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Abstract. In the recent years, the reliability of information on the In-
ternet has emerged as a crucial issue of modern society. Social network
sites (SNSs) have revolutionized the way in which information is spread
by allowing users to freely share content. As a consequence, SNSs are
also increasingly used as vectors for the diffusion of misinformation and
hoaxes. The amount of disseminated information and the rapidity of its
diffusion make it practically impossible to assess reliability in a timely
manner, highlighting the need for automatic online hoax detection sys-
tems.
As a contribution towards this objective, we show that Facebook posts
can be classified with high accuracy as hoaxes or non-hoaxes on the
basis of the users who “liked” them. We present two classification tech-
niques, one based on logistic regression, the other on a novel adaptation
of boolean crowdsourcing algorithms. On a dataset consisting of 15,500
Facebook posts and 909,236 users, we obtain classification accuracies ex-
ceeding 99% even when the training set contains less than 1% of the
posts. We further show that our techniques are robust: they work even
when we restrict our attention to the users who like both hoax and non-
hoax posts. These results suggest that mapping the diffusion pattern
of information can be a useful component of automatic hoax detection
systems.

1 Introduction

The World Wide Web (WWW) has revolutionized the way in which in-
formation is disseminated. In particular, social network sites (SNSs) are
platforms where content can be freely shared, enabling users to actively
participate to - and, possibly, influence - information diffusion processes.
As a consequence, SNSs are also increasingly used as vectors for the dis-
semination of spam [1], conspiracy theories and hoaxes, i.e. intentionally
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crafted fake information. This recently led to the emphatic definition of
our current times as the age of misinformation [2]. A significant share of
hoaxes on SNSs diffuses rapidly, with a peak in the first 2 hours [3]. This
finding, together with the high amount of shared content, highlights the
need of automatic online hoax detection systems [4].

In the literature, various approaches have been proposed for automatic
hoax detection, covering quite heterogeneous applications. Historically,
one of the first applications has been hoax detection in e-mail messages
and webpages. In the context of scam e-mail detection, spamassassin uses
keyword-based methods with logistic regression [5]; Petković et al. [6] and
Ishak et al. [7] proposed the use of distance-based methods; Vuković et
al. [8] applied neural network and advanced text processing; Yevseyeva
et al. [9] used evolutionary algorithms for the development of anti-spam
filters. Sharifi et al. [10] applied logistic regression to automatically detect
scam on webpages, reaching an accuracy of 98%.

The concepts of trust and reputation [11, 12] can be adopted for
hoax detection in applications with a dominant social component. Met-
rics and algorithms for this purpose have been proposed by Golbeck and
Hendler [13]. Adler and de Alfaro [14] developed a content-driven user
reputation system for Wikipedia, allowing to predict the quality of new
contributions. The detection of Wikipedia hoaxes has been addressed e.g.
in [15, 16, 17]. More recently, automatic hoax detection in SNSs has gained
increasing interest. As an example, Chen et al. [18] developed a semi-
supervised scam detector for Twitter based on self-learning and cluster-
ing analysis, while Ito et al. [19] proposed the use of Latent Dirichlet
Allocation (LDA) to assess the credibility of tweets.

The key idea behind our work, which constitutes its main novelty,
is that hoaxes can be identified with great accuracy on the basis of the
users that interact with them. In particular, focusing on Facebook, we
answer the following research question: Can a hoax be identified based
on the users who “liked” it? We consider a dataset consisting of 15,500
posts and 909,236 users; the posts originate from pages that deal with ei-
ther scientific topics or with conspiracies and fake scientific news [2]. We
propose two classification techniques. One consists in applying logistic
regression, considering the user interaction with posts as features. The
other technique consists in a novel adaptation of boolean label crowd-
sourcing techniques to a setting where a training set is available, but no
prior assumption on users being mostly reliable can be made.

The proposed techniques yield an accuracy exceeding 99% even for
training sets consisting of less of 1% of posts. These results are obtained
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in spite of the fact that the communities of users participating in the
scientific and conspiracy pages overlap. Our main contributions, in sum-
mary, are: i) the proposal of a novel way to identify hoaxes on SNSs based
on the users who interacted with them rather than their content; ii) an
improved version of the harmonic crowdsourcing method, suited to hoax
detection in SNSs; iii) the application on Facebook and, in particular, on
a representative dataset obtained from the literature.

