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also carried out on our previously generated model of murine alpha-DG C-terminal
domain including the I591D mutation, which is topologically equivalent to the V567D
mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail,
revealing extensive structural disorder involving multiple beta-strands in the mutated
variant of the protein. A biochemical analysis of the murine alpha-DG mutant I591D
confirmed a pronounced instability of the protein. Taken together, the computational
and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G
beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal
Ig-like domain that could possibly affect and propagate to the entire DG complex. The
structural features herein identified may be of crucial help to understand the molecular
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Opposed Reviewers:

Response to Reviewers: Reviewer #1
1)"to better clarify" was changed into "a better clarification" (Line 28 of the revised
manuscript).
2)As suggested by the reviewer, "Ig" definition was indicated on line 73 of the revised
manuscript.
3)TM-score is a recently proposed scale for measuring the structural similarity between
two structures (see Zhang and Skolnick, Scoring function for automated assessment of
protein structure template quality, Proteins, 2004 57: 702-710). The purpose of
proposing TM-score is to solve the problem of RMSD which is sensitive to the local
error. In TM-score, the small distance is weighted stronger than the big distance which
makes the score insensitive to the local modeling error. A TM-score >0.5 indicates a
model of correct topology and a TM-score<0.17 means a random similarity. The TM-
score values reported in Table I are parameters of the analysis performed by I-
TASSER on the generated model structures. The program searches the Protein Data
Bank to identify structural similarity to the predicted models and the structural similarity
is quantified using TM-score. In all cases, even after the replica-exchange Monte Carlo
simulations performed by I-TASSER to refine the model, 1U2C is the closest structure
in the PDB and the TM-score value of 0.8 shows that the prediction is accurate.
The meaning of the TM-score values, reported in Table I, was better explained (Lines
212-213 of the revised manuscript).
4)"2 times greater and lower" was changed (Line 304 of the revised manuscript).

Reviewer #3
Major comment:

Following the reviewer’s suggestion the simulation time was doubled and an additional
couple of trajectories for each protein were run (Materials and Methods of the revised
manuscript, lines 141-142). This led to a significant improvement of the manuscript
since our computational findings have been confirmed over three independent and
longer MD simulation trajectories. It is important to outline that in the case of mutant
zebrafish the observed structural instability occurs at the first frames of the MD
simulation and all the RMSD, Rg and SAS values do not significantly vary in the last 30
ns of trajectory (Lines 185-194 of the revised manuscript).  For sake of clarity, in the
manuscript we show the results of the original MD simulation extended to 40 ns,
whereas the average properties for the three simulations and the three independent
Secondary Structure trajectories are reported in the Supplemental Information (Figures
S2-S6).
As far as murine DG is concerned a local rearrangement of Trp 549, that is tilted
towards the solvent, has been demonstrated. This event, altering the forces which
contribute to the conformational stability of the protein (Pace CN, Shirley BA, McNutt
M, Gajiwala K. Forces contributing to the conformational stability of proteins. FASEB J.
1996, 10:75-83) may account for the reduced expression level and stability observed in
the recombinant domain expressed in E. coli as well as the alteration of the maturation
pathway observed in the transfected eukaryotic cells (Revised manuscript, lines 383-
384).
Although we believe that the important role of this topological position within the G
strand of the Ig-like domain of the C-terminal region of vertebrate dystroglycans is fully
confirmed, we also believe that our analysis can be considered particularly interesting
and innovative in the dystroglycan field since it is showing that even if the two
orthologous proteins are highly conserved, the zebrafish background and the murine
one have some obvious structural differences that in the future may be useful to define
some species-specific different functional behaviours. (Revised manuscript, lines 472-
478).
Minor comments:
1) As suggested by the reviewer the topologically equivalence between the I591D and
V567D mutations is shown by sequence comparison in a novel Figure (Figure 1 of the
revised manuscript). Figure numbering was modified accordingly.
       2) In line 114 the word "PBD" was corrected as "PDB".
       3) The Rg value of zebrafish α-DG was corrected in Table 3.
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       4) Line 293: the Rg value of murine α-DG was corrected.

As suggested by the Editor, the manuscript has been proofread for any possible
mistake and all the amendments have been reported in the marked copy.
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Please describe all sources of funding
that have supported your work. A
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following:
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If they had no role in any of the above,
include this sentence at the end of your
statement: "The funders had no role in
study design, data collection and analysis,
decision to publish, or preparation of the
manuscript."

If the study was unfunded, provide a
statement that clearly indicates this, for
example: "The author(s) received no
specific funding for this work."

* typeset

The authors received no specific funding for this work

Competing Interests

You are responsible for recognizing and
disclosing on behalf of all authors any
competing interest that could be
perceived to bias their work,
acknowledging all financial support and
any other relevant financial or non-
financial competing interests.

Do any authors of this manuscript have
competing interests (as described in the
PLOS Policy on Declaration and
Evaluation of Competing Interests)?
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policy and the authors of this manuscript
have the following competing interests:
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statement in the box: "The authors have
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Ethics Statement
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study does not require an ethics
statement.

Human Subject Research (involved
human participants and/or tissue)
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Dear Editor, 

 

Thank you very much for reviewing our manuscript (PONE-D-14-16320) which has now been 

completely revised according to the recommendations of the reviewers. We really appreciate your 

suggestions  which have improved the manuscript considerably. 

Please find our clarifications of all the reviewer’s comments in the “Response to Reviewers” file 

and the specific adjustments made in the revised manuscript.  

We hope that the manuscript  is now suitable for publication in PLoS ONE 

 

 

Kind regards 

 

Maria Cristina De Rosa 
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Abstract 23 

A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan 24 

(DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete 25 

absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed 26 

mechanism for the observed mutation-induced destabilization of the DG complex and membrane 27 

damage, remained unclear. With the aim to contribute to a better clarification of the structure-28 

function relationships featuring the DG complex, three-dimensional structural models of wild-type 29 

and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a 30 

template-based modelling approach.  We then ran extensive molecular dynamics (MD) simulations 31 

to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect 32 

of the single mutation on alpha-DG stability. A comparative study has been also carried out on our 33 

previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, 34 

which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD 35 

simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-36 

strands in the mutated variant of the zebrafish protein whereas local effects have been detected in 37 

the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a 38 

pronounced instability of the protein. Taken together, the computational and biochemical analysis 39 

suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in 40 

inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and 41 

propagate to the entire DG complex. The structural features herein identified may be of crucial help 42 

to understand the molecular basis of primary dystroglycanopathies. 43 

44 
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Introduction 45 

Dystroglycan (DG) is a pivotal  member of the dystrophin-glycoprotein complex (DGC), which 46 

links the cytoskeleton to the extracellular matrix (ECM) via dystrophin [1]. Essential for normal 47 

muscle function, DG also has important roles in a wide range of tissues, including  central and 48 

peripheral nervous systems, and in the maintenance of epithelial structures [2]. DG is synthesized as 49 

a precursor protein that is post-translationally cleaved into the α- and β- subunits. Within the DGC, 50 

the α-subunit is located outside the plasma membrane and binds ECM proteins, such as laminin and 51 

agrin. α-DG is extensively glycosylated and its correct glycosylation is essential to elicit its ligand 52 

binding activity [3]. Mutations in a growing number of genes encoding for glycosyltransferases or 53 

associated proteins involved in DG glycosylation give rise to a class of congenital as well as limb-54 

girdle muscular dystrophies, which are known as secondary dystroglycanopathies [4,5]. It is 55 

worthwhile to notice that, to date, only two patients affected by recessive primary 56 

dystroglycanopathies, associated with mutations in the DG encoding gene DAG1 (c.575C>T, 57 

T192M and c.2006G>T, C669FY) have been described [6,7].  58 

The importance of the DG gene for muscle stability has been confirmed also in zebrafish (Danio 59 

rerio) [8], an organism that represents a reliable model for human muscular diseases [9–12] and that 60 

is frequently employed for investigating the effect of drugs alleviating the symptoms of Duchenne 61 

muscular dystrophy [13–15]. 62 

Recently, in an attempt to identify novel genes responsible for skeletal muscle disorders, a zebrafish 63 

mutant was identified that showed impaired locomotion behavior and dystrophic muscles [16]. Such 64 

point mutation (c.1700T>A) in DAG1, resulting in a missense mutation V567D, induced 65 

destabilization of the DG complex and membrane damage. In particular, genetic and biochemical 66 

studies showed that the V567D substitution is associated with a strong reduction of DG transcripts 67 

and a complete absence of  and  subunits [16]. However, despite the experimental 68 

characterization of many functional effects of the V567D substitution in α-DG, a detailed molecular 69 

framework explaining the observed destabilization and loss-of-function is still lacking. 70 
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Comprehensive details at atomic resolution about the structural perturbations induced by the V567D 71 

substitution thus remain elusive. For this reason, and given our experience with these systems, 72 

which led us to identify a second immunoglobulin-like (Ig-like) domain in murine α-DG C-terminal 73 

region [17] and ε-sarcoglycan [18], we have exploited the capabilities of molecular dynamics (MD) 74 

simulation to investigate the structural and dynamical changes of zebrafish α-DG caused by V567D 75 

replacement. In fact, we have recently predicted and then experimentally demonstrated using 76 

recombinant proteins that not only residues 60-158 of murine α-DG display an Ig-like β-sandwich 77 

fold [19], but also residues ranging from 500 to 600 [17]. We showed that the murine α-DG C-78 

terminal is a typical β-sandwich Ig fold consisting of two β-sheets forming a β-sandwich. The first 79 

sheet contains three anti-parallel strands (B, E, D),  whereas the second sheet comprises strands A', 80 

G, F and C, with A' packing parallel with the C terminus of strand G, the others arranged in an anti-81 

parallel fashion [20]. The  zebrafish V567D substitution [16], falls within a region of α-DG which 82 

has proved to be of crucial importance to understand the role of the Ig-like domain in the interaction 83 

with the extracellular N-terminal domain of β-DG [17,21]. Gupta et al. [16], using a number of 84 

algorithms able to predict whether an amino acid substitution affects protein function, hypothesized 85 

that the V567D mutation deeply compromises protein function resulting in a pathological 86 

phenotype. Nevertheless, the structural role of this mutation remains unclear. To fill this gap, here 87 

we investigated the effects of V567D mutation on the zebrafish α-DG structure through molecular 88 

dynamics (MD) simulations, which allow the study of the conformational characteristics of the 89 

protein at every step during the computational simulations [22]. Subsequent structural in silico 90 

analyses were performed. Exploiting our murine -DG model, we also examined the structural 91 

effects of the mutation I591D, which is topologically equivalent to the V567D mutation (Figure 1), 92 

combining computational and biochemical analysis.  93 

The present MD studies revealed that the conformational stability of mutated DG is considerably 94 

reduced compared to wild-type, with a significant breakdown in the secondary structure observed 95 
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for zebrafish V567D. Potential implications in processes leading to dystroglycanopathies are 96 

discussed. 97 

Materials and Methods 98 

Constructing structural models of wild-type and mutant α-DG C-terminal domains 99 

Following the same procedure used in De Rosa et al. [17] the theoretical atomic models of wild-100 

type and mutated α-DG C-terminal regions (residues 462-626 and 483-651 for zebrafish and murine 101 

proteins, respectively) were constructed using the I-TASSER server [23,24]. Starting from the 102 

original sequence of wild-type protein retrieved from the UniProt Database [25] (accession numbers 103 

Q499B9 and Q62165 for zebrafish and murine DG, respectively), the first step I-TASSER 104 

performed was to create a sequence profile for the query using PSI-BLAST [26]. The secondary 105 

structure of each of these sequences was then predicted using PSIPRED [27], a highly accurate 106 

secondary structure prediction server (http://bioinf.cs.ucl.ac.uk/psipred). Using the constraints 107 

provided by PSI-BLAST and PSIPRED, the query was then threaded through the PDB structure 108 

library using the Local Meta-Threading-Server (LOMETS) [28], which uses eight servers to find 109 

the best possible templates for the query. The continuous fragments from the threading alignments 110 

were then excised from their respective template structures and assembled into a full-length model, 111 

whereas the unmatched regions were built via ab initio modelling. Hence, unlike other homology 112 

modelling software, this server predicts the structure even when there are no matched sequences in 113 

known PDB structures. The quality of each predicted structure was assessed with a scoring method, 114 

and five atomistic models with the highest scores were obtained for each input protein sequence. 115 

The best models among those predicted by I-TASSER were checked using the programs 116 

PROCHECK [29], VERIFY3D [30] and ProSA-Web 117 

(https://prosa.services.came.sbg.ac.at/prosa.php) [31]. Visualization and molecular graphics were 118 

performed using Discovery Studio (Accelrys Inc.) on the workstation HP XW8600 running Red Hat 119 

Enterprice Linux 5. 120 

Molecular Dynamics Simulations and Analysis 121 

https://prosa.services.came.sbg.ac.at/prosa.php
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The best-scored wild-type and mutant DG model structures obtained by I-TASSER were chosen as 122 

the starting coordinates for the MD simulation. Calculations were performed as reported earlier  123 

[17], with slight modifications of the size and shape of the simulation box.  Briefly, all simulations 124 

were carried out using the 4.5.1 version of GROMACS [32] and GROMOS96 force field [33]. Each 125 

structure was immersed in a triclinic box with periodic boundary conditions. The SPC water model 126 

was used [34] and the systems were neutralized by 2 and 3 Na
+
 ions (wild-type and mutant 127 

zebrafish, respectively) and by 3 and 2 Cl
-
 ions (wild-type and mutant murine, respectively).  The 128 

box dimensions (7.3nm×5.6nm×8.5nm and 6.9nm×7.1nm×9.6nm for zebrafish and murine, 129 

respectively) were set to allow at least 0.9 nm between the protein and the box faces on each side.  130 

