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Abstract

We consider interface problems for second order elliptic partial differential

equations with Dirichlet boundary conditions. It is well known that the finite

element discretization may fail to produce solutions converging with optimal

rates unless the mesh fits with the discontinuity interface. We introduce a

method based on piecewise linear finite elements on a non-fitting grid en-

riched with a local correction on a sub-grid constructed along the interface.

We prove that our method recovers the optimal convergence rates both in H1

and in L2 depending on the local regularity of the solution. Several numerical

experiments confirm the theoretical results.
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1. Introduction

In several physical situations, like heat transfer, fluid dynamics, acoustic

waves, electromagnetic phenomena and materials science, problems having
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discontinuous coefficients across interfaces may arise. In general situations,

the position of the interfaces can be either given or can be an unknown of

the problem as in the case of phase transition, fluid-structure interaction,

heterogeneous structures or free-boundary problems. If the interface is fixed,

it might be desirable to construct the mesh in such a way it fits with the

interface, in order to achieve the optimal accuracy in each subregion of the

domain. In the case of unknown interface as those quoted above, a lot of

effort has been made to develop efficient numerical techniques (see for ex-

ample [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the references therein). Since, in

this kind of problems, the interface is time dependent and the problem is

nonlinear, computing the correct position of the interface at each time step

could require some iterations to guarantee stability of the scheme. In such

case, instead of adapting the mesh to fit the interface at each time step, it

could be convenient considering meshes which do not take into account the

position of the interface and apply the enrichment method, we are going to

present, to recover the optimal accuracy.

From the mathematical viewpoint, the lack of global regularity of the co-

efficients may affect the global regularity of the solution, even if the interface

is smooth. In these situations numerical schemes may fail to provide the

optimal convergence rate. On the other hand, if the coefficients are locally

regular, then the solution could enjoy local smoothness properties. Therefore,

in order to have a finite element solution which converges to the continuous

one with an optimal rate, the computational meshes need to be constructed in

such a way that the interface is well approximated by the mesh faces. In this

case, the meshes are called fitting. We refer, for example, to [11, 12, 13, 14] for
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the analysis in the elliptic and parabolic case. However, the generation of a

fitting grid could be time consuming in presence of complicated geometries or

in the case of time dependent interfaces, which would require the re-meshing

at each time step. We mention here that one could proceed by constructing

independent meshes in the subregions. In such case one gets fitting meshes

which could be non-matching, that is grids that do not share the same nodes

along the interface between two adjacent regions. For example, one can use

a fine mesh on a certain region and a coarser mesh on the adjacent one. As a

consequence the finite element space in the first region presents more degrees

of freedom along the interface than that defined in the second region. In this

situation, modern software packages offer a so-called glue technology which

allows to interpolate the two fields in order to obtain a continuous solution,

see e.g. ADINA (http://www.adina.com/newsgB36.shtml).

Several techniques have been proposed which employ non-fitting meshes

associated with proper strategies which allow to recover the optimal con-

vergence rate. The immersed interface methods proposed in [15, 16] com-

bine the advantages of cartesian grids with the construction of suitable local

piecewise polynomials which can take into account the jump of the normal

derivative. The partition of unity method [17] allows to include in the fi-

nite element spaces a priori knowledge of the behavior of the solution close

to the interface. In the extended finite element method [18] an enrichment

of the standard finite element spaces is constructed in order to model arbi-

trary discontinuities of functions or their derivatives. A different approach

is followed in the unfitting finite element method proposed in [19] where the

approximate solution is allowed to be discontinuous and the correct interface

3



conditions are enforced weakly using Nitsche’s method. Moreover, we quote

the methods based on fictitious domains, see [20, 21].

Our approach is based on the immersed boundary method proposed in [22,

23] for simulating fluid motion around solid objects. In these papers the

immersed boundary represents the interface between fluid and solid where

Dirichlet boundary conditions are imposed. The main idea of the method is

to construct a mesh for the union of the fluid and the solid domains indepen-

dently of the position of the solid and then to cut the elements crossed by

the immersed boundary adding new degrees of freedom. Then the additional

unknowns in the solid domain can be computed locally in terms of the new

degrees of freedom using the boundary condition. In our case, instead, the

immersed boundary corresponds to the interface where the coefficients present

discontinuities, therefore the value of the solution along it is not known in

advance. In order to obtain a numerical solution with optimal convergence

rate, we introduce first a finite element discretization of the interface problem

on a non-fitting grid, then we enrich the resulting finite element space per-

forming a local refinement of the grid along the interface. We observe that

the additional unknowns we have introduced could be expressed by static

condensation in term of the unknowns on the non-fitting grid, so that the

size of the algebraic system would not increase. Moreover, this procedure

does not require the modification of the non-fitting mesh structure keeping

the original numbering of the degrees of freedom. This advantage becomes

more relevant when it is applied to the case of time dependent problems with

moving interfaces, as, for example, the matrices of the resulting linear system

can be modified only locally at each time step. The construction of the sub-
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grid associated with the local enrichment can be done in several ways. Our

local finite element space is obtained by subdividing the elements crossed by

the interface into sub-elements so that edges can intersect the interface only

at the vertexes.