The code we developed for this paper is available from https://

github.com/gabll/some-like-it-hoax.

2 Dataset

Our dataset consists in all the public posts and posts’ likes of a list of
selected Facebook pages during the second semester of 2016: from Jul. 1st,
2016 to Dec. 31st, 2016. We collected the data by means of the Facebook
Graph API6 on Jan. 27th, 2017.

We based our selection of pages on [2]. In that work, the authors
present a list of Facebook pages divided into two categories: scientific news
sources vs. conspiracy news sources. We assume all posts from scientific
pages to be reliable, i.e. “non-hoaxes”, and all posts from conspiracy pages
to be “hoaxes”. Among the 73 pages listed in [2], we limited our analysis
to the top 20 pages of both categories. It is worth noting that at the time
of data collection, not all the pages were still available: some of them had
been deleted in the meantime, or were no longer publicly accessible. We
note also that the actual posts comprising our dataset are distinct from
those originally included in the dataset of [2], as we performed our data
collection in a different, and more recent, period.

The resulting dataset, the so-called complete dataset, is composed of
15,500 posts from 32 pages (14 conspiracy and 18 scientific), with more
than 2,300,00 likes by 900,000+ users (Table 1). Among posts, 8,923
(57.6%) are hoaxes and 6,577 (42.4%) non-hoaxes.

As a first observation, the distribution of the number of likes per post
is exponential-like, as attested by the histograms in Fig. 1 (a); the ma-
jority of the posts have few likes. Hoax posts have, on average, more likes
than non-hoax posts. In particular, some figures about the number of likes
per post are: average, 204.5 (for hoax post) vs. 84.0 (non-hoax); median,
22 (hoax) vs. 14 (non-hoax); maximum, 121,491 (hoax) vs. 13,608 (non-
hoax).

6 See https://developers.facebook.com/docs/graph-api. We used version 2.6.
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Fig. 1: Likes per post (a) and likes per user (b) histograms for the dataset.
Plots are represented with semi-logarithmic scale and are tuncated to 200
likes.

N. posts N. users N. likes

Complete 15,500 909,236 2,376,776
Intersection 10,520 14,139 117,641

Table 1: Composition of complete and intersection datasets.

A second observation is related to the number of likes per user: once
again, Fig. 1 (b) shows an exponential-like distribution. The majority
of the users appears in the dataset with one single like (629,146 users,
69.2%), while the maximum number of likes by a user is 1,028. Users
can be divided into three categories based on what they liked: i) those
who liked hoax posts only, ii) those who liked non-hoax posts only, and
iii) those who liked at least one post belonging to a hoax page, and
one belonging to a non-hoax page. Fig. 2 (a) shows that, despite a high
polarization, there are many users in the mixed category: among users
with at least 2 likes, 209,280 (74.7%) liked hoax post only, 56,671 (20.3%)
liked non-hoax post only, and 14,139 (5.0%) are in the mixed category.
This latter category gives rise to the intersection dataset, which consists
only of the users who liked both hoax and non-hoax posts, and of the
posts these users liked. The intersection dataset was introduced to study
the performance of our methods for communities of users that are not
strongly polarized towards hoax or non-hoax posts, as will be discussed
in Section 4. The composition of the intersection dataset is summarized
in Table 1.
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Fig. 2: Users characterization: hoax vs. non-hoax likes per user heat-map
(a) and users in common between pages (b)

A third observation concerns the relation between pages, measured
by the number of users that pages have in common: given each pair of
pages, we study how many users liked at least one post from one page
and one post from the other page. Fig. 2 (b) shows the result as a sym-
metric matrix: each page vs. each other page. Color intensity displays
that hoax pages have more users in common with other hoax pages (up-
left part, which appears darker) than with non-hoax pages (up-right and
bottom-left). The same applies to non-hoax pages (bottom-right). Nev-
ertheless, the figure shows that the communities gravitating around hoax
and non-hoax pages share many common users (as evidenced also from
the composition of the intersection dataset).

