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Abstract

We consider interface problems for second order elliptic partial differential
equations with Dirichlet boundary conditions. It is well known that the finite
element discretization may fail to produce solutions converging with optimal
rates unless the mesh fits with the discontinuity interface. We introduce a
method based on piecewise linear finite elements on a non-fitting grid en-
riched with a local correction on a sub-grid constructed along the interface.
We prove that our method recovers the optimal convergence rates both in H*
and in L? depending on the local regularity of the solution. Several numerical
experiments confirm the theoretical results.
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1. Introduction

In several physical situations, like heat transfer, fluid dynamics, acoustic

waves, electromagnetic phenomena and materials science, problems having
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discontinuous coefficients across interfaces may arise. In general situations,
the position of the interfaces can be either given or can be an unknown of
the problem as in the case of phase transition, fluid-structure interaction,
heterogeneous structures or free-boundary problems. If the interface is fixed,
it might be desirable to construct the mesh in such a way it fits with the
interface, in order to achieve the optimal accuracy in each subregion of the
domain. In the case of unknown interface as those quoted above, a lot of
effort has been made to develop efficient numerical techniques (see for ex-
ample [1, 2, 3, 4, 5, 6, 7, 8 9, 10] and the references therein). Since, in
this kind of problems, the interface is time dependent and the problem is
nonlinear, computing the correct position of the interface at each time step
could require some iterations to guarantee stability of the scheme. In such
case, instead of adapting the mesh to fit the interface at each time step, it
could be convenient considering meshes which do not take into account the
position of the interface and apply the enrichment method, we are going to
present, to recover the optimal accuracy.

From the mathematical viewpoint, the lack of global regularity of the co-
efficients may affect the global regularity of the solution, even if the interface
is smooth. In these situations numerical schemes may fail to provide the
optimal convergence rate. On the other hand, if the coefficients are locally
regular, then the solution could enjoy local smoothness properties. Therefore,
in order to have a finite element solution which converges to the continuous
one with an optimal rate, the computational meshes need to be constructed in
such a way that the interface is well approximated by the mesh faces. In this

case, the meshes are called fitting. We refer, for example, to [11, 12, 13, 14] for



the analysis in the elliptic and parabolic case. However, the generation of a
fitting grid could be time consuming in presence of complicated geometries or
in the case of time dependent interfaces, which would require the re-meshing
at each time step. We mention here that one could proceed by constructing
independent meshes in the subregions. In such case one gets fitting meshes
which could be non-matching, that is grids that do not share the same nodes
along the interface between two adjacent regions. For example, one can use
a fine mesh on a certain region and a coarser mesh on the adjacent one. As a
consequence the finite element space in the first region presents more degrees
of freedom along the interface than that defined in the second region. In this
situation, modern software packages offer a so-called glue technology which
allows to interpolate the two fields in order to obtain a continuous solution,
see e.g. ADINA (http://www.adina.com/newsgB36.shtml).

Several techniques have been proposed which employ non-fitting meshes
associated with proper strategies which allow to recover the optimal con-
vergence rate. The immersed interface methods proposed in [15, 16] com-
bine the advantages of cartesian grids with the construction of suitable local
piecewise polynomials which can take into account the jump of the normal
derivative. The partition of unity method [17] allows to include in the fi-
nite element spaces a priori knowledge of the behavior of the solution close
to the interface. In the extended finite element method [18] an enrichment
of the standard finite element spaces is constructed in order to model arbi-
trary discontinuities of functions or their derivatives. A different approach
is followed in the unfitting finite element method proposed in [19] where the

approximate solution is allowed to be discontinuous and the correct interface



conditions are enforced weakly using Nitsche’s method. Moreover, we quote
the methods based on fictitious domains, see [20, 21].

Our approach is based on the immersed boundary method proposed in [22,
23] for simulating fluid motion around solid objects. In these papers the
immersed boundary represents the interface between fluid and solid where
Dirichlet boundary conditions are imposed. The main idea of the method is
to construct a mesh for the union of the fluid and the solid domains indepen-
dently of the position of the solid and then to cut the elements crossed by
the immersed boundary adding new degrees of freedom. Then the additional
unknowns in the solid domain can be computed locally in terms of the new
degrees of freedom using the boundary condition. In our case, instead, the
immersed boundary corresponds to the interface where the coefficients present
discontinuities, therefore the value of the solution along it is not known in
advance. In order to obtain a numerical solution with optimal convergence
rate, we introduce first a finite element discretization of the interface problem
on a non-fitting grid, then we enrich the resulting finite element space per-
forming a local refinement of the grid along the interface. We observe that
the additional unknowns we have introduced could be expressed by static
condensation in term of the unknowns on the non-fitting grid, so that the
size of the algebraic system would not increase. Moreover, this procedure
does not require the modification of the non-fitting mesh structure keeping
the original numbering of the degrees of freedom. This advantage becomes
more relevant when it is applied to the case of time dependent problems with
moving interfaces, as, for example, the matrices of the resulting linear system

can be modified only locally at each time step. The construction of the sub-



grid associated with the local enrichment can be done in several ways. Our
local finite element space is obtained by subdividing the elements crossed by
the interface into sub-elements so that edges can intersect the interface only
at the vertexes.

