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ABSTRACT Cryptococcosis is a major fungal disease caused by members of the
Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than
15 years of molecular genetic and phenotypic studies and much debate, a proposal
for a taxonomic revision was made. The two varieties within C. neoformans were
raised to species level, and the same was done for five genotypes within C. gattii. In
a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi
.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was
premature and without consensus in the community. Although the authors of the
perspective recognized the existence of genetic diversity, they preferred the use of the
informal nomenclature “C. neoformans species complex” and “C. gattii species com-
plex.” Here we highlight the advantage of recognizing these seven species, as ignoring
these species will impede deciphering further biologically and clinically relevant dif-
ferences between them, which may in turn delay future clinical advances.

KEYWORDS Cryptococcus, cryptococcosis, diagnostics, species delimitation,
taxonomy

This perspective concerns the revision of the genus Cryptococcus in 2015 to recog-
nize seven new species in what had been considered to be two species complexes

of this important human-pathogenic fungus (1) and the more recent perspective (2)
criticizing the 2015 revision. The following three main issues were raised (2). (i) The
taxonomic proposal is premature. (ii) The new species cannot be identified using
phenotypic tests alone. (iii) The new species names are confusing. The “2015 taxonomy
paper” (1) has been highly cited, indicating that it fulfills a role in the scientific
discussions on the taxonomy of the species complexes. At the recently held 10th
International Conference on Cryptococcus and Cryptococcosis (ICCC10) (Foz do Iguaçu,
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Brazil, 26 to 30 March 2017), this matter was once more discussed, and ample evidence
was provided that at least seven, and likely even more, species exist.

Cryptococcosis is an important fungal infection, globally affecting immunocompro-
mised and immunocompetent humans and animals (3, 4). Annually more than 200,000
HIV-positive individuals develop cryptococcal meningitis with approximately 180,000
casualties (5). The phenotypic heterogeneity within the Cryptococcus neoformans spe-
cies complex has been known for many years, beginning with the identification of
four serotypes, serotypes A to D (6, 7). The discovery of an atypical clinical cryptococcal
isolate led to the designation of a new variety named C. neoformans var. gattii
(serotypes B and C) next to C. neoformans var. neoformans (serotypes A and D) (8, 9).
The observation of the sexual cycle led to the description of Filobasidiella neoformans
and Filobasidiella bacillispora (10–12). A third variety, C. neoformans var. grubii, was
introduced in 1999 for serotype A strains, thus the variety neoformans became re-
stricted to serotype D strains (13). In 2002, C. neoformans var. gattii was raised to species
level, and the name C. gattii was given nomenclatural priority over the older name
C. bacillisporus (14). At this stage, two species, C. gattii and C. neoformans, were
recognized with the latter comprising two varieties, neoformans and grubii. The pres-
ence of diploid and aneuploid serotype A and serotype D hybrids (C. neoformans !
C. deneoformans) has been known for a long time (7, 15–18), and they constitute 19 to
36% of the cryptococcal agents in southern Europe (19, 20). It is noteworthy that from
a nomenclatural point of view, the type strain of C. neoformans CBS132 is a serotype AD
hybrid (1, 17).

Morphology is a poor predictor to infer phylogenetic relationships of fungal isolates
and particularly so for yeasts (21–27). Recently, the earlier name used to refer to the
yeast morphology of Cryptococcus isolates was given priority over the teleomorphic
name Filobasidiella (21, 22). The genus Cryptococcus in its current concept contains the
dimorphic yeasts C. amylolentus, C. bacillisporus, C. decagattii, C. deneoformans, C. deu-
terogatttii, C. neoformans, C. gattii, and C. tetragattii (21, 22) and the filamentous species
C. depauperatus and C. luteus (8, 22, 28, 29).

Molecular data revealed that the C. neoformans and C. gattii species complexes were
unexpectedly genetically diverse (30). On the basis of four genes, it was calculated that
C. neoformans/C. deneoformans separated from the C. gattii species complex 37 mil-
lion years ago, C. neoformans and C. deneoformans separated 18.5 million years ago,
and C. gattii and C. bacillisporus separated 9.5 million years ago (31). These divergence
times might be older, as recent calculations based on genomic data fine-tuned the
divergence time of the C. neoformans/C. deneoformans and the C. gattii species complex
to 80 to 100 million years ago (32). The genomes of C. deneoformans and C. neoformans
differ at ~10% of nucleotide positions (33). This difference is so large that the same
phylogenetic groups have been found no matter which particular isolates were used
and despite the increasing resolution of molecular typing tools, such as PCR-
fingerprinting, amplified fragment length polymorphism (AFLP) fingerprinting, multi-
locus sequence typing (MLST), and whole-genome sequencing (WGS) (15, 30, 34–42).