3 Algorithmic Classification of Posts

Our goal is to classify posts into hoax and non-hoax posts. According to
the analysis of social media sharing by [3], “users tend to aggregate in
communities of interest, which causes reinforcement and fosters confirma-
tion bias, segregation, and polarization”, and “users mostly tend to select
and share content according to a specific narrative and to ignore the rest.”
This suggests that the set of users who like a post should be highly indica-
tive of the nature of the post. We present two approaches, one based on
logistic regression, the other based on boolean crowdsourcing algorithms.
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3.1 Classification via logistic regression

We formulate the post classification problem as a supervised learning,
binary classification problem. We consider a set of posts I and a set of
users U . Each post i ∈ I has an associated set of features {xiu | u ∈ U},
where xiu = 1 if u liked post i, and xiu = 0 otherwise. We classify the
posts on the basis of their features, that is, on the basis of which users
liked them.

To perform the classification, we use a logistic regression model. The
logistic regression model learns a weight wu for each user u ∈ U ; the
probability pi that a post i is non-hoax is then given by pi = 1/(1+e−yi),
where yi =

∑
u∈U xiuwu. Intuitively, wu > 0 (resp. wu < 0) indicates that

u likes mostly non-hoax (resp. hoax) posts.
We chose logistic regression for two reasons. First, logistic regression is

well suited to problems with a very large, and uniform, set of features. In
our case, we have about a million features (users) in our dataset, but a real
application would involve up to hundreds of millions of users. Second, our
logistic regression setting enjoys a non-interference property with respect
to unrelated set of users that facilitates learning, and is appealing on
conceptual grounds. Specifically, assume that the set of users and posts
are partitioned into disjoint subsets U = U1 ∪ U2, I = I1 ∪ I2, so that
users in Uk like only posts in Ik, for k = 1, 2. This situation can arise, for
instance, when there are two populations of users and posts in different
languages, or simply when two topics are very unrelated. In such a setting,
it is equivalent to train a single model, or to train separately two models,
one for I1, U1, one for I2, U2, and then take their “union”. This because
the weights wu for u ∈ U3−k do not matter for classifying posts in Ik,
k = 1, 2, since the features xiu with i ∈ Ik and u ∈ U3−k are all zero.
In other words, models for unrelated communities do not interfere: if we
learn a model for I1, U1, we do not need to revise the model once the
community I2, U2 is discovered: all we need to do is learn a model of this
second community, and use it jointly with the first.

3.2 Classification via harmonic boolean label crowdsourcing

The weak aspect of logistic regression is that it does not transfer infor-
mation across users who liked some of the same posts. In particular, if
the training set does not contain any post liked by a user u, then logistic
regression will not be able to learn anything about u, and wu will be
undetermined. Thus, posts that are only liked by users not in the train-
ing set cannot be classified. As an alternative approach, we propose to
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perform the hoax/non-hoax classification using algorithms derived from
crowdsourcing, and precisely, from the boolean label crowdsourcing (BLC)
problem.

In the BLC problem, users provide True/False labels for posts, indi-
cating for instance whether a post is vandalism, or whether it violates
community guidelines. The BLC problem consists in computing the con-
sensus labels from the user input [20, 21, 22]. We model liking a post as
voting True on that post.

Our setting differs from standard BLC in one important respect. Stan-
dard BLC algorithms do not use a learning set: rather, they assume that
people are more likely to tell the truth than to lie. The algorithms com-
pare what people say, correct for the effect of the liars, and reconstruct a
consensus truth [20, 22]. In our setting, we cannot assume that users are
more likely to tell the truth, that is, like preferentially non-hoax posts.
Indeed, hoax articles may well have more “likes” than non-hoax ones.
Rather, we will rely on a learning set of posts for which the ground truth
is known.

We present here an adaptation of the harmonic algorithm of [22] to
a setting with a learning set of posts. We chose the harmonic algorithm
because it is computationally efficient, can cope with large datasets, and it
offers good accuracy in practice, as evidenced in [22]. Furthermore, while
the harmonic algorithm can be adapted to the presence of a learning set,
it is less obvious how to do so for some of the other algorithms, such as
those of [20].