Here we present and discuss into details the case of two dimensional prob-
lems discretized by piecewise linear finite elements, however the method can
be generalized to higher order finite elements. We show that the method
recovers the optimal rate of convergence provided the solution is sufficiently
smooth in each subregion. The three dimensional case can also be treated
using, for example, the geometric considerations of [22] for the construction
of the sub-grid.

The paper is organized as follows: in Sect. 2 we present the problem
with the regularity results for the solution; next, the enriched finite element
method is introduced and the error estimates are provided in Sect. 4. The
last section reports some numerical experiments confirming the theoretical
results together with the numerical behavior of the condition number of the
involved matrices. In particular, we exploit numerically the behavior of the
condition number of the matrix analyzing what happens when the interface
gets closer to the existing non-fitting grid so that the sub-elements could fail

to satisfy the minimum angle condition.

2. Elliptic problem with discontinuous coefficients

In order to simplify the presentation, we consider a convex polygonal do-
main 0 C R? divided into two open sets Q;, Qy by an interface I'. The

technique we are going to present can be extended to the case of several do-



mains with suitable modifications. We assume that I' is Lipschitz continuous
and that it is composed by a finite number of open arcs each of them of class
C%. For a regular function v defined on Q, we denote by v; for i = 1,2 its
restrictions to €2, that is v; = v|q, for i =1, 2.

We consider the following elliptic problem with homogeneous Dirichlet

boundary conditions

—V-(BVu)=f inQ O
u=0 on 0f),
where f and [ are sufficiently smooth functions on 2. We assume that
B > By > 0 for some [y € R. The case of non homogeneous Dirichlet
boundary conditions can be treated as well with standard modifications.

When /3 presents jump discontinuities across I', problem (1) can be rewrit-

ten as the following transmission problem:

— V- (fVu) = f in €y

— V- (fVuy) = f in €2y

U] = Us on I’

5|ng—zlll + 5|QQ§—:Z =0 onl ?
u =0 on 0 \ T

uy =0 on 0y \ I

Let f € L*(Q) and 8 € L>*(2). We assume that the restrictions of 8 to
the sub-domains €; are sufficiently smooth, that is fjo, € Whee(Q,) for

i = 1,2. The variational formulation of problem (1) is then the following:

find w € H}(Q2) such that
a(u,v) = (f,v) Vv € Hy(Q) (3)
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where
a(u,v):/BVqudm (f,v) :/fvdm. (4)
9) Q

We shall use the following notation for the norms in the Hilbert spaces on

B C R?%: for all v € L*(B) we set

1/2
loflos = (/ v2dw) .
B

Next for functions v in the Hilbert space H*(B) with s integer we define

|5 =||Dv|lop for 0<j<s

s 1/2 (5)
follon = (z |v|3,3)
j=0

where D7v stands for the array of the derivatives of v of order j. When
B = Q and no confusion may arise we drop the subscript €.

We introduce the space H*(€; U Q) = {v € H'(Q) : v; € H*(Q;) for i =
1,2} endowed with the norm

1/2
[v[ls.0000, = (l01ll3a, + lv2ll30,) -

Problem (3) has a unique solution v € H}(€2) such that u € NH?*(Qy U Q) if
I" belongs to C?, with the following a priori estimate (see [14, 24, 25])

[ulls + llullz0i00, < Cllflo-

In the case when I' does not belong to C? but it is only globally Lipschitz
continuous, the regularity of the restrictions of u to €2; and {25 might be

reduced and u € H*(§2; U €y) with 3/2 < s < 2, see [26, Ch. 2].



To simplify the exposition of the numerical method, we assume that the

coefficient [ is piecewise constant with
B(z) = p1 for v €y, B(x) = Pg for x € Qy, (6)

and 8 < 5. With this choice it is easy to check that the continuity constant
of a(+,-) is given by [, and the coercivity constant by o = 23, /(1+Cq) where
Cq is the constant of the Poincaré inequality.

In the general case, one can obtain the same results by assuming that the
restrictions of 3 to the two sub-domains belong to W1, so that the solution

achieves the same regularity as in the case of constant coefficients.

3. Enriched finite element approximation

In this section we present our method which combines the finite element
discretization on a global non-fitting mesh with a local correction obtained by
subdividing the elements crossed by the interface into sub-elements matching
with it.