Here we present and discuss into details the case of two dimensional prob-

lems discretized by piecewise linear finite elements, however the method can

be generalized to higher order finite elements. We show that the method

recovers the optimal rate of convergence provided the solution is sufficiently

smooth in each subregion. The three dimensional case can also be treated

using, for example, the geometric considerations of [22] for the construction

of the sub-grid.

The paper is organized as follows: in Sect. 2 we present the problem

with the regularity results for the solution; next, the enriched finite element

method is introduced and the error estimates are provided in Sect. 4. The

last section reports some numerical experiments confirming the theoretical

results together with the numerical behavior of the condition number of the

involved matrices. In particular, we exploit numerically the behavior of the

condition number of the matrix analyzing what happens when the interface

gets closer to the existing non-fitting grid so that the sub-elements could fail

to satisfy the minimum angle condition.

2. Elliptic problem with discontinuous coefficients

In order to simplify the presentation, we consider a convex polygonal do-

main Ω ⊂ R
2, divided into two open sets Ω1, Ω2 by an interface Γ. The

technique we are going to present can be extended to the case of several do-
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mains with suitable modifications. We assume that Γ is Lipschitz continuous

and that it is composed by a finite number of open arcs each of them of class

C2. For a regular function v defined on Ω, we denote by vi for i = 1, 2 its

restrictions to Ωi, that is vi = v|Ωi
for i = 1, 2.

We consider the following elliptic problem with homogeneous Dirichlet

boundary conditions

−∇ · (β∇u) = f in Ω

u = 0 on ∂Ω,
(1)

where f and β are sufficiently smooth functions on Ω. We assume that

β ≥ β0 > 0 for some β0 ∈ R. The case of non homogeneous Dirichlet

boundary conditions can be treated as well with standard modifications.

When β presents jump discontinuities across Γ, problem (1) can be rewrit-

ten as the following transmission problem:

−∇ · (β∇u1) = f in Ω1

−∇ · (β∇u2) = f in Ω2

u1 = u2 on Γ

β|Ω1

∂u1

∂n1

+ β|Ω2

∂u2

∂n2

= 0 on Γ

u1 = 0 on ∂Ω1 \ Γ

u2 = 0 on ∂Ω2 \ Γ.

(2)

Let f ∈ L2(Ω) and β ∈ L∞(Ω). We assume that the restrictions of β to

the sub-domains Ωi are sufficiently smooth, that is β|Ωi
∈ W 1,∞(Ωi) for

i = 1, 2. The variational formulation of problem (1) is then the following:

find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω) (3)
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where

a(u, v) =

∫

Ω

β∇u∇vdx (f, v) =

∫

Ω

fvdx. (4)

We shall use the following notation for the norms in the Hilbert spaces on

B ⊂ R
2: for all v ∈ L2(B) we set

‖v‖0,B =

(
∫

B

v2dx

)1/2

.

Next for functions v in the Hilbert space Hs(B) with s integer we define

|v|j,B = ‖Djv‖0,B for 0 ≤ j ≤ s

‖v‖s,B =

(

s
∑

j=0

|v|2j,B

)1/2 (5)

where Djv stands for the array of the derivatives of v of order j. When

B = Ω and no confusion may arise we drop the subscript Ω.

We introduce the space Hs(Ω1 ∪ Ω2) = {v ∈ H1(Ω) : vi ∈ Hs(Ωi) for i =

1, 2} endowed with the norm

‖v‖s,Ω1∪Ω2
=
(

‖v1‖
2
s,Ω1

+ ‖v2‖
2
s,Ω2

)1/2
.

Problem (3) has a unique solution u ∈ H1
0 (Ω) such that u ∈ ∩H2(Ω1 ∪Ω2) if

Γ belongs to C2, with the following a priori estimate (see [14, 24, 25])

‖u‖1 + ‖u‖2,Ω1∪Ω2
≤ C‖f‖0.

In the case when Γ does not belong to C2 but it is only globally Lipschitz

continuous, the regularity of the restrictions of u to Ω1 and Ω2 might be

reduced and u ∈ Hs(Ω1 ∪ Ω2) with 3/2 < s ≤ 2, see [26, Ch. 2].
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To simplify the exposition of the numerical method, we assume that the

coefficient β is piecewise constant with

β(x) = β1 for x ∈ Ω1, β(x) = β2 for x ∈ Ω2, (6)

and β1 < β2. With this choice it is easy to check that the continuity constant

of a(·, ·) is given by β2, and the coercivity constant by α = 2β1/(1+CΩ) where

CΩ is the constant of the Poincaré inequality.

In the general case, one can obtain the same results by assuming that the

restrictions of β to the two sub-domains belong to W 1,∞, so that the solution

achieves the same regularity as in the case of constant coefficients.

3. Enriched finite element approximation

In this section we present our method which combines the finite element

discretization on a global non-fitting mesh with a local correction obtained by

subdividing the elements crossed by the interface into sub-elements matching

with it.

Let us consider a regular triangulation T G
h of Ω with h = maxK∈T G

h
diam(K)

and let us introduce the space

V G
h = {vGh ∈ H1

0 (Ω) : v
G
h |K ∈ P1(K) ∀K ∈ T G

h }

where P1(K) denotes the space of affine polynomials on K.

