Furthermore, in
accordance with a post-hoc analysis in a primary prevention
trial of the effects of CPAP on the incidence of hypertension
and CVD events in no-EDS patients (69), CPAP effectiveness
was evident only in patients who used CPAP for four or more
hours per night, suggesting that a high level of CPAP use for
a longer time is needed for CPAP to be effective in no-EDS
patients. Although the magnitude of CPAP effect on blood
pressure is modest, some authors advocate that even small
reducing effects on blood pressure in the range of 2 mmHg
may be clinically relevant as they have been associated with
a reduction in the incidence of CVD (81). Besides primary
endpoints, “intermediate” endpoints, which are considered as
predictors of cardiovascular risk, might be improved by CPAP
therapy. Six-month CPAP has been found to beneficially impact
on endothelial dysfunction in asymptomatic patients, as assessed

by flow-mediated dilatation, with longer nightly usage of CPAP
associated with larger improvements (82). The improvement in
endothelial function suggests that patients with OSA might have
increased CVD risk and may benefit from CPAP treatment in
terms of cardiovascular risk reduction. Accordingly, compared
to well-matched control subjects without OSA, no-EDS OSA
patients displayed elevated circulating levels of total, platelet-
derived, and leukocyte-derived micro particles, an important
link between OSA and pro-atherogenic mechanisms such as
vascular inflammation, thrombosis, endothelial dysfunction,
and atherosclerosis (83). Many OSA patients with CVD, such
as chronic heart failure, do not exhibit EDS due to higher
sympathetic activity leading to alertness (55, 84). A recent
meta-analysis of randomized controlled trials found that the
left ventricular ejection fraction, a marker of heart failure risk
and status, increased significantly after CPAP treatment of
OSA patients with heart failure (85). Therefore, caution should
be used in deciding to treat or not patients solely based on
EDS as well as about discarding the benefits of CPAP on the
basis of the available limited evidence. It is also important to
take into account the effects of potential confounding and/or
etiological factors characterizing OSA, including cardiovascular
and metabolic comorbidities that are known to influence the
phenotypic expression of OSA and may mask or reduce the
beneficial effects of CPAP treatment.

Large randomized studies with long-term follow-up are
needed to assess the impact of CPAP on CVD outcomes in OSA
patients without EDS, thus providing more solid foundation to
guide therapeutic decisions. An ongoing randomized controlled
trial will contribute to address this critical issue (86). An
important step forward in the understanding of treatment
response by EDS vs. no-EDS patients with OSA is represented
by a more detailed identification of factors and potential
pathophysiological mechanisms contributing to differentiate and
identify these two groups of patients.

Predictors of EDS: Insight From Human
Studies
Several studies attempted to investigate the factors that
could differentiate between patients with EDS vs. those
without EDS in order to identify correlates and possible
predictors of these two phenotypic presentations. Many studies,
which were performed in sleep-clinic or community-dwelling
populations, compared a number of variables (demographics,
polysomnography, comorbidities, metabolic factors, etc.) in
patient groups with either clear-cut EDS or no-EDS, as assessed
by ESS score and/or MSLT. The results are difficult to compare,
owing to differences in epidemiologic design, degree of OSA,
ethnicity, statistical methodology, and tools used to evaluate EDS
among different studies. However, they provide an important
insight into this phenomenon (Table 1).

