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Abstract 

 

Portfolio optimization has been a highly researched area in finance. Since the seminal work of Markowitz 

(1959) there had been many advances in portfolio analysis, attempting to combine the conceptual world of 

scholars with the pragmatic view of practitioners and to couple with increased electronic computing power. 

Among the proposals, the Capital Asset Pricing Model (CAPM) is one of the potential solutions to simplify 

the calculation of optimal portfolios and to directly relate each stock return to the return referred to a market 

index. CAPM assumes that stock riskiness, which are captured by their market beta, are constant over the do-

main. However, there exists substantial empirical evidence that this assumption may be inaccurate and haz-

ardous  in asset allocation decisions,  mainly when the relationship between risk and excess returns in “Bear” 

and “Bull” markets would be modelled separately. 

In this paper we propose the use of a mixture of truncated normal distributions in returns modelling. An opti-

mization algorithm has been developed to obtain the best fit both in the univariate and in the bivariate case. 

Moreover, the procedure permits to decompose the global beta coefficient into local betas referred to specific 

regions of the market returns domain. Partitioning the domain provides a set of disjoint conditional regions 

where the local relationship between portfolio components and the benchmark can be slightly different with 

respect to the one on the domain as a whole. To appreciate how much closed to reality our proposal is, we 

provide an empirical analysis referred both to Country and Sector data. 
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In applied financial literature a relevant issue is the modelling of the empirical distribution 

of returns since many decision-making and asset pricing models depend on the assumptions 

related to the stochastic model underlying the data. Research on probability models in fi-

nance has given rise to several works (see e.g. Ruppert, 2011) but many questions are open: 

a) Are the models supported by financial markets data? 

b) How are the parameters in these models estimated? 

c) Can the models be simplified? 

Quoting the very famous fact by George Box “All models are false but some models are 

useful”, it can generally be agreed that complex models may be closer to reality but often 

involve many parameters and are not easy to be interpreted; on the other hand, too simple 

models may not capture important features of the data and can lead to serious bias. 

Starting from these preliminaries, we made some considerations on how and whether the 

normal distribution might be exploited in financial modelling (Bramante, Zappa, 2012). In 

particular we have investigated how to improve the fitting to the sample data  by exploiting 

the so called minimum distance approach (MDA) (Parr, 1985 , Basu et al, 2011), partition-

ing the domain and interpolating the observed distribution by a sequence of truncated nor-

mal distributions. The main difference of MDA with respect to the ML approach is that the 

emphasis in MDA is on the accuracy of the fitting, i.e. how much able is the estimated dis-

tribution to replicate the empirical one. It is then a method strictly closed to a data-mining 

context where the aim is to describe the observed data by considering them as if they repre-

sent the entire population. By contrast the main focus of ML is on searching the estimators 

of the parameters with good statistical properties based on sample data in order to obtain a 

distribution able to represent at the best the unknown population.  

It is obvious to say that the normal distribution may be considered too simple in fitting re-

turns, but it is far to be excluded in the practice. In fact, many practitioners still make ex-

tensive use of normal distribution for returns modelling even if different approaches are de-

scribed in a very rich literature (McNeil et al., 2005 for an extensive review). Our approach 

seems to be a good compromise between theory and practice, since encouraging results 



have been obtained both in the direction of the accuracy of the fitting and in the easy inter-

pretation of the parameters of the final distribution. 

In this paper we extend the proposal in Bramante, Zappa (2012) to a bivariate context, ex-

ploring in particular how and when the global beta coefficient may be conditionally decom-

posed into local betas, allowing a different interpretation of dependence among returns; 

moreover, we describe how results may be used to set up a quite flexible procedure which 

permits to optimize portfolio allocation under the common market – neutral strategy as-

sumption to eliminate portfolio’s response to market movements and to allow to potentially 

benefit from both undervalued and overvalued securities. 

 
 
I. Methodology 
 

 

A.  Fitting Bivariate Distributions: notation and preliminary exploratory results  
 

Let us fix some preliminary ideas and notation.  