For h sufficiently small, Γ intersects a generic triangle K ∈ T G
h in two

points, each one on a distinct edge. Notice that the two intersection points

might be vertexes of the triangle. We denote by Pk for k = 1, . . . , Np the

points of intersection of Γ with the edges of the elements in T G
h and the points
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Γ

KG

(a) Interface triangle KG ∈ T G

h

Γh

KI
1

KI
2

KI
3

(b) Elements KI ∈ T I

h

Figure 1: An example of a possible interface mesh generation: an interface triangle KG ∈

T G

h
on the left, elements in T I

h
obtained by subdivision of KG ∈ T G

h
on the right.

where Γ is not regular. Then we connect all these points by a piecewise linear

curve Γh which gives an approximation of Γ. As a consequence Ω is split into

two parts by Γh denoted, with obvious notation, Ω1,h and Ω2,h. Notice that

the triangles which intersect Γ are not contained either in Ω1,h or in Ω2,h so

that Ωi,h for i = 1, 2 are not the union of elements in T G
h . Let us introduce

the following approximation of the coefficient β

βh(x) = β1 for x ∈ Ω1,h βh(x) = β2 for x ∈ Ω2,h. (7)

Let ΩI be the union of the interface elements of the triangulation T G
h that is

ΩI =
⋃

K∈T G
h

K∩Γ 6=∅

K.

Then also ΩI is split by Γh into two parts ΩI
1,h ⊂ Ω1,h and ΩI

2,h ⊂ Ω2,h. Now

we construct a triangulation T I
h of ΩI such that for all KI ∈ T I

h we have that
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Γh ∩KI is either an edge or a vertex and KI ⊆ KG for some KG ∈ T G
h , see

Fig. 1. Since each element KI ∈ T I
h is contained either in Ω1,h or in Ω2,h, βh

is constant in each KI . Moreover we have the following characterization for

i = 1, 2

Ωi,h =









⋃

KG∈T G
h

,

KG⊂Ωi

KG









⋃











⋃

KI∈T I
h
,

KI⊂ΩI
i,h

KI











.

We assume that the mesh T I
h is also regular, that is there exists δI such

that for all K ∈ T I
h it holds

ρK ≥ δIhK (8)

where ρK and hK stand for the radius of the largest ball contained in K and

the diameter of K, respectively.

In order to respect the regularity assumption on the mesh, one should

avoid anisotropic elements and this can be achieved using suitable different

strategies for the construction of the sub-grid.

Let us consider the space

V I
h = {vIh ∈ H1

0 (Ω) : v
I
h|K ∈ P1(K) ∀K ∈ T I

h , v
I
h = 0 in Ω \ ΩI}, (9)

then the finite element space we are going to use in the discretization of

problem (3) is obtained by direct sum of the previous two subspaces

Vh = V G
h + V I

h .

Writing any vh ∈ Vh as the sum vh = vGh + vIh with vGh ∈ V G
h and vIh ∈ V I

h , we
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define the following bilinear forms:

aG(u
G
h , v

G
h ) =

∑

K∈T G
h

∫

K

βh∇uG
h∇vGh dx ∀uG

h , v
G
h ∈ V G

h

aIG(u
I
h, v

G
h ) =

2
∑

i=1

∫

ΩI
i,h

βh∇uI
h∇vGh dx ∀uI

h ∈ V I
h , vGh ∈ V G

h

aGI(u
G
h , v

I
h) =

2
∑

i=1

∫

ΩI
i,h

βh∇uG
h∇vIh dx ∀uG

h ∈ V G
h , vIh ∈ V I

h

aI(u
I
h, v

I
h) =

∑

K∈T I
h

∫

K

βh∇uI
h∇vIh dx ∀uI

h, v
I
h ∈ V I

h .

Then the discretized counterpart of (3) reads: find uh ∈ Vh such that

ah(uh, vh) = (f, vh) ∀vh ∈ Vh, (10)

where for all uh, vh ∈ Vh

ah(uh, vh) = aG(u
G
h , v

G
h ) + aIG(u

I
h, v

G
h ) + aGI(u

G
h , v

I
h) + aI(u

I
h, v

I
h).

Due to the construction of the finite element space Vh, we can write

uh = uG
h + uI

h with uG
h ∈ V G

h and uI
h ∈ V I

h satisfying the following system:

aG(u
G
h , v

G
h ) + aIG(u

I
h, v

G
h ) = (f, vGh ) ∀vGh ∈ V G

h

aGI(u
G
h , v

I
h) + aI(u

I
h, v

I
h) = (f, vIh) ∀vIh ∈ V I

h .
(11)

Here, we have considered triangular meshes, but the same technique can

be also applied when T G
h is made by quadrilateral elements. Some difficul-

ties arise when the interface cuts a quadrilateral across two adjacent edges.

In this case a triangle is generated. This suggests the use of a mixture of

triangles and quadrilateral in the fine mesh, or the introduction of a local

triangular mesh. We observe that the local correction is totally independent
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from the global finite element space, so that we can subdivide each quadri-

lateral element crossed by the interface by triangles and use again the space

V I
h defined in (9). We point out also that the above construction can be gen-

eralized to the three-dimensional case. For the construction of the sub-grid

we refer to [22] where a way for subdividing the tetrahedral elements crossed

by the interface is described.

4. Error estimates

In this section we study the convergence analysis of our scheme using the

technique developed in [27, 28]. All along this section we assume that Γ is of

class C2, so that u ∈ H2(Ω1 ∪ Ω2). The general case of a Lipschitz interface

will be discussed in Remark 1 at the end of this section.

