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Abstract  The Ramsey (1928) accumulation path is characterized as a saddle-path in the 
standard presentations of the model based on the works of Cass (1965) and Koopmans (1965). 
From a mathematical stance a saddle-path is unstable: if the system is exactly on that path, it 
converges to the steady state of the system; if it diverges slightly from that path, it shifts 
indefinitely from the steady state. The ‘transversality’ condition is then invoked in the 
Ramsey model to prevent the system from following such divergent paths; from the 
economical point of view this condition can be interpreted as a perfect foresight assumption. 
This kind of instability, which is typical of  infinite horizon optimal growth models, has been 
sometime considered to account for actual economic crises. The claim would seem to be 
grounded on the idea that if the consumer optimizes myopically, i.e., by only considering the 
current and the subsequent period, the ensuing dynamics diverges almost surely from the 
steady state equilibrium. Convergence requires perfect foresight. 

The present work aims to challenge this conclusion, which seems not inherent to the 
choice problem between consumption and savings, but it is due to the presumption that the 
consumer must face this problem in an infinite horizon setting. The Ramsey problem of 
selection of the accumulation path will be re-proposed here within a framework where 
consumer’s ability to optimize over the future is assumed to be imperfect. However, the 
ensuing path will converge to the steady state, without assuming perfect foresight. Myopia is 
thus not ultimately responsible for the instabilities of the ‘optimal’ accumulation path. 
Explanations of instability phenomena of actual economic systems (crises, bubbles, etc.) must 
be sought in other directions, probably outside the strait-jacket of the optimization under 
constraint. 

1. Introduction 

Infinite horizon Neoclassical optimal accumulation theory is characterized by an analytical 
apparatus that has now pervaded several fields of theoretical analysis: capital theory, growth 
and value theory, macrodynamics, ecc. In this context the equilibrium solutions take the form 
of saddle-paths which are, therefore, unstable paths. The convergence of these solutions to the 
steady state equilibrium is then ensured by imposing a transversality condition, that is, a 
condition which guarantees the optimality of the solution when time tends to infinity. 
                                                 
1 The material presented in this paper is fruit of a set of discussions stimulated by Pierangelo Garegnani on the 
meaning of the ‘transversality condition’ within optimal capital accumulation models. I am sincerely grateful for 
having had these discussions with him. In addition, I wish to thank Andrea Battinelli, Carlo Beretta, Marco 
Bramanti, Thomas Christiaans, Roberto Ciccone, Ferdinando Colombo, Saverio Fratini, Kazuhiro Kurose, 
Enrico Sergio Levrero, PierCarlo Nicola, Fabio Petri, Mario Pomini, Neri Salvadori, Paolo Trabucchi, 
Alessandro Sbuelz, Gerd Weinrich and an anonymous referee for their comments and suggestions on earlier 
versions of this work. However, the responsibility of what is written here is entirely mine. Finally, I am grateful 
to Micaela Tavasani, for English revision. 
2 Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123 - Milano, Italy; e-mail: 
enrico.bellino@unicatt.it. 
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Sometimes, this kind of dynamics has been considered to account for the crises of actual 
economic systems. A quite recent work supporting this position is proposed by Christopher 
Bliss: 

Question: Which Cambridge, England, paper of the 1960s or 1970s did more damage to simple 
neoclassical thinking than any other? I can imagine the post-Keynesians proposing one or more papers by 
Joan Robinson, but I would not agree. My own candidate would be Frank Hahn’s 1968 paper on 
warranted growth paths. What Hahn did can be explained quite simply. [...] In general, equilibrium 
conditions for the various capital goods—that is, equal net returns for each good—depend upon the rate 
of change of prices, not just on the prices alone. Then the intertemporal dynamic equilibrium of the 
system is defined by a set of simultaneous differential equations. What can we say about those equations? 
The easiest route to the answer comes from the theory of optimal growth, as with a many-capital-good 
Ramsey model. From there we obtain dynamic equilibrium conditions (Euler equations), but these do not 
suffice by themselves. We need to add transversality conditions. The dynamic equations are of the 
saddle-point variety. Only transversality ensures that the system converges to the right asymptotic state. 
Hahn, following a suggestion from Mirrlees, realized that a non-optimized dynamic equilibrium is just 
like the necessary conditions for an optimized system. There will be infinitely many ‘equilibrium’ paths 
for prices, but most of these will crash into the sign-constraint barriers of the race track. 
In other words, a successful capitalist economy needs to have the right idea of where it should go in the 
long run. It would be hard to imagine a more telling criticism of the theoretical claim that an ideal 
decentralized capitalist system exhibits optimal properties. For if there is one thing that capitalist 
economies are really bad at, it is knowing where they are going in the long run and judging that 
destination correctly. Recent financial crises, and similar crises in the past, remind us that capitalism is 
like an inexperienced child that chases after the latest shiny attraction until it hurts itself and ends up in 
tears (Bliss, 2010, pp. 648-9). 

