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Abstract

Background: Tumor cells with stem-like phenotype and properties, known as cancer stem cells (CSC), have been identified
in most solid tumors and are presumed to be responsible for driving tumor initiation, chemoresistance, relapse, or
metastasis. A subpopulation of cells with increased stem-like potential has also been identified within sarcomas. These cells
are endowed with increased tumorigenic potential, chemoresistance, expression of embryonic markers, and side
population(SP) phenotype. Leiomyosarcomas (LMS) are soft tissue sarcomas presumably arising from undifferentiated cells
of mesenchymal origin, the Mesenchymal Stem Cells (MSC). Frequent recurrence of LMS and chemoresistance of relapsed
patients may likely result from the failure to target CSC. Therefore, therapeutic cues coming from the cancer stem cell (CSC)
field may drastically improve patient outcome.

Methodology/Principal Findings: We expanded LMS stem-like cells from patient samples in vitro and examined the
possibility to counteract LMS malignancy through a stem-like cell effective approach. LMS stem-like cells were in vitro
expanded both as ‘‘tumor spheres’’ and as ‘‘monolayers’’ in Mesenchymal Stem Cell (MSC) conditions. LMS stem-like cells
displayed MSC phenotype, higher SP fraction, and increased drug-extrusion, extended proliferation potential, self-renewal,
and multiple differentiation ability. They were chemoresistant, highly tumorigenic, and faithfully reproduced the patient
tumor in mice. Such cells displayed activation of EGFR/AKT/MAPK pathways, suggesting a possibility in overcoming their
chemoresistance through EGFR blockade. IRESSA plus Vincristine treatment determined pathway inactivation, impairment
of SP phenotype, high cytotoxicity in vitro and strong antitumor activity in stem-like cell-generated patient-like xenografts,
targeting both stem-like and differentiated cells.

Conclusions/Significance: EGFR blockade combined with vincristine determines stem-like cell effective antitumor activity in
vitro and in vivo against LMS, thus providing a potential therapy for LMS patients.
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Introduction

Soft tissue sarcomas constitute a heterogeneous group of rare

tumors, accounting for 1% of adult neoplasias and 10% of

pediatric malignancies [1]. Leiomyosarcomas (LMS), representing

5 to 10% of all soft tissue sarcomas, are malignant soft tissue

tumors with smooth muscle differentiation. Similarly to other types

of sarcomas, they most probably arise from the undifferentiated

cells of mesenchymal origin, the Mesenchymal stem cells (MSC)

[1,2,3,4,5]. Patients are treated with wide surgical excision

followed by radiotherapy in most cases [2,3]. Despite this local

treatment, the rate of metastatic relapse is about 40% at the 5 year

follow up [6]. Over the last few years, adjuvant chemotherapy has

demonstrated increased survival benefit for treated patients.

However, the outcome remains poor, and patients with relapsed

disease remain largely incurable. In the past, all subtypes of soft

tissue sarcomas were merged into the same retrospective analyses,

thus reporting a global weak response to chemotherapy in clinical

trials and a median survival generally lower than 1 year. More

recently, the analysis of selected histological variants exposed to

specific histology-tailored treatments, have demonstrated a better

response rate [7,8,9,10]. These retrospective analyses and

subsequent prospective studies documented clinical benefit for

LMS patients treated with doxorubicin, gemcitabine/docetaxel

combination regimens, temozolomide and the recently introduced

biological agent trabectedin [7,11,12,13,14]. However, the clinical
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outcome in relapsed patients remains poor, calling for innovative

drugs directed against key molecular targets involved in tumor

development and progression. The AKT-mTOR pathway activa-

tion has been identified as a key event for the development of LMS

[15]. Therefore, targeting key elements of these survival pathways

may lead to more effective antitumor strategies against LMS. In

addition, even targeting deregulated oncogenic and survival

pathways might not be sufficient to achieve tumor cell death,

since other mechanisms may contribute to chemoresistance of soft

tissue sarcomas, including their marked ability to limit intracellular

accumulation of anti-neoplastic agents by active drug extrusion

[16]. Increased chemoresistance and survival, as well as elevated

membrane transporter activity, has been associated to stem-like

cells. Therefore, innovative hints for the battle against solid tumors

may emerge from cancer stem cells (CSC) research [17].

Important studies have highlighted a key role of CSC in

development, maintenance, metastasis, chemoresistance and

relapse of solid tumors, indicating these undifferentiated trans-

formed stem cells as primary targets for more effective anti-cancer

therapies [18,19,20,21,22,23,24]. CSC have been recently iden-

tified in bone sarcoma cell lines as a small subpopulation of cells

capable of forming suspended spherical, clonal colonies in

anchorage independent, serum-starved conditions, and expressing

embryonic and MSC antigens [25,26,27]. Another study identified

sarcoma initiating-cells in different types of sarcomas based on

their ability to extrude Hoechst 33342 dye, determining their Side

Population (SP) phenotype [28]. SP cells displayed high tumor-

igenic potential, while the proportion of SP cells correlated with

tumor aggressiveness, suggesting that interfering with the SP

phenotype or with other CSC properties could constitute a

strategy to counteract soft tissue sarcoma aggressiveness [28,29].

These reports highlighted the possibility to investigate the

existence and nature of CSCs in different types of soft tissue

sarcomas, paving the way for potential identifycation of innovative

therapeutic targets for these deadly cancers [29]. Here, we exploit

two different technologies to isolate and expand LMS-CSCs. The

availability of exponentially growing CSCs, allowed us to obtain in

vitro characterization of the tumorigenic population and develop

preclinical therapeutic models to investigate more effective

treatments for LMS patients.

Materials and Methods

Ethics Statement
Tumor samples were obtained in accordance with consent

procedures approved by the Internal Review Board of Depart-

ment of Surgical Sciences, Division of General Surgery, La

Sapienza University, Rome, Italy and by the International Review

Board for Research on solid tumors (Research Line 4) of Division

of Pathology, Centro di Riferimento Oncologico, Istituto Nazio-

nale Tumori, Aviano, Italy. All patients agreed to participate in

the study and signed an informed consent form.