Let � = ��, ��	be a bivariate random variable and let		
����, 	���; �� be the empirical and 

the cumulative distribution function (ECDF and CDF) of (X,Y) respectively. Let  

���, … , ��� be a sample drawn from �. If 	���; �� describes the random nature of �, we ex-

pect that the bivariate QQ-plot of 
 ���, 	����		
�����; ���					for	� = 1,2, … , �	
or equivalently the distance  
 

  �� − 	����		
�����; �� "					for	� = 1,2, … , �	 (1)	
for some p>0, is closed to zero ∀i.  If ���, … , ��� comes from a distribution W different 

from the one we have chosen we expect that the locus of points is locally different from ze-

ro. In an analogous manner, the analysis of the PP-plot over the domain #0,1%& may be con-

sidered, i.e. the plot of 
 �		
�����, 	����; ���	for	� = 1,2, … , �										. 



Parameter estimation is typically based on standard maximum likelihood (ML) or by robust 

estimation procedures, i.e. the median and the median absolute deviation from median 

(MAD) (Ruppert, 2011). Differently from ML, in order to let the fitting process as flexible 

and maximally data dependent as possible, the MDA approach  (see Basu et al. 2011) is be-

coming popular in applications also because of its theoretical implications. It consists in 

solving the general unconstrained problem  
 

 '��( 	) *		
����, 	���; ��+ 				�	 ∈ ℝ& (2) 

where )�∙�	 is an appropriate measure of discrepancy (or loss function)1. If 	���; �� is the 

“true” distribution then the unconstrained estimator �/ minimizing (2) has been shown to be 

strongly consistent.  

Depending on which )�∙�		is used, further properties, e.g. robustness to extreme influence 

values, may be defined in addition. Let 0��� and  1(��� be continuous functions. Examples 

of )�∙�	 are 
 

 )�0���, 1(���� ∶=
34
567:					9:;	|0��� − 1(���|=>:			?#|0��� − 1(���|%=@:			? A�0��� − 1(����&B

 (3) 

known in the literature as the Kolgomorov, Manhattan, Euclidean (Cramer – von Mises) 

distances, respectively. To keep this fact into consideration, object (2) can be generalized as 

follows 

  '��( 	∑ )�D		
�����EF, #	G���; ��%F�HI‖��‖"� 			�	 ∈ ℝ& (4)	
 

where �� = #K�	L�%M, q>0 , ‖��‖" = �∑ |N�|"� ��/"	with p > 0.  That means we may solve (4) 

by searching also for that powers (q,p) – both for the distance and for the norms – that at 

the best guarantee a good fit to the distribution. In this paper – to avoid complexity in the 

comprehension of the proposal – we will use q=1 and p=2 to reconcile notation to the defi-

nitions in (3) and the norm of the weighs to the standard Euclidean distance of the vector �� 
from the origin.  

                                                           
1  It can be easily noticed that (2) is a transformation of the quantities used in the PP-plot. 



B. Fitting Bivariate Truncated Normal Distributions 
 

Optimization in (4) can be applied also to a partition of � e.g. by assuming 	����; �� to be 

represented by a sequence of truncated distributions, also called spliced distributions. If the 

distribution is locally different from the one fitted over the whole domain, we expect that 

the sum of the losses measured on each partition is less than the one obtained by using the 

whole domain. This may be interpreted as an evidence that the underlying process is, e.g., 

over dispersed or it may be considered as a mixture of distributions (see also Kon, 1984). If 

the opposite happens, it should be an evidence that locally the process is not different from 

the unconditional one.  

In the case-study of dependence of stock returns on market return the search of spliced dis-

tribution to fit the bivariate distribution of market returns (X) and stock returns (Y)  in 

CAPM modelling may be done by conditioning on a partition of the return market index. In 

general we expect that the dependence is different if we consider e.g. the leftmost or the 

rightmost region of the return space, as it is often heuristically observed. The matter is how 

to define an “optimal” partition by keeping invariant the structure of the dependence among 

the stocks. A solution can be found by applying (4) in a two stage process: in the first step 

we estimate the parameters of the bivariate distribution (X,Y) and then, by keeping fixed 

these estimates, we look for a partition, if it exists, such that the optimum obtained in the 

first step is improved2. 