This quotation hints at several related issues, sometime mixed up; roughly, Bliss seems to 
suggest that Neoclassical optimal accumulation models aim to account for both the 
equilibrating and the destabilizing forces of capitalist economies. He seems to say that crises 
in actual capitalist economies can be explained, at least partially, by the destabilizing forces 
implicit in Neoclassical optimal growth theory. At a deeper level, this claim would seem to be 
grounded on the idea that if the consumer optimizes myopically, i.e., by considering only the 
current and the subsequent period, the ensuing dynamics diverges almost surely from the 
steady state equilibrium. On the contrary, convergence to the steady state equilibrium requires 
consumer’s perfect foresight. Myopic optimization, in other words, would be actually the 
‘responsible’ for the instabilities, while long-run foresight is the assumption that guarantees 
the convergence of short run or momentary equilibria towards a steady state. An interesting 
analysis of the role of consumer foresight ability in connection with the dynamic properties of 
the optimal accumulation path is proposed by Heller3: 

It is a curious fact that while most finite time horizon economic models are stable, almost all infinite time 
horizon models are unstable. ... Hahn [Q.J.E., 1966 and R.E.S., 1968, e.b.] and Shell-Stiglitz [Q.J.E., 
1967, e.b.] cast considerable doubt for simple ‘descriptive’ economic models that efficient equilibrium 
paths are ever chosen by myopically optimizing, competitive agents when there is no end to time. In 
Ramsey planning models, there is a similar instability: if central planners initially choose the right path, 
minor external shocks could cause them to follow a non-optimal path when they operate according to 

                                                 
3 This work was pointed out to me by Fabio Petri. 
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myopic optimization rules ... It may be helpful to spell out this point a bit further. The infinite horizon 
models of Hahn and others restrict attention to momentary equilibrium paths arising from arbitragers 
possessing self-fulfilling expectations about price changes in the immediate future (we will call this 
myopic foresight). A path is in equilibrium at a moment in time if, given current prices and myopic 
foresight expectations about prices in the immediate future, agents make plans about the allocation of 
resources across consumption and various investment goods that clear markets at the current moment. 
Paths that are in equilibrium for non-infinitesimal lengths of time, but are not necessarily in equilibrium 
for all time, are called momentary equilibrium paths. Paths that are in equilibrium at every moment in 
time are called long run equilibrium paths. Momentary equilibrium paths need not be long run 
equilibrium paths because, for example, the stock of some capital good is run down to zero at some point, 
resulting in a disequilibrium at that time (Heller, 1975, pp. 65-6). 

In these pages I aim to challenge the idea that myopic optimization is ultimately 
responsible for instability and that the assumption of perfect foresight is the only way to avoid 
it. In this work we will limit our investigation to an optimal accumulation model with just one 
good, in order to focus on the causes of instability in the simplest situation in which it 
emerges. We will study a myopic adjustment process compatible with consumer rational 
behaviour; the ensuing accumulation path will be proved to converge monotonically to the 
Ramsey steady state equilibrium. The extension to the cases with more than one good, which 
are those considered by Hahn and referred to by Bliss, will be undertaken in a subsequent 
work. 

2. Setting of the Cass-Koopmans-Ramsey model 

Let us consider what the (representative) consumer has to do in order to discover his optimal 
consumption path over an infinite time horizon. Consider an economic system where just one 
commodity is produced, consumed and employed jointly with labour as a mean of production 
of itself; capital depreciates at rate   [0, 1]. We define period  t the half-open time interval 
[t, t + 1) between dates t and t + 1. Consumers live forever, and they are all equal. We can 
thus study the behaviour of the representative consumer. To simplify, let us suppose that 
population remains constant. Time is considered a discrete variable, making it easier to 
analyse the situation as a sequence of events4. Consumer’s preferences have a cardinal 

representation, 5 being described by an utility functional,  

0= 1
1 )(=

t t
t cuU  , constituted by a 

sum of discounted utilities achieved in each period, u(ct), where ct is the consumption level in 
period t,6 1

1  is the discount factor of future utility and  > 0 is the rate of time preference. 

We suppose that u : R+ → R is a twice continuously differentiable, increasing and concave 
function; hence u(ct) > 0 and u(ct) < 0; by simplicity, let’s assume also )('lim

0 tc
cu

t


 = +.  