Phenotypic, ecological, and geographical variation also supports creating species-
level taxa in the C. gattii and C. neoformans species complexes (Table 1) (1, 43–67). For
example, a recent study on virulence attributes such as capsule and melanin of
members of the C. gattii species complex concluded with “These findings argue for
increased acceptance of the new species and may be useful for informing diagnosis and
prognosis in clinical infection” (50).

Genetic methods revealed that intraspecies crosses between C. neoformans and C. de-
neoformans isolates showed a higher spore viability compared to C. deneoformans !
C. neoformans interspecies crosses (33). Twenty-three quantitative trait loci were identified
from the analysis of interspecific crosses involved in virulence-associated and azole-
resistant phenotype differences between both species (61), and the observed postzygotic
isolation mechanisms were explained by Bateson-Dobzhansky-Muller incompatibility af-
fecting basidiospore viability in interspecific crosses (62). Mitotic recombination, causing
chromosomal loss and crossing over, seems a further genetic separation mechanism
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between both species (63). One study indicated that C. neoformans (cited as serotype A
strains) reproduced mainly clonally, whereas C. deneoformans (cited as serotype D strains)
showed recombination. Moreover, genomic differences and MLST analysis separated both
species (64).

Cryptococcosis is usually diagnosed by microscopy, histopathology, culture, and
serology, including lateral flow assays, and by molecular assays (Table 1) (68–92), all of
which allow straightforward identification of unknown environmental and clinical
cryptococcal isolates. Importantly, the matrix-assisted laser desorption ionization–time
of flight mass spectrometry (MALDI-TOF MS) approach can reliably identify the recog-
nized species of Cryptococcus (that may have been cited as genotypes) (1, 93, 94).
Kwon-Chung and coworkers (2) questioned the usefulness of MALDI-TOF MS for the
separation of the new species and the hybrids, suggesting that only score values of
"2.0 indicate a reliable species identification. However, several studies show that yeast
and even filamentous fungal isolates can be reliably identified with a score value of
"1.7 (95–97), and this is acknowledged in the current Bruker guidelines. The identifi-
cation of Cryptococcus isolates by MALDI-TOF MS yields comparable results or even
outperforms the identification methods used for Candida, Geotrichum, Malassezia, and
Trichosporon isolates.

Kwon-Chung and coworkers (2) questioned the phylogenetic methods that were
used to delimit the seven species. Yeast biodiversity research has changed from a
discipline driven mainly by phenotype to a discipline based largely on molecular
variation (98, 99). Molecular phylogenetic analyses of many species complexes of fungi
have resulted in the recognition of new species based on molecular variation. An early
example was the recognition and description of the human-pathogenic genus Coccid-
ioides based solely on molecular variation (100). New, molecularly defined species are
common in yeasts and include the recognition of many “cryptic,” “sibling,” and “sister”
species. Examples are Saccharomyces eubayanus/S. uvarum (101), Candida albicans/
C. africana/C. stellatoidea (102–106), Candida auris/C. haemulonii/C. duobushaemulonii
(107–112), Candida glabrata/C. nivariensis/C. bracarensis (103, 113–115), Candida parap-
silosis/C. orthopsilosis/C. metapsilosis (103, 116), Malassezia furfur that now comprises 16
species (117–119), Trichosporon cutaneum with at least 10 species (120, 121), the
Aspergillus fumigatus complex (122–124), Coccidioides immitis/C. posadasii (100), and
Paracoccidioides brasiliensis/P. lutzii (125). Although this listing is far from complete, it
underlines the impact of molecular taxonomic studies for clinically important yeasts
and molds.