According to the Legislative Decree 116/92 which has

implemented in Italy the European Directive 86/609/EEC on

laboratory animal protection, the research protocol ‘‘Analysis of

effectiveness and tolerability of anti-tumor therapeutic agents in

mice carrying cancer stem cell-derived tumors’’ (Principal

Investigator Dr. Adriana Eramo) has been approved by the

Service for Biotechnology and Animal Welfare of the Istituto

Superiore di Sanità and authorized by the Italian Ministry of

Health (Decree nu 217/2010-B). The animals used in the above

mentioned research protocol have been housed and treated

according to Legislative Decree 116/92 guidelines, and animal

welfare was routinely checked by veterinarians from the Service

for Biotechnology and Animal Welfare.

Isolation and Culture of Leiomyosarcoma Stem and
Differentiated Cells

Tissue dissociation and culture of cell suspension were obtained

as previously described for tumor sphere obtainment [18,19].

Alternatively, cell growth of undifferentiated LMS cells as

adherent cultures was obtained in culture conditions used for

MSC (a-MEM medium supplemented with 20% MSC-suitable

FBS, Stem Cell Technologies). Differentiated primary cultures

were obtained as adherent monolayers following growth condi-

tions suitable for sarcoma cell lines. Cells obtained from freshly

dissociated tumors were cultivated in DMEM medium supple-

mented with 10% FBS, or alternatively tumor spheres were

dissociated and cultured under the same conditions.

Self-renewal Assay
To evaluate the fraction of self renewing cells, undifferentiated

or differentiated LMS cells or MSC were plated on 96-well plates

at a concentration of a single cell per well. Wells containing either

none or more than one cell were excluded from the analysis.

Colonies were counted after 4 weeks. For secondary sphere

formation assay, single spheres obtained from primary cloning

were dissociated in single cells, re-plated and treated as for primary

spheres.

Mesenchymal Differentiation of LMS Stem like-cells
LMS stem-like cell differentiation toward mesenchymal lineages

was obtained using hMSC differentiation bullet Kit-Osteogenic, -

Chondrogenic or –Adipogenic following the manufacturer’s

instructions (Lonza, East Rutherford, NJ, USA). The acquisition

of differentiation markers was evaluated by visible chemical/stain

reaction with Oil red O (Sigma-Aldrich, St. Louis, Mo, USA) for

adipogenic, with Alkaline Phosphatase substrate kit III (Vector

Laboratories, Burlingame, CA, USA) for osteogenic or by alcian

blue-PAS staining of differentiated cell pellet after cytoinclusion.

Flow Cytometry, SP and Drug Efflux Ability Assay
Flow cytometry antibodies used were: PE-conjugated anti

CD105 from R&D, PE-conjugated anti CD146, CD166 and

CD73, FITC-conjugated anti CD44, PE-cy5 conjugated anti c-Kit

(all from BD) and Smooth Muscle Actin (Dako). Stained cells were

analyzed with FACSCanto (BD). For SP, LMS stem-like cells and

LMS differentiated cells (16105) were incubated for 90 min with

10 mg/ml Hoechst 33342 (Molecular Probes) dye alone or with

50 mM Verapamil (Sigma), counterstained with 100 mg/ml 7AAD

to exclude non-viable cells and analyzed with a dual wavelength

analysis (blue, 424–444 nm; red, 675 nm) with excitation with

350 nM UV light (FACS LSRII, BD). For drug efflux evaluation,

intracellular doxorubicin retention assay was performed as

previously described. Briefly, 2 hours of exposure to 5 mM

doxorubicin (uptake) was followed by washing and overnight

incubation in fresh culture medium (efflux). Intracellular doxoru-

bicin-linked fluorescence was measured by flow cytometry.

Cell Cycle Analysis
Cells (16105) were washed with PBS and re-suspended 0.1%

sodium citrate, pH 7.4/0.1% Triton X100, containing 100 mg/ml

propidium iodide and 200 mg/ml RnaseA. After 2 hrs of

incubation at 4uC, samples were analyzed with FACSCanto (BD).

LMS Stem-Like Cell Targeting by EGFR Inhibition

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e46891



Immunohistochemistry
Formalin-fixed paraffin-embedded 3 micron tissue sections were

deparaffinized in xylene and rehydrated in a graded series of

alcohol. The tissue sections were automatically stained for Smooth

Muscle Actin (Roche Diagnostics, clone 1A4), Ki-67 (Roche

Diagnostics, clone 30-9), on Benchmarker XT (Roche Diagnostics)

following the manufacturer’s directions. Immunohistochemical

stainings for pEGFR (clone 53A5, Cell signaling technology), EGF

(polyclonal, Novus Biological), myogenin, myoglobin, vimentin,

muscle specific actin HHF35 and caldesmon (all from Roche) were

performed using avidin-biotin-peroxidase complex (UltraTek

HRP, Scy Tek Laboratories). Slides were counterstained with

hematoxylin and permanently mounted.

Western Blot and Reverse Phase Phosphoproteomic
Array (RPPA)

Proteins were resolved on 4–12% polyacrylamide gels

(Invitrogen) and transferred to nitrocellulose membranes. Rabbit

polyclonal anti-Phospho-Akt (Ser473), -Phospho-S6 (Ser240/

244), -Phospho EGFR (Tyr 1068) were purchased from Cell

Signaling. Mouse monoclonal anti-PTEN was purchased from

BD, anti-Phospho-ERK (clone E-4), rabbit polyclonal anti-Bcl-2

and anti-BAX (N20) were from Santa Cruz. Mouse monoclonal

b-actin clone (A5441) was by Sigma.

RPPA was performed as previously described [30]. Briefly, for

RPPA analysis samples were lysed using T-PER (Tissue Protein

Extraction Reagent, Thermo Scientific, Waltham, MA, USA) and

diluted up to 0.5 mg/mL with Novex Tris-Glycine SDS Sample

Buffer 2X (Invitrogen Corporation, Carlsbad, CA, USA). Subse-

quently, protein lysates were spotted in a two-fold 5 point dilution

curve onto nitrocellulose-coated microscope slides via Aushon

Arrayer 2470 (Billerica, MA, USA). Then each slide underwent

incubation with a single validated primary antibody using DAKO

Autostainer Plus (DAKO Corporation, Glostrup, Denmark).

Signal amplification was performed by using DAKO CSA kit

(Catalyzed Signal Amplification, DAKO) and diamminobenzidine

was used for colorimetric detection of the primary antibody signal.