Technology is described by the per-capita production function, f(kt), where f(kt) is the flow 
of per worker gross output (gross of capital replacements) and kt is the per worker flow of 
                                                 
4 For discrete time versions of the Ramsey model see, for example, Azariadis (1993, Chaps. 7 and 13) or 
Stockey and Lucas (1989, Chap. 2). 
5 See Koopmans (1965, Section I); see also Hicks (1965, Chap. XXI, in particular pp. 256-7 and Appendix E). 
6 In this discrete time setting ‘period t’ means the time interval that starts at instant t and ends at instant t + 1. 
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services from the real capital stock. f : R+ → R+ is a twice continuously differentiable, 
increasing and concave function; hence )(kf   > 0 and )(kf   < 0. Moreover, f(0) = 0, 

)(lim
0

kf
k


 = +  and )(lim kfk  = 0+.  

Now, let’s analyse the ‘centralized’ solution, i.e., the consumption path maximizing 
consumer utility over the whole period considered: 

   )(=max 1
1

0=
},{

t
t

t
kc

cuU
tt





 , 

where  

 ct = f(kt) – kt  – (kt+1 – kt),   t = 0, 1, 2, ...,   (Ct) 

and  

 00 = kk , 

where 0k  is the (given) initial capital endowment per worker.  

 As regards the meaning of the physical constraint (Ct) kt observe that, without loss of 
generality, we can assume that each unit of capital provides a unitary flow of capital service 
within the period, so that the same symbol kt denotes the per worker flow of services from the 
real capital stock (when it appears as argument of function f) and the per-worker capital stock 
available at date t, that is, at the beginning of period t. On the other hand, f(kt) – kt and ct are 
the flows of net product per worker and of consumption per worker during period t (‘yearly’ 
flows). Suppose that within each period a uniform flow of net output and of consumption is 
made available by the production process (a ‘daily’ flow); in this way the contemporaneity 
between production and consumption entailed in (Ct) does not raise problems from the logical 
point of view.7 Moreover, suppose that the new capital accumulated during period t starts to 
generate capital services only with the beginning of the subsequent period (‘time do build’ 
assumption); in this way we can disregard the formation of new capital during the period. 

 Let’s suppose that kk
~

<0 , where k
~

 is that level of capital labour ratio which makes 

the net product per worker equal to zero, i.e. 

 kkf
~

)
~

(  .  (1) 

                                                 
7 Alternatively we could express the physical constraint in the form  

 ct+1 = f(kt) – kt  – (kt+1 – kt), t = 0, 1, 2, ...;   (Ct) 

in this way consumption, as well as net investment, takes place at the end of the production period. The 
formulation (Ct) of the physical constraint is however uncommon in the literature; exceptions are Malinvaud 
(1965, pp. 311-2, in particular formulas (4) and (7)), or Mas-Colell, Whinston and Green (1995, pp. 747, item 
(iii)), or Nicola (2000, p. 352, formula (24.3)). Anyway, the use of constraint (Ct) does not alter results in a 
significant manner. We will return later on this point. 
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The optimal path of consumption8 ct, with t = 0, 1, 2, 3,... and of capital, kt, with t = 1, 
2, 3, ... can be found as follows:9 at the beginning of each period t the stock of capital, kt, is 
determined by past saving decisions. After substituting the physical constraints (Ct) in the 
utility functional, there are just two addenda that include kt+1: 

           =])([
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Derive U with respect to kt+1 and set the result equal to zero; after simplifying we have: 
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and re-substituting (Ct) and (Ct + 1) we obtain:10 
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1

])(1[)(
=)( 11






  tt

t

kfcu
cu    t = 0, 1, 2, ....  (UCt) 

To understand the economic meaning of conditions (UCt), consider the consumption 
allocation problem faced by the representative consumer between periods t and t + 1. If the 
consumer decreases consumption in period t by dct, the ensuing loss of utility is u(ct)dct. This 
decrease in consumption of period t allows for more accumulation: gross output of period 
t + 1 increases by f (kt+1)dct. Consumption of period t + 1 may be increased by [ f (kt+1) –
  + 1]dct, including what is left of the initial amount of capital invested. This will increase 
utility of period t + 1 by u(ct+1)[ f (kt+1) –  + 1]dct. Along the optimal path these (small) 
reallocations of consumption must leave welfare unchanged: the loss in utility of period t 
must compensate the discounted increase of utility of period t + 1, that is: 

 u(ct)dct = .
1

d1])()[( 11





  ttt ckfcu

 