We represent the dataset as a bipartite graph (I ∪ U,L), where L ⊆
I × U is the set of likes. We denote by ∂i = {u | (i, u) ∈ L} and ∂u =
{i | (i, u) ∈ L} the 1-neighborhoods of a post i ∈ I and user u ∈ U ,
respectively.

The harmonic algorithm maintains for each node v ∈ I ∪ U two non-
negative parameters αv, βv. These parameters define a beta distribution:
intuitively, for a user u, αu−1 represents the number of times we have seen
the user like a non-hoax post, and βu − 1 represents the number of times
we have seen the user like a hoax post. For a post i, αi− 1 represents the
number of non-hoax votes it has received, and βi−1 represents the number
of hoax votes it has received. For each node v, let pv = αv/(αv+βv) be the
mean of its beta distribution: for a user u, pu is the (average) probability
that the user is truthful (likes non-hoax posts), and for a post i, pi is
the (average) probability that i is not a hoax. Letting qv = 2pv − 1 =
(αv − βv)/(αv + βv), positive values of qv indicate propensity for non-
hoax, and negative values, propensity for hoax.
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Let the training set consist of two subets IH , IN ⊆ I of known hoax
and non-hoax posts. The algorithm sets qi := −1 for all i ∈ IH , and
qi := 1 for all i ∈ IN ; it sets qi = 0 for all other posts i ∈ I \ (IH ∪ IN ).
The algorithm then proceeds by iterative updates. First, for each user
u ∈ U , it lets:

αu := A+
∑
{qi | i ∈ ∂u, qi > 0} βu := B −

∑
{qi | i ∈ ∂u, qi < 0}

qu := (αu − βu)/(αu + βu) . (1)

The positive constants A, B determine the amount of evidence needed
to sway the algorithm towards believing that a user likes hoax or non-
hoax posts: the higher the values of A and B, the more evidence will be
required. After some experimentation, we settled on the values A = 5.01
and B = 5, corresponding to a very weak a-priori preference of users
for non-hoax posts. This corresponds to needing about 5 “likes” from
known good (resp bad) users to reach a 2:1 probability ratio in favor of
non-hoax (resp. hoax), which seems intuitively reasonable. The algorithm
then updates the values for each post i ∈ I \ (IH ∪ IN ) by:

αi := A′ +
∑
{qu | u ∈ ∂i, qu > 0} βi := B′ −

∑
{qu | u ∈ ∂i, qu < 0}

qi := (αi − βi)/(αi + βi) . (2)

We choose A′ = B′ = 5, thus adopting a symmetrical a-priori for items
being hoax vs. non-hoax. The updates (1)–(2) are performed iteratively;
while they could be performed until a fixpoint is reached, we just perform
them 5 times, as further updates do not yield increased accuracy. Finally,
we classify a post i as hoax if qi < 0, and as non-hoax otherwise.

The harmonic algorithm satisfies the non-interference property de-
scribed for logistic regression, since information is only propagated along
graph edges that correspond to “likes”.

The harmonic algorithm is able to propagate information from posts
where the ground truth is known, to posts that are connected by com-
mon users. In the first iteration, the users who liked mostly hoax (resp.
non-hoax) posts will see their β (resp. α) coefficient increase, and thus
their preferences will be characterized. In the next iteration, the user
preferences will be reflected on post beliefs, and these post beliefs will
subsequently be used to infer the preferences of more users, and so on.
We will see how the ability to transfer information will allow the har-
monic algorithm to reach high levels of accuracy even starting from small
training sets.
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4 Results

We characterize the performance of the logistic regression and harmonic
BLC algorithm via two sets of experiments. The first set of experiments
measures the accuracy of the algorithms as a function of the number of
posts available as training set. Since the training set can be produced,
in general, only via a laborious process of manual post inspection, these
results tell us how much do we need to invest in manual labeling, to reap
the benefits of automated classification. The second set of experiments
measures how much information our learning is able to transfer from one
set of pages to another. As the community of Facebook users is organized
around pages, these experiments shed light on how much what we learn
from one community can be transferred to another, via the shared users
among communities.