Total protein quantification was performed using Sypro Ruby

Protein Staining solution (Invitrogen) and total protein slides were

scanned using a Vidar Revolution 4200 microarray scanner (Vidar

Systems Corporation, Herndon, VA, USA). Antibody slides were

scanned using a flatbed scanner and raw images were loaded into

MicroVigene software (VigeneTech Inc., Boston, MA, USA) for

secondary antibody subtraction and normalization to total protein.

Drug Treatment and Proliferation Assay
Cells (2.56103) were seeded in 96-well plates and exposed for

72hours to: Vincristine 15 nM, Doxorubicin 100 nM, Temozolo-

mide 250 mM, Dacarbazine 5 mg/ml, Etoposide 10 mg/ml,

Gemcitabine 250 mM, Docetaxel 1 mg/ML, IRESSA 10 mM. Cell

viability was detected with Cell Titer Glo (Promega). For cell

proliferation assay cells were counted by Trypan Blue exclusion.

In vivo Leiomyosarcoma Xenografts Generation and Mice
Treatments

Cell suspensions were mixed 1:1 with growth factor reduced

Matrigel (BD) and injected subcutaneously in the flanks of four

week-old female NOD-SCID mice (Charles River). For drug

treatment, when tumors reached a mean of 0.5 cm diameter, mice

were assigned into 4 treatment groups: a) control (vehicles only); b)

IRESSA(100 mg/kg/5 days on and 2 days of/gavage); c)

Vincristine (1 mg/kg/biweekly/I.P.); d) IRESSA+Vincristine (giv-

en concurrently with the same schedules and doses as the single

drugs were given). At the end of treatments tumors were collected,

fixed in formalin and embedded in paraffin for IHC and TUNEL

assay. In each group two mice were left alive in order to check

tumor growth at the end of treatment. IHC was performed as

indicated above. Apoptotic cells were detected by TUNEL assay

(Roche) following the manufacturer’s instructions.

Results

Isolation and Phenotypic Characterization of LMS
Undifferentiated Cells

In vitro culture and expansion of sarcoma CSCs have been

obtained only from established cell lines. We investigated the

possibility to isolate and expand the small fraction of undifferen-

tiated tumor cells from a very rare form of LMS, generating long

term cultures highly enriched with these cells. Tumor cells from

enzymatically dissociated testicular LMS were cultured in

conditions that we and others have previously demonstrated to

enrich for CSC of various types as ‘‘tumor spheres’’. After

approximately 1 month of culture, surviving cells started to grow

as floating cellular clusters called ‘‘sarcospheres’’ (Figure 1A, right

bottom). In addition to the standard stem cell culture methodol-

ogy, based on the assumption that the tumorigenic cells in

sarcomas should consist in transformed undifferentiated cells of

mesenchymal origin, i.e. transformed MSC, we evaluated the

possibility to isolate these undifferentiated tumor cells in the same

culture conditions widely used for non-transformed MSCs [31,32].

Under these conditions, we obtained a monolayer of cells

resembling MSCs for morphology, after few weeks of culture

(Figure 1B, right bottom). At the same time, we cultured a fraction

of the same cells in standard conditions for cell lines in order to

obtain differentiated tumor cells. Under these conditions cells

transiently proliferated as adherent monolayers for a few weeks.

Subsequently they became quiescent, acquired the morphology of

senescent cells and ultimately died, as expected for primary

differentiated cells. In order to validate the nature of both sphere-

and adherent-cultures, we first performed their immunopheno-

typical analysis, and compared it with differentiated LMS cells

obtained under standard conditions (Figure 1 C) and with non

tumoral MSC, used as control for undifferentiated mesenchymal

cells (Figure 1D). We investigated the expression of markers

associated with mesenchymal stem and/or differentiated cells.

Both sphere-forming cells (Figure 1 A) and adherent cells (Figure 1

B) expressed high levels of CD105, CD146, CD166, CD44 and

CD90 confirming a MSC phenotype [33,34]. However, although

CD166, CD44 and CD90 were abundantly present in all three cell

culture types analyzed, as expected for these broadly expressed

mesenchymal antigens, the MSC-restricted markers CD146 and

CD105 were considerably up-regulated in both sarco-spheres

(Figure 1A) and adherent MSC-like cultures (Figure 1B) in

comparison with LMS cells obtained under standard conditions

(Figure 1C). Freshly isolated tumor cells (Figure 1E) and cells

grown in standard cultures (Figure 1C) displayed a similar

antigenic pattern. In addition, both sarcospheres and adherent

undifferentiated cells expressed high levels of the MSC marker

CD73, similarly to non tumoral MSC. This marker was also

expressed by the fresh tumor cells and cells cultured under

standard conditions. As expected, the Smooth Muscle Actin

(SMA) was expressed in all cell populations analyzed in agreement

with the smooth muscle histology of LMS, and with previous

reports showing SMA expression in non tumoral MSC (Figure 1)

[35].

These results suggest that under standard conditions, we could

obtain short term cultures of differentiated cells, while under

LMS Stem-Like Cell Targeting by EGFR Inhibition
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appropriate stem cell conditions, both experimental strategies used

(spheres and MSC-like monolayers) were suitable to select and

expand the small fraction of CD105/CD146 positive undifferen-

tiated LMS cells with stem-like phenotypes, determining their

marked enrichment within the cell cultures [34].

In vitro Cancer Stem Cell Potential of LMS
Undifferentiated Cells

We next investigated whether in vitro expanded LMS cells were

endowed with the stem cell-associated properties to extensively

proliferate, self-renew, differentiate toward multiple lineages and

extrude fluorescent dyes or drugs, as side population (SP) cells.

Both spheres and adherent cultures could be maintained in vitro

for several months, by passaging them approximately once a week

indicating that they were endowed with the CSC-associated

property of extensive proliferative capacity (Figure 2A shows the

growth rate of cells after being kept in culture for more than 20

passages). The growth rate was particularly high in the adherent

cultures, suggesting that the medium developed for MSC is

particularly suitable for their expansion (Figure 2A). In contrast,

primary cultures obtained from freshly dissociated tumor cells,

grown under standard conditions for cell lines, showed limited

proliferation potential (Figure 2A). These results suggest that while

the long term expansion of immature tumor cells is efficient under

stem cell suitable conditions, obtaining a cell line from the same

sample is far more challenging under standard conditions.