                                                 
8 Throughout the work consumption is intended as consumption ‘per worker’; the same can be said for net 
product, saving and capital. For the sake of brevity, we will omit this specification. 
9 Here we follow closely Azariadis (1993, § 7.3 and § 13.4); for the more usual continuous time case see 
Blanchard and Fischer (1989, § 2.1). 
10 A similar condition can be obtained for the continuous case; see, for example, Blanchard and Fischer (1989, § 
2.1). By writing the physical constraint in the form (Ct), conditions (Ut) would remain unaltered, with the only 
difference that now the arguments of the marginal utilities at the left-hand and at the right-hand are now ct+1 and 
ct+2; consequently conditions (UCt) take the form 
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After simplification we obtain equations (UCt). The left-hand and the right-hand members of 
(UCt) could be called ‘marginal utility of consumption’ and ‘marginal utility of savings’. It is 
to be noted that the optimization process entailed by condition (UCt) concerns just two 
periods at a time: t and t + 1. The integral consumption of what remains of the additional 
capital transferred from period t to t + 1 sterilizes any effect of this capital accumulation for 
periods t + 2, t + 3, ecc. This allows us to focus just on costs and benefits for periods t and 
t + 1. No costs and benefits due to reallocations between periods t and t + 1 arise for t + 2, t + 
3, ...; otherwise these effects should have been taken into account in identifying the optimal 
intertemporal allocation. 

Physical constraints (Ct) and the ‘equi-marginality’ equalities (UCt) are necessary 
conditions to select the optimal behaviour of the representative consumer. The steady-state of 
the system (UCt)-(Ct) is represented by the pair (k*, c*), where k* is that value of k such that 

 f (k*) =  +   (2) 

and c* = f(k*) – k*. Equation (2) is called the ‘modified golden rule’, as it differs from the 
traditional ‘golden rule’, 

 f (kg) = ,  (3) 

which is the condition to select the capital labour ratio, kg, that maximizes the net product per 
worker, f(k) – k. As f  is decreasing we have 

 .
~

<<* kkk g  

For further reference, it is useful to represent on two graphs the curve of net product and its 
derivative (see Figure 1). 
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 Figure 1. Net product, f(k)  k, and its derivative, f (k)   

3. Excluding divergent paths: the transversality condition 

The dynamics described by equations (UCt) and (Ct) can be analysed by the phase portrait 
represented in Figure 2. The curves f(k) – k and k = k* divide the positive quadrant in four 
regions: 1, 2, 3 and 4. The direction of the movement in each of these regions is described by 

the small arrows: by (Ct) we deduce that kt+1 <> kt if and only if ct <> f(kt) – kt; by (UCt) we 

deduce that ct+1 <> ct if and only if kt <> k*. The direction of arrows suggest that the dynamics of 

kt and ct is a saddle path, that is, an unstable path. The cause of this instability lies in the 
peculiar way in which the initial consumption level, c0, is selected. Let us focus on this 
procedure, step by step. At date t = 0 equations (U) and (C) become 

 






1

)(1
)(=)( 1

10

kf
cucu   (U0) 
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 )()(= 01000 kkkkfc     (C0) 

 )()(= 12111 kkkkfc     (C1) 

We have thus three equations in four unknowns: c0, k1, c1 and k2; one of them must be fixed 
from outside. In infinite horizon models c0 is initially chosen arbitrarily and then one looks if 
this choice is compatible with utility maximization in the long run. Suppose that *

0 < kk ; 

hence  [1   + )( 0kf  ]/(1 +  ) > 1. If c0 is initially fixed at a high level, not too far from the 

net product 00 )( kkf   (like, for example, 0c  in Figure 2), the first member of (U0) will be 

quite low (since u is decreasing); on the other hand (C0) determines k1 not too far from 0k  

and thus the ratio [1   + f (k1)]/(1 +  ) will remain close to [1   + )( 0kf  ]/(1 +  ), and 

thus higher than 1. Hence, in order to align the r.h.s. of (U0) with the low level reached by 
)( 0cu  , future consumption must be fixed at a level higher than 1c , i.e., 01 > cc  . In other 

words, given a high initial consumption level, to ‘justify’ (rationalize) this choice future 
consumption must be fixed at an even higher level. Analogous adjustments, all entailing an 
ever increasing consumption in periods t = 2, 3, ... will take place, up to the point where 
capital is totally devoured! This is what happens along the S path of the Cass-Koopmans 
diagram (see Figure 2): initial consumption is kept fixed at 0c  and ct is increased (savings are 

decreased) in all subsequent periods; from point Z on, besides consuming the entire net 
product of each period, the individual starts ‘eating’ away the capital stock, until it is dragged 
to 0.  

If, on the other hand, initial consumption is fixed at a low level, like 0c   in Figure 2, then 

)( 0cu   will be quite high and (C0) will determine 1k  at a level which is significantly higher 

than 0k , so that the ratio [1   + f (k1)]/(1 +  ) will be significantly lower than [1   + 

)( 0kf  ]/(1 +  ). In order to keep the r.h.s. of (U0) at the high level of )( 0cu   future 

consumption cannot be fixed at a very high level, in spite of the large accumulation that has 
just taken place. This leaves a large amount of resources for accumulation, pushing the 
system into an over-accumulation path, like S in Figure 2, where consumption starts 
decreasing from point Z onwards where k > k*, thus making the net marginal productivity of 

capital fall below the factor of time preference. The system is thus dragged to point ( k
~

, 0) 

where the entire gross product )
~

(kf  is devoted to the maintenance of capital, k
~ : the initial 

error, of a too low initial consumption level, is thus corrected by low levels of future 
consumptions – which decrease even to zero from a certain point onwards! 