Let us consider a regular triangulation 7,¢ of Q with h = max KeTE diam(K)

and let us introduce the space
Vi = {uf € Hy(Q) : vy x € Pi(K) VK € T,%}

where P;(K) denotes the space of affine polynomials on K.

For h sufficiently small, T' intersects a generic triangle K € T,¢ in two
points, each one on a distinct edge. Notice that the two intersection points
might be vertexes of the triangle. We denote by P for £ = 1,..., N, the

points of intersection of I' with the edges of the elements in 7, and the points
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(a) Interface triangle K¢ € T, (b) Elements KT € T,!

Figure 1: An example of a possible interface mesh generation: an interface triangle K¢ e

7,5 on the left, elements in 7,/ obtained by subdivision of K¢ € T,¢ on the right.

where I'is not regular. Then we connect all these points by a piecewise linear
curve ['y, which gives an approximation of I'. As a consequence (2 is split into
two parts by I'y, denoted, with obvious notation, 2, ;, and {2y 5. Notice that
the triangles which intersect I' are not contained either in €2y 5 or in €25, so
that €2;, for i« = 1,2 are not the union of elements in ’EG. Let us introduce

the following approximation of the coefficient 3

Br(x) =py forx e Qyy Br(x) =Py for x € Qyp. (7)

Let Qf be the union of the interface elements of the triangulation 7,¢ that is

o= J K
KeTC
KNT#0

Then also Q' is split by I', into two parts Q{,h C ), and Qih C Q. Now

we construct a triangulation 7,7 of Qf such that for all K € 7,7 we have that
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[, N K7 is either an edge or a vertex and K C K¢ for some K¢ € T, see
Fig. 1. Since each element K’ € 771[ is contained either in €2y 5, or in Qs 4, B
is constant in each K!. Moreover we have the following characterization for

i=1,2

Qin= U K¢ U U K!

KGeTG, KleT],
KGco, xlcol
,

h
We assume that the mesh 7,/ is also regular, that is there exists d; such
that for all K € 7;! it holds

where px and hy stand for the radius of the largest ball contained in K and
the diameter of K, respectively.

In order to respect the regularity assumption on the mesh, one should
avoid anisotropic elements and this can be achieved using suitable different
strategies for the construction of the sub-grid.

Let us consider the space
Vil = {v, € Hy(Q) v € PI(K) VK € Ty v, =0 in Q\Q'}, (9)

then the finite element space we are going to use in the discretization of

problem (3) is obtained by direct sum of the previous two subspaces
Vi, =VE+ V.

Writing any vy, € Vj, as the sum vy, = v¢ +vf with v € V,¢ and v} € V), we

10



define the following bilinear forms:

ag(u§,v) Z /ﬁhVuth,?dx vu§ vy € Ve
KeT¢

2

a/[G(U{L,'U}Cj) = E BhVU{LV'Uf dx Vufl = Vhl, vf = VhG
- Ol
=1 R
2

agr(u§,vl) = Z BuVuS Vol de Yul e VE ol e VI

I
i=1 7 Qi

r(up,vf) Z / By Nu Vv dr  Vul,vi € Vi

KeT]

Then the discretized counterpart of (3) reads: find uy, € Vj, such that

ah(uh,vh) = (f, Uh) Vvh - Vh, (10)

where for all uy, v, € Vj,

an(un, ) = ac(uy, v) + ar(ug, vy) + agr(uf, vp) + ar(ug, vp).

Due to the construction of the finite element space V},, we can write
up, = uf + ul with uf € V¢ and u} € V! satisfying the following system:

ac(uy, vf) + arc(up, vy) = (f,v) Yoy € Vi©

(11)

acr(ug; s vp) + ar(uy, vp) = (f,v) Vo € V.

Here, we have considered triangular meshes, but the same technique can
be also applied when 7,¢ is made by quadrilateral elements. Some difficul-
ties arise when the interface cuts a quadrilateral across two adjacent edges.
In this case a triangle is generated. This suggests the use of a mixture of
triangles and quadrilateral in the fine mesh, or the introduction of a local

triangular mesh. We observe that the local correction is totally independent
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from the global finite element space, so that we can subdivide each quadri-
lateral element crossed by the interface by triangles and use again the space
VI defined in (9). We point out also that the above construction can be gen-
eralized to the three-dimensional case. For the construction of the sub-grid
we refer to [22] where a way for subdividing the tetrahedral elements crossed

by the interface is described.

4. Error estimates

In this section we study the convergence analysis of our scheme using the
technique developed in [27, 28]. All along this section we assume that T" is of
class C?, so that u € H?(Q; Uy). The general case of a Lipschitz interface
will be discussed in Remark 1 at the end of this section.