The final zebrafish systems consisted of 1671 (wild-type) and 1672 (V567D) protein atoms 131 

surrounded by 10725 and 10223 water molecules, respectively, whereas the final murine systems 132 

consisted of 1712 protein atoms (both wild-type and I591D) surrounded by 14999 and 14980 water 133 

molecules, respectively. All the MD simulations were carried out using periodic boundary 134 

conditions. The geometry of each system was initially optimized using the steepest descent 135 

algorithm and then equilibrated for 20 ps. Next, the molecular dynamics were run for 40 ns at 300 136 

K, and the data were collected every 5 ps. Constant temperature (300 K, τT = 0.1ps) was maintained 137 

by coupling to a bath using a ν-rescale algorithm [35], whereas pressure was kept at 1 atm using the 138 

Parrinello-Rahman barostat [36]. Long range electrostatic interactions were calculated using the 139 

Particle-Mesh Ewald Method [37], whereas application of the Lincs method [38] allowed for an 140 

integration step size of 2 fs. Two additional replicate simulations with a duration of 40 ns were also 141 

performed for each of the systems studied, with differing initial velocities. Analysis of the 142 

trajectories was performed using the GROMACS tools g_rms, g_rmsf, g_hbond, g_gyrate and 143 

g_sasa. Secondary structure was calculated using the DSSP algorithm [39] within GROMACS. 144 

DNA manipulations 145 

The single point mutation I591D was introduced into the murine DG construct containing a myc-tag 146 

inserted within the C-terminus of α-DG and cloned in pEGFP vector [40]. The I591D mutation was 147 
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also introduced in a DNA construct encoding for the -DG C-terminal domain, -DG(485-630), 148 

cloned into the  pHis-Trx vector; in both cases,  the QuikChange site-directed mutagenesis kit 149 

(Stratagene
®
) was used to introduce a mutated triplet (underlined), corresponding to an Asp residue, 150 

exploiting the following primers: I593D_S 5’-GTG GAT GCC TTC GAG GAC CAT GTT CAC 151 

AAG CGC-3’and I593D_AS 5’-GCG CTT GTG AAC ATG GTC CTC GAA GGC ATC CAC-3’. 152 

All constructs were verified by automated sequencing.  153 

 154 

Recombinant expression and purification of -DG(485-630)I591D 155 

The recombinant fusion protein, 6His-Txr--DG(485-630), was expressed in E.coli BL21(DE3) 156 

Codon Plus RIL strain and purified using nickel affinity chromatography as described elsewhere 157 

[21]. The protein of interest, -DG(485-630), was obtained upon thrombin cleavage. Tricine/SDS-158 

PAGE was used to check the purity of the recombinant protein under analysis. 159 

 160 

Cell culture, transfection and immunoprecipitation 161 

293-Ebna cells, grown in DMEM supplemented with antibiotics and 10 % (v/v) fetal calf serum, 162 

were transfected with  20 μg of wild-type or I591D DG constructs using the calcium phosphate 163 

method as described elsewhere [40]. After 24 h, cells were dissolved in PBS containing 1% Triton 164 

X-100 and protease inhibitors (Roche, Switzerland). Cell lysate was resolved on a 10 % SDS-165 

PAGE. For Western blot analysis, proteins were transferred to nitrocellulose and probed with an 166 

anti β-DG antibody (43-DAG) (1:50) and with a peroxidase-conjugated secondary antibody (Sigma, 167 

USA) diluted 1:7000 (anti-mouse); the reactive products were revealed using the luminol-based 168 

ECL system (Pierce, USA).  169 

All the steps required for immunoprecipitation were carried out using the μMACS™ Epitope Tag 170 

Protein Isolation Kit (Miltenyi Biotec.
®
, Germany), following the manufacturer’s instructions. 171 

Briefly, 1 ml of total protein extract of transfected cells was incubated with 50 μl of magnetic beads 172 

conjugated with an anti-myc antibody (Miltenyi Biotec.
®

, Germany) for 30 min in ice. After several 173 
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washes, the adsorbed protein was eluted with 50 μl of sample buffer and run on a 10% SDS-PAGE 174 

followed by Western blot analysis with an anti-myc antibody-HRP conjugated (Miltenyi Biotec.
®
, 175 

Germany). 176 

Results and discussion 177 

The I-TASSER approach has a high success rate to construct correct folds for medium-to-large 178 

sized proteins by structurally reassembling the fragments excised from threading template structures 179 

without using homologous templates, as demonstrated by the recent CASP experiments [41,42]. In 180 

addition, we recently demonstrated the ability of the I-TASSER server to predict a reliable model of 181 

the murine α-DG C-terminal region [17]. The I-TASSER approach was therefore used to find out 182 

the secondary and tertiary structures of zebrafish wild-type and V567D α-DG C-terminus, in 183 

comparison with the murine α-DG carrying the topologically equivalent mutation I591D. 184 

Comprehensive details at atomic resolution concerning the structural perturbations induced by these 185 

amino acid substitutions were then obtained by three statistically independent MD simulations, 186 

which allowed to refine the predicted structures within a nanosecond time scale and to investigate 187 

the conformational changes, occurring upon mutation. In total, 12 MD simulations were performed 188 

as 40 ns triplicates for zebrafish wild-type, zebrafish V567D mutant, murine wild-type and  murine 189 

I591D mutant. The resulting findings are very similar for each set of the three runs and here we 190 

report the results of one of the three simulations. The average properties for the three simulations, as 191 

expected similar to those of the independent simulations are reported in the Supplemental 192 

Information (Figures S2-S6). A graphical representation of secondary structure analysis for the 193 

three distinct MD simulations is shown (Fig. S4).  194 

In silico modelling of zebrafish wild-type and V567D α-DG C-terminal region 195 

In both systems, only β-strands and coils were found in the 475-574 region of α-DG, whereas coils, 196 

α helices and strands were found in the extreme C-terminus. Supplementary Figure S1 shows the 197 

predicted secondary structures of the two systems. Not surprisingly, the I-TASSER threading 198 

procedure identified immunoglobulin-like domains as the best templates for wild-type, specifically, 199 
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1U2C (α-DG N-terminal region [19]), 2WCP (mouse chaderin-23 [43]), 2YST (human 200 

protocadherin 7, to be published) and 3Q2V (mouse E-cadherin ectodomain [44]). The same 201 

templates, with the exception of 2YST were identified for the mutant V567D. The overall sequence 202 

identity shared between the α-DG C-terminal regions and each of the templates is approximately 203 

24%. Although this value is quite low, it is similar to other cases in which modelling has been 204 

applied [45]. The quality of the generated models was assessed in I-TASSER based on two major 205 

criteria, the C- and the TM-scores. The C-score is calculated based on the significance of the 206 

threading alignments and the convergence of the I-TASSER simulations. C-scores typically range 207 

from -5 to 2, with higher scores reflecting a model of better quality. The TM-score is a measure of 208 

structural similarity between the predicted model and the native or experimentally determined 209 

structure, with a value > 0.5 indicating a model of correct topology. Assessments for the zebrafish 210 

α-DG C-terminal regions are reported in Table 1 indicating reasonable models and accurate 211 

topology. In all cases, search of the PDB, quantified by TM-score, indicated 1U2C as the structure 212 

with the highest structural similarity (Table I). As expected, the zebrafish α-DG model, as well as 213 

that of the V567D mutant, is similar in structure to the murine α-DG [17] with a root mean square 214 

deviation (RMSD) of the Cα atoms  of 1.92Å (wild-type) and 1.68Å (V567D). According to I-215 

TASSER then, the region encompassing residues 475-574 of the α-DG C-terminus adopts the 216 

typical I-frame immunoglobulin superfamily fold and is stabilized by extensive hydrophobic core 217 

interactions between the two β-sheets [46] (Figure 2). Consistently with the 1U2C structure and our 218 

previous results a small helix was detected between β-strands B and C (residues 495-498).  The rest 219 

of the region  (residues 575-626) displayed two coil-strand-coil regions separated by a helix.  220 

To validate the computational models involved in the current study, multiple approaches were 221 

employed. Firstly, PROCHECK was used to check the stereochemistry quality and structural 222 

feature, comparing the geometry of the residues in a given protein structure with the stereochemical 223 

parameters derived from crystal or NMR structures [29]. The PROCHECK result shows that 83.6% 224 

(wild-type) and 84.2% (V567D) residues are located in favored core regions, 13.0% (wild-type)  225 
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and 12.3% (V567D) in allowed regions, 2.1% (wild-type) and 3.4% (V567D) in generously allowed 226 

regions and 1.4 % (wild-type) and 0.0% (V567D) in disallowed regions.  For a good quality model, 227 

it is expected that the residues located in the most favorable and additional allowed regions should 228 

be more than 90%, which is the case for the computational structures of both wild-type and V567D 229 

α-DG C-terminal regions [47]. Residues Lys556 and Arg614 of wild-type were in disallowed 230 

region. It is worthwhile to remember here that both these residues are not located within secondary 231 

structure elements. Secondly, to further check the global quality of the computational model, the 232 

program VERIFY3D was used to analyze the compatibility of the residues with their environment 233 

[30]. Residues with a positive score should be considered reliable. In the current case, VERIFY3D 234 

result shows that 96.4% (wild-type) and 92.1% (V567D) of the residues in our computational 235 

models has an averaged 3D-1D positive score, suggesting that the model has overall self-236 

consistency in terms of sequence-structure compatibility. The 3D–1D profile score dips below 0 at 237 

six points in the wild-type model (from Val569 to Gly573 and Ala590) and nine points in the 238 

V567D model (from Val569 to Lys577) all belonging to the unstructured region connecting the Ig-239 

like domain with the coil-strand-coil region. ProSA (Protein Structure Analysis) [31] was adopted 240 

to further check the quality of the generated models. The Z-scores, a parameter describing the 241 

overall model quality, are predicted to be -4.5 and -4.6 for wild-type and V567D structure model, 242 

respectively. Both values are within the range of Z-scores found for native proteins of similar size, 243 

indicating that the overall quality of our model is high. A summary of the results obtained from 244 

these programs, indicating that the residues in the model are placed in a very good overall 245 

configuration, is reported in Table 2.  246 

In silico modelling of murine  I591D α-DG C-terminal region 247 

Primary sequence and secondary structure prediction by I-TASSER of murine wild-type and I591D 248 

α-DG C-terminal region are shown in Supplementary Figure S1. Analogously to the zebrafish DG, 249 

only β-strands and coils were predicted in the secondary structure of the region spanning residues 250 

500-600, whereas coils, α helices and strands were found in the extreme C-terminus. The I-251 
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TASSER server used the crystal structure of the murine α-DG N-terminal domain (PDB 1U2C [19]) 252 

and of mouse E-cadherin ectodomain (PDB 3Q2V [48]) as template structures to assemble the 253 

model of the I591D C-terminal domain of murine α-DG.  Statistical support for the predicted 254 

structural models is reported in Table I. The two major criteria, the C-score and the TM-score, 255 

indicate reasonable models with very similar overall topology and a high degree of three-256 

dimensional structure similarity. As expected, according to I-TASSER, the model of the I591D α-257 

DG C-terminus is similar in structure to 1U2C (Cα RMSD = 1.73 Å ) and consists of an Ig-like 258 

domain (residues 500–600) and a coil–helix–coil region (601-653). The structure and topology of 259 

the mutant murine Ig-like domain closely resemble those of the wild-type [17]  and of the predicted 260 

zebrafish Ig-like (Figure 2).  261 

Analysis using PROCHECK [29] indicates excellent geometry with no residues in disallowed 262 

regions of the Ramachandran plot. 87.6%, 11.0% and 1.4% of the residues fall into the favored 263 

core, allowed, and generously allowed regions, respectively.  For the most representative structure 264 

VERIFY3D and ProSA  profiles also are indicative of a high quality model. In the VERIFY3D 265 

scan, the designed model shows that all the residues have an average 3D-1D positive score with the 266 

exception of Pro614, which is however located in the predicted random coil region in the extreme 267 

C-terminus. A ProSA Z-score of -4.5 also confirms the good quality of the model. Assessment of 268 

the three-dimensional model is summarized in Table 2.  269 

 270 

Molecular dynamics conformational flexibility and stability analysis 271 

To check the stability of the simulations, the RMSDs of the Cα atoms with respect to the minimized 272 

starting structure, radii of gyration (Rg) of the protein and Solvent Accessible Surface Area (SASA) 273 

of protein were calculated and monitored over the course of simulations and are presented in Figure 274 

3. Evaluation of the structural drift was provided by the analysis of the Cα atom RMSDs from the 275 

initial structures as a function of time. The RMSDs of the Ig-like domains through the 40 ns 276 

trajectory were computed with respect to their corresponding initial minimized structures (Fig. 3A). 277 
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In all four cases, the RMSD shows convergence of the simulation within 40 ns (Fig. 3A). The wild-278 

type murine protein presents the smallest deviation and adopted after 200 ps a stable conformation 279 

not so far from the initial one (0.1 nm), indicating that this system was very stable during the 280 

simulation.  The RMSD of wild-type zebrafish simulation converges after 10 ns to a value around 281 