4.1 Accuracy of classification vs. training set size

Cross-validation analysis. We performed a standard cross-validation anal-
ysis of logistic regression and of the harmonic algorithm for BLC. The
cross-validation was performed by dividing the posts in the dataset into
80% training and 20% testing, and performing a 5-fold cross-validation
analysis. Both approaches performed remarkably well, with accuracies
exceeding 98.6% for logistic regression and 99.4% for the harmonic algo-
rithm.

Accuracy vs. training set size. Cross-validation is not the most insightful
evaluation of our algorithms. In classifying news posts as hoax or non-
hoax, there is a cost involved in creating the training set, as it may be
necessary to examine each post individually. The interesting question is
not the level of accuracy we can reach when we know the ground truth
for 80% of the posts, but rather, how large a training set do we need in
order to reach a certain level of accuracy. In order to be able to scale up
to the size of social network information sharing, our approaches need to
be able to produce an accurate classification relying on a small fraction
of posts of known class.

To better understand this point, it helps to contrast the situation for
standard ML settings, versus our post-classification problem. In standard
ML settings, the set of features is chosen in advance, and the model that
is developed from the 80% of data in the training set is expected to be
useful for all future data, and not merely the 20% that constitutes the
evaluation set. Thus, cross-validation provides a measure of performance
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Fig. 3: Accuracy of the logistic and harmonic BLC algorithms on the
complete and intersection datasets, as a function of the fraction of posts
in the training set. The data is the average of 50 runs; the error bars
denote the standard deviation of the accuracy value of each run.

for any future data. In contrast, in our setting the “features” consist in
the users that liked the posts. The larger the set of posts we consider, the
larger the set of users that might have interacted with them; we cannot
assume that the model developed from 80% of our data will be valid for
any set of future posts to be classified. Rather, the interesting question
is, how many posts do we need to randomly select and classify, in order
to be able to automatically classify all others?

We report the classification accuracy both for the complete dataset,
and for the intersection dataset. The intersection dataset (defined in Sec-
tion 2) allows to study the performance of our methods for communities
of users that are not strongly polarized towards hoax or non-hoax posts.

In Fig. 3, we report the accuracy our methods as a function of the
size of the training set. In the figure, the classification accuracy reported
for each training set size is the average of 50 runs. In each run, we select
randomly a subset of posts to serve as training set, and we measure the
classification accuracy on all other posts. The error bars in the figure
denote the standard deviation of the classification accuracy of each run.
Thus, the error bars provide an indication of run-to-run variablity (how
much the accuracy varies with the particular training set), rather than of
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the precision in measuring the average accuracy. The standard deviation
with which the average accuracy is known is about seven times smaller.

For the complete dataset, the harmonic BLC algorithm is the supe-
rior one. As long as the training set contains at least 0.5% of the posts,
or about 80 posts, the accuracy exceeds 99.4%. For even lower training
set sizes the accuracy decreases, but it is still about 80% for a training
set consisting of 0.1% of posts, or about 15 posts. Logistic regression is
somewhat inferior, but still yields accuracy above 90% for training sets
consisting of only 1% of the posts.

On the intersection dataset, on the other hand, the logistic regression
approach is the superior one. While the differences between the logistic
regression and harmonic BLC algorithms is not large, the performance of
logistic regression starts at 91.6% for a training set consisting of 10% of
posts, and degrades towards 56% for a training set consisting of 0.1% of
posts, maintaining a performance margin of 3–4% over harmonic BLC.

Generally, these results indicate that harmonic BLC is more efficient
at transfering information across the dataset. Its inferior performance for
the intersection dataset may be explained by the fact that the artificial
construction of the intersection dataset biases towards the transfer of
erroneous information. Most users have only a few likes (see Figure 1).
The intersection dataset filters out all users who liked only one post,
and of the users who liked two posts, the intersection dataset filters out
all those who liked two posts of the same hoax/non-hoax class. As a
consequence, the intersection dataset heavily over-samples “straddling”
users who like exactly two posts, one hoax, one not; these straddling
users constitute 32% of the users in the intersection dataset. When the
two posts liked by a straddling user belong one to the training, one to the
evaluation dataset, the straddling user contributes in the wrong direction
to the classification of the post in the evaluation set.