Undifferentiated LMS were highly clonogenic in both primary

and secondary limiting dilution assay, whereas differentiated LMS

cells were unable to self renew, as indicated by the absence of

colonies obtained in the same assay (Figure 2B). In addition, the

percentage of clonogenic cells was similar in undifferentiated LMS

and MSC cultures, indicating that these culture conditions resulted

in a similar enrichment both for normal and transformed

undifferentiated mesenchymal cells. Secondary sphere formation

represents the best surrogate assay to assess self-renewal capacity in

vitro. Thus, both types of undifferentiated LMS cultures were

enriched with cells endowed with self renewal ability (Figure 2B).

We next investigated whether the LMS undifferentiated cells

behaved as their putative non-tumoral counterpart, the MSC, in

terms of multiple differentiation ability. We evaluated their ability

to differentiate toward the 3 mesenchymal lineages adipogenic,

chondrogenic and osteogenic, under appropriate culture condi-

tions. Differentiation was obtained with high efficiency as

demonstrated (Figure 2C) by the relatively high fraction of cells

that stained positive for each specific differentiation marker used:

the activity of alcaline phosphatase (osteo), staining with Blue

Alcian Pas (chondro) or Oil-red-O positivity (adipo). Based on the

reported high tumor-initiating potential of SP cells isolated from

mesenchymal tumors, we next investigated whether the undiffer-

entiated LMS cultures possessed a higher fraction of cells with SP

phenotype, compared with their differentiated counterpart. In

contrast to primary cultures, undifferentiated LMS cells displayed

a higher number of SP cells (Figure 2D). The SP phenotype is a

stem cell-feature that reflects an increased activity of ABC

transporters, enhancing the ability of tumor cells to extrude drugs.

As shown in Figure 2E, fluorescent doxorubicin was massively

removed from undifferentiated LMS cells, whereas primary

differentiated cells retained the drug-related fluorescence to a

higher extent (Figure 2E).

These results suggest that undifferentiated LMS cells grown in

stem cell media display some features shared by stem cells, such as

surface markers, SP phenotype, unlimited proliferation, increased

self renewal and multipotency. Thus, fulfiling all the in vitro

requisites for potential LMS-CSC.

Tumorigenic Potential of LMS Undifferentiated Cells and
Recapitulation of Patient Tumor Histology and
Differentiation Grade

In order to investigate whether spheres and adherent undiffer-

entiated LMS cells could be considered LMS stem-like cells, we

evaluated whether they possessed stem cell properties in vivo.

Therefore, we investigated their tumorigenic potential and their

ability to recapitulate the original patient tumor in animal models.

Subcutaneous injection of undifferentiated LMS cells in NOD-

SCID mice resulted in efficient and cell number-dependent tumor

growth (Figure 3A and 3B). Both types of undifferentiated cultures

were highly tumorigenic, with tumor growth being slightly more

rapid for adherent LMS cells (Figure 3A). In contrast, the level of

tumorigenic activity of primary differentiated cells was consider-

ably lower as tumors generated from the injection of differentiated

cells grew very slowly and with low efficiency when low numbers

of cells were injected (Figure 3B and Figure S1A).

We compared the expression of the MSC markers CD146 and

CD105 in the parental and xenograft tumors. Even though these

markers were considerably upregulated in the undifferentiated

LMS cells, the resulting tumor xenografts showed a similar

frequency like the parental tumor (Figure S1B). These results

suggest that such LMS stem-like cells were able to generate a

patient tumor-like differentiated progeny in vivo. LMS cells

obtained from these primary tumors were able to rapidly and

efficiently form secondary tumors in a dose dependent manner

(Figure 3C). This demonstrates that CSCs self-renewed in vivo

maintaining their ability to generate new tumors. Secondary

tumor growth rate was lower than that of CSC-generated primary

tumors, as expected for the injection of a cell population composed

mostly by differentiated cells (those obtained from dissociation of

primary tumor).

Mice xenografts were collected and analyzed for similarity with

the original patient tumor in terms of morphology and immuno-

histochemistry. Both sphere- (Figure 3E) and adherent culture-

(Figure 3F) generated xenografts highly resembled the patient

tumor (Figure 3D), as indicated by hematoxylin and eosin staining,

expression of the LMS diagnostic marker Smooth Muscle Actin

(SMA), caldesmon, HHF35 and vimentin (Figure 3D–F and

Figure S2A). As expected, the Rabdhomyosarcoma markers

Myogenin and Myoglobin were not expressed, further demon-

strating the ability of the LMS undifferenitated cells to differentiate

in vivo into a sarcoma of the same subtype as the patient tumor

(Figure S2A). Additionally, the equal frequency of Ki67+ cells

(between 18 and 20% in all samples as evaluated by the

observation of 10 high power fields), suggests an equal growth

rate of the different tumors (Figure3D–F). Importantly, the

histology of secondary tumors and tumors generated by differen-

tiated cells shared the same features as the primary xenograft and

the patient tumor (Figure S2C). Based on these results, both sphere

Figure 1. Undifferentiated LMS cells display a Mesenchymal Stem Cell (MSC)-phenotype. Flow cytometric detection of the indicated
antigens in undifferentiated LMS cells isolated as tumors spheres (A), as adherent cells in MSC-culture conditions (B), as differentiated cells obtained
in standard culture conditions (C), in non tumoral mesenchymal stem cells (D) or in fresh tumor cells (E). Representative FACS dot plots (SSC vs FSC),
7-AAD staining and images of the corresponding cells are reported for each condition.
doi:10.1371/journal.pone.0046891.g001
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Figure 2. Undifferentiated LMS cells display stem cell potential in vitro. A) Growth curve of undifferentiated LMS cells isolated as spheres or
adherent cultures as indicated, and of differentiated tumor cells (diff) obtained under standard conditions. The values represent mean +/2 SD of
three independent experiments. Student’ s T test was used to determine p-value. * p,0,05; **p,0,01. B) Self renewing ability (percentage of
clonogenic cells) of undifferentiated (LMS spheres and LMS adherent) differentiated (LMS diff) LMS cells and MSC. Black bars represent primary assay,
grey bars are secondary assays. Mean 6 SD of 3 independent experiments is shown. C) Mesenchymal differentiation of LMS stem like-cells: (left)
Osteogenic differentiation (Alcaline Phosphatase activity), (middle) Chondrogenic differentiation (Alcian-PAS), (right) Adipogenic differentiation (Oil-
red-O). D) Flow cytometry analysis of Hoechst 33342-stained cells. The percentage of side population (SP) cells (gated) is indicated. E) Cyto£uorimetric
profile of LMS undifferentiated (stem) and differentiated (diff) cells, untreated (Control), after O/N exposure to 5 mM doxorubicin (Uptake), or after 2 h
of drug treatment followed by washing and overnight incubation in fresh medium (Ef£ux).
doi:10.1371/journal.pone.0046891.g002
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and adherent cultures of LMS stem-like cells appear highly