First of all we prove an a priori estimate for the discrete solution. As-

suming that the integrals are computed exactly, it is not difficult to see that

the bilinear form ah is uniformly elliptic: for all vh ∈ Vh it holds

ah(vh, vh) ≥ α‖vh‖
2
1, (12)

where α = 2β1/(1 + CΩ) as in the continuous case.

Since Vh ⊂ H1
0 (Ω), we have that problem (10) has a unique solution uh

with the following a priori estimate

‖uh‖1 ≤
CΩ

α
‖f‖0.

With standard arguments, one can prove the following version of the Strang

Lemma:
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Lemma 1. Let u ∈ H1
0 (Ω) and uh ∈ Vh be the solutions to (3) and (10)

respectively, then

‖u− uh‖1 ≤
1 + β2

α
inf

vh∈Vh

‖u− vh‖1 +
1

α
sup

wh∈Vh

ah(u, wh)− (f, wh)

‖wh‖1
. (13)

In order to estimate the two terms appearing in the right hand side of (13),

we introduce the following notation. For i = 1, 2 we write

τ ih = Ωi,h \ Ωi, ωi
h = Ωi \ Ωi,h.

It is easy to verify that τ 1h = ω2
h and vice versa τ 2h = ω1

h. For i = 1, 2 let Ω̃i

be such that Ω̃i ⊃ Ωi ∪ Ωi,h. For any vi ∈ H2(Ωi) then ṽi ∈ H2(Ω̃i) denotes

the Calderón extension of vi from H2(Ωi) into H2(Ω̃i) such that ṽi = vi in

Ωi and the following estimate holds true (see, e.g. [29])

‖ṽi‖2,Ω̃i
≤ C‖vi‖2,Ωi

. (14)

The following lemma can be proved using the same arguments as in [28,

Lemmas 3.3.11 and 3.3.12].

Lemma 2. There exists a constant C independent of h such that for i = 1, 2

and j = 1, 2 with j 6= i

‖v‖0,τ i
h
≤ Ch‖v‖1,Ωj

∀v ∈ H1(Ω). (15)

Moreover, for every vh ∈ Vh let us denote by vi,h its restriction to Ωi,h, then

for i = 1, 2 it holds

‖∇vi,h‖0,τ i
h
≤ Ch1/2‖vi,h‖1,Ωi,h

‖vi,h‖0,τ i
h
≤ Ch‖vi,h‖1,Ωi,h

(16)

where the constants C do not depend on h.
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Following [27] we now prove an interpolation error estimate. Let us define

the interpolation operator πh for all v ∈ C0(Ω):

πh(v) = πh,G(v) + πh,I(v − πh,G(v))

where πh,G(v) ∈ V G
h and πh,I(v) ∈ V I

h are the interpolation of v in V G
h and

V I
h , respectively.

Lemma 3. If T G
h and T I

h are regular triangulations and v ∈ C0(Ω)∩H2(Ω1∪

Ω2), then we have

|v − πh(v)|1,Ω ≤ Ch‖v1‖2,Ω1∪Ω2
, (17)

where v1 and v2 are the restrictions of v to Ω1 and Ω2, respectively.

Proof. We can write

|v − πh(v)|
2
1,Ω = |v − πh(v)|

2
1,Ω\ΩI + |v − πh(v)|

2
1,ΩI .

Since πh,I(v) vanishes on Ω \ΩI and T G
h is regular, applying usual interpola-

tion error estimates (see e.g. [30]), we have that

|v − πh(v)|1,Ω\ΩI = |v − πh,G(v)|1,Ω\ΩI ≤ C1h|v|2,Ω\ΩI . (18)

It remains to bound the term on the interface domain ΩI . We split it as

follows

|v − πh(v)|
2
1,ΩI =

2
∑

i=1

|v − πh(v)|
2
1,ΩI

i,h
. (19)

By construction we have that the triangles KI ∈ T I
h can have at most two

vertexes on Γ. If KI is contained either in Ω1 or Ω2, thanks to (8), we
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can apply standard interpolation error estimates taking into account that

πh(v) ∈ P1(K
I)

|v − πh(v)|1,KI ≤ Ch|v|2,KI .

Let us now consider elements KI contained in ΩI
i,h for i = 1, 2 with a non-

empty intersection with Ωj where j = 1, 2 and j 6= i. Let us remember that

the restriction vi ∈ H2(KI ∩ Ωi) and that ṽi denotes its Calderón extension

to Ω̃i. Then we can write

|v − πh(v)|
2
1,KI =

∫

KI∩Ωi

|∇(vi − πh(v))|
2dx+

∫

KI∩Ωj

|∇(vj − πh(v))|
2dx

≤ 2

∫

KI

|∇(ṽi − πh(v))|
2dx+ 2

∫

KI∩Ωj

|∇(vj − ṽi)|
2dx

Summing all these terms we have

|v − πh(v)|
2
1,ΩI

i,h
≤ 2

(

|vj − ṽi|
2
1,τ i

h
+ |ṽi − πh(v)|

2
1,ΩI

i,h

)

. (20)

By definition of ṽi we have that the restriction of π(v) to each sub-domain

ΩI
i,h coincides with the interpolation of ṽi, hence using standard interpolation

estimates and (14) we get

|ṽi − πh(v)|
2
1,ΩI

i,h
≤ Ch2‖vi‖

2
2,Ωi

. (21)

Moreover, thanks to Lemma 2 and (14), we have

|vj − ṽi|
2
1,τ i

h
≤ Ch2‖vj‖

2
2,Ωj∪Ωi

. (22)

Putting together (18), (19) and the last three inequalities (20)-(22) we

obtain (17).