0.24 nm, whereas in the mutants simulations RMSD increases sharply till 1 ns and reaches a value 282 

of  0.20 nm (zebrafish V567D) and 0.17 nm (murine I591D) remaining reasonably stable until the 283 

end of the simulation (Fig. 3A). Figure 3 demonstrates that for all structures, the RMSD remains 284 

stable around average values of 0.1-0.2 nm (Table 3)  over a considerable time period (30 ns) of the 285 

later part of the trajectory. The SASA and Rg are related to (and give a global account of) the 286 

general tertiary structure of the protein. The curves of SASATOTAL indicate that the exposed areas 287 

(both hydrophobic and hydrophilic), for all the systems investigated, although slightly decreasing 288 

with the mutation (an effect more evident in the case of zebrafish), are stable during the entire 289 

simulations (Fig. 3B). As expected from the RMSD analysis, it is not possible to observe significant 290 

changes in the Rg during the simulations. The plot of Rg versus time is presented in Fig. 3C.  For 291 

both zebrafish and murine systems the curves do not differ significantly and maintain the lowest 292 

value of Rg around 1.3 nm (zebrafish) and 1.5 nm (murine), indicating that the compact 293 

conformation is largely preserved upon mutation (Fig. 3C). The time averaged structural properties 294 

are reported in Table 3.  295 

Interesting information  comes from the root mean square fluctuations (RMSFs) of each amino acid 296 

(Fig. 4), which highlights the flexible regions of the systems. RMSFs values higher than 0.25 nm 297 

are characteristic of amino acid  residues belonging to flexible regions. For all the systems analysed, 298 

the loop at the N-terminus and the loops between the β-strands displayed RMSFs values which are 299 

typical of flexible regions, while the regular secondary structure regions showed small fluctuations 300 

during the simulations. In the zebrafish DG, the most pronounced Cα-RMSF differences between 301 

the wild-type and the mutant occur for residues 500-502 and 517-519,  which belong to the long 302 

loops connecting strands B and C, and C and D, respectively (Fig. 4A).  In these two regions the 303 
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V567D Cα-RMSF is ∼1.5 and ∼2 times  larger than that of the wild-type, respectively. The RMSFs 304 

values observed for murine DG exhibit more or less similarly distributed fluctuations. Most of the 305 

residues, which belong to the loops connecting strands C and D, D and E, F and G, become highly 306 

mobile upon mutation (Fig. 4B).  307 

We then tried to examine whether the mutation induced any changes in the secondary structural 308 

elements during the simulations. Fig. 5 shows the classification of the four trajectories in terms of 309 

secondary-structure elements obtained by the software tool DSSP [39], whose plots enable a local 310 

structural analysis complementing the above characterization of the dynamics.  The stability of the 311 

secondary structures was examined during the entire period (40 ns) (Fig. 5). Interestingly, among 312 

the four simulated systems, the V567D zebrafish shows a strong disorganization of strand  A’ (Fig. 313 

5B), a phenomenon not observed in the other models, whose secondary structure elements appeared 314 

very stable during the entire MD simulations. Examination of Figure 5 shows that the main features 315 

of the β-sheets structure are largely retained,  i.e., the strands A', G, F, C, and the others  B, E, D  316 

are preserved throughout the 40-ns simulation for wild-type zebrafish (Fig. 5A), wild-type murine 317 

(Fig. 5C) and I591D murine -DG (Fig. 5D). By contrast, at 0.1 ns of the V567D simulation, most 318 

of  the A’ strand unfolds and is converted into loop giving rise to a long flexible region at the N-319 

terminus of the domain (Fig. 5B). Large scale fluctuations from helical to bend or turn structures at 320 

the long loop connecting strands B and C are observed in all the systems (Fig. 5).   321 

 322 

Effects of V567D and I591D substitutions on the stability of the Ig-fold 323 

The Ig-like domain is stabilized by hydrophobic core interactions between the two β-sheets and by 324 

the hydrogen bonds between the β-strands [39,49]. Interfering with any of the residues in the sheet 325 

by a mutation may lead to a discontinuity in the hydrogen bonding pattern, which is characteristic 326 

of the Ig-like domains. This may enhance the conformational flexibility of the mutated residue side 327 

chain, which could disrupt the natural bonding of neighbours and might result in loss of secondary 328 

structural elements [50,51]. The external strands A’ and G present geometrical distortions  known 329 
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as β-bulges, as found in some Ig molecules [52], which lead to an imperfect general H-bond 330 

network. However, examination of the hydrogen bond patterns involving the β-strands A’-G reveals 331 

significant differences among the simulated systems (Fig. 6). Figure 6A shows that the backbone 332 

hydrogen bonds formed between the strands A’ and G, where the mutation is located, are stable in 333 

zebrafish wild-type but are disrupted in the zebrafish V567D mutant, resulting in a significant 334 

separation between the two strands in the β-sheet.  By contrast, the corresponding backbone 335 

hydrogen bonds in murine DG were not noticeably affected by the I591D mutation (Fig. 6B).  The 336 

changes in the hydrogen bond pattern observed in zebrafish DG are closely related to the disruption 337 

of the native hydrophobic contacts. Val567 residue, located on the G strand, interacts with a number 338 

of hydrophobic residues nearby and the strongest interactions are observed with Val481(β-strand 339 

A’), Ala483(β-strand A’), Phe489 (β-strand B) and Val491 (β-strand B). Significantly, unlike 340 

Val567, the acidic Asp567 residue of mutant DG maintains its side chain exposed to the solvent 341 

over the simulation time. Analysis of the MD trajectories shows that the hydrophobic contacts 342 

involving the 567 position remain relatively stable in the wild-type with the Val567 residue 343 

continuously interacting with residues Val481, Phe489, Ala483 and Val491 whereas they are 344 

disrupted upon mutation. This results in a significant disorganization of the A’ strand and in a 345 

widening of the cleft between the sheets of the Ig-like domain. This effect is not observed in murine 346 

α-DG, in which the hydrophobic contacts established by Ile591 with Val504, Ala506, Phe512 and 347 

Val514 are well preserved after the mutation. The Cα-Cα distances between the above-mentioned 348 

residues are reported in Fig. 7 for both, zebrafish (A, C, E and G panels) and murine (B, D, F, and H 349 

panels) protein models, in comparison with their mutated counterpart. Panels A, C, E and G 350 

highlight the separation between A’-G (Fig. 7A, C) and B-G (Fig. 7E, G) strands.  Notably, the 351 

large differences observed between Cα of 489, 491 (strand B) and 567 (strand A’) positions (Figure 352 

7E, G) indicate the separation between the two sheets of the β-sandwich (Fig. 2). In the case of 353 

murine α-DG the I591D replacement produces no effect on the corresponding distances between 354 

A’-G (Fig. 7B, D) strands and very little effects on the separation between the sheets  (Fig. 7F, H).  355 
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We also examined the structural conformations obtained from the MD simulations of the wild-type 356 

and the mutant α-DG to better evaluate the conformational change in the mutant protein upon the 357 

amino acid replacement. Structural comparison between the average structures generated from the 358 

last 25 ns MD trajectory is shown in Figure 8. TM-score can be used as an approximate but 359 

quantitative criterion for protein topology classification, i.e. protein pairs with a TM-score >0.5 are 360 

mostly in the same fold, while those with a TM-score <0.5 are mainly not in the same fold [53,54]. 361 

A TM-score of 0.55 and 0.71 were calculated for zebrafish and murine average structures, 362 

respectively, indicative of a low similarity between the wild-type and the mutant zebrafish protein. 363 

As shown in Figure 8  the V567D substitution causes the unfolding of the A strand and the G strand 364 

pulling away from the β-sheet (Figure 8A, B). As a result, the two β-sheets slide away from each 365 

other and the average distance between the center of mass of B and G strands increases from 10.3 Å 366 

(wild-type) to 14.8 Å (V567D) (Figure 8A, B). The extent of the mutation-induced structural 367 

rearrangement can also be seen from the changes in the solvent exposure of the groups interacting 368 

with the mutation site. The segment that becomes more exposed to the solvent upon V567D 369 

mutation is the B-strand (36% SASA increase). Notably,  we observed a significant increase in 370 

SASA of Val491 whose value is 14 Å
2  

in wild-type and 32 Å
2
 in V567D, in agreement with the 371 

analysis of Halaby and coworkers [49], who calculated, for amino acids of the internal strand B 372 

with side chains pointing towards the interior of the protein, a SASA value < 20 Å
2 

and for amino 373 

acids with side chains pointing towards the exterior of the protein SASA values between 20 Å2
 and 374 

50 Å2
.  In the wild-type and I591D murine average structures, we focused on the D-strand which 375 

appears as the most affected region upon mutation.  The strong hydrophobic interactions involving 376 

Ile591 and Trp549 (D strand) in wild-type murine α-DG are shown in Figure 8C. Notably, the 377 

SASA analysis shows that there is a drastic increase in SASA for Trp549, from 18 Å
2
 (wild-type) to 378 

45 Å2
 (I591D), values that are in reasonable agreement with the SASA values expected for residues 379 

of an external strand as the strand  D [49]. These changes are possibly triggered by the amino acid 380 

replacement at Ile591 position, which affected the normal interactions between Ile591 and Trp549.  381 
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Effectively, in the mutant murine DG the Asp591 side chain forms an hydrogen bond with Ser548 382 

and this results in the movement of the indole ring belonging to  Trp549 towards the solvent (Figure 383 

8D), an event that might induce a significant destabilization [55]. On the whole, the establishment 384 

of new contacts that remain stable during the simulation suggests that the Ig-like domain of murine 385 

α-DG should not display an impaired stability when Ile591 is replaced by Asp. Nevertheless, 386 

possible structural-functional consequences derived from the observed structural rearrangement 387 

cannot be ruled out as indicated by our analysis of the recombinant protein carrying the I591D 388 

mutation (see below).    389 

Preparation of the recombinant murine -DG(485-630)I591D mutant  390 

In order to test the stability of the mutant -DG C-terminal domain, namely -DG(485-630)I591D, 391 

we prepared this construct using our consolidated prokaryotic expression system (E. coli) that we 392 

have previously used for analyzing a plethora of murine domains of DG [21].  393 

The recombinant mutant -DG(485-630)I591D, expressed as a fusion protein conjugated with six 394 

N-terminal histidine residues and the thioredoxin (Trx),  was purified by affinity chromatography 395 

using a nickel nitrilotriacetate resin. After thrombin cleavage to separate -DG(485-630)I591D 396 

from its fusion partner, the protein was submitted to a further affinity chromatography step to 397 

remove the fusion partner from the solution. A similar protocol was applied to the wild-type protein 398 

in order to compare the stability of the two proteins (Fig. 9). Any attempt made to further purify the 399 

I591D mutant was unsuccessful because of its high propensity to degradation. Figure 9 shows an 400 

SDS-PAGE, in which protein samples at different stages of the purification protocol were  401 

analyzed. The purified protein, compared to its wild-type counterpart, displays a faint band 402 

corresponding to the lower degraded band observed in the wild-type,  while no signal corresponding 403 

to the full-length protein can be observed. At the present stage, due to this pronounced unstable 404 

behavior, it is actually impossible to collect significant amounts of the I591D variant to be 405 

employed for its  biochemical characterization.   406 

 407 
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Analysis of the expression of the mutant I591D in transfected 293-Ebna cells 408 

We further assessed the effects of the I591D mutation in vitro, with respect to expression and post-409 

translational processing of DG. To this end, we transiently expressed the full-length wild-type and 410 

I591D DG proteins in 293-Ebna cells using two DNA constructs carrying a myc-tag inserted at the 411 

position K498 of the C-terminal domain of -DG and cloned in a pEGFP vector [40]. 412 

Interestingly, the mutation does not prevent or downregulate the expression of DG compared to the  413 

wild-type, however the structural rearrangements occurring in I591D partially impair the post-414 

translational cleavage of the mutated DG precursor. In fact, an additional band at about 160 kDa is 415 

detected in Western blot using anti -DG or anti-myc antibodies (Fig. 10 A and B).  It was already 416 

shown that mutations that affect the stability of the DG precursor, such as the disruption of disulfide 417 

bridge within the extracellular domain of -DG or the perturbation of the interaction between the 418 

two subunits, strongly influence its post-translational cleavage and plasma membrane targeting 419 

[21,56,57].  420 

421 
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Conclusions 422 

Understanding the molecular consequences of the mutations that cause human genetic diseases 423 

remains an important research challenge. Missense mutations may have diverse structural and 424 

functional effects on proteins, ranging from changes in the folding pathway that may affect their 425 

overall stability, to alterations in their ligand binding properties. Computational  methods  have 426 

been widely used to assess the structural effects of genetic variants and to investigate the detailed 427 

mechanisms underlying the pathogenicity of missense mutations.  428 

Given our previous biochemical and computational work on the C-terminal region of -DG [17,21], 429 

it was of great interest for us that a recently discovered point mutation (c.1700T>A) in the  gene 430 

DAG1 of zebrafish, resulting in the V567D missense mutation, could induce a very strong 431 

destabilization of the protein eventually leading to the absence of protein and to a reduction of its 432 

mRNA levels [16].  433 

In this study, the impact of the single amino acid substitution V567D on the stability of α-DG was 434 

evaluated combining a number of computational methods to improve prediction. Our findings 435 

provide new insights into the structural basis for the reported dramatic destabilization of zebrafish 436 