tumorigenic and suitable for preclinical experiments. Given that

the MSC growth conditions provided a system of more rapidly

growing cells, adherent LMS stem-like were employed for most of

the subsequent studies. Although all the in vivo experiments were

performed in the presence of matrigel, cells injected in the absence

of matrigel retained their tumorigenic ability, which was only

delayed by the absence of a supportive microenvironment for

initial growth (Figure S2B).

Chemoresistance of LMS Stem Cells
The ability to reproduce patient tumors in immunocompro-

mised animals may provide key information on the potential

efficacy of drugs or drug-combinations at the CSC level.

Therefore, we evaluated the cytotoxic activity of the currently

used antineoplastic agents on LMS stem-like cells. In order to

mimic patient regimens, LMS-CSC were exposed to gemcitabine,

vincristine, doxorubicin, temozolomide, docetaxel, etoposide, and

dacarbazine, as single agents or to the gemcitabine/docetaxel

combination at doses comparable to those reached in treated

patients before measuring cell viability. In line with the scarce

patient response and frequent patient relapse to treatments, LMS

stem-like cells resulted resistant or only slightly sensitive to most

compounds tested (Figure 4). Some drugs, such as vincristine,

gemcitabine and docetaxel displayed a considerable activity

against LMS stem-like cells, whereas temozolomide, doxorubicin

and etoposide resulted slightly effective (Figure 4A). Although

drugs were partially cytotoxic, none of the tested compounds

significantly killed off LMS stem-like cells, confirming the need of

alternative antineoplastic strategies to treat this tumor more

effectively. In parallel, the differentiated LMS cells displayed a

similar response to chemotherapy with a slightly increased

sensitivity only to some chemotherapeutic agents, as vincristine

and the docetaxel/gemcitabine combination (Figure 4A).

Figure 3. Undifferentiated LMS cells are highly tumorigenic and reproduce the human tumor in immunocompromised mice. A)
Tumor volumes of xenografts generated by injection of spheres or adherent undifferentiated LMS cells (6 weeks post-injection). Mean 6 SD of 3
independent experiments is shown. ** p,0,01. B) Tumor growth rate of undifferentiated (adherent) or differentiated (diff) LMS cells injected
subcutaneously in NOD-SCID mice at the indicated cell doses. Mean 6 SD of 3 independent experiments is shown. ** p,0,01, ***p,0,001. (C) Tumor
growth rate of secondary tumors injected subcutaneously in NOD-SCID mice at the indicated cell doses. Mean 6 SD of 3 independent experiments is
shown. ***p,0,001. D) Hematoxylin and eosin (H&E) or immunohistochemistry for the indicated antigens performed on patient tumor (D), tumor
generated by subcutaneous injection of LMS spheres (E) or adherent undifferentiated cells (F). The original magnification for each image is indicated.
doi:10.1371/journal.pone.0046891.g003
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Analysis of Genetic Alterations and Pathway Activation of
LMS Stem-like Cells

In order to find potentially exploitable therapeutic targets for

killing LMS stem-like cells, we investigated the activation of several

survival/oncogenic pathways by the Reverse Phase Phosphopro-

teomic Array (RPPA) evaluating the expression levels of a platform

of selected key proteins and phosphoproteins. We found a strong

activation of the EGFR and downstream pathways Akt and

MAPK (Figure 4B). These results were confirmed by immunoblot

analysis of LMS stem-like cells in comparison with control cell

lines. We found high levels of phosphorylated EGFR, Akt, Erk, S6

and low levels of PTEN (Figure 4C). Thus, increase in EGFR

phosphorylation and decreased expression of PTEN may contrib-

ute to the activation of Akt and Erk pathways, suggesting the

possibility to overcome LMS stem-like cell survival through the

inhibition of EGFR. Differentiated LMS cells displayed even

higher EGFR pathway activation than undifferentiated cells

suggesting that EGFR could represent a potential candidate for

targeting both stem and differentiated LMS cells (Figure 4D). Both

sarcospheres and adherent undifferentiated LMS cells displayed

similar levels of p-EGFR, p-Akt and p-Erk, confirming the

assumption that LMS stem-like cells obtained with the two

alternative approaches do not differ significantly (Figure 4D).

Accordingly, we investigated by DNA sequence the presence of

genomic alterations in genes that may be linked to these altered

pathways and contribute to the tumor chemoresistance. As

reported in Table S1, EGFR, Akt, PTEN, PI3K genes resulted

not mutated, suggesting different mechanisms leading to pathway

activation.

EGFR Inhibition Leads to Reduction of Akt and Erk
Pathway Activation and LMS Stem-like Cell Chemo-
sensitization in vitro

The active state of Akt and Erk pathways suggested the

possibility to abolish or reduce LMS stem-like cell chemoresistance

through targeting such survival signals. Inhibition of EGFR could

represent a promising strategy to achieve concomitant down-

regulation of both downstream signaling pathways possibly leading

to LMS stem-like cell killing, growth inhibition or chemosensitiza-

tion. Therefore, we investigated LMS stem-like cell response to the

EGFR inhibitor IRESSA (Gefitinib) used as single agent or in

combination with chemotherapy. When used as single agent,

IRESSA reduced cell growth in the absence of cytotoxicity, as

determined by cell inspection, which revealed negligible amounts

of dead cells both in control or IRESSA-treated samples (Figure

S3A and data not shown). The combined use of IRESSA and

chemotherapeutic drugs resulted in additive anti-tumor effect,

with the highest cell death rate obtained in combination with

vincristine, both on LMS stem and differentiated cells (Figure 5A,

5B and Figure S2B). Cell cycle analysis showed that such

combination further increased the G2/M cell fraction (Figure

Figure 4. LMS stem-like cells are chemoresistant and display
high activation of Akt and Erk pathways. A) Cell viability (% vs
control, measured by cell titer glo luminescence) of undifferentiated
and differentiated LMS cells exposed for 3 days to the indicated drugs.