First of all we prove an a priori estimate for the discrete solution. As-
suming that the integrals are computed exactly, it is not difficult to see that

the bilinear form a;, is uniformly elliptic: for all v, € V}, it holds
ap(vn, vn) = allvallt, (12)

where oo = 23, /(1 4+ Cq) as in the continuous case.
Since Vj, C HJ(€2), we have that problem (10) has a unique solution uy,

with the following a priori estimate

Cao
[unlli < —[fllo-
[0

With standard arguments, one can prove the following version of the Strang

Lemma:

12



Lemma 1. Let u € H}(Q) and uy, € Vj, be the solutions to (3) and (10)

respectively, then

1+ . 1 ap(u,wp) — (f,w
b inf |lu—wplly + — sup (1 w) — (fywn)
a  uev; O wyels, [wn 11

[l = unlly < (13)

In order to estimate the two terms appearing in the right hand side of (13),

we introduce the following notation. For i = 1,2 we write
T;'L = Qi,h \ Qi, wz = Qz \ Qz’,h-

It is easy to verify that 7} = w? and vice versa 77 = w}. For i = 1,2 let (¥

be such that €, > Q; U Qi . For any v; € H*(€);) then 0; € H?(€);) denotes

the Calderén extension of v; from H?(€);) into H?(§2;) such that o; = v; in

2; and the following estimate holds true (see, e.g. [29])
10ill5,6, < Cllvillz.0:- (14)

The following lemma can be proved using the same arguments as in [28,

Lemmas 3.3.11 and 3.3.12].

Lemma 2. There exists a constant C' independent of h such that fori=1,2
and j = 1,2 with j # i
lvllo- < Chllvllig, Yve HY(Q). (15)
Moreover, for every v, € Vj, let us denote by v;, its restriction to € p,, then
fori=1,2 it holds
IVvinllozi < ChY2(vinlle;,

(16)
”UNLHO,T,iL < Ch”vlﬁh”lﬂi,h

where the constants C' do not depend on h.
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Following [27] we now prove an interpolation error estimate. Let us define

the interpolation operator 7, for all v € C°(Q):

Th(v) = Tha () + (v — The(v))

where 7, ¢(v) € Vi€ and m, ;(v) € Vil are the interpolation of v in V¢ and

VI respectively.

Lemma 3. If T,¢ and T,! are reqular triangulations and v € C°(Q)NH? (U

), then we have
v = mn(v) |10 < Chljvi]l2.0,00,, (17)
where vy and vy are the restrictions of v to €y and §2o, respectively.
Proof. We can write
v = m(v)[iq = v —m() g + v — T (@)[{ar

Since 7, 7(v) vanishes on Q\ Q and T,% is regular, applying usual interpola-

tion error estimates (see e.g. [30]), we have that

|U - 7Th(1))|179\91 = |U - Wh’G(U)|17Q\QI S 01h|v|27Q\QI. (18)

It remains to bound the term on the interface domain Qf. We split it as

follows

v — ma(v |1QI Z|’U_7Th ‘191' (19)

By construction we have that the triangles K7 € 7,/ can have at most two

vertexes on I'. If K7 is contained either in Q; or €y, thanks to (8), we
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can apply standard interpolation error estimates taking into account that
mh(v) € PI(KT)

|U - 7Th(’U)|1’KI S Ch|’U|2’KI.

Let us now consider elements K contained in Qf, for < = 1,2 with a non-
empty intersection with €; where j = 1,2 and j # ¢. Let us remember that
the restriction v; € H*(KT N ;) and that ¥; denotes its Calderén extension

to QZ Then we can write

o-mgr = [V m@)Pde+ [ 9 - mo)Pds

K[ﬂQj

< 2/ |V (0; — m,(v)) |2 dx + 2/ |V (v; — @) *dx
Ky K[ﬂQj
Summing all these terms we have
o =T (V)1 01, <2 (h&'—'@H?Jg‘%\@i—'ﬂh(vﬂfjgﬁ) : (20)

By definition of v; we have that the restriction of 7(v) to each sub-domain
QZI ;, coincides with the interpolation of v;, hence using standard interpolation

estimates and (14) we get

5~ m(0) g, < ORuili 1)
Moreover, thanks to Lemma 2 and (14), we have

[0; = Bilf - < CP|Jjll50,00,- (22)

Putting together (18), (19) and the last three inequalities (20)-(22) we
obtain (17).
U

For the estimate of the second term in (13) we prove the following lemma.
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Lemma 4. Let u be the solution to (3), then we have the following estimate

for all w, € Vj,
an(u,wy) — (f,wn) < CR|[ulla.0,00, [ wlls,
where C'is a constant independent of h, but depends on [s.
Proof. Since u is the solution of problem (3) and V}, C Hj (), then
ap(u,wy) — (f,wy) = ap(u, wy) — a(u, wy).