For the estimate of the second term in (13) we prove the following lemma.
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Lemma 4. Let u be the solution to (3), then we have the following estimate

for all wh ∈ Vh

ah(u, wh)− (f, wh) ≤ Ch3/2‖u‖2,Ω1∪Ω2
‖wh‖1,

where C is a constant independent of h, but depends on β2.

Proof. Since u is the solution of problem (3) and Vh ⊂ H1
0 (Ω), then

ah(u, wh)− (f, wh) = ah(u, wh)− a(u, wh).

The two bilinear forms differ only on the sets τ ih and ωi
h for i = 1, 2. In fact,

recalling the definition (7) of βh, we have

ah(u, wh)− a(u, wh) =

2
∑

i=1

(

∫

Ωi,h

βh∇u∇whdx−

∫

Ωi

β∇u∇whdx

)

=

2
∑

i=1

∫

τ i
h

βi∇u∇whdx

≤ C

2
∑

i=1

βi|u|1,τ i
h
|wh|1,τ i

h
.

Then, using Lemma 2, we obtain the desired result.

The results of Lemmas 1-4 give the following theorem:

Theorem 1. Let u ∈ H1
0 (Ω) ∩ H2(Ω1 ∩ Ω2) be the solution to problem (3)

and uh ∈ Vh be the solution of (10), then the following error estimate holds

true

|u− uh|1 ≤ Ch‖u‖2,Ω1∪Ω2
, (23)

where C is independent of h, but depends on the values of β1 and β2.

The L2 error estimate can be derived from (23) using a duality argument.

16



Theorem 2. Let u and uh be as in Theorem 1, then we have

‖u− uh‖0 ≤ Ch2‖u‖2,Ω1∪Ω2
, (24)

with C independent of h but depending on the ratio β2/β1.

Proof. Let us consider the following auxiliary problem: find ϕ ∈ H1
0 (Ω) such

that

a(ϕ, v) = (u− uh, v) ∀v ∈ H1
0 (Ω), (25)

where the bilinear form a is defined in (4). As for the solution of problem (3)

we have that ϕ ∈ H2(Ω1 ∪ Ω2) with the following a priori estimate

‖ϕ‖1 + ‖ϕ‖2,Ω1∪Ω2
≤ C‖u− uh‖0. (26)

Taking v = u− uh in (25) we have

‖u− uh‖
2
0 = a(ϕ, u− uh)

= a(ϕ, u− uh)− ah(ϕ, u− uh)

+ ah(ϕ− πh(ϕ), u− uh) + ah(πh(ϕ), u− uh).

(27)

Using Lemmas 2 and 3 and inequality (26), we obtain

a(ϕ, u− uh)− ah(ϕ, u− uh)

=

2
∑

i=1

(

∫

Ωi

β∇ϕ∇(u− uh)dx−

∫

Ωi,h

βh∇ϕ∇(u− uh)dx

)

=

2
∑

i=1

∫

ωi
h

βi∇ϕ∇(u− uh)dx

≤ C

2
∑

i=1

‖∇ϕ‖0,ωi
h
‖∇(u− uh)‖0,ωi

h

≤ Ch‖ϕ‖2,Ω1∪Ω2
‖u− uh‖1

≤ Ch‖u− uh‖0‖u− uh‖1,

(28)
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and

ah(ϕ−πh(ϕ), u−uh) ≤ C|ϕ−πh(ϕ)|1|u−uh|1 ≤ Ch‖u−uh‖0‖u−uh‖1. (29)

For the last term in (27) we have

ah(πh(ϕ), u− uh) = ah(u, πh(ϕ))− (f, πh(ϕ))

hence we use the same proof as in Lemma 4 arriving at

ah(πh(ϕ), u− uh) ≤ C
2
∑

i=1

|u|1,τ i
h
|πh(ϕ)|1,τ i

h

≤
2
∑

i=1

|u|1,τ i
h

(

|ϕ|1,τ i
h
+ |πh(ϕ)− ϕ|1,τ i

h

)

≤ Ch‖u‖2,Ω1∪Ω2
(Ch‖ϕ‖2,Ω1∪Ω2

+ |πh(ϕ)− ϕ|1)

≤ Ch2‖u‖2,Ω1∪Ω2
‖ϕ‖2,Ω1∪Ω2

≤ Ch2‖u‖2,Ω1∪Ω2
‖u− uh‖0.

(30)

Inserting (28)-(30) in (27) and using (23) we obtain the desired estimate.