Let � = ��, ��~Q&�R, S�, i.e. � distributed as a bivariate normal distribution and let 

	����; R,ΣΣΣΣ� be its cumulative distribution function where R, ΣΣΣΣ are the mean vector and the 

and variance-covariance matrix, respectively. Let RT and ΣΣΣΣ/ be the estimates of R, ΣΣΣΣ  obtained 

by solving (4). Let 	UVW� be a generic threshold for the marginal X such that, for any 

	UVW��� < 	UVW� and for � = 1,… , 6 
 

 
⋃ �	UVW��� ⊣ 	UVW��[�\� = ℝ&

�	UVW��� ⊣ 	UVW��⋂�	UVŴ �� ⊣ 	UVŴ � = ∅		`aW	� ≠ c			 (5) 

 

                                                           
2  An alternative solution, which is a fairly common approach, is the fitting a piecewise regression model, 

searching for those knots that significantly change the estimates of the coefficients or produce an im-

provement to the considered diagnostics. 



with 	UVWd = −∞	and		UVW[ = +∞. Let  
 

 �̀g ��; RT;Σ/; 	UVW���; 	UVW�� = 

 

=
3hh
4
hh5 expl−12 �� − RT�MΣΣΣΣ/�� − RT�m
nln expl−12 �� − RT�MΣΣΣΣ/�� − RT�m)K	opqr	opqrsH m)L 			for		� ∈ �K ∈ 	UVW��� ⊣ 	UVW�� ∩ �L ∈ ℝ�

																													0																																																												otherwise
		�6� 

 

be the truncated normal pdf and let the CDF in � be3 
 

 	�g ��; RT;Σ/� = ∑ �∬ �̀g ��; RT;ΣΣΣΣ/; 	UVŴ ��; 	UVŴ ���| }��~̂�̂ \�  (7) 

with	~� > 0	∀�	and	� ~�
[��
�\� = 1 − ~[ 

The estimate of the weights and thresholds in (7) is obtained by solving   
 Find		~�, … , ~[��	and		VW�, … , VW[�� 	 ∶ 
 	∑ ) *		
�����, 	G���; RT; ΣΣΣΣ/�+ ‖��‖&� −min�,[ ∑ ) *		
�����, 	�g ��; RT; ΣΣΣΣ/�+ ‖��‖&� 	≥ �     (8) 

 

with �>0. It is the same problem stated in (4) but where the unknowns are not the parame-

ters of the bivariate Gaussian distribution but the weights and the thresholds. Observe that 

we look for the smallest partition such that (8) is fulfilled, since for 6 → ∞ the truncated 

distribution degenerates on the single observation. To exemplify suppose X = “MSCI 

World” index, Y  = “MSCI Italy” index.  In Figure 1 the joint distribution has been splitted 

into 3 truncated distributions (see Table 1 for a comparison of ML and MDA bivariate nor-

mal parameters and Table 2 for thresholds and local betas estimates).  

 

Table 1: MDA results  

Parameter 
MSCI Italy MSCI World 

ML MDA ML MDA 

Mean 0.14467 0.06226 0.12000 1.08068 

Standard Deviation 1.20489 0.67059 0.08387 0.55785 

Correlation 0.429542   

Beta 0.771781   

                                                           

3  From [7], 	�� ��; R�; Σ�� may also be interpreted as a weighted sum of disjoint truncated distributions. 



 

Table 2: Threshold results  

 
Alfa Beta Freq. 

−∞ ⊣ − 0.51713 0.03570 0.69629 15% −0.51713 ⊣ 0.77926 0.09797 0.74177 75% 0.77926 ⊣ +∞ -0.67063 1.40531 11% 
 
 

Figure 1: MSCI Italy Index Bivariate Truncated Normal Distribution   

 

The picture on the left reports the contours of the joint distribution and the regression line 

with parameters estimated by ML (red dashed line), and MDA (black dashed line) and the 

regression lines with parameters estimated over each subdomain (black solid line). These 

lines show that the beta coefficient estimated over the most negative returns is larger than 

the one estimated using all the data while it is somehow similar when returns are around ze-

ro and slightly less than the beta obtained using ML over all the data. Similar comments can 

be made when considering other MSCI indices, too.   

The same methodology applied to each component of a portfolio may be exploited to define 

optimization strategies different from the standard mean-variance optimal criteria in order 

to improve portfolio risk control even conditional to one or more subregions.  
 

 

C. Decomposition of the beta coefficient 

In the previous Section we have seen that, once the domain X has been partitioned, it is 

possible to estimate local betas that represent relative risk to the market in each subset. 