Mean 6 SD of 3 independent experiments is shown. ** p,0,01. B)
Reverse Phase Phosphoproteomic Array (RPPA) of LMS CSC. Standard-
ized levels of expression or phosphorylation of the indicated proteins
are reported. Standardized values were calculated for each antibody by
subtracting the mean and dividing by the standard deviation of the
sample series. Color scale limits from red to green include values
spanning from $1,5 to #21,5 standard deviations. C) Immunoblot
analysis for the indicated proteins in LMS stem-like or control (U251,
U87MG, HeLa) cells. D) Immunoblot analysis for the indicated proteins
in LMS-stem like (adherent cultures or spheres) or differentiated (diff)
cells.
doi:10.1371/journal.pone.0046891.g004

LMS Stem-Like Cell Targeting by EGFR Inhibition

PLOS ONE | www.plosone.org 8 October 2012 | Volume 7 | Issue 10 | e46891



S2C), confirming that treatment with IRESSA potentiates the

activity of vincristine. Cell death occurred mainly through

apoptosis as suggested by morphological features and annexin V

binding of treated cells (Figure S2B and Figure 5B). Reduced

phosphorylation levels of EGFR, Akt and Erk in vincristine/

IRESSA-treated cells indicated the inhibition of the whole

pathway downstream EGFR (Figure 5C). Furthermore, the

combined treatment determined a strong reduction in the anti-

apoptotic factor Bcl-2 levels, confirming that EGFR inhibition

potentiates vincristine effects also in terms of Bcl-2 down-

modulation (Figure 5C) [36]. In contrast, the levels of the anti-

apoptotic protein BAX did not vary with treatment, indicating

that the observed Bcl-2 decrease is a specific effect of treatment.

The considerable in vitro cytotoxic activity of vincristine in

combination with IRESSA may not be entirely explained by the

inhibition of survival pathways. The ability of LMS stem-like cells

to extrude cytotoxic drugs may contribute to their relative

chemoresistance. Given that IRESSA has been shown to inhibit

membrane pump activity and favor drug retention within tumors

[37,38], we investigated whether a similar effect could be obtained

in LMS stem-like cells, ultimately contributing to their death. The

analysis of Hoechst 33342 retention showed that IRESSA

exposure determined a marked reduction of the SP fraction

within the stem-like cell population (Figure 5D left), in parallel

with a prolonged accumulation of doxorubicin (Figure 5D right).

These results suggest that IRESSA enhances the cytotoxic activity

of chemotherapeutic agents by both targeting survival pathways

downstream EGFR and increasing drug retention.

IRESSA/Vincristine Treatment Results in Strong Anti-
tumor Activity in Patient Tumor Phospho-copies
Generated by LMS Stem-like Cells

To rule out the possibility that the EGFR activation observed in

LMS stem-like cells could result from culture-induced modifica-

tions, we investigated the activation state of the EGFR pathway in

the original patient tumor. In the absence of EGFR mutations in

tumor cells (see Table S1), we hypothesized that receptor

stimulation might depend on the production of high EGF levels

in the tumor microenvironment. The immunohistochemical

analysis showed the presence of a significant amount of EGF in

the parental LMS, together with diffuse phosphorylation of EGFR

(Figure 6A). Of note, a similar pattern of EGF and p-EGFR

expression was observed in LMS stem-like cell-based tumor

xenografts (Figure 6A), confirming that this experimental model

may provide a suitable tool for preclinical testing of EGFR

inhibition.

NOD-SCID mice bearing subcutaneous LMS stem-like cell-

generated tumors were treated with Vincristine, IRESSA, or their

combination. Similarly to in vitro results, treatment with IRESSA

reduced tumor growth, whereas vincristine displayed more striking

antitumor activity, particularly in combination with IRESSA

(Figure 6 B), as shown also by the macroscopic appearance of

excised tumors and tumor weights at the end of treatment (Image

in Figure 6B and results not shown). At the end of treatment most

tumors were collected and analyzed for in vivo EGFR inhibition

and apoptosis induction. The immunohistochemistry analysis

showed reduced levels of pEGFR in treated samples when

compared to controls (6C top panels), indicating that the IRESSA

levels reached in vivo were sufficient to achieve EGFR inhibition

and confirming that the antitumor effect of IRESSA was mediated

by inhibition of EGFR. In addition, TUNEL assay revealed a

consistent fraction of apoptotic cells in vincristine and, to a higher

extent, in double treated-tumors, while control and IRESSA

treated tumors did not show any sign of apoptotic cell death

(Figure 6C bottom panels).

In order to evaluate whether the single or combined treatments

were able to affect the tumorigenic cell population in vivo, we

monitored the tumor size after treatment withdrawal. Tumors

were monitored for 10 days with the aim of investigating the ability

of the single or combined treatments to abolish or delay tumor re-

growth. We observed that after therapy cessation, tumors from

vincristine-treated mice started to re-grow, whereas those subject-

ed to combined treatment continued to decrease in size and

recurred only after several weeks (Figure 6D and data not shown).

This effect was not due to the different size of treated and

untreated tumors, since we obtained similar results when we

compared the growth rate of treated tumors with controls of

similar volumes (Figure 6D). Finally, in order to investigate

whether EGF/EGFR pathway activation was a common signature

in LMS, we analyzed a panel of 10 LMS patient-derived

specimens. All samples analyzed revealed high or moderate

expression of EGF and p-EGFR levels (Figure S4A). The

expression was diffuse in all cells of the tissue although the

intensity varied in different samples, having always higher levels

than in normal samples (Figure S4B). These results indicated that

the EGF/EGFR pathway is frequently activated in LMS.

Discussion

LMS patients often relapse following surgical and radiation

treatment. Although some patients respond to the current second-

line chemotherapeutic regimens, the prognosis remain particularly

poor.