Male gender, younger age, higher body mass index have been
frequently associated with the presence of EDS (33, 51, 87).
Either sleep apnea or sleep fragmentation or both have been
classically regarded as the predominant mechanisms leading
to EDS in OSA (1, 97). According to earlier studies, one of
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the hypothesized mechanisms underlying EDS is the worse
quality of nocturnal sleep due to the obstructive events, because
several parameters indicative of alterations of sleep architecture
including sleep fragmentation (e.g., sleep latency, sleep efficiency,
slow wave, and REM sleep, arousal index, etc.) and/or sleep
deprivation (e.g., total sleep time) were associated with EDS
in OSA patients (49, 98, 99). Other authors did not find an
independent association of sleep fragmentation with EDS (87, 88)
and considered the presence of EDS as a result of nocturnal
hypoxemia, as evidenced by several indices of oxygenation,
mainly in severe OSA (87, 90, 93, 100, 101). In a small cohort of
severe OSA patients, EDS subjects displayed shorter sleep latency,
higher sleep efficiency, and worse nocturnal oxygenation than
age-, BMI-, and gender-matched subjects without EDS. Here,
no significant difference in AHI, arousal index, and sleep stage
distribution could be found (87). The authors postulated that the
peculiar pattern of sleep efficiency and latency in EDS patients
is a consequence and not a cause of EDS and, in accordance
with earlier reports (100), they conclude that hypoxemia may
underlie EDS. These findings were confirmed and expanded in
a larger cohort of 2,882 patients with severe OSA (AHI ≥ 30)
with or without EDS (assessed using a combination of both
ESS score and MSLT), demonstrating that EDS subjects sleep
longer and more efficiently than patients without EDS, and
are also characterized by only slightly increase in respiratory
disturbances, as evidenced by higher AHI and lower nocturnal
oxygenation, and by a marginal, albeit significant, degree of
sleep fragmentation, as evidenced by an increase in arousal
index. Therefore, in this study sleep apnea and fragmentation
were not found as major clinically important determinants
of EDS in OSA (88). However, by analyzing individual and
combined hypoxemia variables in OSA cohorts with a wide
range of OSA severity, Uysal et al. (93) found that EDS and
hypoxemia were significantly associated only in the more severe
patients (AHI > 50), whereas non-hypoxemic factors might be
responsible for EDS in patients with milder degree of OSA. Using
the joint ESS and MSLT criteria proposed by Mediano et al.
(87) to identify EDS and no-EDS patients, and simultaneously
assessing a large number of nocturnal determinants of EDS,
in a small cohort including patients with mild sleep apnea
Sun et al. observed a more severe sleep AHI and hypoxemia,
sleep fragmentation (characterized by increased arousals), low
quality of sleep, and increased pressure of nocturnal sleep drive
(as reflected by increased total sleep and slow wave sleep)
in EDS compared with no-EDS patients (94). Similarly, using
the MSLT, Seneviratne et al. (52) showed that severe snoring,
higher sleep efficiency, and an increase in total arousals seemed
to be the most useful predictors for EDS in patients with
OSA.

By assessing differences in demographic and
polysomnographic variables between EDS and no-EDS severe
OSA patients, Oksenberg et al. (89) found that, compared with
no-EDS patients, EDS patients had a more severe OSA, as
documented by worse sleep-related breathing parameters such
as apnea index (AI), AHI, minimal SaO2 in rapid eye movement
and not rapid eye movement sleep, and by disturbed sleep
patterns characterized by lighter and more fragmented sleep. At

the multivariate analysis, AI was found as a significant negative
prognostic factor for EDS.

Role of Comorbidities

Although the degree of sleep fragmentation and hypoxemia are
the two most commonly accepted explanations for EDS in OSA,
the literature reports a wider variety of factors in addition to
sleep disturbances that can drive sleepiness and can explain
why many OSA patients do not report EDS (33, 51, 92, 102).
Indeed, it has become increasingly clear that the pathogenesis
of EDS in OSA is multifactorial, and factors other than sleep
apnea and fragmentation may contribute to explain EDS in OSA.
Supportively, EDS can persist after significant reduction in sleep-
disordered breathing with effective CPAP (103), and, as stated
above, studies in clinic and general population samples suggested
that the relationship between OSA severity and subjective
sleepiness is weak or even absent (32, 51).

Besides polysomnographic measures, in a cross-sectional
study in a subsample of the Sleep Heart Health Study self-
reported common comorbid conditions in OSA including
insomnia, partial sleep deprivation, periodic limb movements,
and obstructive pulmonary diseases, especially COPD, were
found to be risk factors for EDS (51). In a sleep clinic-
based sample, the most powerful predictors of EDS are OSA
severity, depression and diabetes, followed by the presence of
comorbidities such as COPD, a history of heart disease and
stroke, body mass index, and alcohol use (92). Although these
comorbid conditions are independently correlated with EDS,
their role in the development and treatment of sleepiness in OSA
needs to be further addressed.