DG induced by the V567D mutation and  gives a possible molecular explanation to understand how 437 

the homologous and topologically related I591D mutation in murine DG could also compromise the 438 

protein function. The presence of a hydrophobic residue in this position, such as a Val or Ile, is 439 

highly conserved within all the DG sequences so far analyzed [21]. Although belonging to an 440 

external strand (G), these residues are also involved in forming hydrophobic interactions with the 441 

internal core of the Ig-like domain. We have shown that Val567 residue plays a pivotal role in 442 

maintaining the hydrophobic core structure of the Ig-like domain. By a set of molecular dynamics 443 

simulations, in which the dynamics of wild-type and mutated DG were compared, evident signs of 444 

stability loss provoked by the V567D mutation were observed in the number of hydrogen bonds, 445 

hydrophobic contacts and inter-strand packing distances between the β-sheets of the Ig-fold. The 446 

local perturbation at the G-strand may function as a nucleation site for the unfolding of the protein 447 
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and account for the experimentally observed destabilization [16]. We can hypothesize that in 448 

zebrafish the severe perturbation of the central hydrophobic core structure of the Ig folded-domain 449 

prevents the correct folding of the DG precursor impairing its entire maturation and targeting 450 

pathway, in line with the accepted idea that the central core of the Ig fold serves as a scaffold for the 451 

presentation of sites involved in molecular recognition, cell adhesion, and ligand binding [58,59].  452 

In the case of I591D murine DG, important conformational changes were found to occur within a 453 

short time, suggesting potential changes from the native structural properties within this protein 454 

region. Although we found that the I591D mutation is not likely to change the overall stability or 455 

dynamics of the entire protein region and in particular of the Ig-like domain, however, it brings 456 

about a significant local perturbation featuring the exposure of Trp549 towards the solvent. Namely, 457 

the D strand dynamicsvaries in a way that may still suggest a disturbance to the structural integrity 458 

of the domain. This event may account for the reduced expression level and stability of the 459 

recombinant domain expressed in E. coli and the alteration of the maturation pathway observed in 460 

the transfected eukaryotic cells. On the whole, theoretical and experimental findings demonstrated 461 

that the I591D mutation can affect several biophysical characteristics simultaneously and it may 462 

therefore lead to a certain degree of instability as indicated by the high propensity to degradation 463 

displayed by the recombinant α-DG C-terminal domain (see Fig. 9) and by the altered maturation 464 

pathway of DG, observed in our experiments using transfected cells (see Fig. 10).  465 

The reduced affinity displayed by hypoglycosylated DG towards laminin is believed to represent 466 

the major molecular clue behind a number of secondary dystroglycanopathies [60], while much less 467 

is currently known on the molecular mechanism behind the two known primary 468 

dystroglycanopathies [6,7]. It is interesting to note that the V567D/I591D mutation affects a domain 469 

of -DG which is not extensively glycosylated. Only a few Thr residues within the loop 470 

interconnecting B and C strands were reported as GalNAc glycosylation sites and  in particular the 471 

G strand, to which V567D/I591D belongs, was found unglycosylated [61]. Although we believe 472 

that the important role of this topological position within the G strand of the Ig-like domain of the 473 
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C-terminal region of vertebrate dystroglycans is fully confirmed, we also believe that our analysis 474 

can be considered particularly interesting and innovative in the dystroglycan field since it is 475 

showing that even if the two orthologous proteins are highly conserved, the zebrafish background 476 

and the murine one have some obvious structural differences that in the future may be useful to 477 

define some species-specific different functional behaviours. In order to enlarge our knowledge on 478 

primary dystroglycanopathies, in the next future it will be more and more important to consider that 479 

also mutations affecting folding, stability and maturation of the DG precursor can lead to severe 480 

neuromuscular conditions  as well as those affecting DG glycosylation’s shell. Our study reinforces 481 

the notion of the importance of a combined computational and biochemical approach for the study 482 

of complex diseases such as dystroglycanopathies.  483 
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Table 1.  Statistical support for the predicted structural models obtained from I-TASSER. 648 

α-DG Quality of Predicted Model 

C-score TM-Score
a
 

Wild-type zebrafish -0.8 0.8 

V567D zebrafish -0.9 0.8  

Wild type murine -0.7 0.8  

I591D murine -0.6 0.8 

a
Calculated with respect to the closest structure in the PDB (1U2C) 649 

650 
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Table 2. Evaluation of I-TASSER models by using PROCHECK, ProSA-Web and VERIFY3D 651 

protein structure evaluation tools. 652 

α-DG PROCHECK VERIFY3D ProSA 

 Ramachandran plot statistics (%)
(a)

   

 Core Allowed General Disallowed Compatibiliy 

score (%)
(b)

 

z-score 

Wild-type 

zebrafish 

83.6 13.0 2.1 1.4 96.4 -4.5 

V567D 

zebrafish 

84.2 12.3 3.4 - 92.1 -4.6 

Wild-type 

murine
c
 

94.5 4.8 - - 100.0 -5.4 

I591D 

murine 

87.6 11.0 1.4 - 99.4 -4.5 

a
Ramachandran plot qualities show the percentage (%) of the residues belonging to the favoured 653 

(core), additionally allowed (allowed), generously allowed (general), disallowed region of the plot. 654 
b
Percentage (%)  of the residues with compatibility score above zero.  655 

(c)
Data from De Rosa et al. [17]. 656 

657 
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Table 3. Time averaged structural properties calculated for wild-type and mutant Ig-like domains  658 

 zebrafish murine 

 WT  V567D  WT I591D 

Cα-RMSD (nm) 0.24(0.02) 0.19(0.02) 0.12(0.02) 0.18(0.02) 

SASAtotal (nm
2
) 66.14(2.07) 62.82(1.60) 53.32(1.98) 48.52(3.26) 

Rg-protein (nm) 1.31(0.02) 1.31(0.01) 1.37(0.03) 1.47(0.01) 

Standard deviations are given in parentheses659 
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Figure legends 660 
 661 

Figure 1. Amino acid sequence alignment of zebrafish and murine Ig-like domains belonging 662 

to the α-DG C-terminal region. The alignment reflects the equivalence of residues in the two 663 

structures. At the top is shown the location of the strands predicted by our molecular model of 664 

murine α-DG [17].  The positions of point mutations (V567D and I591D for zebrafish and murine 665 

DG, respectively) are shown in red. 666 

 667 

Figure 2. Structure and topology of wild-type and mutant zebrafish Ig-like domains belonging 668 

to the α-DG C-terminal region. The secondary structure elements (panel A) are named according 669 

to Harpaz and Chothia [46]. The β-strands are colored according to the sheet to which they belong 670 

and the N and C termini are indicated. The topology diagram of the domains is shown in panel B; β-671 

strands are shown as circles and the small helix as a triangle. 672 

 673 

Figure 3. Evolution of the structural properties of the Ig-like domain belonging to the -DG 674 

C-terminal region over time. Cα  RMSD (panel A), Solvent Accessible Surface Area (panel B), 675 

and Radius of gyration (protein) (panel C) of the Ig-like domains of wild-type zebrafish (black),  676 

V567D zebrafish (red), wild-type murine (green) and I591D murine (light blue). 677 

 678 

Figure 4. Cα-RMSF values averaged per each residue over the last 30 ns of MD trajectory. 679 

Wild-type (black) and V567D (red) zebrafish simulations are shown in panel A; wild-type (green) 680 

and I591D (light blue) murine simulations are shown in panel B.  Only the protein region spanning 681 

the Ig-like domain is shown. 682 

 683 

Figure 5. Time evolution of the secondary structural elements along the MD simulation 684 

generated by DSSP.  Wild-type zebrafish (panel A); V567D zebrafish (panel B); wild-type murine 685 
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(panel C); I591D murine (panel D). The X-axis represents the MD trajectory time (in ns), while the 686 

residue numbers are shown on the Y-axis. Only the protein region spanning the Ig-like domain is 687 

shown.  688 

 689 

Figure 6. Backbone hydrogen bonds along the simulation trajectories for the four models. 690 

Shown is the number of backbone hydrogen bonds formed between the A’ and the G strands of 691 

zebrafish (panel A) and murine (panel B) α-DG Ig-like domains. The black and gray lines show the 692 

trajectories for wild-type and mutant systems, respectively.  693 

 694 

Figure 7. Distance analysis between the A’-G and the B-G strands. Time evolution of the 695 

distances between Cα atoms of zebrafish residue pairs 481-567 (panel A), 483-567 (panel C), 489-696 

567 (panel E)  and 491-567 (panel G) and of murine  residue pairs 504-591 (panel B), 506-591 697 

(panel D), 512-591 (panel F) and 514-591 (panel H).  The black and gray lines show the trajectories 698 

for wild-type and mutant systems, respectively. 699 

 700 

Figure 8. Structural comparison of the predicted wild-type and mutant  α-DG Ig-like 701 

domains. The wild-type zebrafish (Panel A),  the zebrafish V567 mutant (Panel B), the wild-type 702 

murine (Panel C) and the murine I591D mutant (Panel D)  models are shown using their 703 

corresponding average structure of the last 25 ns simulation. The location of the residues described 704 

in the current study and strands A’, B, C,  D, E, F, and G are also labeled.  705 

 706 

Figure 9. Recombinant expression of -DG(485-630)I591D. The recombinant murine mutant -707 

DG(485-630)I591D as well as its wild-type counterpart were purified by affinity chromatography. 708 

The fractions collected after each purification step were run on the same SDS-PAGE: lane 1: total 709 

protein extract from E. coli cells expressing 6xHis-Trx--DG(485-630)I591D; lane 2: purified 710 

6xHis-Trx--DG(485-630)I591D; lane 3: 6xHis-Trx--DG(485-630)I591D upon thrombin 711 
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cleavage; lane 4: purified -DG(485-630)I591D (arrow); lane 5: purified wild-type -DG(485-712 

630); lane 6: 6xHis-Trx--DG(485-630) upon thrombin cleavage; lane 7: purified 6xHis-Trx--713 

DG(485-630); lane 8: total protein extract from E. coli cells expressing wild-type 6xHis-Trx--714 

DG(485-630); lane 9: protein markers. 715 

 716 

Figure 10. I591D mutation partially prevents the post-translational cleavage of murine DG 717 

precursor. 293-Ebna cells were transfected with the wild-type or the mutated I591D constructs 718 

both carrying a myc-tag within the C-terminal domain of -DG and cloned into the pEGFP vector. 719 

A) Immunoprecipitation with an anti-myc-antibody of wild-type and I591D -DGs. In cells 720 

transfected with wild-type DG the slightly broad band detected at 100 kDa (TOT), that is further 721 

enriched upon immunoprecipitation (IP), corresponds to the mature -DG. In cells transfected with 722 

the I591D mutant an additional and prominent band is detected at 160 kDa corresponding to the 723 

uncleaved DG precursor. B) Western blot of total protein extracts probed with an anti-DG 724 

antibody. The wild-type construct displays a single band at 60 kDa corresponding to the mature -725 

DG-GFP, while I591D shows an additional band at 160 kDa corresponding to the unprocessed DG 726 

precursor (asterisk). The band at 45 kDa represents the endogenous β-DG.     727 

 728 

Figure S1. Primary sequences and secondary structure prediction by I-TASSER. Prediction of 729 

the secondary structure of the  zebrafish wild-type  (panel A), zebrafish V567D (panel B), murine 730 

wild-type (panel C) and murine V591D (panel D) α-DG C-terminal regions.  Strands (S), α-helices 731 

(H) and coils (-), as predicted by I-TASSER, are aligned with the corresponding amino acid 732 

together with the confidence score. The mutation point is underlined. 733 

 734 

Figure S2. Evolution of the average structural properties for the three simulations of the Ig-735 

like domain belonging to the α-DG C-terminal region over time. Cα  RMSD (panel A), Solvent 736 
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Accessible Surface Area (panel B), and Radius of gyration (protein) (panel C) of the Ig-like 737 

domains of wild-type zebrafish (black),  V567D zebrafish (red), wild-type murine (green) and 738 

I591D murine (light blue). 739 

 740 

Figure S3. Average Cα-rms fluctuations per residue for the three simulations. Cα-RMSFs were 741 

calculated relative to the average structure over the last 30 ns of all three wild-type (black) and 742 

V567D (red) zebrafish simulations (panel A) and wild-type (green) and I591D (light blue) murine 743 

simulations (panel B).  Only the protein region spanning the Ig-like domain is shown. 744 

 745 

Figure S4. Time evolution of the secondary structural elements, along the three independent 746 

MD simulations, generated by DSSP.  Wild-type zebrafish (panel A); V567D zebrafish (panel B); 747 

wild-type murine (panel C); I591D murine (panel D). The X-axis represents the MD trajectory time 748 

(in ns), while the residue numbers are shown on the Y-axis. Only the protein region spanning the 749 

Ig-like domain is shown. 750 

 751 

Figure S5. Backbone hydrogen bonds along the simulation trajectories for the four models. 752 

The average numbers of total backbone hydrogen bonds formed between the A’ and the G strands 753 

of zebrafish (panel A) and murine (panel B) α-DG Ig-like domains are plotted. The black and gray 754 

lines show the trajectories for wild-type and mutant systems, respectively. 755 

 756 

Figure S6. Distance analysis between the A’-G and the B-G strands. Time evolution of the 757 

average distances, for the three simulations, between Cα atoms of zebrafish residue pairs 481-567 758 

(panel A), 483-567 (panel C), 489-567 (panel E)  and 491-567 (panel G) and of murine  residue 759 

pairs 504-591 (panel B), 506-591 (panel D), 512-591 (panel F) and 514-591 (panel H).  The black 760 

and gray lines show the trajectories for wild-type and mutant systems, respectively. 761 
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Abstract 23 