Consider a portfolio with N assets. According to the Capital Asset Pricing Model (CAPM) 

the i-th asset return, for � = 1,2, … ,Q , is described by  
 W� = �� + �� ∙ W� + �� 
 

where W� and W� are the returns of the i-th asset and the benchmark respectively, �� and �� 
are the standard two primary components of investment decisions, i.e. the part of each asset 

return uncorrelated and correlated with the market. Given a countable partition set of B, the 

same relation holds conditional to each partition, that is 
 W�,� = ��,� + ��,� ∙ W�,� + ��,� 
 

where W�,� and W�,� are the returns of the i-th asset and the benchmark within the k-th parti-

tion, for � = 1,2, … , 6 , and ��,� and ��,� are the corresponding alpha and beta parameters. 

Then the beta coefficient estimated without conditioning over a set of the partition, may be 

written as follows. Using OLS,  ��� estimate can be expressed as the ratio of the codeviance 

between the i-th asset returns and market index returns and at the denominator the deviance 

of market index returns.  

Let W̅�, W̅� be the average returns. Then  ��� may be written as 
 

��� = �a)���W�, W������W�� = ∑ ∑ W�,� ∙ W�,����\� − Q ∙[�\� W̅� ∙ W̅�����W�� = 

 

= ∑ ∑ �W�,� ∙ W�,� − W̅�,� ∙ W̅�,�����\�[�\� + ∑ �W̅�,� ∙ W̅�,� − W̅� ∙ W̅�����\�����W��  

 

where �� is the size of the sample and W̅�,�, W̅�,� the corresponding average returns within the 

k-th partition. Rearranging terms gives: 
 

��� = ����,� ∙ ����W�,������W��
[

�\�
+ ���,� ∙ ����W̅�,[�����W��  

where 

���,� = ∑ �W̅�,� ∙ W̅�,� − W̅� ∙ W̅�����\� ����W̅�,��  

����W�� = �����W�,��
[

�\�
+ ����W̅�,[� 



 

The overall beta coefficient ��� can then be decomposed into a weighted average of all the 

local betas, with weights given by the fraction of deviance of B within each partition with 

respect to the overall deviance, plus the estimate of the coefficient ���,�, which is the beta of 

the linear regression through the means evaluated conditional to the partition, with weight 

given by the ratio of the deviance between them and the overall deviance. Similarly for the 

alpha we have 
 

��� = �D���,� + W̅�,�����,� − ����E ∙ ��Q
[

�\�
 

 

Recall that the beta of the portfolio (��) is generally expressed as a weighted average of the 

betas of the individual assets in the portfolio (see Elton et al., 2006). When partitions are 

available, ��� can be written as follows 
 

��� = ���̂ ∙ ~̂ ,� = 
^\�

����̂ ,� ∙ ����W�,������W��
[

�\�
∙ ~̂ ,�

 
^\�

+���̂ ,� ∙ ~̂ ,�
 
^\�

∙ ����W̅�,[�����W��  
 

where ~̂ ,� are the weights assigned to the assets in the portfolio. 

This setup allows to have another look at portfolio optimization since the optimization 

problem can be restated locally for each specific region of the domain or by introducing 

threshold coefficients dependent on the investor relative risk aversion. In the following sec-

tion we give some insights to the interpretation of beta coefficients when the benchmark 

domain is decomposed into local partitions and we provide an example to show advantages 

of local over global optimization. 

 

 

3.   EMPIRICAL RESULTS 

 

Since a goal of the partitioned beta model is to capture portfolio components dynamics dur-

ing market turmoil, we provide a portfolio optimization illustration under the common con-

dition of a market neutral strategy. The optimal fraction of wealth invested in each index is 

determined on the basis of a market – neutral strategy which eliminates portfolio’s response 



to market movements and allows to potentially benefit from both undervalued and overval-

ued securities.  

Market neutrality is achieved by imposing equivalence of the aggregate beta of long and 

short components, each being a weighted average of the beta coefficients of individual in-

dices4. Assume the Q components of a portfolio are subdivided in �� long portfolio compo-

nents and Q − �� short positions. Let � = 1, … , �� the set of subscripts representing only 

the long portfolio components and – for � > �� – the subscripts for the others. Given the es-

timated thresholds and the corresponding bivariate domain partitions referred to all the 

portfolio components, market neutrality can be achieved in three different ways: 

• Over the whole domain, by assuming a global zero-beta 
 

� ~�,� ∙ ��

�H

�\�
= � ~�,� ∙ ��

 

�\�H¡�
 

 

• Locally, by assuming a local zero-beta 
 

� ~�,� ∙ ��,�


�H

�\�
= � ~�,� ∙ ��,�


 

�\�H¡�
 

where �
 is the chosen partition. 
 