Since EDS persisted in many patients despite significant
reduction in sleep-disordered breathing with CPAP therapy,
some authors evaluated potential predictors of this residual
sleepiness in CPAP-treated OSA patients (102). In keeping with
previous results (92), a history of depression, diabetes, heart
disease, and an initial lower OSA severity and increased ESS
score significantly and independently predicted the occurrence of
residual sleepiness in CPAP-treated patients (102), suggesting the
importance of considering these clinical factors in anticipating
the response to therapy in terms of resolution of EDS.

Role of Metabolic Diseases

Interestingly, some of the clinical factors consistently found
to be independently associated with EDS are impaired glucose
metabolism and insulin resistance (45). Evidence suggest that
EDS is an independent risk factor for diabetes in the general
population (104) and in severe OSA (105). EDS patients with
severe OSA exhibited worse nocturnal hypoxemia (mean and
minimum oxygen saturation), and altered plasma levels of
glucose, insulin, high density lipoprotein (HDL), as well as
evidence of insulin resistance (higher HOMA index), compared
with age-, OSA severity-, and body mass index-matched no-
EDS patients which are instead similar to the healthy control
group. Three-month CPAP improved both EDS and insulin
resistance in EDS patients while no reduction was observed
in no-EDS patients. Therefore, the presence of EDS seems to
predict a favorable response to CPAP treatment in improving
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insulin resistance independently of obesity, thus representing
a particular OSA phenotype (45). Accordingly, while levels
of hCRP, a marker of systemic inflammation, and lipidemic
profile did not differ between EDS and no-EDS OSA patients,
EDS patients are characterized by hyperglycemia and insulin
resistance compared to no-EDS ones (46). These results
collectively suggest EDS as a surrogate marker useful to identify
patients with OSA at increased risk of developing metabolic
syndrome and diabetes. In agreement with these data, occurrence
of metabolic syndrome was significantly higher in severe OSA
patients (AHI≥ 30/h) with EDS compared with no-EDS patients,
and ESS score was an independent predictor of metabolic
syndrome after adjustment for body mass index, currently
smoking, alcohol consumption, AHI, and oxygen saturation
(96). Postulated mechanisms underlying the association of EDS
with impaired glucose homeostasis and insulin resistance involve
the contribution of sleep fragmentation-associated increased
sympathetic tone and adrenocortical activity (106) as well as
of intermittent hypoxia (107), ultimately resulting in decreased
insulin-mediated glucose uptake, and increased muscle glycogen
breakdown, hepatic glucose output, and release of free fatty acids.
In addition, intermittent hypoxia might induce inflammation,
oxidative stress, and endothelial dysfunction, all contributing to
the development of cardiometabolic diseases (108).

Role of Genetic Factors

Of note, many other potentially important factors not explicitly
taken into account in these studies may explain the difference
between EDS and no-EDS patients and even might have been
confounding factors in previous studies. These factors include,
but are not limited to, nutritional status, physical activity, body
fat distribution, and genetic factors. Therefore, confirmation in
large populations in whom these factors are adequately controlled
is required. In this regard, complex interaction of subject genetic
make-up with environmental factors may ultimately determine
the susceptibility or not to develop sleepiness. Inter-individual
phenotypic variation has been described in the arousal response
to each apnea, and it has been hypothesized that no-EDS
patients are less susceptible to the cortical effects of apneas, thus
experiencing less sleep disruption (109, 110). Approximately 30–
40% of the variance in the AHI has been estimated to be explained
by genetic factors, and candidate gene and genome-wide
association studies have highlighted that genetic factors may play
a role not only conferring disease risk but also modulating the
way individuals deal with the disease consequences, influencing
pathways involved in AI index, propensity for hypoxemia and
respiratory arousability, sleep–wake characteristics, craniofacial
development, inflammation, ventilatory control (111, 112).
Genetic variants found to be associated with OSA traits
include polymorphisms in inflammatory cytokines, such as
CRP, TNF-α, IL-6, glial cell line–derived neurotrophic factor
(GDNF), involved in the ventilator control pathway, receptor of
hypocretin/orexyn, a neurotransmitter with effects on sleep/wake
regulation (112). Polymorphisms in the Apolipoprotein E gene
have been shown to be associated with sleep parameters in OSA
patients, emerging as potential modulators of the deleterious
effects of intermittent hypoxia and sleep fragmentation on the