A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan 24 

(DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete 25 

absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed 26 

mechanism for the observed mutation-induced destabilization of the DG complex and membrane 27 

damage, remained unclear. With the aim to contribute to a better clarification of clarify the 28 

structure-function relationships featuring the DG complex, three-dimensional structural models of 29 

wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by 30 

a template-based modelling approach.  We then ran extensive molecular dynamics (MD) 31 

simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate 32 

the effect of the single mutation on alpha-DG stability. A comparative study has been also carried 33 

out on our previously generated model of murine alpha-DG C-terminal domain including the I591D 34 

mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories 35 

from MD simulations were analyzed in detail, revealing extensive structural disorder involving 36 

multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been 37 

detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D 38 

confirmed a pronounced instability of the protein. Taken together, the computational and 39 

biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays 40 

a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could 41 

possibly affect and propagate to the entire DG complex. The structural features herein identified 42 

may be of crucial help to understand the molecular basis of primary dystroglycanopathies. 43 

44 
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Introduction 45 

Dystroglycan (DG) is a pivotal  member of the dystrophin-glycoprotein complex (DGC), which 46 

links the cytoskeleton to the extracellular matrix (ECM) via dystrophin [1]. Essential for normal 47 

muscle function, DG also has important roles in a wide range of tissues, including the central and 48 

peripheral nervous systems, and in the maintenance of epithelial structures [2]. DG is synthesized as 49 

a precursor protein that is post-translationally cleaved into the α- and β- subunits. Within the DGC, 50 

the α-subunit is located outside the plasma membrane and binds ECM proteins, such as laminin and 51 

agrin. α-DG is extensively glycosylated and its correct glycosylation is essential to elicit its ligand 52 

binding activity [3]. Mutations in a growing number of genes encoding for glycosyltransferases or 53 

associated proteins involved in DG glycosylation give rise to a class of congenital as well as limb-54 

girdle muscular dystrophiesdiseases, which are known as secondary dystroglycanopathies [4,5]. It is 55 

worthwhile to notice that, to date, only two patients affected by recessive with primary 56 

dystroglycanopathies, associated with mutations in the DG encoding gene DAG1 (c.575C>T, 57 

T192M and c.2006G>T, C669FY) DAG1 (c.575C>T, p.T192M and C669Y) have been described 58 

[6,7].  59 

The importance of the DG gene for muscle stability has been confirmed also in zebrafish (Danio 60 

rerio) [8], an organism that represents a reliable model for human muscular diseases [9–12] and that 61 

is frequently employed for investigating the effect of drugs alleviating the symptoms of Duchenne 62 

muscular dystrophy [13–15]. 63 

Recently, in an attempt to identify novel genes responsible for skeletal muscle disorders, a zebrafish 64 

mutant was identified that showed impaired locomotion behavior and dystrophic muscles [16]. Such 65 

point mutation (c.1700T>A) in DAG1, resulting in a missense mutation p.V567D, induced 66 

destabilization of the DG complex and membrane damage. In particular, genetic and biochemical 67 

studies showed that the V567D substitution is associated with a strong reduction of DG transcripts 68 

and a complete absence of  and  subunits [16]. However, despite the experimental 69 

characterization of many functional effects of the V567D substitution in α-DG, a detailed molecular 70 
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framework explaining the observed destabilization and loss-of-function is stillare lacking. 71 

Comprehensive details at atomic resolution about the structural perturbations induced by the V567D 72 

substitution thus remain elusive. For this reason, and given our experience with these systems, 73 

which led us to identify a second immunoglobulin-like (Ig-like) domain in murine α-DG C-terminal 74 

region [17] and ε-sarcoglycan [18], we have exploited the capabilities of molecular dynamics (MD) 75 

simulation to investigate the structural and dynamical changes of zebrafish α-DG caused by V567D 76 

replacement. In fact, we have recently predicted and then experimentally demonstrated using 77 

recombinant proteins that not only residues 60-158 of murine α-DG display an immunoglobulinIg-78 

like β-sandwich fold [19], but also residues ranging from 500 to 600 [17]. We showed that the 79 

murine α-DG C-terminal is a typical β-sandwich Ig fold consisting of two β-sheets forming a β-80 

sandwich. The first sheet contains three anti-parallel strands (B, E, D),  whereas the second sheet 81 

comprises strands A', G, F and C, with A' packing parallel with the C terminus of strand G, the 82 

others arranged in an anti-parallel fashion [20]. The observed zebrafish V567D substitution [16], 83 

fallsing within a region of α-DG which that is essential for the DG complex stability, has proved to 84 

be of crucial importance to understand the role of the Ig-like domain in the interaction with the 85 

extracellular N-terminal domain of β-DG [17,21]. Gupta et al. [16], using a number of algorithms 86 

able to predict whether an amino acid substitution affects protein function, hypothesized that the 87 

V567D mutation deeply compromises protein function resulting in a pathological phenotype. 88 

Nevertheless, the structural role of this mutation remains unclear. To fill this gap, here we 89 

investigated the effects of V567D mutation on the zebrafish α-DG structure through molecular 90 

dynamics (MD) simulations, which allow the study of the conformational characteristics of the 91 

protein at every step during the computational simulations [22][21]. Subsequent structural in silico 92 

analyses were performed. Exploiting our murine -DG model, we also examined the structural 93 

effects of the mutation I591D, which is topologically equivalent to the V567D mutation (Figure 1), 94 

combining computational and biochemical analysis.  95 

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Times New Roman, 12 pt

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt



5 
 

The present MD studies revealed that the conformational stability of mutated DG is considerably 96 

reduced compared to wild-type, with a significant breakdown in the secondary structure observed 97 

for zebrafish V567D. Potential implications in processes leading to dystroglycanopathies are 98 

discussed. 99 

Materials and Methods 100 

Constructing structural models of wild-type and mutant α-DG C-terminal domains 101 

Following the same procedure used in De Rosa et al. [17] the theoretical atomic models of wild-102 

type and mutated α-DG C-terminal regions (residues 462-626 and 483-651 for zebrafish and murine 103 

proteins, respectively) were constructed using the I-TASSER server [23,24][22,23]. Starting from 104 

the original sequence of wild-type protein retrieved from the UniProt Database [25][24] (accession 105 

numbers Q499B9 and Q62165 for zebrafish and murine DG, respectively), the first step I-TASSER 106 

performed was to create a sequence profile for the query using PSI-BLAST [26][25]. The secondary 107 

structure of each of these sequences was then predicted using PSIPRED [27][26], a highly accurate 108 

secondary structure prediction server (http://bioinf.cs.ucl.ac.uk/psipred). Using the constraints 109 

provided by PSI-BLAST and PSIPRED, the query was then threaded through the PDB structure 110 

library using the Local Meta-Threading-Server (LOMETS) [28][27], which uses eight servers to 111 

find the best possible templates for the query. The continuous fragments from the threading 112 

alignments were then excised from their respective template structures and assembled into a full-113 

length model, whereas the unmatched regions were built via ab initio modelling. Hence, unlike 114 

other homology modelling software, this server predicts the structure even when there are no 115 

matched sequences in known PDBBD structures. The quality of each predicted structure was 116 

assessed with a scoring method, and five atomistic models with the highest scores were obtained for 117 

each input protein sequence. The best models among those predicted by I-TASSER were checked 118 

using the programs PROCHECK [29][28], VERIFY3D [30][29] and ProSA-Web 119 

(https://prosa.services.came.sbg.ac.at/prosa.php) [31][30]. Visualization and molecular graphics 120 

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt

Field Code Changed

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Calibri, 11 pt, Italian (Italy)

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt

Field Code Changed

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt

https://prosa.services.came.sbg.ac.at/prosa.php


6 
 

were performed using Discovery Studio (Accelrys Inc.) on the workstation HP XW8600 running 121 

Red Hat Enterprice Linux 5. 122 

Molecular Dynamics Simulations and Analysis 123 

The best-scored wild-type and mutant DG model structures obtained by I-TASSER were chosen as 124 

the starting coordinates for the MD simulation. Calculations were performed as reported earlier  125 

[17], with slight modifications of the size and shape of the simulation box.  Briefly, all simulations 126 

were carried out using the 4.5.1 version of GROMACS [32][31] and GROMOS96 force field 127 

[33][32]. Each structure was immersed in a triclinic box with periodic boundary conditions. The 128 

SPC water model was used [34][33] and the systems were neutralized by 2 and 3 Na
+
 ions (wild-129 

type and mutant zebrafish, respectively) and by 3 and 2 Cl
-
 ions (wild-type and mutant murine, 130 

respectively).  The box dimensions (7.3nm×5.6nm×8.5nm and 6.9nm×7.1nm×9.6nm for zebrafish 131 

and murine, respectively) were set to allow at least 0.9 nm between the protein and the box faces on 132 

each side.  The final zebrafish systems consisted of 1671 (wild-type) and 1672 (V567D) protein 133 

atoms surrounded by 10725 and 10223 water molecules, respectively, whereas the final murine 134 

systems consisted of 1712 protein atoms (both wild-type and I591D) surrounded by 14999 and 135 

14980 water molecules, respectively. All the MD simulations were carried out using periodic 136 

boundary conditions. The geometry of each system was initially optimized using the steepest 137 

descent algorithm and then equilibrated for 20 ps. Next, the molecular dynamics were run for 420 138 

ns at 300 K, and the data were collected every 5 ps. Constant temperature (300 K, τT = 0.1ps) was 139 

maintained by coupling to a bath using a ν-rescale algorithm [35][34], whereas pressure was kept at 140 

1 atm using the Parrinello-Rahman barostat [36][35]. Long range electrostatic interactions were 141 

calculated using the Particle-Mesh Ewald Method [37][36], whereas application of the Lincs method 142 

[38][37] allowed for an integration step size of 2 fs. Two additional replicate simulations with a 143 

duration of 40 ns were also performed for each of the systems studied, with differing initial 144 

velocities. Analysis of the trajectories was performed using the GROMACS tools g_rms, g_rmsf, 145 
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g_hbond, g_gyrate and g_sasa. Secondary structure was calculated using the DSSP algorithm 146 

[39][38] within GROMACS. 147 

DNA manipulations 148 

The single point mutation I591D was introduced into the murine DG construct containing a myc-tag 149 

inserted within the C-terminus of α-DG and cloned in pEGFP vector [40][39]. The I591D mutation 150 

was also introduced in a DNA construct encoding for the -DG C-terminal domain, -DG(485-151 

630), cloned into the  pHis-Trx vector; in both cases,  the QuikChange site-directed mutagenesis kit 152 

(Stratagene
®

) was used to introduce a mutated triplet (underlined), corresponding to an Asp residue, 153 

exploiting the following primers: I593D_S 5’-GTG GAT GCC TTC GAG GAC CAT GTT CAC 154 

AAG CGC-3’and I593D_AS 5’-GCG CTT GTG AAC ATG GTC CTC GAA GGC ATC CAC-3’. 155 

All constructs were verified by automated sequencing.  156 

 157 

Recombinant expression and purification of -DG(485-630)I591D 158 

The recombinant fusion protein, 6His-Txr--DG(485-630), was expressed in E.coli BL21(DE3) 159 

Codon Plus RIL strain and purified using nickel affinity chromatography as described elsewhere 160 

[21][40]. The protein of interest, -DG(485-630), was obtained upon thrombin cleavage. 161 

Tricine/SDS-PAGE was used to check the purity of the recombinant protein under analysis. 162 

 163 

Cell culture, transfection and immunoprecipitation 164 

293-Ebna cells, grown in DMEM supplemented with antibiotics and 10 % (v/v) fetal calf serum, 165 

were transfected with  20 μg of wild-type or I591D DG constructs using the calcium phosphate 166 

method as described elsewhere [40][39]. After 24 h, cells were dissolved in PBS containing 1% 167 

Triton X-100 and protease inhibitors (Roche, Switzerland). Cell lysate was resolved on a 10 % 168 

SDS-PAGE. For Western blot analysis, proteins were transferred to nitrocellulose and probed with 169 

an anti β-DG antibody (43-DAG) (1:50) and with a peroxidase-conjugated secondary antibody 170 
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(Sigma, USA) diluted 1:7000 (anti-mouse); the reactive products were revealed using the luminol-171 

based ECL system (Pierce, USA).  172 

All the steps required for immunoprecipitation were carried out using the μMACS™ Epitope Tag 173 

Protein Isolation Kit (Miltenyi Biotec.
®

, Germany), following the manufacturer’s instructions. 174 

Briefly, 1 ml of total protein extract of transfected cells was incubated with 50 μl of magnetic beads 175 

conjugated with an anti-myc antibody (Miltenyi Biotec.
®

, Germany) for 30 min in ice. After several 176 

washes, the adsorbed protein was eluted with 50 μl of sample buffer and run on a 10% SDS-PAGE 177 

followed by Western blot analysis with an anti-myc antibody-HRP conjugated (Miltenyi Biotec.
®

, 178 

Germany). 179 

Results and discussion 180 

The I-TASSER approach has a high success rate to construct correct folds for medium-to-large 181 

sized proteins by structurally reassembling the fragments excised from threading template structures 182 

without using homologous templates, as demonstrated by the recent CASP experiments [41,42]. In 183 

addition, we recently demonstrated the ability of the I-TASSER server to predict a reliable model of 184 

the murine α-DG C-terminal region [17]. The I-TASSER approach was therefore used to find out 185 

the secondary and tertiary structures of zebrafish wild-type and V567D α-DG C-terminus, in 186 

comparison with the murine α-DG carrying the topologically equivalent mutation I591D. 187 