Remark 1. Let us assume that the interface Γ is only Lipschitz continuous

and that it can be subdivided into a finite number of arcs each of them of class

C2. In this case we have that u ∈ Hs(Ω1 ∪ Ω2) with 3/2 < s ≤ 2, see [26,

Ch. 2]. The Calderón extension cannot be applied anymore, since in the case

of Lipschitz continuous boundary, it is defined only for functions in Hm with

integer m [29]. Nevertheless, the results of this section can be extended to the

case of Lipschitz interface, provided that we use the general extension operator

E : C∞(Ω) →: C∞(R2) introduced by Stein [31, Th.5 pp.181], extended to
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Hm(Ω) with m ∈ N by a density argument and generalized to fractional

Sobolev spaces by interpolation [32, Th. B.2]. Therefore we have the following

error estimates:

‖u− uh‖0 + h|u− uh|1 ≤ Chs‖u‖s,Ω1∪Ω2
.

Remark 2. The approach we used can be extended to higher order finite

elements. We point out that, in such case, we could achieve convergence

rates similar to (23) and (24) provided that u ∈ Hs(Ω1 ∪ Ω2) with s > 2.

We recall that the regularity of the solution depends on the regularity of the

interface. For example, if the interface is a straight line, we can obtain

‖u− uh‖m ≤ Chk+1−m‖u‖Hk+1(Ω1∪Ω2)

with m = 0, 1 and k the degree of the finite elements. If this is not the case,

it is necessary to introduce higher order approximation of the interface to

achieve the desired convergence rate, and this implies the use of isoparametric

finite elements. We are not going to investigate further these aspects in this

work.

5. Numerical results

In this section we provide some details about the implementation of the

method introduced in Section 3 and present several numerical results which

confirm the analysis presented in Section 4. Moreover, we discuss how to

construct and solve the resulting linear system. We investigate also some

aspects related to the behavior of the condition number of the matrices in-

volved in the solution of the linear system and we compare our approach

with a different technique for the solution of interface problems.
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5.1. Implementation

As remarked in section 3, we write the solution as uh = uG
h + uI

h where

uG
h ∈ V G

h and uI
h ∈ V I

h , in order to obtain system (11). Assuming that

V G
h = span{φG

i i = 1, . . . n}, V I
h = span{φI

i i = 1, . . .m},

and writing

uG
h =

n
∑

j=1

uG
j φ

G
j , uI

h =
m
∑

j=1

uI
jφ

I
j ,

system (11) leads to the algebraic system Au = b, with

A =





AGG AGI

AIG AII



 , u =





uG

uI



 , b =





bG

bI



 , (31)

where the matrix AXY has elements given by a(φY
j , φ

X
i ), similarly uX and bX

are vectors with components uX
i and (f, φX

i ), respectively. We remark that

the diagonal blocks are symmetric and positive definite and that AGI = A⊤
IG,

so that system (31) is symmetric, positive definite and sparse. To solve

numerically system (31), different approaches can be taken into account.

Among others, we can solve directly system Au = b by using any suitable

sparse iterative solver for symmetric and positive definite systems or we can

consider the block partitioned system (31), compute the Schur complement

matrix

AS = AGG −AGIA
−1
II AIG, (32)

and solve the two smaller systems ASuG = bG − AGIA
−1
II bI and AIIuI =

bI −AIGuG. In the following we give an estimate of the condition number of

the matrices A, AS and of the two blocks AGG and AII .
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5.2. Error analysis

In all the following simulations, we considered two different families of

meshes. The first one is made up of structured meshes, which are obtained

by dividing each element of a Cartesian grid into two triangles; the second one

is made up of general regular unstructured meshes. Each mesh is obtained

by refining increasingly the coarsest mesh of the family. As an example, we

report in Figure 2 a mesh for each family.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

Figure 2: Example of a structured (left) and unstructured (right) meshes.

Let us set Ω = [−1, 1]2, Γ = {(x, y) ∈ Ω : x = γ(y)} with γ(y) = c1y
2 +

c2y + c3, Ω1 = {(x, y) ∈ Ω : x < γ(y)} and Ω2 = {(x, y) ∈ Ω : x > γ(y)},

then we consider the elliptic problem (2) with piecewise constant coefficient

given by (6) and f such that the solution is the following piecewise smooth

21



function

u(x, y) =











β2 sin(2π(x− γ(y))) sin(2πy) (x, y) ∈ Ω1,

β1 sin(2π(x− γ(y))) sin(2πy) (x, y) ∈ Ω2.

(33)

We notice that for all choices of β1, β2, ci for i = 1, 2, 3, the solution

given in (33) verifies both transmission conditions in (2).

First we check the convergence of the method for two different couples

of constants βi, i = 1, 2 considering as interface both a straight line and a

curve.

In these simulations we use the family of unstructured meshes, made

of 46 · 4m, m = 0, . . . , 5 elements. In Table 1 we report the degrees of

freedom dofC of the non-fitting meshes and the degrees of freedom dofI of

the interface meshes together with the mesh size h. As we can see, the

additional computational cost due to the interface mesh is negligible with

respect to that of the global non-fitting mesh.

In the first simulation, we consider a linear interface with γ(y) = 0.4y +

0.12, and we test both a small coefficient jump with β1 = 0.1 and β2 = 1 and

larger one with β1 = 10−2 and β2 = 104. As an example, we plot in Figure 3

the analytical solution obtained with the first choice of coefficients.

In Table 2 we report the L2-norm and the H1-seminorm of the relative

error eh and the corresponding estimated convergence rates r0 and r1. As we

can see, the expected convergence rates are achieved by both the simulations,

and the scheme is accurate even for considerably different coefficients.