sleep architecture (113): in particular, ε2 allele carriers showed
longer sleep latency, lower sleep efficiency, higher arousal index,
higher percentage of stage 1 and a lower percentage of stages 3+4,
and spent more time awake, even after correction for potential
confounders such as age, sex, and African ancestry and correlated
lipid levels.

Another emerging mechanism that may predispose to
EDS is represented by epigenetic changes (DNA methylation,
post-translational modifications of histone proteins, chromatin
remodeling, and transcriptional regulation by non-coding
RNAs-miRNAs), i.e., changes in gene expression without a
corresponding change in the DNA sequences that are highly
modified in response to environmental factors. A recent large-
scale DNAmethylation analysis in peripheral bloodmononuclear
cells identified differentially methylated loci that were shown
to correlate with both AHI and the patients’ susceptibility
to EDS, suggesting different epigenetic-dependent phenotypes.
Among these epigenetic changes, natriuretic peptide receptor
2 (NPR2) hypomethylation, and speckled protein 140 (SP140)
hypermethylation were associated with EDS in patients with
OSA (114). Inferences on the causal role of epigenetic
modifications in OSA have been provided by studies in rats where
neonatal intermittent hypoxia induced DNA hypermethylation
of antioxidant enzyme-encoding genes, such as that encoding
superoxide dismutase 2, in the carotid body and adrenal medulla,
resulting in oxidative stress. The authors suggested that these
epigenetic modifications exaggerated hypoxic sensing and induce
autonomic dysfunction in adult rats, including increased hypoxic
ventilatory response and sleep apnea events (115, 116). Further
investigations are required to validate and expand these results,
and to clarify the cause-effect relationship between epi-/genetic
factors and OSA, as well as the contribution to different OSA
outcomes including EDS and even treatment responses.

Inflammation and Oxidative Stress in the
Pathogenesis of EDS: Animal Models and
Therapeutic Implication
An unresolved and intensively studied issue in OSA field regards
the pathophysiological mechanism(s) linking sleep apnea with
adverse consequences, mainly CVD as well as neurobehavioral
complaints including EDS. The pathophysiologic mechanisms
proposed for OSA include sympathetic hyperactivation,
impairment of vasomotor reactivity, inflammation, oxidative
stress, endothelial dysfunction, and metabolic disorders.
Numerous comorbidities—including diabetes, CVD, and
obesity—are associated with the disease, making difficult in
clinical studies to determine whether comorbidities increase
the propensity for adverse effects or whether OSA alone causes
such effects. Therefore, animal models are instrumental in
elucidating the pathophysiological mechanisms determining the
consequences of OSA and to mimic some manifestations of OSA
in humans under well-controlled experimental conditions and
independently of comorbidities. Animal models used to mimic
and study sleep-disordered breathing can be either spontaneous
or induced (117). Spontaneous models for OSA have been
documented in the English bulldogs and in pig, which were
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reported to have an abnormal narrowing upper airway anatomy.
Those models may reproduce all the clinical features of human
OSA, but their relatively low availability and mild hypoxemia
have spurred interest in induced models. Because numerous
clinical studies (described above) have suggested that hypoxemia
may predict EDS and other consequences of OSA, researchers
have developed animal models of frequent brief hypoxemic
episodes to model the oxygenation patterns of moderate–severe
OSA and examine the effects of sleep apnea oxygenation patterns
on physiological processes associated with OSA. Invasive models
reproduce OSA in tracheostomized animals installed with an
intermittently blocked endotracheal tube (118).