Many reports suggest that CSC have a pivotal role in tumor

chemoresistance and relapse. The ability to expand in vitro

leiomyosarcoma stem-like cells represent a powerful tool to obtain

their comprehensive characterization, which may represent the

first step toward the development of effective treatments.

Here, we report for the first time the expansion of leiomyosar-

coma initiating cells and investigated the mechanisms underlying

their weak response to most of the current treatments as well as the

possibility to increase the antitumor effect of standard chemother-

apy by concurrent inhibition of the survival pathways activated in

the LMS stem-like cells.

Immature LMS cells could be obtained by standard serum-free

culture conditions that allow selection and expansion of immature

tumor cells as ‘‘spheres’’, as we previously showed for CSC of

various solid tumors [18,19,21]. Additionally, based on the

assumption that LMS-CSC may be considered as transformed

MSC, we were able to efficiently expand the LMS-CSC in culture

conditions widely used for non transformed MSC of various

origin, thus identifying an additional method for obtaining stem-

like cell-enriched cultures from mesenchymal tumors. Alternative-

ly, another possibility might be that, rather than the expansion of

undifferentiated cells, the stem cell suitable culture conditions,

different from standard culture conditions, might influence the

antigenic pattern of cultured cells toward a MCS- like phenotype.

However, we found that both types of stem cell-suitable cultures,

although completely different, generated cultures with similar

antigenic pattern, suggesting the possibility of a function-based

selection of cells rather than phenotype remodeling.

In vitro expanded LMS stem-like cells were endowed with stem-

like cell potential in vitro and high tumorigenic potential coupled

with the ability to generate primary and secondary patient-like

tumors in immunodeficient mice, indicating that such in vitro

expanded LMS stem-like cells were able to recapitulate the

tumorigenic process by proliferating in vivo while both self-
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Figure 5. IRESSA treatment reduces LMS stem-like cell growth rate and sensitizes them to chemotherapy. A) Effect of IRESSA on LMS cell
chemo-sensitivity. (Left) Stem-like cells were exposed to IRESSA and the indicated compounds and cell viability was evaluated after 72 hours by Cell
Titer Glo assay (Promega). (Right) Cell viability of undifferentiated (stem) or differentiated (diff) LMS cells exposed to IRESSA/vincristine combination
for 72 hours. Mean 6 SD of 3 independent experiments is shown. ** p,0,01. B) Flow cytometric analysis for Annexin V of LMS stem-like cells
untreated (control) or treated as indicated. C) Immunoblot for the indicated proteins or phosphoproteins of LMS stem-like cells left untreated or
treated as indicated. D) Effect of IRESSA on SP and drug efflux ability. (Left) SP analysis of control or IRESSA-treated LMS stem-like cells. (Right)
Cyto£uorimetric profiles of control or IRESSA treated LMS stem-like cells after exposure to doxorubicin (Uptake), or after drug treatment followed by
removal and overnight incubation in drug-free medium (Ef£ux).
doi:10.1371/journal.pone.0046891.g005
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renewing and producing a progeny of differentiated cells that

constitute the major cellular population in the tumor. In

comparison to differentiated cells, stem-like cells displayed

increased tumorigenicity not only in terms of reduced latency for

tumor growth but also in terms of tumor formation efficiency. In

particular, low numbers of differentiated cells (104) displayed a

highly reduced ability to generate tumors even after long periods

of observation while stem-like cells displayed about 100% efficency

when the same number of cells were injected.

Of note, the same experimental strategies proved to be effective

in the in vitro long term expansion of undifferentiated cells from

other sarcomas (results not shown). Such in vitro expanded LMS

stem-like cells displayed the surface antigen expression expected

for undifferentiated tumor cells of mesenchymal origin.

In vitro expanded LMS stem-like cells contained a significant

fraction of cells with SP phenotype which showed a slightly

increased tumorigenic activity in comparison to the whole

population of undifferentiated cells (Figure S5).

Long term expansion of LMS stem-like cells allowed their

extensive investigation, including the evaluation of their chemo-

sensitivity. Exposure of LMS- stem-like cells to anti-neoplastic

agents currently used in the clinical practice or in clinical trials

resulted in a modest cytotoxicity. Concerning chemosensitivity,

although both stem and differentiated LMS cells resulted quite

resistant to most treatments, some drugs (in particular vincristine

and the combination docetaxel/gemcitabine) displayed higher

cytotoxicity against differentiated cells. In addition, it is important

to mention that, even if chemoresistance is not limited to CSCs,

targeting this tumorigenic population appears to be required to

obtain long-term antitumor effect. Thus, even a similar degree of

chemoresistance observed in our experimental conditions in the

two types of cells may be more relevant when associated to CSC

than to differentiated cells, the latter characterized by limited life

span.

In the absence of genetic alterations in the Akt, PI3K, PTEN

and EGFR genes (Table S1), we investigated the activation status

of key survival pathways possibly contributing to chemoresistance.

EGFR and key proteins belonging to the downstream PI3/AKT

and MAPK/ERK pathways were considerably activated in LMS

stem like cells, while the treatment with IRESSA resulted in

inhibition of the EGFR, AKT and ERK pathway, with

consequent sensitization to several chemotherapeutic agents.

We found that EGFR inhibition by IRESSA determined a

marked reduction of the drug efflux activity and of the SP fraction

within the LMS stem-like cells. Thus, the strong chemo-

sensitization effect of IRESSA may rely on its ability to affect

both survival pathway signaling and active drug extrusion.

LMS stem-like cells were able to generate patient-like tumors

also in terms of EGFR activation, a prerequisite for preclinical

testing of antitumor compounds targeting this receptor. IRESSA

plus Vincristine treatments were highly cytotoxic and were found

to strongly counteract tumor growth. However, vincristine-treated

tumors immediately started to re-grow after treatment cessation.

Their growth rate even increased compared to non-pretreated

tumors, while double treatment caused a long delay before the

tumor started to slowly re-grow. A plausible interpretation of these

results may be that the relative number of tumorigenic cells could

be enriched by vincristine treatment and not by combined

therapy. In other words vincristine most likely affected viability

of differentiated tumor cells sparing LMS-stem-like cells, while the

combination treatment was effective against both stem-like and

differentiated cells. This is in line with recent data from our group

showing that in different solid tumors chemotherapy spares

quiescent rather than proliferating cancer stem-like cells [39,40].