Comprehensive details at atomic resolution concerning the structural perturbations induced by these 188 

amino acid substitutions were then obtained by three statistically independent MD simulations, 189 

which allowed to refine the predicted structures within a nanosecond time scale and to investigate 190 

the conformational changes, occurring upon mutation. In total, 12 MD simulations were performed 191 

as 40 ns triplicates for zebrafish wild-type, zebrafish V567D mutant, murine wild-type and  murine 192 

I591D mutant. The resulting findings are very similar for each set of the three runs and here we 193 

report the results of one of the three simulations. The average properties for the three simulations, as 194 

expected similar to those of the independent simulations are reported in the Supplemental 195 
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Information (Figures S2-S6). A graphical representation of secondary structure analysis for the 196 

three distinct MD simulations is shown (Fig. S4).  197 

 198 

In silico modelling of zebrafish wild-type and V567D α-DG C-terminal region 199 

In both systems, only β-strands and coils were found in the 475-574 region of α-DG, whereas coils, 200 

α helices and strands were found in the extreme C-terminus. Supplementary Figure S1 shows the 201 

predicted secondary structures of the two systems. Not surprisingly, the I-TASSER threading 202 

procedure identified immunoglobulin-like domains as the best templates for wild-type, specifically, 203 

1U2C (α-DG N-terminal region [19]), 2WCP (mouse chaderin-23 [43]), 2YST (human 204 

protocadherin 7, to be published) and 3Q2V (mouse E-cadherin ectodomain [44]). The same 205 

templates, with the exception of 2YST were identified for the mutant V567D. The overall sequence 206 

identity shared between the α-DG C-terminal regions and each of the templates is approximately 207 

24%. Although this value is quite low, it is similar to other cases in which modelling has been 208 

applied [45]. The quality of the generated models was assessed in I-TASSER based on two major 209 

criteria, the C- and the TM-scores. The C-score is calculated based on the significance of the 210 

threading alignments and the convergence of the I-TASSER simulations. C-scores typically range 211 

from -5 to 2, with higher scores reflecting a model of better quality. The TM-score is a measure of 212 

structural similarity between the predicted model and the native or experimentally determined 213 

structure, with a value > 0.5 indicating a model of correct topology. Assessments for the zebrafish 214 

α-DG C-terminal regions are reported in Table 1 indicating reasonable models and accurate 215 

topology. In all cases, search of the PDB, quantified by TM-score, indicated 1U2C as the structure 216 

with the highest structural similarity (Table I). As expected, the zebrafish α-DG model, as well as 217 

that of the V567D mutant, is similar in structure to the murine α-DG [17] with a root mean square 218 

deviation (RMSD) of the Cα atoms  of 1.92Å (wild-type) and 1.68Å (V567D). According to I-219 

TASSER then, the region encompassing residues 475-574 of the α-DG C-terminus adopts the 220 

typical I-frame immunoglobulin superfamily fold and is stabilized by extensive hydrophobic core 221 
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interactions between the two β-sheets [46] (Figure 21). Consistently with the 1U2C structure and 222 

our previous results a small helix was detected between β-strands B and C (residues 495-498).  The 223 

rest of the region  (residues 575-626) displayed two coil-strand-coil regions separated by a helix.  224 

To validate the computational models involved in the current study, multiple approaches were 225 

employed. Firstly, PROCHECK was used to check the stereochemistry quality and structural 226 

feature, comparing the geometry of the residues in a given protein structure with the stereochemical 227 

parameters derived from crystal or NMR structures [29][28]. The PROCHECK result shows that 228 

83.6% (wild-type) and 84.2% (V567D) residues are located in favored core regions, 13.0% (wild-229 

type)  and 12.3% (V567D) in allowed regions, 2.1% (wild-type) and 3.4% (V567D) in generously 230 

allowed regions and 1.4 % (wild-type) and 0.0% (V567D) in disallowed regions.  For a good 231 

quality model, it is expected that the residues located in the most favorable and additional allowed 232 

regions should be more than 90%, which is the case for the computational structures of both wild-233 

type and V567D α-DG C-terminal regions [47]. Residues Lys556 and Arg614 of wild-type were in 234 

disallowed region. It is worthwhile to remember here that both these residues are not located within 235 

secondary structure elements. Secondly, to further check the global quality of the computational 236 

model, the program VERIFY3D was used to analyze the compatibility of the residues with their 237 

environment [30][29]. Residues with a positive score should be considered reliable. In the current 238 

case, VERIFY3D result shows that 96.4% (wild-type) and 92.1% (V567D) of the residues in our 239 

computational models has an averaged 3D-1D positive score, suggesting that the model has overall 240 

self-consistency in terms of sequence-structure compatibility. The 3D–1D profile score dips below 241 

0 at six points in the wild-type model (from Val569 to Gly573 and Ala590) and nine points in the 242 

V567D model (from Val569 to Lys577) all belonging to the unstructured region connecting the Ig-243 

like domain with the coil-strand-coil region. ProSA (Protein Structure Analysis) [31][30] was 244 

adopted to further check the quality of the generated models. The Z-scores, a parameter describing 245 

the overall model quality, are predicted to be -4.5 and -4.6 for wild-type and V567D structure 246 

model, respectively. Both values are within the range of Z-scores found for native proteins of 247 
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similar size, indicating that the overall quality of our model is high. A summary of the results 248 

obtained from these programs, indicating that the residues in the model are placed in a very good 249 

overall configuration, is reported in Table 2.  250 

In silico modelling of murine  I591D α-DG C-terminal region 251 

Primary sequence and secondary structure prediction by I-TASSER of murine wild-type and I591D 252 

α-DG C-terminal region are shown in Supplementary Figure S1. Analogously to the zebrafish DG, 253 

only β-strands and coils were predicted in the secondary structure of the region spanning residues 254 

500-600, whereas coils, α helices and strands were found in the extreme C-terminus. The I-255 

TASSER server used the crystal structure of the murine α-DG N-terminal domain (PDB 1U2C [19]) 256 

and of mouse E-cadherin ectodomain (PDB 3Q2V [48]) as template structures to assemble the 257 

model of the I591D C-terminal domain of murine α-DG.  Statistical support for the predicted 258 

structural models is reported in Table I. The two major criteria, the C-score and the TM-score, 259 

indicate reasonable models with very similar overall topology and a high degree of three-260 

dimensional structure similarity. As expected, according to I-TASSER, the model of the I591D α-261 

DG C-terminus is similar in structure to 1U2C (Cα RMSD = 1.73 Å ) and consists of an Ig-like 262 

domain (residues 500–600) and a coil–helix–coil region (601-653). The structure and topology of 263 

the mutant murine Ig-like domain closely resemble those of the wild-type [17]  and of the predicted 264 

zebrafish Ig-like (Figure 21).  265 

Analysis using PROCHECK [29][28] indicates excellent geometry with no residues in disallowed 266 

regions of the Ramachandran plot. 87.6%, 11.0% and 1.4% of the residues fall into the favored 267 

core, allowed, and generously allowed regions, respectively.  For the most representative structure 268 

VERIFY3D and ProSA  profiles also are indicative of a high quality model. In the VERIFY3D 269 

scan, the designed model shows that all the residues have an average 3D-1D positive score with the 270 

exception of Pro614, which is however located in the predicted random coil region in the extreme 271 

C-terminus. A ProSA Z-score of -4.5 also confirms the good quality of the model. Assessment of 272 

the three-dimensional model is summarized in Table 2.  273 
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 274 

Molecular dynamics conformational flexibility and stability analysis 275 

To check the stability of the simulations, the RMSDs of the Cα atoms with respect to the minimized 276 

starting structure, radii of gyration (Rg) of the protein and Solvent Accessible Surface Area (SASA) 277 

of protein were calculated and monitored over the course of simulations and are presented in Figure 278 

32. Evaluation of the structural drift was provided by the analysis of the Cα atom RMSDs from the 279 

initial structures as a function of time. The RMSDs of the Ig-like domains through the 420 ns 280 

trajectory were computed with respect to their corresponding initial minimized structures (Fig. 281 

32A). In all four cases, the RMSD shows convergence of the simulation within 420 ns (Fig. 32A). 282 

The wild-type murine protein presents the smallest deviation and adopted after 200 ps a stable 283 

conformation not so far from the initial one (0.1 nm), indicating that this system was very stable 284 

during the simulation.  The RMSD of wild-type zebrafish simulation converges after 10 ns to a 285 

value around 0.24 nm, whereas in the mutants simulations RMSD increases sharply till 1 ns and 286 

reaches a value of  0.20 nm (zebrafish V567D) and 0.17 nm (murine I591D) remaining reasonably 287 

stable until the end of the simulation (Fig. 32A). Figure 32 demonstrates that for all structures, the 288 

RMSD remains stable around average values of 0.1-0.2 nm (Table 3)  over a considerable time 289 

period (310 ns) of the later part of the trajectory. For this reason, 20 ns simulation length is believed 290 

to be a sufficient time period to sample the conformational space and evaluate the effects caused by 291 

the mutations. The SASA and Rg are related to (and give a global account of ) the general tertiary 292 

structure of the protein. The curves of SASATOTAL indicate that the exposed areas (both 293 

hydrophobic and hydrophilic), for all the systems investigated, although slightly decreasing with the 294 

mutation (an effect more evident in the case of zebrafish), are stable during the entire simulations 295 

(Fig. 32B). As expected from the RMSD analysis, it is not possible to observe significant changes 296 

in the Rg during the simulations. The plot of Rg versus time is presented in Fig. 32C.  For both 297 

zebrafish and murine systems the curves do not differ significantly and maintain the lowest value of 298 

Rg around 1.3 nm (zebrafish) and 1.54 nm (murine), indicating that the compact conformation is 299 
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largely preserved upon mutation (Fig. 32C). The time averaged structural properties are reported in 300 

Table 3.  301 

Interesting information can comes from the root mean square fluctuations (RMSFs) of each amino 302 

acid (Fig. 43), which highlights the flexible regions of the systems. RMSFs values higher than 0.25 303 

nm are characteristic of amino acid  residues belonging to flexible regions. For all the systems 304 

analysed, the loop at the N-terminus and the loops between the β-strands displayed RMSFs values 305 

which are typical of flexible regions, while the regular secondary structure regions showed small 306 

fluctuations during the simulations. In the zebrafish DG, the most pronounced Cα-RMSF 307 

differences between the wild-type and the mutant occur for residues 500-502 and 517-519, 517-524, 308 

which belong to the long loops connecting strands B and C, and C and D, respectively C and D, and 309 

for residues 530-533, which set up the β-turn connecting the antiparallel strands D and E  (Fig. 310 

43A).  In these two regions the V567D Cα-RMSF is ∼1.5 and ∼2 times greater  larger and lower, 311 

respectively, than that of the wild-type, respectively. The RMSFs values observed for murine DG 312 

exhibit more or less similarly distributed fluctuations. Most of the residues, which belong to the 313 

long loops connecting strands C and D, D and E, F and G strands, become highly mobile upon 314 

mutation (Fig. 43B).  315 

We then tried to examine whether the mutation induced any changes in the secondary structural 316 

elements during the simulations. Fig. 54 shows the classification of the four trajectories in terms of 317 

secondary-structure elements obtained by the software tool DSSP [39][38], whose plots enable a 318 

local 319 

 structural analysis complementing the above characterization of the dynamics.  The stability of the 320 

secondary structures was examined during the entire period (420 ns) (Fig. 54). Interestingly, among 321 

the four simulated systems, the V567D zebrafish shows a strong disorganization of strand  A’ (Fig. 322 

54B), a phenomenon not observedseen in the other models, whose secondary structure elements 323 

appeared very stable during the entire MD simulations. Examination of Figure 54 shows that the 324 

main features of the β-sheets structure are largely retained,  i.e., the strands A', G, F, C, and the 325 
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others  B, E, D  are preserved throughout the 420-ns simulation for wild-type zebrafish (Fig. 54A), 326 

wild-type murine (Fig. 54C) and I591D murine -DG (Fig. 54D). By contrast, at 0.1 ns of the 327 

V567D simulation, most of  the A’ strand unfolds and ishas been yet converted into loop giving rise 328 

to a long flexible region at the N-terminus of the domain (Fig. 54B). Large scale fluctuations from 329 

helical to bend or turn structures at the long loop connecting strands B and C are observed in all the 330 

systems (Fig. 54).   331 

 332 

Effects of V567D and I591D substitutions on the stability of the Ig-fold 333 

The Ig-like domain is stabilized by hydrophobic core interactions between the two β-sheets and by 334 

the hydrogen bonds between the β-strands [39,49][38,49]. Interfering with any of the residues in the 335 

sheet by a mutation may lead to a discontinuity in the hydrogen bonding pattern, which is 336 

characteristic of the Ig-like domains. This may enhance the conformational flexibility of the 337 

mutated residue side chain, which could disrupt the natural bonding of neighbours and might result 338 

in loss of secondary structural elements [50,51]. The external strands A’ and G present geometrical 339 

distortions  known as β-bulges, as found in some Ig molecules [52], which lead to an imperfect 340 

general H-bond network. However, examination of the hydrogen bond patterns involving the β-341 

strands A’-G reveals significant differences among the simulated systems (Fig. 65). Figure 65A 342 

shows that the backbone hydrogen bonds formed between the strands A’ and G, where the mutation 343 

is located, are stable in zebrafish wild-type but are disrupted in the zebrafish V567D mutant, 344 

resulting in a significant separation between the two strands in the β-sheet.  By contrast, the 345 

corresponding backbone hydrogen bonds in murine DG were not noticeably affected by the I591D 346 

mutation (Fig. 65B).  The changes in the hydrogen bond pattern observed in zebrafish DG are 347 

closely related to the disruption of the native hydrophobic contacts. Val567 residue, located on the 348 