The two bilinear forms differ only on the sets 77 and w!, for i = 1,2. In fact,

recalling the definition (7) of 5, we have
2
ap(u, wy) — a(u, wy) = Z </ BV uNVwydx —/ ﬁVqu;ﬂx)
i=1 Qin Q;
2
= Z/ BiVuVwydx
i=1 77

2
S CZ/BZ|U|1,T}ZL
=1

wh|1,7'}il'
Then, using Lemma 2, we obtain the desired result. O

The results of Lemmas 1-4 give the following theorem:

Theorem 1. Let u € H}(Q) N H2(2; N Qy) be the solution to problem (3)
and uy, € Vj, be the solution of (10), then the following error estimate holds
true

lu — upli < Chllull2,0,u0,, (23)
where C' 1s independent of h, but depends on the values of 51 and Ps.
The L? error estimate can be derived from (23) using a duality argument.
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Theorem 2. Let u and uy, be as in Theorem 1, then we have
lu — upllo < Ch?[|ul|2,0,00,, (24)
with C' independent of h but depending on the ratio By /.

Proof. Let us consider the following auxiliary problem: find ¢ € HJ(f2) such
that
a(p,v) = (u—up,v) Vv € Hy(S), (25)
where the bilinear form a is defined in (4). As for the solution of problem (3)
we have that ¢ € H%(€; U Qy) with the following a priori estimate
el + [lellzun, < Cllu— uno- (26)
Taking v = u — uy, in (25) we have
oo — unll2 = al,w — un)
= a(p,u —up) — ap(p,u — up) (27)
+ an(p — () u — un) + an(malp), u — up).
Using Lemmas 2 and 3 and inequality (26), we obtain

a(p,u —up) — ap(p, u — up)
2

- Z (/Q BV eV (u — up)dx — /Q BV eV (u — uh)dx>

2

= Z/ BiVV (u — up)dz
i=1 YW

2
< O3 1Vl IV (a = w)llos
=1

< Chllglla. v, llu = uall

< Chllu = unllollw — uall1,
(28)
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and

an(p=mn(p), u=up) < Clo=mn(p)|1lu—unli < Chllu—unlloflu—unllr. (29)

For the last term in (27) we have

an(mn(p), u — up) = an(u, (@) — (f, T (p))

hence we use the same proof as in Lemma 4 arriving at

2
an(mn (), u—un) < C  fuly i ma ()|,

=1
2
<> by (Il + Ima() = ol )
i=1 (30)
< Chllullzuon, (Chllelaan, + () = oh)
< C1h2||u||2791Uf22||(:0||2791UQ2

< CR*||ul|2,0,00, [|[u — unllo-

Inserting (28)-(30) in (27) and using (23) we obtain the desired estimate.
0

Remark 1. Let us assume that the interface I' is only Lipschitz continuous
and that it can be subdivided into a finite number of arcs each of them of class
C?. In this case we have that uw € H*(Q; U Q) with 3/2 < s < 2, see [206,
Ch. 2]. The Calderdn extension cannot be applied anymore, since in the case
of Lipschitz continuous boundary, it is defined only for functions in H™ with
integer m [29]. Nevertheless, the results of this section can be extended to the
case of Lipschitz interface, provided that we use the general extension operator

E 1 C®(Q) —: C®(R?) introduced by Stein [31, Th.5 pp.181], extended to

18



H™(Q) with m € N by a density argument and generalized to fractional
Sobolev spaces by interpolation [32, Th. B.2]. Therefore we have the following

error estimates:
[u —unllo + hlu —unly < CR|lulls 0,00,

Remark 2. The approach we used can be extended to higher order finite
elements. We point out that, in such case, we could achieve convergence
rates similar to (23) and (24) provided that v € H*(2y U Q) with s > 2.
We recall that the regularity of the solution depends on the reqularity of the

interface. For example, if the interface is a straight line, we can obtain
k —
lu = wnllm < CHMfull grss ,00)

with m = 0,1 and k the degree of the finite elements. If this is not the case,
it 1s necessary to introduce higher order approzimation of the interface to
achieve the desired convergence rate, and this implies the use of isoparametric
finite elements. We are not going to investigate further these aspects in this

work.