However, another interpretation might be that vincristine could

determine the selection of cells with increased proliferative

potential. What is not questionable is that tumors treated with

chemotherapy were growing more actively after interrupting

treatment while IRESSA-chemo treated tumors did not regrow for

a longer period of time. Therefore, it is reasonable to hypothesize

that similarly to mice such CSC-effective therapeutic strategy

might determine a longer progression free survival in patients and

a slow progression of relapsing tumors.

Previous studies showed that EGFR targeting combined with

chemotherapy displayed marked antitumor activity against some

sarcoma cell lines both in vitro and in vivo [41,42]. Our results are in

agreement with these studies and further point toward this

treatment direction demonstrating for the first time the efficacy

of EGFR targeting in chemosensitization of LMS stem-like cells.

Furthermore, finding that IRESSA, besides EGFR pathway

inactivation, strongly inhibits the stem cell-associated active drug

extrusion, may explain the efficacy of the combination therapy

against the tumorigenic cells. The detection of EGFR phosphor-

ylation in all the LMS analyzed suggests that EGFR targeting

agents may constitute a valuable therapeutic tool for those LMS

patients lacking driving molecular alteration downstream of

EGFR. High levels of EGF within the tumor may possibly be

responsible for receptor activation and suggest the possibility to

obtain anticancer activity against LMS through the direct

inhibition of EGF. However, it remains to be elucidated whether

EGF is secreted by cancer or stroma cells.

In conclusion, our study proposed a potential therapeutic

strategy that might be effective for LMS patients with EGFR

pathway activation. The efficacy of this therapeutic strategy most

likely relies on its multitarget activity, as it resulted both in a

simultaneous inactivation of multiple oncogenic signals, and in the

inhibition of CSC-linked properties leading to cytotoxicity against

the more aggressive tumorigenic cell population. Additional

functional studies will extend our analysis to larger numbers of

LMS patient tumors, aiming to increase reliability of results and

provide potential alternative treatments to lengthen survival of

relapsed LMS patients unresponsive to current clinical regimens.

Supporting Information

Figure S1 A) Tumorigenicity of stem and differentated LMS

cells. Percentage of tumor positive mice after injection of low

numbers of stem-like or differentiated LMS cells. 5 mice were

injected with 104 cells and tumor formation evaluated after 4

months. B) In vivo differentiation of LMS stem-like cells. Flow cytometry

Figure 6. IRESSA/Vincristine treatment results in strong stem-like cell-effective anti-tumor activity in patient tumor phospho-
copies generated by LMS-stem-like cells. A) LMS stem-like cells derived xenografts display high levels of EGF and p-EGFR similarly to the patient
tumor. A) EGF and p-EGFR immunohistochemistry in patient tumor specimens and in LMS-CSC derived xenografts. B) Tumor growth curves and
tumor pictures of LMS-CSC derived xenografts in control, IRESSA-, Vincristine- or IRESSA+Vincristine- treated mice. Mean 6 SD of 3 independent
experiments is shown. **p,0,01. C) p-EGFR immunohistochemistry and TUNEL assay of control or treated xenografts. The percentage of Tunel
positive cells is indicated for each condition. D) Tumor growth rate of control or pre-treated tumors after treatment interruption. Pre-treated tumors
were monitored after 10 days and tumor growth is indicated as ratio of tumor volume at day10 vs day0.The white bar represents growth rate of
additional control tumors comparable to treated tumors in size. Mean 6 SD of 3 independent experiments is shown. ** p,0,01.
doi:10.1371/journal.pone.0046891.g006
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analysis for CD105 and CD146 expression in parental tumor,

sarcospheres (S), adherent culture (A) or differentiated LMS cells

obtained from freshly dissociated xenografts generated by sarco-

sphere or adherent culture cell injection. The percentage of

positive cells is represented by the different histograms corre-

sponding to the cell populations or tumor types as indicated.

(TIF)

Figure S2 A) Immunohistochemistry for the indicated antigens

performed on patient tumor (left), tumor generated by subcuta-

neous injection of LMS spheres (middle) or adherent undifferen-

tiated cells (right). B) Tumor growth rate of undifferentiated LMS

cells (adherent cultures) injected subcutaneously in NOD-SCID

mice with or without Matrigel as indicated. The values represent

mean +/2 SD of three independent experiments. Student’ s T test

was used to determine p-value. ***p,0,001. C) Hematoxylin and

eosin (H&E) or immunohistochemistry for the indicated antigens

performed on secondary tumors or tumors generated by

differentiated LMS cells, as indicated.

(TIF)

Figure S3 A) Effect of IRESSA on LMS stem-like cell

proliferation. LMS stem like cells were plated and left untreated

or exposed to IRESSA for the indicated time points. Cell growth is

indicated as percentage of treated cell versus control cell numbers

ateach time. B) Morphologycal appearance of LMS stem-like cells

untreated (control) or treated 3 days as indicated. C) Cell cycle

distribution of the same cells as in B after 2 days drug esposure.

(TIF)

Figure S4 EGF/EGFR pathway is generally activated in

leiomyosarcomas. A) p-EGFR and EGF immunohistochemistry

in 3 out of 10 representative patient-derived LMS specimens. B)

Table showing the EGF and pEGFR expression in 10 LMS patient-

derived specimens and in 5 non tumoral tissue specimen

(Myometrium). Values 1 to 4 indicating the percentage of positive

cells with 0 = negative, 1,10%; 2 = 10–25%; 3 = 25–50%,

4,50% and letters A to C indicating the intensity of expression

(A = weak,; B = moderate; C = high intensity).

(TIF)

Figure S5 A) Cytofluorimetric cell sorting of side population (SP)

cells (right panel). B) Tumor growth rate of xenografts generated

by subcutaneous injection of sorted SP cells and unsorted

undifferentiated LMS cells (adherent cultures). The values

represent mean +/2 SD of three independent experiments.

Student’ s T test was used to determine p-value. **p,0,01.

(TIF)

Table S1 Genetic pattern of LMS stem-like cells. The specific

primers used for amplification of the listed genes are reported.

PCR products were analyzed and compared with the correspond-

ing Genebank sequences of each gene for the presence of tumor-

associated alterations. The status of DNA is indicated as wt when

similarity among PCR product and genebank sequence was 100%.

(XLS)
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