• Over the whole domain, by weighting each partition on the basis of a coefficient of 

risk aversion  
 

� ~�,� ∙ � ¢� ∙ ���,� ∙ ����W�,��
����W��

[

�\�

�H

�\�
= � ~�,� ∙ � ¢� ∙ ���,� ∙ ����W�,��

����W��
[

�\�

 

�\�H¡�
 

 

where ¢� (0 < ¢� < 1) is the k partition risk aversion parameter and 

� ¢� = 1
[

�\�
 

 

The second and third optimization conditions aim to compute weights so that market neu-

trality is achieved within a specific region of the domain in order to manage e.g. an accurate 

                                                           
4  There are different interpretations for the term “market-neutral”. In the present paper, the market neutral-

ity always means zero beta 



hedging of the downside or – while maintaining global neutrality – to give more / less 

weight to specific partitions according to the investor aversion to one or more return “are-

as” – typically the ones referred to negative returns. 

Since we are dealing with N assets and since the partition conditioning the estimates of the 

betas is referred to the benchmark, a generalization of the two step procedure described in 

§B is required. 

In the first step, the optimization tool was used to estimate the vector of the 3 ∙ Q + 2 un-

known parameters (means, variances and correlations) simultaneously for the N assets po-

tential candidates for inclusion/addition to the portfolio and the benchmark. 

Suppose that �� = �1, ���~Q&�R�, S�� and let �£ = �R�, S�� for � = 1, … , Q where �� repre-

sents the i-th asset and B the market index (benchmark). The procedure starts by solving  
 

'��(H…(¤
 � � ) * 	
����^�, 	Gr���^; �£�+  ��^ &

¥r

^\�

 

�\�
 

where '� is the sample size of returns for the i-th portfolio component. 

The criterion function measures the asset cumulative weighted squared distance between 

the empirical and the bivariate normal distribution. In the second step, the optimal trunca-

tion thresholds conditional to the benchmark were computed, i.e. analogously to (8) we 

have looked for a solution to 
 

� � ) * 	
����^�, 	Gr���^; �/��+  ��^ &
^�

− min�,[ � � ) * 	
����^�, 	�£g ���^; �/��+  ��^ &
^�

 ≥ � 

 

Observe that we are looking for a partition and a system of weights that will be kept fixed 

for all the components of the portfolio. 

Case studies were performed on two different aggregation levels (by geography and by sec-

tor) using the returns of 75 Morgan Stanley Capital International (MSCI) indices, provided 

in the country (separately for developing and emerging markets) and sector sub set, and by 

assuming the World Index returns to be the benchmark. All the indices are denominated in 

US dollars and cover the period from January 1996 to December 2012. The entire sample 



period was divided into pre specified consecutive intervals with a fixed length of 500 ob-

servations, then using an automated three-week calendar rebalancing approach where 

thresholds and weights are dynamically re determined: in the end, about one thousand op-

timization runs were completed. In table 3 and 4 results regarding the relative gain in the 

discrepancy measure, with respect to the bivariate normal case, for the two optimization 

steps, are reported. 

 

Table 3: Optimization results  

 % Gain in degree of fit 

Type of Index 
First Opt. 

Step 

Second Opt. 

Step 

Developed Markets Index 45.81 5.16 

Emerging Markets Index 46.58 3.86 

World Sector Index 43.46 6.14 
 
 

Table 4: Threshold distribution  

  % Gain in degree of fit 

Number of 

Threshold 

% of 

Cases 

First Opt. 

Step 

Second Opt. 

Step 

1 3.38 43.90 1.06 

2 32.09 45.80 3.11 

3 53.33 45.03 6.05 

4 11.20 47.22 6.41 

 

Figures in the two tables suggest that the relative gain in the discrepancy measure by using 

the MQ fit with respect to standard ML is particularly relevant in the first optimization step 

(45.5% on average) and results are quite the same in the three considered aggregation lev-

els; as for the mixture of truncated normal distributions, results are less positive since the 

relative gain, with respect to the first step, is not so high (5% on average); nevertheless, 

domain partitioning provides a set of disjoint conditional regions where the local relation-

ship between the index and the benchmark can be slightly different with respect to the one 

on the domain as a whole.  