Non-invasivemodels, such as the CIHmodel, easily reproduce
the chronic repetitive hypoxia-reoxygenation process and have
been widely used to evaluate various consequences of OSA. This
model allows the evaluation of oxygen desaturation, hypercapnia,
sustained hypoxia, and sleep fragmentation. Animals either
breathe with a mask or are put in specific chambers or
cages, where they intermittently breathe nitrogen-enriched air
to produce hypoxia, alternating with oxygen or air for the
reoxygenation (119). An important limitation of this model is the
lack of an upper airway occlusion that does not allow to evaluate
the potential consequences of breathing efforts.

The CIH models have shown to recapitulate protracted
hypersomnolence, elevation in blood pressure, central nervous
system damage, and anomalies in glucose and lipid metabolism
(120). In particular, selective neuronal cell losses occur in
brain regions mediating sleep–wake regulation (120, 121),
accompanied by activation of several pro-inflammatory
pathways, such as platelet-activating factor, release of
glutamate, induction of cyclooxygenase (COX)-2, release of
proinflammatory cytokines, as well as by oxidative modifications,
such as nitration, lipid peroxidation, and carbonylation in
many brain regions, including wake-active regions and the
hippocampus (122–125). Several subcellular compartments
seem to be involved in the production of reactive oxygen species
(ROS), such as mitochondria, endoplasmic reticulum, cellular
membrane, lysosomes, peroxisomes, through enzymatic systems
which include NADPH oxidase, xanthine oxidase, phospholipase
A2, lipoxygenases, COX-2, and inducible nitric oxide synthases
(iNOS) (126). Repetitive episodes of ischemia/reoxygenation
in OSA patients could lead to dysfunction of mitochondria
and endoplasmic reticulum and activation of NADPH oxidase,
which may cause overproduction of ROS and following protein,
lipid, and DNA peroxidation damage, resulting in substantial
inflammatory response. In the CIH model of sleep apnea, iNOS
has been found to contribute to CIH-driven nitration and
lipid peroxidation injuries and to the inflammatory injury to
wake-promoting regions of the brain, such as the laterobasal
forebrain and posterolateral hypothalamus (124). In addition,
genetic ablation or pharmacologic inhibition of NADPH
oxidase, one of the major enzymes involved in the production
of oxidants, prevented long-term hypoxia reoxygenation-
induced hypersomnolence, the associated proinflammatory
gene response (TNF-α, COX-2, iNOS), carbonylation, and
lipid peroxidation injury to wake-active regions (125). Being
also critically implicated in hypertension and ischemic heart

disease, that are known adverse consequences of OSA, NADPH
oxidase may represent an interesting pharmacotherapeutic
target for both neurobehavioral and cardiovascular morbidities
of OSA. Intriguingly, sex differences have been reported in
the susceptibility to EDS in human subjects and, accordingly,
animal models indicated less severe brain oxidative injuries and
hypersomnolence in females in response to IH, probably due a
neuroprotective role by estrogen (127).

Hypoxia can increase iNOS, NADPH oxidase, and other
inflammatory and pro-oxidative mediators through the
activation of the hypoxia-sensitive transcription factors hypoxia
inducible factor (HIF)-alpha, nuclear factor-like 2 (Nrf2),
activator protein 1 (AP1), and/or nuclear factor (NF)-κB,
and triggering the mitogen-activated protein kinase (MAPK)
signaling cascade (128, 129). In this regard, Ryan et al. previously
reported that while sustained hypoxia leads to the activation of
HIF-1, resulting in adaptative and protective responses, in cell
culture models of IH as well as in OSA patients a preferential
activation of inflammatory pathways regulated by NF-κB has
been clearly demonstrated (130). However, the contributory role
of each transcription factor may be tissue-specific (131).