4.2 Cross-page learning

As the community of Facebook users naturally revolves around common
interests and pages, an interesting question concerns whether what we
learn from one community of users on one page transfers to other pages.
In order to answer this question, we test our classifiers on posts related
to pages that they have not seen during the training phase. This further
allows to assess the validity of the proposed method in real-world situ-
ations, in which the system will need to detect fake news in new pages,
i.e. pages not belonging to the ground truth. To this end, we perform two
experiments in which the set of pages from which we learn, and those
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One-page-out Half-pages-out
Avg accuracy Stdev Avg accuracy Stdev

Logistic regression 0.794 0.303 0.716 0.143
Harmonic BLC 0.991 0.023 0.993 0.002

Table 2: Accuracy (fraction of correctly classified posts) when leaving one
page out, and when leaving out half of the pages, from the training set.
For one-page-out, we report average and standard deviation obtained by
leaving out each page in turn. For half-pages-out, we report average and
standard deviation of the accuracy obtained in 50 runs.

on which we test, are disjoint. In the first experiment, one-page-out, we
select in turn each page, and we place all its posts in the testing set; the
posts belonging to all other pages are in the training set. In the second
experiment, half-pages-out, we perform 50 runs. In each run, we randomly
select a set consisting of half of the pages in the dataset, and we place
the posts belonging to those pages in the testing set, and all others in the
training set. The results are reported in Table 2.

The results clearly indicate that the harmonic BLC algorithm is the
superior one for transferring information across pages, achieving essen-
tially perfect accuracy in both one-page-out and half-page-out experi-
ments. Surprisingly, for harmonic BLC, the performance is slightly su-
perior in the half-pages-out than in the one-page-out experiments. This
is due to the fact that for one page the performance is only 87.3%; the
performance for all other pages is always above 97.2%, and is 100% for 23
pages in the dataset. The poor performance on one particular page drags
down the average for one-page-out, compared to half-pages-out where
better-performing pages ameliorate the average.

5 Conclusions and Future Work

The high accuracy achieved by both logistic regression and the harmonic
BLC algorithm confirm our basic hypothesis: the set of users that interacts
with news posts in social network sites can be used to predict whether
posts are hoaxes.

We presented two techniques for exploiting this information: one based
on logistic regression, the other on boolean label crowdsourcing (BLC).
Both algorithms provide good performance, with the harmonic BLC algo-
rithm providing accuracy above 99% even when trained over sets of posts
consisting of 0.5% of the full dataset (or about 80 posts). This suggests
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that the algorithms can scale up to the size of entire social networks,
while requiring only a modest amount of manual classification.

We also analyzed the extent to which our performance depends on
the community of users naturally aggregating around pages of similar
content. We showed that the harmonic BLC algorithm can transfer in-
formation across pages: even when only half of the pages are represented
in the training set, the performance is above 99%. Even on the “intersec-
tion dataset”, consisting of only users who liked both hoax and non-hoax
posts, our methods achieve performance of 90%, albeit requiring for this
a training set consisting of 10% of the posts; this produces evidence that
our approach might work even when applied to communities of users that
are not strongly polarized towards scientific vs. conspiracy pages. We note
that the intersection dataset is a borderline example that does not occur
in the communities we studied. Together, these results seem to indicate
that the techniques proposed may be sufficiently robust for an extensive
application in a real-world scenario.

Future work involves the implementation of the presented method
within a real-world Facebook online automated hoax detection system.
To do this, two steps are foreseen: i) the extension to other community
languages besides the Italian community considered as example applica-
tion in this work, and ii) the classification of posts for the associated
extension of the ground truth. For the first point, under the assump-
tion that there is no substantial difference among countries and language
communities, the method can be replicated by appropriately enlarging
the ground truth to include posts (and therefore users) not related to
the Italian Facebook community. For the second point, in this work we
assumed that all posts published by conspiracy pages can be classified
as hoaxes, and that all posts published by scientific pages can be clas-
sified as non-hoaxes. This merely practical simplification, based on the
approach and findings in [3], avoided the need for a manual classification
of the individual posts. However, in a real-world application, single post
classification can of course be adopted. Additionally, we see the interest
of evaluating the use of other machine learning methods besides logistic
regression and harmonic crowdsourcing.
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