It can be proved that there is only one level of initial consumption, 
0c , that places the 

consumer on his optimal intertemporal path. All other levels of c0 lie in an over-consumption 
path or in an over-accumulation path. 
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Figure 2. Phase portrait of the Cass-Koopmans-Ramsey model 

In both examples, initial consumption is taken as given; this is just a provisional assumption, 
an analytical device that shows that almost all levels of initial consumption lie on a divergent 
path: infinitely many divergent paths, like S, or S, can be obtained along which the 
adjustments, necessary for rationalizing the ‘error’ of fixing an arbitrary level of c0, are 
shifted to future changes, rather than changes in present consumption. These instability 
phenomena are then amended by introducing a further condition, the so-called ‘transversality 
condition’, that excludes all diverging paths like S or S. In formal terms it is 
represented by  

 0.=
1

1
)(lim

t

tt
t

cuk 









 

  (T) 

In all divergent paths ct would become 0, sooner or later, hence u(c) tends to infinite. This 
eventuality is excluded by condition (T). But, even if formally correct, this procedure seems 
to miss the economic substance of the problem. Why should a consumer who wants to 
optimize his consumption plan commit himself to keeping c0 fixed? In his utility 
maximization problem c0 is surely the first variable he will adjust. Obviously, it is not the 
only variable to consider; rather, he must adjust the whole stream of future consumptions, i.e., 
infinitely many consumption levels (c0 included)! But while this problem is handy in the 
finite horizon case11, at least in principle, it seems quite difficult or even unsolvable in the 

                                                 
11 With a finite horizon, the solution can be found by fixing a terminal condition, for example, the stock 
of capital to be left at the end of the periods. Thus, the relevant equations of a three period optimization 
problem, [0, 1), [1, 2) and [2, 3), are: 
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infinite horizon case. The selection of the saddle path entails, from the logical point of view, 
the solution of infinitely many optimization problems: for any given c0 the whole path of pairs 
(kt, ct) satisfying conditions (UCt) and (Ct) should be calculated; when we realize that it 
diverges from the steady state—and this will be the case for all but one path—we have to 
calculate another path starting from another level of c0. In this way we would select the 
unique path converging to the steady state. But this would require almost unlimited 
computational power for the consumer concerning present and future consumptions and 
savings. In other terms, it requires long-run or perfect foresight. 

Moreover, this way of selecting the optimal path introduces an instability phenomenon 
which is not inherent to the optimization problem we are studying. It is due both to the 
presumption that the consumer must face an infinite horizon optimization problem and to the 
analytical tools available to solve such problem. The crucial difficulty consists in the fact that 
a rational choice of c0 would require at the same time choosing the whole future path ct, t = 1, 
2, 3, .... As this problem is not directly solvable we must resort to the indirect way to fix 
arbitrarily c0 and check later on if the ensuing path converges or diverges. The extraordinary 
high computational power so required to the consumer makes the model extremely 
unrealistic. Moreover, it conveys the wrong idea of a structural instability of the long run 
accumulation path, only remediable by assuming consumer perfect foresight. 

In what follows, an alternative way of selecting the optimal accumulation path is proposed, 
which requires a considerably reduced foresight ability for the consumer. If we realistically 
limit to assume that in each period the consumer is able to balance the marginal effects of 
reallocations over a finite number of periods, we obtain a path convergent to the steady state 
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=)( 11
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kfcu
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1

])(1[)(
=)( 22

1
kfcu

cu  

 )()(= 01000 kkkkfc    

 )()(= 12111 kkkkfc    

 )()(= 23222 kkkkfc    

We have 5 equations in 6 unknowns: c0 , c1 , c2 , k1 , k2 , and k3 . A further equation is required to cap the degree of 
freedom. One possibility is to impose the total exhaustion of capital at the end of the planning period, i.e.,  

 0.=3k  

The missing equation is in this case a terminal condition. (Alternatively, any other equation fixing the terminal 
capital at a given positive level could be adopted to close the system.) In the literature on the subject the 
transversality condition for the infinite horizon case is often introduced by passing to the limit the terminal 
condition of the finite horizon case; see, for example, Blanchard and Fischer (1989, p. 43). 
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that is optimal within the set of constraints imposed on the consumer’s ability to optimize 
over the future. Obviously, it is necessarily sub-optimal if compared with the saddle path, 
being the result of a set of optimizations defined over a more restrictive set of constraints but, 
‘better is the enemy of good’, as an Italian proverb states. A set of scenarios can thus be 
outlined where perfect foresight is no longer necessary to exclude divergent paths: myopic 
optimizing rules are compatible with the convergence to the steady state.  