In the second test we use the same choices of βi i = 1, 2 as in the previous

simulation, but now we consider the nonlinear interface with γ(y) = 0.3y2 +

0.4y−0.12. In this case the analytical solution obtained with the first choice
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m dofC dofI h

0 16 10 7.22e-01

1 77 20 3.61e-01

2 337 40 1.81e-01

3 1409 82 9.03e-02

4 5761 166 4.51e-02

5 23297 334 2.26e-02

Table 1: Mesh parameters for unstructured grids with 46 · 4m elements. We report the

degrees of freedom of the global mesh (dofC) and of the interface mesh (dofI) and the

mesh size h.
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Figure 3: Analytical solution (33) of the problem (2) for β1 = 0.1 and β2 = 1 and a linear

interface with γ(y) = 0.4y + 0.12.
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β1 = 0.1, β2 = 1 β1 = 10−2, β2 = 104

m ‖eh‖0 r0 |eh|1 r1 ‖eh‖0 r0 |eh|1 r1

0 8.282-1 8.602e-1 8.269e-1 8.619e-1

1 2.874e-1 1.53 5.161e-1 0.74 2.877e-1 1.52 5.166e-1 0.74

2 7.910e-2 1.86 2.738e-1 0.91 7.908e-2 1.86 2.738e-1 0.92

3 2.034e-2 1.96 1.393e-1 0.97 2.032e-2 1.96 1.393e-1 0.97

4 5.137e-3 1.99 7.014e-2 0.99 5.133e-3 1.99 7.013e-2 0.99

5 1.289e-3 2.00 3.515e-2 1.00 1.288e-3 2.00 3.514e-2 1.00

Table 2: L2-norm ‖eh‖0 and H1-seminorm |eh|1 of the relative errors and estimated con-

vergence rates r0 and r1 for different values of the constants βi with γ(y) = 0.4y+0.12 on

unstructured meshes.

of coefficients is plotted in Figure 4.

In Table 3 we report the L2-norm and the H1-seminorm of the relative

error eh together with the estimated convergence rates r0 and r1. Also in

this case, the expected convergence rates are achieved for both choices of βi.

5.3. Condition number

Let us investigate now the behavior of the condition number of the matri-

ces involved in the solution of (31) and of the Schur complement matrix (32).

For this we consider a family of structured meshes and we set γ(y) = c3. We

choose c3 suitably small so that for each mesh, the interface crosses only the

elements included in the vertical strip ΩΓ = [0, 2/2i] × [−1, 1], i = 2, . . . , 7.

All the following plots are in bi-logarithmic scale.

Let us first set c3 = 0.012 and β1 = 0.1 and β2 = 10n for n = 0, 2, 4, 6, 8.

In Figure 5 we plot the condition numbers of A,AII , AGG, AS versus β2/β1
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Figure 4: Analytical solution (33) of the problem (2) for β1 = 0.1 and β2 = 1 and a

nonlinear interface with γ(y) = 0.3y2 + 0.4y − 0.12.
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Mesh β1 = 0.1, β2 = 1 β1 = 10−2, β2 = 104

m ‖eh‖0 r0 |eh|1 r1 ‖eh‖0 r0 |eh|1 r1

0 1.040e0 1.048e0 1.076e0 1.053e0

1 4.185e-1 1.31 6.088e-1 0.78 4.225e-1 1.35 6.105e-1 0.79

2 1.189e-1 1.82 3.137e-1 0.96 1.197e-1 1.82 3.143e-1 0.96

3 3.072e-2 1.95 1.591e-1 0.98 3.089e-2 1.95 1.593e-1 0.98

4 7.761e-3 1.98 7.999e-2 0.99 7.800e-3 1.99 8.009e-2 0.99

5 1.947e-3 1.99 4.009e-2 1.00 1.957e-3 1.99 4.014e-2 1.00

Table 3: L2-norm ‖eh‖0 andH1-seminorm |eh|1 of the relative errors and estimated conver-

gence rates r0 and r1 for different values of the constants βi with γ(y) = 0.3y2+0.4y−0.12

on several unstructured meshes.

and we see that they are all proportional to β2/β1. We performed other sim-

ulations in which we changed both the values of βi, and we saw that the

condition numbers actually depend only on the coefficients ratio. The previ-

ous result can be summarized as follows (the symbol ∝ means proportional

to)

K(A) ∝
β2

β1
, K(AGG) ∝

β2

β1
, K(AII) ∝

β2

β1
, K(AS) ∝

β2

β1
. (34)

Then in Figure 6 we plot the condition numbers versus the mesh size h.

We find that, as expected, K(AGG) and K(AS) are proportional to h
−2, while

K(A) is proportional to h−1 and K(AII) is proportional to h, obtaining

K(A) ∝
1

h
, K(AGG) ∝

1

h2
, K(AII) ∝ h, K(AS) ∝

1

h2
. (35)

Now we study the behavior of the condition numbers when the interface

gets closer to x = 0, in order to consider increasingly anisotropic interface
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elements. We set β1 = 0.1 and β2 = 1 and we take γ(y) = c3 = 0.012 · 10−n

with n = 0, 2, 4, 6, 8. In Figure 7 we plot only the behavior of the condition

numbers of A and AII with respect to different positions of the interface for

different mesh sizes h, since we have verified that the condition numbers of

AGG and AS are not affected by the position of the interface. As we can see,

K(A) and K(AII) are both proportional to c−1
3 . The condition number of

AII is larger on coarser grids, because in this case the interface elements are

very anisotropic. As the grid is refined, the interface elements become more

and more isotropic and the condition number decreases. We remark that, for

each choice of the position of the interface, c3 is actually the minimum of the

edges of the interface mesh. Hence we can state the following relations

K(A) ∝
1

c3
K(AGG) ∝ 1, K(AII) ∝

1

c3
K(AS) ∝ 1. (36)

In Figure 8 we report the behavior of the condition numbers versus the mesh

size h, for different values of the interface position. We remark that our

experiments show that the error is not affected by the presence of anisotropic

elements.