G strand, interacts with a number of hydrophobic residues nearby and the strongest interactions are 349 

observed with Val481(β-strand A’), Ala483(β-strand A’), Phe489 (β-strand B) and Val491 (β-strand 350 

B). Significantly, unlike Val567, the acidic Asp567 residue of mutant DG maintains its side chain 351 
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exposed to the solvent over the simulation time. Analysis of the MD trajectories shows that the 352 

hydrophobic contacts involving the 567 position remain relatively stable in the wild-type with the 353 

Val567 residue continuously interacting with residues Val481, Phe489, Ala483 and Val491 whereas 354 

they are disrupted upon mutation. This results in a significant disorganization of the A’ strand and 355 

in a widening of the cleft between the sheets of the Ig-like domain. This effect is not observed in 356 

murine α-DG, in which the hydrophobic contacts established by Ile591 with Val504, Ala506, 357 

Phe512 and Val514 are well preserved after the mutation. The Cα-Cα distances between the above-358 

mentioned residues are reported in Fig. 76 for both, zebrafish (A, C, E and G panels) and murine 359 

(B, D, F, and H panels) protein models, in comparison with their mutated counterpart. Panels A, C, 360 

E and G highlight the separation between A’-G (Fig. 76A, C) and B-G (Fig. 76E, G) strands.  361 

Notably, the large differences observed between Cα of 489, 491 (strand B) and 567 (strand A’) 362 

positions (Figure 76E, G) indicate the separation between the two sheets of the β-sandwich (Fig. 363 

21). In the case of murine α-DG the I591D replacement produces no effect on the corresponding 364 

distances between A’-G (Fig. 76B, D) strands and very little effects on the separation between the 365 

sheets  (Fig. 76F, H).  366 

We also examined the structural conformations obtained from the MD simulations of the wild-type 367 

and the mutant α-DG to better evaluate the conformational change in the mutant protein upon the 368 

amino acid replacement. Structural comparison between the average structures generated from the 369 

last 25 ns MD trajectory is shown in Figure 87. TM-score can be used as an approximate but 370 

quantitative criterion for protein topology classification, i.e. protein pairs with a TM-score >0.5 are 371 

mostly in the same fold, while those with a TM-score <0.5 are mainly not in the same fold [53,54]. 372 

A TM-score of 0.550 and 0.71 were calculated for zebrafish and murine average structures, 373 

respectively, indicative of a low similarity between the wild-type and the mutant zebrafish protein. 374 

As shown in Figure 87  the V567D substitution causes the unfolding of the A strand and the G 375 

strand pulling away from the β-sheet (Figure 87A, B). As a result, the two β-sheets slide away from 376 

each other and the average distance between the center of mass of B and G strands increases from 377 
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10.35 Å (wild-type) to 14.82 Å (V567D) (Figure 87A, B). The extent of the mutation-induced 378 

structural rearrangement can also be seen from the changes in the solvent exposure of the groups 379 

interacting with the mutation site. The segment that becomes more exposed to the solvent upon 380 

V567D mutation is the B-strand (36% SASA increase). Notably,  we observed a significant increase 381 

in SASA of Val491 whose value is 14 Å
2  

in wild-type and 32 Å
2
 in V567D, in agreement with the 382 

analysis of Halaby and coworkers [49], who calculated,  for amino acids of the internal strand B 383 

with side chains pointing towards the interior of the protein, a SASA value < 20 Å
2 

and for amino 384 

acids with side chains pointing towards the exterior of the protein SASA values between 20 Å
2
 and 385 

50 Å
2
.  In the wild-type and I591D murine average structures, we focused on the D-strand, which 386 

appears as the most affected region upon mutation.  The strong hydrophobic interactions involving 387 

Ile591 and Trp549 (D strand) in wild-type murine α-DG are shown in Figure 87C. Notably, the 388 

SASA analysis shows that there is a drastic increase in SASA for Trp549, from 18 Å
2
 (wild-type) to 389 

45 Å
2
 (I591D), values that are in reasonable agreement with the SASA values expected for residues 390 

of an external strand as the strand  D [49]. These changes are possibly triggered by the amino acid 391 

replacement atof  Ile591 position, which affected the normal interactions between Ile591 and 392 

Trp549.  Effectively, in the mutant murine DG the Asp591 side chain forms an hydrogen bond with 393 

Ser548 and this results in the movement of the indole ring belonging to side-chain movement of 394 

Trp549 towards the solvent (Figure 87D), an event that might induce a significant destabilization 395 

[55]. On the whole, the establishment of new contacts that remain stable during the simulation 396 

suggests that the Ig-like domain of murine α-DG should not display an impaired stability when 397 

Ile591 is replaced by Asp. Nevertheless, possible structural-functional consequences derived from 398 

the observed structural rearrangement cannot be ruled out as indicated by our analysis of the 399 

recombinant protein carrying the I591D mutation (see below).    400 

Preparation of the recombinant murine -DG(485-630)I591D mutant  401 
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In order to test the stability of the mutant -DG C-terminal domain, namely -DG(485-630)I591D, 402 

we prepared this construct using our consolidated prokaryotic expression system (E. coli) that we 403 

have previously used for analyzing a plethora of murine domains of DG [21][40].  404 

The recombinant mutant -DG(485-630)I591D, expressed as a fusion protein conjugated with six 405 

N-terminal histidine residues and the thioredoxin (Trx),  was purified by affinity chromatography 406 

using a nickel nitrilotriacetate resin. After thrombin cleavage to separate -DG(485-630)I591D 407 

from its fusion partner, the protein was submitted to a further affinity chromatography step to 408 

remove the fusion partner from the solution. A similar protocol was applied to the wild-type protein 409 

in order to compare the stability of the two proteins (Fig. 98). Any attempt made to further purify 410 

the I591D mutant was unsuccessful because of its high propensity to degradation. Figure 98 shows 411 

an SDS-PAGE, in which protein samples at different stages of the purification protocol were  412 

analyzed. The purified protein, compared to its wild-type counterpart, displays a faint band 413 

corresponding to the lower degraded band observed in the wild-type,  while no signal corresponding 414 

to the full-length protein can be observed. At the present stage, due to this pronounced unstable 415 

behavior, it is actually impossible to collect significant amounts of the I591D variant to be 416 

employed for its  biochemical characterization.   417 

 418 

Analysis of the expression of the mutant I591D in transfected 293-Ebna cells 419 

We further assessed the effects of the I591D mutation in vitro, with respect to expression and post-420 

translational processing of DG. To this end, we transiently expressed the full-length wild-type and 421 

I591D DG proteins in 293-Ebna cells using two DNA constructs carrying a myc-tag inserted at the 422 

position K498 of the C-terminal domain of -DG and cloned in a pEGFP vector [40][39]. 423 

Interestingly, the mutation does not prevent or downregulate the expression of DG compared to the  424 

wild-type, however the structural rearrangements occurring in I591D partially impair the post-425 

translational cleavage of the mutated DG precursor. In fact, an additional band at about 160 kDa is 426 
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detected in Western blot using anti -DG or anti -myc antibodies (Fig. 109  A and B).  It was 427 

already shown that mutations that affect the stability of the DG precursor, such as the disruption of 428 

disulfide bridge within the extracellular domain of -DG or the perturbation of the interaction 429 

between the two subunits, strongly influence its post-translational cleavage and plasma membrane 430 

targeting [21,56,57][40,55,56].  431 

432 

Field Code Changed

Formatted: Font: Times New Roman, 12 pt,
English (U.S.)

Formatted: Font: Calibri, 11 pt



19 
 

Conclusions 433 

Understanding the molecular consequences of the mutations that cause human genetic diseases 434 

remains an important research challenge. Missense mutations may have diverse structural and 435 

functional effects on proteins, ranging from changes in the folding pathway that may affect their 436 

overall stability, to alterations in their ligand binding properties. Computational  methods  have 437 

been widely used to assess the structural effects of genetic variants and to investigate the detailed 438 

mechanisms underlying the pathogenicity of missense mutations.  439 

Given our previous biochemical and computational work on the C-terminal region of -DG 440 

[17,21][17,40], it was of great interest for us that a recently discovered point mutation (c.1700T>A) 441 

in the DG gene DAG1 of zebrafish, resulting in the V567D missense mutation, could induce a very 442 

strong destabilization of the protein eventually leading to the absence of protein and to a reduction 443 

of its mRNA levels [16].  444 

In this study, the impact of the single amino acid substitution V567D on the stability of α-DG was 445 

evaluated combining a number of computational methods to improve prediction. Our findings 446 

provide new insights into the structural basis for the reported dramatic destabilization of zebrafish 447 

DG induced by the V567D mutation and  gives a possible molecular explanation to understand how 448 

the homologous and topologically related I591D mutation in murine DG could also compromise the 449 

protein function. The presence of a hydrophobic residue in this position, such as a Val or Ile, is 450 

highly conserved within all the DG sequences so far analyzed [21][40]. and aAlthough belonging to 451 

an external strand (G), these residues are  it is also involved in forming hydrophobic interactions 452 

with the internal core of the Ig-like domain. We have shown that Val567 residue plays a pivotal role 453 

in maintaining the hydrophobic core structure of the Ig-like domain. By a set of molecular dynamics 454 

simulations, in which the dynamics of wild-type and mutated DG were compared, evident signs of 455 

stability loss provoked by the V567D mutation were observed in the number of hydrogen bonds, 456 

hydrophobic contacts and inter-strand packing distances between the β-sheets of the Ig-fold. The 457 

local perturbation at the G-strand may function as a nucleation site for the unfolding of the protein 458 
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and account for the experimentally observed destabilization [16]. We can hypothesize that in 459 

zebrafish the severe perturbation of the central hydrophobic core structure of the Ig folded-domain 460 

prevents the correct folding of the DG precursor impairing its entire maturation and targeting 461 

pathway, in line with the accepted idea that the central core of the Ig fold serves as a scaffold for the 462 

presentation of sites involved in molecular recognition, cell adhesion, and ligand binding 463 

[58,59][57,58].  464 

In the case of I591D murine DG, important conformational changes were found to occur within a 465 

short time, suggesting potential changes from the native structural properties within this protein 466 

region. Although we found that the I591D mutation is not likely to change the overall stability or 467 

dynamics of the entire protein region and in particular of the Ig-like domain, however, it brings 468 

about a significant local perturbation featuring the exposure of Trp549 towards the solvent. Namely, 469 

the D strand dynamics varies in a way that may still suggest a disturbance to the structural integrity 470 

of the domain. This event may account for the reduced expression level and stability of the 471 

recombinant domain expressed in E. coli and the alteration of the maturation pathway observed in 472 

the transfected eukaryotic cells. On the whole, theoretical and experimental findings demonstrated 473 

that the I591D mutation can affect several biophysical characteristics simultaneously and it may 474 

therefore lead to a certain degree of instability as indicated by the high propensity to degradation 475 

displayed by the recombinant α-DG C-terminal domain (see Fig. 98) and by the altered maturation 476 

pathway of DG, observed in our experiments using transfected cells (see Fig. 109).  477 

The reduced affinity displayed by hypoglycosylated DG towards laminin is believed to represent 478 

the major molecular clue behind a number of secondary dystroglycanopathies [60][59], while much 479 

less is currently known on the molecular mechanism behind the two known primary 480 

dystroglycanopathies [6,7]. It is interesting to note that the V567D/I591D mutation affects a domain 481 

of -DG which is not extensively glycosylated. Only a few Thr residues within the loop 482 

interconnecting B and C strands were reported as GalNAc glycosylation sites and  in particular the 483 

G strand, to which V567D/I591D belongs, was found unglycosylated [61][60]..   484 
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Although we believe that the important role of this topological position within the G strand of the 485 

Ig-like domain of the C-terminal region of vertebrate dystroglycans is fully confirmed, we also 486 

believe that our analysis can be considered particularly interesting and innovative in the 487 

dystroglycan field since it is showing that even if the two orthologous proteins are highly 488 

conserved, the zebrafish background and the murine one have some obvious structural differences 489 

that in the future may be useful to define some species-specific different functional behaviours. In 490 

order to enlarge our knowledge on primary dystroglycanopathies, in the next future it will be more 491 

and more important to consider that also mutations affecting folding, stability and maturation of the 492 

DG precursor can lead to severe neuromuscular conditions [7] as well as those affecting DG 493 

glycosylation’s shell. Our study reinforces the notion of the importance of a combined 494 

computational and biochemical approach for the study of complex diseases such as 495 

dystroglycanopathies.  496 

 497 
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Table 1.  Statistical support for the predicted structural models obtained from I-TASSER. 785 

α-DG Quality of Predicted Model 

C-score TM-Score
a
 

Wild-type zebrafish -0.8 0.8 

V567D zebrafish -0.9 0.8  

Wild type murine -0.7 0.8  

I591D murine -0.6 0.8 

a
Calculated with respect to the closest structure in the PDB (1U2C) 786 

787 
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Table 2. Evaluation of I-TASSER models by using PROCHECK, ProSA-Web and VERIFY3D 788 

protein structure evaluation tools. 789 

α-DG PROCHECK VERIFY3D ProSA 

 Ramachandran plot statistics (%)
(a)