4. An alternative approach: adjustments towards the optimal path 

Given 

 *
00 <= kkk   (4) 

one possible choice, that the consumer can adopt, is to consume the entire net product in each 
period. By (Ct) we see that this choice is feasible and entails 

 01 == kkk tt


    and   00 )(= kkfct     for any   t = 0, 1, 2, ... . (Y0-) 

This is not a unique option and probably not the optimal one. It is a provisional choice12 that 
can be used as a starting point to begin fixing ideas. 

In this situation, consider the intertemporal re-allocation constituted by (a) and (b) below: 
(a) in period t = 0 save and invest 1 unit of the good; 
(b) the unit saved in period t = 0 results in 

  )( 0kf   (5) 

units of additional net product in all future periods t = 1, 2, 3,.... 
The effects of (a) and (b) on consumer’s welfare are: 
(A) a loss of utility for saving 1 unit in period t = 0 given by13 

 1])([ 00  kkfu  ,  (6) 

(B) a utility gain ensuing from consuming the additional net product (5) in all future periods t 
= 1, 2, 3, ... In each period this utility gain is 

 ].)([])([ 000   kfkkfu   (7) 

The flow of utility gains (7) arising from the additional consumption in all future periods t = 
1, 2, 3, ... discounted at t = 0 is 

 











...3)(1

])([]0)0([

2)(1

])([]0)0([

1

])([]0)0([ 000










 kfkkfukfkkfukfkkfu
  

                                                 
12 In what follows, a provisional value assumed by a certain variable is denoted by apex ° and the definitive 

value assumed by that variable by apex •. 
13 In continuity with the Cass-Koopmans-Ramsey model, the approach here proposed considers utility as a 
cardinal magnitude (see the crucial role played here by the marginal utility u(c)). It should be possible to 
reshape the whole procedure here proposed in ordinal terms, but this will be object of a future work. 
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kfkkfu t

t

  (8) 

(notice that all relevant functions in (6), (7) and (8) are evaluated at the levels of capital 
services per worker and of consumption per worker planned through (Y0-) before re-
allocation (a)-(b) takes place, that is, 0k and 00 )( kkf  ). 

Hence by comparing (A) with (B) we obtain 

 


 ])([])([
<])([ 000

00


 kfkkfu

kkfu   (9) 

as 1>/])([ 0  kf , thanks to (4). 

Inequality (9) signals that the consumer can improve his utility by saving this unit, and 
probably other units of the good. In order to determine how many units it is convenient to 
save, the consumer must solve the following problem. Let 

          )()(= 01000 kkkkfc     be the reduced consumption in period t = 0, (10a) 

          111 )(= kkfc    be the increased consumption in period t = 1  (10b) 

and, therefore, 

          2,,)(= 11  tkkfct    be the increased consumption in periods t = 2, 3, 4, ..., (10c) 

where k1 is the solution of: 

max
1k

W0   ])([)(])([)]()([= 11
2

1
1

111
1

0100 kkfukkfukkkkfu    

=)(])([)]()([=])([)( 1
1

1=
11010011

3
1

1 t

t

kkfukkkkfukkfu   



  

.)]()([=
]1)1([

0100 
 kkfu

kkkkfu
   (P0) 

The first order condition for a maximum is 

0
d

d

1

0 
k

W
:  0.=

])([])([
1)()]()([ 111

0100 
 

 kfkkfu
kkkkfu  (11) 

By re-arranging (11) we obtain 

 ].)([
])([

=)]()([ 1
11

0100 


 
 kf

kkfu
kkkkfu   (W0) 

(W0) is an equation in k1. It is a particular case of equation (Wt) (see below, Section 5) where 
parameter kt is fixed at 0= kkt . Hence, by applying Lemma 1 below, (W0) has a unique 

solution, 
1k , such that 
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 .<< *
10 kkk    (12) 

The second order condition, 

0
d

d
2

1

0
2


k

W
,   i.e.   0<)()(])([)(

1
)( 1

2
1 kfukfuu  


 

is satisfied at k1 = 
1k  as u > 0, u < 0 and 0<f  . 

At this point, let’s suppose that the revised consumption flow 

 0001000 )(<)()(= kkfkkkkfc     

is actually consumed entirely during period 0. 