We can summarize the results reported in (34), (35) and (36) by the

following relations

K(A) ∝
β2

β1hc3
, K(AGG) ∝

β2

β1h2
,

K(AII) ∝
β2h

β1c3
, K(AS) ∝

β2

β1h2
.

(37)

These relations have been checked performing several simulations on different

meshes, with different interface positions and coefficient ratios β2/β1 and

fitting, in the least-squares sense, the logarithm of the condition numbers
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αr αh αγ

K(A) 0.995 -1.210 -0.970

K(AGG) 0.994 -2.006 0.003

K(AII) 0.999 0.881 -0.988

K(AS) 0.995 -2.004 0.004

Table 4: Least-squares approximation of exponents of (38) for the condition numbersK(·).

The values agree with (37).

with respect to the logarithm of the following function

(

β2

β1

)αr

hαhc
αγ

3 . (38)

The values of αr, αh, αγ collected in Table 4 are in good agreement with (37).

In particular, we observe that the condition number of A and AII increases

when the interface gets closer to element edges (c3 tends to zero). In this case

one could try to use a different way for the construction of the local sub-grid

avoiding elements with one edge too small with respect to the others.

5.4. Comparison to immersed interface method

In the last set of experiments, we compare our method with the immersed

interface method (IIM) introduced in [15, 16, 33]. The IIM is based on the

construction of suitable basis functions on the elements crossed by the inter-

face which satisfy the transmission conditions of problem (2). Notice that the

resulting numerical solution can present jumps along the interelement bound-

aries. We consider Problem (2) with solution given by (33), and compute

the L2 relative errors obtained on the family of unstructured meshes with
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the nonlinear interface used in the previous simulations. We take β1 = 0.1

and different increasing values of the coefficient β2 = 10n for n = 0, 4, 8.

The results reported in Figure 9 show that the relative errors of our method

do not change significantly when we increase coefficient β2, unlike the errors

produced by IIM, which behaves more irregularly as β2 increases, especially

on the coarser grids.

In the last test, we consider the two simulations reported in [33, page

182]. We set again Ω = [−1, 1]2, while the interface is the circle centered at

the origin with radius r0. Following [33], we set r0 = π/6.28 and choose f

and the boundary conditions so that the exact solution is

u(x, y) =















(x2 + y2)3/2

β1

if x2 + y2 ≤ r20

(x2 + y2)3/2

β2

+

(

1

β1

−
1

β2

)

r30 otherwise .

(39)

In Figure 10 we report the L2-norm and H1-seminorm of the relative errors

for test 1, obtained setting β1 = 1 and β2 = 1000, and for test 2, in which we

set β1 = 1000 and β2 = 1. The results are comparable with those reported

in [33] where the error is evaluated in L∞-norm. Also in this case the expected

convergence rates are achieved by our method.

6. Conclusions

In this work we introduced a new numerical method for the approxima-

tion of elliptic interface problems. It is based on a local enrichment of the

global finite element space, so that the global mesh needs not to be mod-

ified. The local enrichment is achieved using shape functions of the same

type as those of the global finite element space, so that the approximation is
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conforming. In this work we studied a correction based on piecewise-linear

polynomials, but the approach can be generalized to higher order approx-

imations. We performed error analysis and we proved that the approach

allows to recover the optimal rates of convergence in L2 and in H1, taking

advantage of the local regularity of the solution. Several numerical simula-

tions confirmed the theoretical results. Since our method does not require a

modification of the global mesh, it turns out to be particularly attractive for

time dependent problems, in which the interface is not static. We plan to

investigate the application of this new approach to parabolic problems with

moving interfaces.
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Figure 5: Condition numbers of the matrices A,AGG, AII , AS versus the ratio β2/β1 for

the test problem with β1 = 0.1 and several different values of β2.
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Figure 6: Condition numbers of the matrices A,AGG, AII , AS with respect to the mesh

size h for the problem with solution (33) with β1 = 0.1 and several different values of β2.
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Figure 7: Condition numbers of the matrices A,AII versus the interface position c3 for

the problem with solution (33) with β1 = 0.1 and β = 1 on several different meshes with

size h.
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Figure 8: Condition numbers of the matrices A,AII versus h for the test problem with

β1 = 0.1 and β = 1 and several different values of c3, which determine the position of the

interface.
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Figure 9: Comparison of the errors for the test problem for increasing values of β2 =

10n, n = 0, 4, 8. The lines with a square mark show the errors of the enriched interface

method (EIM) described in this paper while the lines with a star mark are those obtained

with the immersed interface method (IIM).
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Figure 10: L2-norm ‖eh‖0 and H1-seminorm |eh|1 of the relative errors for test problem

(39).
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