   

 Core Allowed General Disallowed Compatibiliy 

score (%)
(b)

 

z-score 

Wild-type 

zebrafish 

83.6 13.0 2.1 1.4 96.4 -4.5 

V567D 

zebrafish 

84.2 12.3 3.4 - 92.1 -4.6 

Wild-type 

murine
c
 

94.5 4.8 - - 100.0 -5.4 

I591D 

murine 

87.6 11.0 1.4 - 99.4 -4.5 

a
Ramachandran plot qualities show the percentage (%) of the residues belonging to the favoured 790 

(core), additionally allowed (allowed), generously allowed (general), disallowed region of the plot. 791 
b
Percentage (%)  of the residues with compatibility score above zero.  792 

(c)
Data from De Rosa et al. [17]. 793 

794 

Field Code Changed



32 
 

Table 3. Time averaged structural properties calculated for wild-type and mutant Ig-like domains  795 

 zebrafish murine 

 WT  V567D  WT I591D 

Cα-RMSD (nm) 0.240(0.024) 0.198(0.02) 0.120(0.021) 0.187(0.02) 

SASAtotal (nm
2
) 66.1467(2.071.78) 62.823.05(1.60) 53.3245(1.9887) 48.5250.16(3.2610) 

Rg-protein (nm) 1.3172(0.024) 1.3172(0.013) 1.3748(0.031) 1.479(0.012) 

Standard deviations are given in parentheses796 
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Figure legends 797 
 798 

Figure 1. Amino acid sequence alignment of zebrafish and murine Ig-like domains belonging 799 

to the α-DG C-terminal region. The alignment reflects the equivalence of residues in the two 800 

structures. At the top is shown the location of the strands predicted by our molecular model of 801 

murine α-DG [17].  The positions of point mutations (V567D and I591D for zebrafish and murine 802 

DG, respectively) are shown in red. 803 

 804 

Figure 21. Structure and topology of wild-type and mutant zebrafish Ig-like domains 805 

belonging to the α-DG C-terminal region. The secondary structure elements (panel A) are named 806 

according to Harpaz and Chothia [46]. The β-strands are colored according to the sheet to which 807 

they belong and the N and C termini are indicated. The topology diagram of the domains is shown 808 

in panel B; β-strands are shown as circles and the small helix as a triangle. 809 

 810 

Figure 32. Evolution of the structural properties of the Ig-like domain belonging to the -DG 811 

C-terminal region over time. Cα  RMSD (panel A), Solvent Accessible Surface Area (panel B), 812 

and Radius of gyration (protein) (panel C) of the Ig-like domains of wild-type zebrafish (black),  813 

V567D zebrafish (red), wild-type murine (green) and I591D murine (light blue). 814 

 815 

Figure 43. Cα-RMSF values averaged per each residue over the last 310 ns of MD trajectory. 816 

Wild-type (black) and V567D (red) zebrafish simulations are shown in panel A; wild-type (green) 817 

and I591D (light blue) murine simulations are shown in panel B.  Only the protein region spanning 818 

the Ig-like domain is shown. 819 

 820 

Figure 54. Time evolution of the secondary structural elements along the MD simulation 821 

generated by DSSP.  Wild-type zebrafish (panel A); V567D zebrafish (panel B); wild-type murine 822 
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(panel C); I591D murine (panel D). The X-axis represents the MD trajectory time (in ns), while the 823 

residue numbers are shown on the Y-axis. Only the protein region spanning the Ig-like domain is 824 

shown.  825 

 826 

Figure 65. Backbone hydrogen bonds along the simulation trajectories for the four models. 827 

Shown is the number of backbone hydrogen bonds formed between the A’ and the G strands of 828 

zebrafish (panel A) and murine (panel B) α-DG Ig-like domains. The black and gray lines show the 829 

trajectories for wild-type and mutant systems, respectively.  830 

 831 

Figure 76. Distance analysis between the A’-G and the B-G strands. Time evolution of the 832 

distances between Cα atoms of zebrafish residue pairs 481-567 (panel A), 483-567 (panel C), 489-833 

567 (panel E)  and 491-567 (panel G) and of murine  residue pairs 504-591 (panel B), 506-591 834 

(panel D), 512-591 (panel F) and 514-591 (panel H).  The black and gray lines show the trajectories 835 

for wild-type and mutant systems, respectively. 836 

 837 

Figure 87. Structural comparison of the predicted wild-type and mutant predicted α-DG Ig-838 

like domains. The wild-type zebrafish (Panel A),  the zebrafish V567 mutant (Panel B), the wild-839 

type murine (Panel C) and the murine I591D mutant (Panel D)  models are shown using their 840 

corresponding average structure of the last 255  ns simulation. The location of the residues 841 

described in the current study and strands A’, B, C,  D, E, F, and G are also labeled.  842 

 843 

Figure 98. Recombinant expression of -DG(485-630)I591D. The recombinant murine mutant -844 

DG(485-630)I591D as well as its wild-type counterpart were purified by affinity chromatography. 845 

The fractions collected after each purification step were run on the same SDS-PAGE: lane 1: total 846 

protein extract from E. coli cells expressing 6xHis-Trx--DG(485-630)I591D; lane 2: purified 847 

6xHis-Trx--DG(485-630)I591D; lane 3: 6xHis-Trx--DG(485-630)I591D upon thrombin 848 
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cleavage; lane 4: purified -DG(485-630)I591D (arrow); lane 5: purified wild-type -DG(485-849 

630); lane 6: 6xHis-Trx--DG(485-630) upon thrombin cleavage; lane 7: purified 6xHis-Trx--850 

DG(485-630); lane 8: total protein extract from E. coli cells expressing wild-type 6xHis-Trx--851 

DG(485-630); lane 9: protein markers. 852 

 853 

Figure 109. I591D mutation partially prevents the post-translational cleavage of murine DG 854 

precursor. 293-Ebna cells were transfected with the wild-type or the mutated I591D constructs 855 

both carrying a myc-tag within the C-terminal domain of -DG and cloned into the pEGFP vector. 856 

A) Immunoprecipitation with an anti-myc-antibody of wild-type and I591D -DGs. In cells 857 

transfected with wild-type DG the slightly broad band detected at 100 kDa (TOT), that is further 858 

enriched upon immunoprecipitation (IP), corresponds to the mature -DG. In cells transfected with 859 

the I591D mutant an additional and prominent band is detected at 160 kDa corresponding to the 860 

uncleaved DG precursor. B) Western blot of total protein extracts probed with an anti-DG 861 

antibody. The wild-type construct displays a single band at 60 kDa corresponding to the mature -862 

DG-GFP, while I591D shows an additional band at 160 kDa corresponding to the unprocessed DG 863 

precursor (asterisk). The band at 45 kDa represents the endogenous β-DG.     864 

 865 

Figure S1. Primary sequences and secondary structure prediction by I-TASSER. Prediction of 866 

the secondary structure of the of zebrafish wild-type  (panel A), zebrafish V567D (panel B), murine 867 

wild-type (panel C) and murine V591D (panel D) α-DG C-terminal regions.  Strands (S), α-helices 868 

(H) and coils (-), as predicted by I-TASSER, are aligned with the corresponding amino acid 869 

together with the confidence score. The mutation point is underlined. 870 

 871 

Figure S2. Evolution of the average structural properties for the three simulations of the Ig-872 

like domain belonging to the α-DG C-terminal region over time. Cα  RMSD (panel A), Solvent 873 
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Accessible Surface Area (panel B), and Radius of gyration (protein) (panel C) of the Ig-like 874 

domains of wild-type zebrafish (black),  V567D zebrafish (red), wild-type murine (green) and 875 

I591D murine (light blue). 876 

 877 

Figure S3. Average Cα-rms fluctuations per residue for the three simulations. Cα-RMSFs were 878 

calculated relative to the average structure over the last 30 ns of all three wild-type (black) and 879 

V567D (red) zebrafish simulations (panel A) and wild-type (green) and I591D (light blue) murine 880 

simulations (panel B).  Only the protein region spanning the Ig-like domain is shown. 881 

 882 

Figure S4. Time evolution of the secondary structural elements, along the three independent 883 

MD simulations, generated by DSSP.  Wild-type zebrafish (panel A); V567D zebrafish (panel B); 884 

wild-type murine (panel C); I591D murine (panel D). The X-axis represents the MD trajectory time 885 

(in ns), while the residue numbers are shown on the Y-axis. Only the protein region spanning the 886 

Ig-like domain is shown. 887 

 888 

Figure S5. Backbone hydrogen bonds along the simulation trajectories for the four models. 889 

The average numbers of total backbone hydrogen bonds formed between the A’ and the G strands 890 

of zebrafish (panel A) and murine (panel B) α-DG Ig-like domains are plotted. The black and gray 891 

lines show the trajectories for wild-type and mutant systems, respectively. 892 

 893 

Figure S6. Distance analysis between the A’-G and the B-G strands. Time evolution of the 894 

average distances, for the three simulations, between Cα atoms of zebrafish residue pairs 481-567 895 

(panel A), 483-567 (panel C), 489-567 (panel E)  and 491-567 (panel G) and of murine  residue 896 

pairs 504-591 (panel B), 506-591 (panel D), 512-591 (panel F) and 514-591 (panel H).  The black 897 

and gray lines show the trajectories for wild-type and mutant systems, respectively. 898 
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Dear Editor, 

 

Thank you very much for reviewing our manuscript (PONE-D-14-16320) which has now been 

completely revised according to the recommendations of the reviewers. We really appreciate your 

suggestions  which have improved the manuscript considerably. 

Please find our clarifications of all the reviewer’s comments below and the specific adjustments 

made in the revised manuscript.  

We hope that the manuscript  is now suitable for publication in PLoS ONE 

 

 

Kind regards 

 

Maria Cristina De Rosa 

 

Reviewer #1 

1) “to better clarify” was changed into “a better clarification” (Line 28 of the revised 

manuscript).  

2) As suggested by the reviewer, “Ig” definition was indicated on line 73 of the revised 

manuscript.   

3) TM-score is a recently proposed scale for measuring the structural similarity between 

two structures (see Zhang and Skolnick, Scoring function for automated assessment of protein 

structure template quality, Proteins, 2004 57: 702-710). The purpose of proposing TM-score is 

to solve the problem of RMSD which is sensitive to the local error. In TM-score, the small 

distance is weighted stronger than the big distance which makes the score insensitive to the 

local modeling error. A TM-score >0.5 indicates a model of correct topology and a TM-

score<0.17 means a random similarity. The TM-score values reported in Table I are parameters 

of the analysis performed by I-TASSER on the generated model structures. The program 

searches the Protein Data Bank to identify structural similarity to the predicted models and the 

structural similarity is quantified using TM-score. In all cases, even after the replica-exchange 

Monte Carlo simulations performed by I-TASSER to refine the model, 1U2C is the closest 

structure in the PDB and the TM-score value of 0.8 shows that the prediction is accurate.   

The meaning of the TM-score values, reported in Table I, was better explained (Lines 212-213 

of the revised manuscript).  

4) “2 times greater and lower” was changed (Line 304 of the revised manuscript). 

 

Reviewer #3 

Major comment: 

 

Following the reviewer’s suggestion the simulation time was doubled and an additional couple 

of trajectories for each protein were run (Materials and Methods of the revised manuscript, 

lines 141-142). This led to a significant improvement of the manuscript since our 

computational findings have been confirmed over three independent and longer MD simulation 

trajectories. It is important to outline that in the case of mutant zebrafish the observed structural 
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instability occurs at the first frames of the MD simulation and all the RMSD, Rg and SAS 

values do not significantly vary in the last 30 ns of trajectory (Lines 185-194 of the revised 

manuscript).  For sake of clarity, in the manuscript we show the results of the original MD 

simulation extended to 40 ns, whereas the average properties for the three simulations and the 

three independent Secondary Structure trajectories are reported in the Supplemental 

Information (Figures S2-S6). 

As far as murine DG is concerned a local rearrangement of Trp 549, that is tilted towards the 

solvent, has been demonstrated. This event, altering the forces which contribute to the 

conformational stability of the protein (Pace CN, Shirley BA, McNutt M, Gajiwala K. Forces 

contributing to the conformational stability of proteins. FASEB J. 1996, 10:75-83) may account 

for the reduced expression level and stability observed in the recombinant domain expressed in 

E. coli as well as the alteration of the maturation pathway observed in the transfected 

eukaryotic cells (Revised manuscript, lines 383-384). 

Although we believe that the important role of this topological position within the G strand of 

the Ig-like domain of the C-terminal region of vertebrate dystroglycans is fully confirmed, we 

also believe that our analysis can be considered particularly interesting and innovative in the 

dystroglycan field since it is showing that even if the two orthologous proteins are highly 

conserved, the zebrafish background and the murine one have some obvious structural 

differences that in the future may be useful to define some species-specific different functional 

behaviours. (Revised manuscript, lines 472-478). 

Minor comments: 

1) As suggested by the reviewer the topologically equivalence between the I591D and V567D 

mutations is shown by sequence comparison in a novel Figure (Figure 1 of the revised 

manuscript). Figure numbering was modified accordingly.  

       2) In line 114 the word “PBD” was corrected as “PDB”. 

       3) The Rg value of zebrafish α-DG was corrected in Table 3. 

       4) Line 293: the Rg value of murine α-DG was corrected.  

 

As suggested by the Editor, the manuscript has been proofread for any possible mistake and all the 

amendments have been reported in the marked copy.   