Collectively, these results gathered from animal models of
hypoxia are supportive of some potential mechanisms, including
inflammation and oxidative stress, able to contribute to the
pathophysiology of OSA and, in some case, EDS, suggesting also
possible therapeutic targets to improve OSA consequences and
residual EDS in persons treated for sleep apnea.

These experimental findings support the demonstrated
efficacy of antioxidant therapy against neuronal injury (123),
and the observation that OSA in humans is accompanied by
activation of pro-oxidant enzymes, increased generation of free
radicals and resultant oxidative stress (132). Correspondingly,
a number of studies have also suggested that treatment
with CPAP could attenuate oxidative stress levels in OSA
patients (133, 134). However, other studies did not find a link
between OSA and oxidative stress and questioned the positive
results because of confounding factors, such as age, obesity,
smoking, dietary habits, hypertension, diabetes, hyperlipemia,
coronary heart disease, metabolic syndrome, and other
concurrent comorbidities, which might per se augment oxidative
stress (135).

Several studies have also documented increased circulating
levels of inflammatory and somnogenic cytokines including
TNF-α, IL-6 as well as ICAM-1, in patients with OSA compared
with controls, and a significant fall with effective CPAP
treatment (91, 136). TNF-α gene polymorphisms (−308G)
seems to be associated with the magnitude of sleep latency
and EDS in children OSA population (137, 138). Data on
the association between levels of inflammatory markers and
EDS are conflicting, with some studies reporting a significant
correlation of EDS with the levels of inflammatory markers
independently of comorbidities (139–141), and other studies that
failed to document such an association (142). As stated in the
case of oxidative stress, it should be taken into consideration
that obesity, diabetes, and CV diseases are associated with
inflammatory responses both at tissue and systemic levels, and
many studies did not exclude these conditions that could have a
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FIGURE 1 | Summary of main different features between EDS and no-EDS OSA phenotypes. In red different features for no-EDS phenotype and in blue different

features for EDS phenotype.

major impact on the research outcomes. In particular, obesity-
associated daytime sleepiness has been suggested to be mainly
associated with metabolic factors and less with sleep apnea and
sleep disruption, and to be mediated by inflammatory cytokines
(143). Interestingly, Vgontzas et al. have shown a significant
reduction in EDS with the TNF-α receptor antagonist etanercept
in a pilot study, thus proposing TNF-α and IL-6 as mediators of
EDS (144). It is known that COX-2 upregulation in the brain, as
well as in other tissues, results in prostaglandin (PG)H2 synthesis
that can be converted in wake-sleep and proinflammatory
mediators PGE2 and PGD2, this last a somnogenic factor
(145). In agreement with the observed intermittent hypoxia-
induced COX-2 expression and activity, a pilot study has
shown that circulating levels of PGD synthase are increased in
OSA patients with EDS compared with no-EDS patients, thus

suggesting a possible pathophysiological role for COX-2/PGD
synthase/PGD2 signaling in EDS (146) (Figure 1).

These several mechanisms described above may lead
to neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), dementia with Lewy bodies,
multiple system atrophy (MSA), hereditary ataxias, and
amyotrophic lateral sclerosis (ALS) (147). Indeed, some sleep
disturbances including sleep-disordered breathing can be the
first manifestation of the disease, during its early stages, and an
independent risk factor for their development (5, 148).

Cell loss of the brainstem nuclei that modulates respiration,
and dysfunction of pharyngeal, laryngeal, and diaphragmatic
muscles can increase the risk for sleep-disordered breathing
in neurodegenerative diseases (147). OSA may lead to
neurodegenerative process with mild cognitive impairment
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and dementia (149) through chronic nocturnal hypoxemia
(150, 151), abnormal cerebral hemodynamic (152), sleep
fragmentation (153), mediation through CVD risk factors (e.g.,
hypertension, diabetes, inflammation), stroke (both clinical and
subclinical) (154, 155), Aβ plaque build-up (156) and interaction
with the APOE ε4 risk allele (157). Chronic intermittent hypoxia
drives a number of the pathological mechanisms, including
neuroinflammation, microangiopathy, and mitochondrial
dysfunction related to enhanced Aβ deposition and tau
phosphorylation. Aβ activates microglia and astrocytes and
enhances oxidative imbalance, mediated by neuroinflammation
with disruption of synaptic function and upregulating neuronal
dysfunction and memory decline (158). A recent study reported
elevated concentrations of phosphorylated-tau and Aβ 40, Aβ