5. Numerical results

In this section we provide some details about the implementation of the
method introduced in Section 3 and present several numerical results which
confirm the analysis presented in Section 4. Moreover, we discuss how to
construct and solve the resulting linear system. We investigate also some
aspects related to the behavior of the condition number of the matrices in-
volved in the solution of the linear system and we compare our approach

with a different technique for the solution of interface problems.
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5.1. Implementation

As remarked in section 3, we write the solution as uj, = u§ + ul where

ul € V,¢ and ul € V)| in order to obtain system (11). Assuming that
V¢ =span{¢i=1,...n}, VI =span{¢!i=1,...m},

and writing
n m
G __ GG I _ 1.1
up =) ufey, wy =) uje),
=1 j=1

system (11) leads to the algebraic system Au = b, with

A= , U= , b= , (31)
A A Uy br

where the matrix Axy has elements given by a( }/, ¢7X), similarly uy and by
are vectors with components uX and (f, ¢X), respectively. We remark that
the diagonal blocks are symmetric and positive definite and that Agr = A/,
so that system (31) is symmetric, positive definite and sparse. To solve
numerically system (31), different approaches can be taken into account.
Among others, we can solve directly system Au = b by using any suitable
sparse iterative solver for symmetric and positive definite systems or we can
consider the block partitioned system (31), compute the Schur complement

matrix

Ag = Ace — AGIAI_IIAIGa (32)

and solve the two smaller systems Asug = bg — AGIAj_Ilb[ and Aju; =
br — Ajqug. In the following we give an estimate of the condition number of

the matrices A, Ag and of the two blocks Agq and Aj;.
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5.2. Error analysis

In all the following simulations, we considered two different families of
meshes. The first one is made up of structured meshes, which are obtained
by dividing each element of a Cartesian grid into two triangles; the second one
is made up of general regular unstructured meshes. Each mesh is obtained
by refining increasingly the coarsest mesh of the family. As an example, we

report in Figure 2 a mesh for each family.

JAVAVAN

/\/

<
«
-0.5 ‘
J

Figure 2: Example of a structured (left) and unstructured (right) meshes.

Let us set Q = [—-1,1)2, T = {(z,y) € Q: z = v(y)} with v(y) = c1y* +
oy +c3, Q1 = {(r,y) € Q:x < v(y)} and QL = {(x,y) € Q: 2z > ~(y)},
then we consider the elliptic problem (2) with piecewise constant coefficient

given by (6) and f such that the solution is the following piecewise smooth
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function

w(e.y) = By sin(2m(x — y(y))) sin(2my)  (x,y) € O, (33)

f1sin(2m(x — v(y))) sin(2my)  (z,y) € Qs.

We notice that for all choices of 1, B2, ¢; for i = 1,2,3, the solution
given in (33) verifies both transmission conditions in (2).

First we check the convergence of the method for two different couples
of constants ;, i = 1,2 considering as interface both a straight line and a
curve.

In these simulations we use the family of unstructured meshes, made
of 46 -4™, m = 0,...,5 elements. In Table 1 we report the degrees of
freedom dofe of the non-fitting meshes and the degrees of freedom dof; of
the interface meshes together with the mesh size h. As we can see, the
additional computational cost due to the interface mesh is negligible with
respect to that of the global non-fitting mesh.

In the first simulation, we consider a linear interface with v(y) = 0.4y +
0.12, and we test both a small coefficient jump with g; = 0.1 and 5, = 1 and
larger one with 3; = 1072 and 3, = 10%. As an example, we plot in Figure 3
the analytical solution obtained with the first choice of coefficients.

In Table 2 we report the L?-norm and the H'-seminorm of the relative
error e, and the corresponding estimated convergence rates ro and r1. As we
can see, the expected convergence rates are achieved by both the simulations,
and the scheme is accurate even for considerably different coefficients.

In the second test we use the same choices of 3; i = 1,2 as in the previous
simulation, but now we consider the nonlinear interface with v(y) = 0.3y* +

0.4y —0.12. In this case the analytical solution obtained with the first choice
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m | dofc | dofy h

16 10 | 7.22e-01
1 7 20 | 3.61e-01
337 40 | 1.81e-01
1409 | 82 | 9.03e-02
5761 | 166 | 4.51e-02
23297 | 334 | 2.26e-02

U | =~ | W | N

Table 1: Mesh parameters for unstructured grids with 46 - 4™ elements. We report the
degrees of freedom of the global mesh (dofc) and of the interface mesh (dofr) and the

mesh size h.

) h'

(& m
“ AYZ@V “»\///
Y \\“\W A

N \\

4 \

bm \
\\

Figure 3: Analytical solution (33) of the problem (2) for 81 = 0.1 and 33 = 1 and a linear
interface with v(y) = 0.4y + 0.12.
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fr =018 =1 f1=1072, 5, = 10*
m HehHO To ‘€h|1 T HehHO To ‘€h|1 T