• • • 

Consider now what happens at date t = 1. The consumer could consume what he had planned 
in the previous period 

 
  11 )( kkf  ,  t =1, 2, 3, ....  (Y1-) 

In this situation, consider the intertemporal re-allocation: 
(c) in period t = 1 save and invest 1 unit of the good; 
(d) the unit saved in period t = 1 results in 

  )( 1kf   (13) 

units of additional net product in all future periods t = 2, 3, 4, ... 
The effects of (c) and (d) on consumer welfare are: 

(C) a loss of utility for saving 1 unit in period t = 1 given by 

 1])([ 11   kkfu    (14) 

(D) a utility gain ensuing from consuming the additional net product (13) in all future periods 
t = 2, 3, 4, ... In each period this utility gain is 

 ].)([])([ 111    kfkkfu   (15) 

The flow of utility gains (15) arising from this additional consumption in all future periods t = 
2, 3, 4, ... discounted at t = 1 is 
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  kfkkfu

kfkkfu t

t

 (16) 
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(again, all relevant functions in (14), (15) and (16) are evaluated at the levels of capital 
services per worker and of consumption per worker planned through (Y1-) before re-
allocation (c)-(d) takes place). 
 
Hence by comparing (C) with (D) we obtain 

 


 ])([])([
<])([ 111

11





 kfkkfu

kkfu   (17) 

as 1>/])([ 1  kf , thanks to (12). 
Inequality (17) signals that the consumer can improve his utility by saving this unit, and 
probably other units of the good. In order to determine how many units it is convenient to 
save, the consumer must solve the following problem. Let 

          )()(= 12111
  kkkkfc    be the reduced consumption in period t = 1, (18a) 

          222 )(= kkfc     be the increased consumption in period t = 2  (18b) 

and, therefore, 

          ,)(= 22 kkfct   t  3,   be the increased consumption in periods t = 3, 4, 5, ..., (18c) 

where k2 is the solution of: 

max
2k

W1  
 ])([)(])([)]()([= 22

2
1

1
221

1
1211 kkfukkfukkkkfu    

=)(])([)]()([=])([)( 1
1

1=
22121122

3
1

1 t

t

kkfukkkkfukkfu   




  

.
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)]()([= 22
1211 

 kkfu
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   (P1) 

The first order condition for a maximum is 

0
d

d

2

1 
k
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1)()]()([ 2

22
1211 


 


  kf

kkfu
kkkkfu . (19)

 

Re-arranging (19) we obtain: 

 ].)([
])([

=)]()([ 2
22

1211 


 
  kf

kkfu
kkkkfu   (W1) 

(W1) is an equation in k2. It is a particular case of equation (Wt) (see below, Section 5) where 
parameter kt is fixed at 

1= kkt . Hence, by applying Lemma 1 below, (W1) has a unique 

solution, 
2k , such that 

 *
21 << kkk   
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(for the same reasons noted before, the second order condition is satisfied). At this point, let’s 
suppose that the revised consumption flow 

   1112111 )(<)()(= kkfkkkkfc   

is actually consumed entirely during period 1. 
 
Remark. As soon as c1 is revised from   11 )( kkf   to 

1c , the optimal level of consumption 

planned for period t = 0, 
0c , is no longer optimal (in fact, the latter was determined by 

assuming that c1 was settled at   11 )( kkf  , not at 
1c ). However, assuming that 

0c  is entirely 

consumed during period t = 0 prevents us from any possible further re-adjustment of c0. We 
will return later to this point (see Section 6). 

• • • 

Let us now consider what happens at a generic date t. The stock kt is given; suppose 

 kt < k*.  (20) 

The consumer can consume in each period 

 ttt kkfc   )(=     = 0, 1, 2, 3, ....  (Yt-) 

In this situation, consider the intertemporal re-allocation: 
(e) in period t save and invest 1 unit of the good; 
(f) the unit saved in period t results in 

  )( tkf   (21) 

units of additional net product in all future periods t + 1, t + 2, t + 3 ... . 
The effects of (e) and (f) on consumer welfare are 
(E) a loss of utility for saving 1 unit in period t given by 

 1])([  tt kkfu    (22) 

(F) a utility gain ensuing from consuming the additional net product (21) in all future periods 
t + 1, t + 2, t + 3, ... In each period this utility gain is 

 ].)([])([   ttt kfkkfu   (23) 

The flow of utility gains (23) arising from this additional consumption in all future periods t + 
1, t + 2, t + 3, ... discounted at t is 
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(again, all relevant functions in (22), (23) and (24) are evaluated at the levels of capital 
services per worker and of consumption per worker planned through (Yt-) before re-
allocation (e)-(f) takes place). 

Hence by comparing (E) with (F) we obtain 
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 ttt

tt

kfkkfu
kkfu   (25) 

as [f (kt)  ]/  > 1,
 
thanks to (20). 