42, and total Aβ levels in middle-aged cognitively normal OSA
patients compared to healthy controls (159). Relatively young
patients with moderate-severe OSA have elevated concentrations
of tau and IL-6 in peripheral blood samples, compared to
patients with mild OSA and healthy controls (160). Peripheral
tau concentrations are correlated with AHI, suggesting that
this biomarker may be associated with OSA severity. Higher
cerebrospinal fluid total tau levels are associated with OSA and
cognitive impairments (161).

A significant association has been found in PD between OSA
and the disabling non-motor symptoms of cognitive dysfunction,
as well as EDS. Both of these associations persisted inmultivariate
analyses after adjustment for several potential confounding
factors. These relationships were independent of other sleep
disorders frequently present in PD and associated with cognitive
dysfunction (162).

Although not exhaustively, these mechanistic data may
provide an interesting framework for a deeper understanding of
the pathophysiology and different clinical manifestations of OSA,
including sleepiness, and potential avenue(s) for developing
preventive strategies and therapeutic interventions and for
attenuating neurodegenerative processes, memory, and cognitive
dysfunction among OSA patients, as well.

CONCLUSIONS

OSA is a serious condition with major consequences and a
troubling prevalence. CPAP therapy is the treatment of choice
for severe OSA but its positive effects are not consistent across
the spectrum of OSA patients. Currently, there is no method
to predict which treatments will have the best outcomes in
individual patients. Methods have been developed to quantify
specific traits contributing to OSA. We tried to collect all data
available in the literature about a specific group of OSA patients

without one of the primary symptoms, EDS, to understand if this
recently well-known clinical phenotype is only a clinical typing
or is a different endotype or pathology.

Data are heterogeneous in sampling, different cohorts, no
standardized diagnostic methods for EDS. A crucial issue
remains the limitations of the tests used to evaluate EDS
in OSA, with low statistical correlation and differences in
terms of underlying mechanisms and prognostic value between
objective and subjective measures of EDS. Therefore, studies
are mandatory to more precisely address this debate and
improve methods to distinguish EDS and no-EDS in OSA
with clear consequences for the clinical diagnosis, management,
and treatment of OSA. Furthermore, most studies of OSA
pathophysiology do not consider specifically EDS vs. no-EDS or
do consider but only in a small number of cases or not as a
primary endpoint. Many studies of OSA genetic and genomics
during the last 10 years do not take into account the absence
of EDS in many OSA patients, but include other variants
such as AHI, obesity, craniofacial malformation, smoking.
However, to confirm and better understand the real differences
between EDS and no-EDS phenotypes, future genomic, and
genetic evaluations as well as the role of environmental factors
are mandatory. EDS is so widespread in OSA patients that
seems to look as a unique entity together with the definition
of diagnosis but its real prevalence is very heterogeneous
in different study sample. Nevertheless, the results obtained
so far are tremendously encouraging for showing significant
differences in many aspects of OSA clinical profile if EDS
is present or not. These differences may be considered by
clinicians and researchers for translation into a testing for OSA
screening, diagnosis, treatment, and prognosis in EDS or no-EDS
phenotypes.

In our opinion, there is ground to open new perspectives
for the implementation of routine clinical care with different
clinical approaches of OSA patients without EDS for OSA
management (diagnosis, identification of biomarkers and genetic
risk assessment, predisposition to disease development and
progression, and response to treatment). This approach could
improve to customize combination therapy targeted to a patient’s
specific pathology to enhance both efficacy and long-term
adherence to OSA treatment and significantly reduce the social,
economic, and health negative impact of OSA.
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