0 || 8.282-1 8.602e-1 8.269e-1 8.619e-1

1 ]| 2.874e-1 | 1.53 || 5.161e-1 | 0.74 || 2.877e-1 | 1.52 | 5.166e-1 | 0.74

7.910e-2 | 1.86 || 2.738e-1 | 0.91 || 7.908e-2 | 1.86 || 2.738e-1 | 0.92

2.034e-2 | 1.96 || 1.393e-1 | 0.97 || 2.032e-2 | 1.96 || 1.393e-1 | 0.97
0.137e-3 | 1.99 || 7.014e-2 | 0.99 || 5.133e-3 | 1.99 || 7.013e-2 | 0.99
1.289¢-3 | 2.00 || 3.515e-2 | 1.00 || 1.288e-3 | 2.00 || 3.514e-2 | 1.00

U | &= | W | DN

Table 2: L%norm |ep||o and H'-seminorm |ey|; of the relative errors and estimated con-
vergence rates 7o and ry for different values of the constants 3; with v(y) = 0.4y +0.12 on

unstructured meshes.

of coefficients is plotted in Figure 4.
In Table 3 we report the L?-norm and the H'-seminorm of the relative
error e, together with the estimated convergence rates ry and r;. Also in

this case, the expected convergence rates are achieved for both choices of j;.

5.3. Condition number

Let us investigate now the behavior of the condition number of the matri-
ces involved in the solution of (31) and of the Schur complement matrix (32).
For this we consider a family of structured meshes and we set y(y) = c3. We
choose c¢3 suitably small so that for each mesh, the interface crosses only the
elements included in the vertical strip QF = [0,2/2]] x [-1,1],i=2,...,T.
All the following plots are in bi-logarithmic scale.

Let us first set ¢3 = 0.012 and $; = 0.1 and py = 10" for n = 0, 2,4, 6, 8.

In Figure 5 we plot the condition numbers of A, A;;, Agq, Ag versus 52/
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Figure 4: Analytical solution (33) of the problem (2) for f; = 0.1 and 8 = 1 and a
nonlinear interface with v(y) = 0.3y? + 0.4y — 0.12.
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Mesh ﬁl = 0.1762 =1 ﬁl = 10_2,52 = 104

m HehHO To |€h|1 T HehHO To ‘€h|1 T

0 1.040e0 1.048¢c0 1.076¢0 1.053¢e0

1 4.185e-1 | 1.31 || 6.088e-1 | 0.78 || 4.225e-1 | 1.35 || 6.105e-1 | 0.79

1.189e-1 | 1.82 || 3.137e-1 | 0.96 || 1.197e-1 | 1.82 || 3.143e-1 | 0.96

3.072e-2 | 1.95 || 1.591e-1 | 0.98 || 3.089¢-2 | 1.95 || 1.593e-1 | 0.98

7.761e-3 | 1.98 || 7.999¢-2 | 0.99 || 7.800e-3 | 1.99 || 8.009¢-2 | 0.99

U | &= | W | N

1.947e-3 | 1.99 || 4.009e-2 | 1.00 || 1.957e-3 | 1.99 || 4.014e-2 | 1.00

Table 3: L?-norm |lep,||o and H'-seminorm |ep|; of the relative errors and estimated conver-
gence rates ro and r; for different values of the constants 8; with v(y) = 0.3y%+ 0.4y —0.12

on several unstructured meshes.

and we see that they are all proportional to 55/8;. We performed other sim-
ulations in which we changed both the values of 3;, and we saw that the
condition numbers actually depend only on the coefficients ratio. The previ-
ous result can be summarized as follows (the symbol o means proportional

to)

B Ba Ba Ba
x 3, 3, K(Ar) o 3 K(As) B (34)

Then in Figure 6 we plot the condition numbers versus the mesh size h.

K(A) K(Aqa)

We find that, as expected, K (Agg) and K (Ag) are proportional to A2, while
K(A) is proportional to h™* and K(Aj;) is proportional to h, obtaining

K(Aj) <h, K(Ag)x 1 (35)

1
K(Ag(;) X —= 2 .

K(A) X h27

Ea
Now we study the behavior of the condition numbers when the interface

gets closer to x = 0, in order to consider increasingly anisotropic interface
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elements. We set ; = 0.1 and S = 1 and we take y(y) = ¢3 = 0.012- 107"
with n = 0,2,4,6,8. In Figure 7 we plot only the behavior of the condition
numbers of A and A;; with respect to different positions of the interface for
different mesh sizes h, since we have verified that the condition numbers of
Age and Ag are not affected by the position of the interface. As we can see,
K(A) and K(A;;) are both proportional to c¢;'. The condition number of
Ay is larger on coarser grids, because in this case the interface elements are
very anisotropic. As the grid is refined, the interface elements become more
and more isotropic and the condition number decreases. We remark that, for
each choice of the position of the interface, c3 is actually the minimum of the

edges of the interface mesh. Hence we can state the following relations

1 1
K(A) x — K(Age) x1, K(Ar) x— K(Ag) x 1L (36)
Cs C3
In Figure 8 we report the behavior of the condition numbers versus the mesh
size h, for different values of the interface position. We remark that our
experiments show that the error is not affected by the presence of anisotropic
elements.