One interesting result is the reverse in sign of the global beta relation within the domain. 

Table 5 and 6 report, separately for the three types of the performed optimizations and the 

resulting threshold distribution, local beta sign inversions (from a global positive/negative 

beta to at least one negative/positive beta in the partitioned domain): sign inversion occurs 

on average in 10% of the total case, mainly when the global relation is described by a nega-

tive beta and is directly related with the number of the estimated thresholds: this provides 

evidences that relative risk varies conditionally with the benchmark return regions which 

are bounded by the computed thresholds. 



 

Table 5: Beta parameters sign inversion (aggregation levels) 

 % Sign Inversion  

Local Beta 

Type of Index % negative % positive 

Developed Markets Index 6.76 57.63 

Emerging Markets Index 17.74 42.65 

World Sector Index 1.27 1.12 

 

Table 6: Beta parameters sign inversion (number of thresholds) 

 

 % Sign Inversion  

Local Beta 

Number of 

Threshold 
% negative % positive 

1 4.95 42.11 

2 9.24 43.81 

3 10.89 44.21 

4 15.99 48.33 

 

As a final step, the optimization algorithm was implemented within the three considered 

available frameworks to solve the long-short portfolio problem under the condition of mar-

ket neutrality. The initial portfolio contained only cash, and the algorithm should determine 

– at each rebalancing period – an optimal investment decision subject to risk constraints. 

The limit on how large a part of the total portfolio value one single asset can constitute, ~�, 

was set to ±30% for all i. No limits on the changes in the individual positions were consid-

ered and no transaction costs are incurred for buying or selling stocks. The return on cash 

was set to zero. In order to evaluate portfolio compositions and performances of different 

strategies with respect to the benchmark, a set of measures (table 7) – that come from the 

traditional investment world and have been accepted as useful tools to evaluate portfolio 

risk and return – is considered.  

 
Table 7: Statistical indicators 

Annualized excess return Negative semi-deviation 

Frequency of negative returns Maximum drawdown 

Annualized volatility Skewness 

Correlation with MSCI World Index Excess Kurtosis 

 



Specifically, optimization outcomes – both in the locally and in the risk aversion frame-

work – are compared to the ones obtained in the classical global long-short market neutral 

schema. Besides the “Annualized return” that captures the capability of the portfolio of 

generating appealing excess returns with respect to the benchmark, all the measures aim at 

giving evidence of the aptitude of protecting capital. Among these indicators, the “Negative 

semi deviation” is a common solution to measure downside risk and the “Maximum draw-

down” is often used by practitioners to analyze the downside exposure. Finally, “Correla-

tion with MSCI World Index” provides an insight on how each long-short strategy per-

forms, since ex post correlation with the benchmark should be negligible. Results referred 

to “risk aversion framework” are shown graphically (Figure 2 to 5)5. 

 

Figure 2: Portfolio optimization results (annualized excess return)  

 
 

Figure 3: Portfolio optimization results (negative semi-deviation)  

 

                                                           
5  Same considerations hold for the “local optimization” algorithm and so the corresponding results are 

omitted. 



 

Figure 4: Portfolio optimization results (maximum drowdown)  

 
 

Figure 5: Portfolio optimization results (correlation with MSCI World)  

 
 

Results show marginal improvement in risk/return performance compared to the one of 

global risk-neutral optimization. Moreover, whilst correlations with MSCI World values are 

as expected, it doesn’t seem to exit a clear relationship between the “risk aversion parame-

ter” and optimization results. This may be related to the type of time series used which ex-

hibit by themselves intrinsic diversification: the consequence is an alignment of each re-

turns’ series to the one of the benchmark over the whole domain. At the same time, there is 

some evidence that the “risk aversion optimization” permits to control the downside, spe-

cifically where the Negative Semi-Deviation indicator is considered. 

To sum up, in order to verify more extensively if the proposed optimization techniques are 

useful in modeling local relations between assets and benchmark, we are planning to do fur-

ther empirical investigations in the type of data used (individual stocks versus country and 

sector indices), in the portfolio optimization strategies (active versus passive) and in the op-

timization function (beta versus Traynor Index).  
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