Kwon-Chung and coworkers (2) suggested that methods employed in the 2015
taxonomic proposal are not appropriate because they have been developed for sexu-
ally reproducing organisms. One of the first applications of molecular recognition of
species was with a fungus that has yet to reveal its sexual morphology, Coccidioides
(100). Furthermore, Cryptococcus has a sexual cycle and clearly can reproduce both
sexually and asexually. Moreover, the methods used have been applied to identify
species-level lineages in asexual taxa (126–134). Methods using branch length differ-
ences to identify thresholds between intra- and interspecific distances (such as the
coalescence-based general mixed Yule coalescent method) potentially underestimate
species diversity in asexual species, since sexual species are separated by larger genetic
gaps than asexual species (135). Individual methods for species delimitation based on
molecular data have been shown to either oversplit or underestimate species diversity
under specific circumstances (136); understanding the performance of each method is
still in its infancy given the recent and rapid development of this field of research.
Therefore, three independent approaches were used to delimit species boundaries
within the C. neoformans/C. gattii species complexes. In addition, DNA-based ap-
proaches were congruent with, for example, MALDI-TOF MS-based data. Sampling of
additional loci would certainly be useful, as well as the addition of further genomic data
sets. However, studies of other microorganisms repeatedly show that additional loci will
either confirm clades found or reveal the presence of new ones. Thus, species delim-
itation for the seven etiologic agents of cryptococcosis was minimal and conservative
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(1). Most, if not all, studies that used whole-genome data published before the 2015
taxonomy paper (cited in reference 1), and thereafter, e.g., Farrer and coworkers (36)
and those presented at ICCC10 (42, 43, 137–139) identified the same species clades.

The insights that resulted in the 2015 taxonomy proposal (1) were elaborated,
presented, and discussed at several related meetings from ICCC4 (London, United
Kingdom, 1999) to ICCC10 (Foz do Iguaçu, Brazil, 2017). At ICCC6 (Boston, MA, USA,
2005), a debate entitled “Cryptococcus neoformans: one, two or more species” was held.
Two different opinions were presented, namely, for two species or multiple species (at
that time, six species). The community strongly supported the name C. neoformans for
serotype A strains that are clinically important. The type strain of C. nasalis belongs to
serotype D (15); hence, it had nomenclatural priority. However, the community leaders
present at ICCC6 to ICCC8 were strongly against the use of this name. Therefore,
C. deneoformans was proposed for this clade at ICCC6, as it shows affinity with the
epithet neoformans and serotype D (de-neoformans). The name C. gattii received
renewed attention, as it was reported as the cause of a number of major outbreaks (35,
140, 141). The rules of fungal nomenclature do not allow this name to be used for a
clade other than the one containing the type strain (and ex-type strain). The clade
referred to as AFLP4/VGI represents C. gattii, and the AFLP5/VGIII clade is C. bacillispo-
rus. Three other consistently observed clades in the C. gattii species complex were
named using “gattii” in part of the epithet in order to keep reference to the name
“gattii.”

The taxonomy of the species complexes is complicated by various interspecies
hybrids (16, 20, 142–147). Hybrids occur among many yeast genera, such as Saccharo-
myces, where well-recognized species form hybrids and even triple hybrids (147–150).
For Saccharomyces hybrids, a conventional nomenclature has been proposed (150). The
species that contribute to the hybrid will be given in alphabetic order, and in cases
where the genomic contribution is known, this will be indicated. For instance, the type
strain of S. bayanus CBS380 is written as S. cerevisiae "1% ! S. eubayanus 37% !
S. uvarum 63%. This convention is also applicable to the genus Cryptococcus. The hybrid
type strain of C. neoformans can be thus described as C. deneoformans ! C. neoformans.

FOLLOWING THE RULES OF THE INTERNATIONAL CODE OF NOMENCLATURE
The naming of fungi is governed by the International Code of Nomenclature for Algae,

Fungi, and Plants, and naming fungi is based on a number of principles (151). Among
them, the priority principle implies that the oldest validly given name should be applied
to an organism and that the phylogenetic position of the type that determines the
name has to be given to a certain clade at a specific taxonomic level. Thus, when a
validly described species name exists for a certain species, that name must be used. This
was the case for the species that were reinstalled as C. gattii, C. bacillisporus, and in fact
also for C. deneoformans (see above).

SUMMARY
The main advantage of recognizing seven species rather than just two “species

complexes” (viz., C. gattii sensu lato and C. neoformans sensu lato) is that researchers and
clinicians will be stimulated to search for further phenotypic and genetic differences
and similarities between the recognized species. This stimulation of research has
already yielded new genetic, molecular, and phenotypic features, including differences
in drug susceptibility (Table 1). The recognized species can be identified using a diverse
array of molecular diagnostics and MALDI-TOF MS, and some of them can already be
identified by phenotypic means. Ignoring the species impedes deciphering the differ-
ences among them, which may delay future clinical advances. Finally, it is apparent that
more species seem to occur within Cryptococcus, e.g., the Botswana lineage within
C. neoformans (18, 137–139).
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