We can summarize the results reported in (34), (35) and (36) by the

following relations

B B

KD & ey K ee) X 5 (37)
Pah B

K(A[[) XX @, K(AS) X 61h2.

These relations have been checked performing several simulations on different
meshes, with different interface positions and coefficient ratios fs/f; and

fitting, in the least-squares sense, the logarithm of the condition numbers
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Q. Qy, Oy
K(A) |0.995 | -1.210 | -0.970
K(Ace) | 0.994 | -2.006 | 0.003
K(Ar) | 0.999 | 0.881 | -0.988
K(Ag) | 0.995 | -2.004 | 0.004

Table 4: Least-squares approximation of exponents of (38) for the condition numbers K (-).

The values agree with (37).

with respect to the logarithm of the following function

(g_) S (38)

The values of «,, ay, v, collected in Table 4 are in good agreement with (37).
In particular, we observe that the condition number of A and A;; increases
when the interface gets closer to element edges (c3 tends to zero). In this case
one could try to use a different way for the construction of the local sub-grid

avoiding elements with one edge too small with respect to the others.

5.4. Comparison to immersed interface method

In the last set of experiments, we compare our method with the immersed
interface method (IIM) introduced in [15, 16, 33]. The IIM is based on the
construction of suitable basis functions on the elements crossed by the inter-
face which satisfy the transmission conditions of problem (2). Notice that the
resulting numerical solution can present jumps along the interelement bound-
aries. We consider Problem (2) with solution given by (33), and compute

the L? relative errors obtained on the family of unstructured meshes with
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the nonlinear interface used in the previous simulations. We take 5; = 0.1
and different increasing values of the coefficient 5, = 10" for n = 0,4, 8.
The results reported in Figure 9 show that the relative errors of our method
do not change significantly when we increase coefficient (5, unlike the errors
produced by IIM, which behaves more irregularly as [, increases, especially
on the coarser grids.

In the last test, we consider the two simulations reported in [33, page
182]. We set again Q = [—1, 1], while the interface is the circle centered at
the origin with radius ry. Following [33], we set ro = 7/6.28 and choose f

and the boundary conditions so that the exact solution is
(:E2 + y2)3/2

u(z,y) = (22 +ﬁ:1g2)3/2 1 1
— 4+ (— — —) 78 otherwise .
P Br o B

In Figure 10 we report the L?-norm and H!-seminorm of the relative errors

if 2 +y?* <1l
(39)

for test 1, obtained setting 5, = 1 and 55 = 1000, and for test 2, in which we
set #; = 1000 and 5 = 1. The results are comparable with those reported
in [33] where the error is evaluated in L*°-norm. Also in this case the expected

convergence rates are achieved by our method.

6. Conclusions

In this work we introduced a new numerical method for the approxima-
tion of elliptic interface problems. It is based on a local enrichment of the
global finite element space, so that the global mesh needs not to be mod-
ified. The local enrichment is achieved using shape functions of the same

type as those of the global finite element space, so that the approximation is
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conforming. In this work we studied a correction based on piecewise-linear
polynomials, but the approach can be generalized to higher order approx-
imations. We performed error analysis and we proved that the approach
allows to recover the optimal rates of convergence in L? and in H*, taking
advantage of the local regularity of the solution. Several numerical simula-
tions confirmed the theoretical results. Since our method does not require a
modification of the global mesh, it turns out to be particularly attractive for
time dependent problems, in which the interface is not static. We plan to
investigate the application of this new approach to parabolic problems with

moving interfaces.
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Figure 5: Condition numbers of the matrices A, Aga, Arr, As versus the ratio 82/ for

h
—6—0.7085
—G— 0.2001
--©-0.0278

1010

——.7085
—0— 0.2001
--©--0.0278

the test problem with 8; = 0.1 and several different values of (5.
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Figure 6: Condition numbers of the matrices A, Agg, Arr, As with respect to the mesh

size h for the problem with solution (33) with 5, = 0.1 and several different values of fs.
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Figure 7: Condition numbers of the matrices A, A;; versus the interface position c3 for

the problem with solution (33) with 51 = 0.1 and 8 = 1 on several different meshes with

size h.
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Figure 8: Condition numbers of the matrices A, A;; versus h for the test problem with
1 = 0.1 and 8 = 1 and several different values of c3, which determine the position of the

interface.
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Figure 9: Comparison of the errors for the test problem for increasing values of 3o =
10", n = 0,4,8. The lines with a square mark show the errors of the enriched interface
method (EIM) described in this paper while the lines with a star mark are those obtained

with the immersed interface method (IIM).
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