Inequality (25) signals that the consumer can improve his utility by saving this unit, and 
probably other units of the good. In order to determine how many units it is convenient to 
save, the consumer must solve the following problem. Let 

     ct = f(kt) kt  (kt+1  kt)   be the reduced consumption in period t,  (26a) 

     ct+1 = f(kt+1)  kt+1   be the increased consumption in period t + 1  (26b) 

and, therefore, 

     ct+ = f(kt+1)  kt+1,   ≥ 2  be the increased consumption in periods t + 2, t + 3, t + 4, ..., (26c) 

where kt+1 is the solution of: 

t
tk

Wmax
1
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111
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1 tttttttt kkfukkfukkkkfu    
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The first order condition for a maximum is 
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Re-arranging (27) we obtain: 
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 t

tt
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kkfu
kkkkfu  (Wt) 

(Wt) is an equation in kt+1.14 Hence, by applying Lemma 1 below, it has a unique solution, 

1tk , such that 

                                                 
14 Analogously to the case considered in footnote 7 above, if the physical constraint is expressed as in (Ct) 
instead of (Ct), constraints (26) become 

    ct+1 = f(kt) kt  (kt+1  kt)   be the reduced consumption in period t,  

     ct+2 = f(kt+1)  kt+1   be the increased consumption in period t + 1 
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1 kkk tt


  

It is straightforward to prove that the second derivative, 2
1

2 d/d tt kW , evaluated at 
1tk , is 

negative. As before, let’s suppose that the revised consumption flow 

 ttttttt kkfkkkkfc   


 )(<)()(= 1  

is actually consumed entirely during period t. 

5. Convergence to the steady state 

In this Section the analytical properties of equation (Wt) are studied. The results relevant 
from an economic point of view will be gathered in the Proposition at the end of this Section. 
Let 

 ])()[(1:=)( 11   tttttk kkfkukg  , 

 ])([
])([

:=)( 1
11

1 








 t
tt

t kf
kkfu

kh ; 

g is a function of kt+1 parameterized by kt.  

 

and 

     ct+ = f(kt+1)  kt+1,   ≥ 3  be the increased consumption in periods t + 3, t + 4, t + 5, ..., 

but still conditions (Wt) remain unaltered, with the only difference that now the arguments of the marginal 
utilities at the left-hand and at the right-hand are now ct+1 and ct+2; consequently conditions (Wt) expressed in 
terms of ct+ take the form 

 
,

])([)(
=)( 12
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tt
t
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cu    t = 0, 1, 2, .... 



 
18 

 

 
Figure 3. Curves gkt

(kt+1) 

Properties of g. Parameter kt defines a sheaf of curves. Each of these curves is defined, 
continuous and strictly increasing for kt+1  Gkt

 = [0, (1 – )kt + f(kt)] (as u is decreasing). In 

the first quadrant, each of these curves has a finite and positive interception with the vertical 
axis, u[(1 – )kt + f(kt)], and a vertical asymptote given by kt+1 = (1 – )kt + f(kt). When 
parameter kt increases, the interception with the vertical axis decreases, the abscissa of the 
vertical asymptote increases, and curve )(

tkg shifts downward, that is, 

 )(>)(
1

kgkg
tktk 

   if  kt < kt+1.  (28) 

for those k where they are both defined. Hence, curves )(
tkg  never intersect themselves; they 

appear as in Figure 3. 

Properties of  h. Function h(kt+1) is defined where f(kt+1) – kt+1 > 0, that is, for kkt

~
<<0 1 , 

where k
~

 is that level of k defined by (1) which makes the net product equal to zero. 
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Figure 4. Curve h(kt+1)  

Moreover, 
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as 0<)
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(  kf  (see Figure 1). Moreover, 
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as 0<u   and 0<f   in kkt

~
<<0 1 . Curve h(kt+1) appears as in Figure 4. 

 
Lemma 1. Given kt  (0, k*): 

1. there exists a unique )ˆ(0,1 kkt 
  which solves (Wt), where k̂ = min[(1  )kt + f(kt), 

kg], that is, there exists a unique 
1tk  which solves (Wt) on the interval where both 

gkt
(kt+1) and h(kt+1) are defined and positive; 

2. tt kk >1

 ; 
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3. *
1 < kkt


 . 

Proof.  

1. Consider equation )(=)( 11  tttk khkg  on the restricted domain ]ˆ[0,1 kkt  . For kt+1  0+ we 

have )]()[(1=(0))(0 tttktk kfkugg   ; hence 

   <)(00
tkg ;  (31) 

by (29) we have 

  =)(0h .  (32) 

Hence, by (31) and (32) it follows that 

 ).(0<)(0  hg
tk   (33) 

Since kt+1 = (1 – )kt + f(kt) is the vertical asymptote of )( 1ttk kg , we have  

 .=})](){[(1  
tttk kfkg    (34) 

In order to compare gkt
 and h at the other estreme of the domain, k̂ , three cases must be 

distinguished: 
 
(a) If 

 ,<)()(1 gtt kkfk     (35) 

then )()(1=ˆ
tt kfkk    and curves )( 1ttk kg  and h(kt+1) appear as in Figure 5. 

 
Figure 5. Case 1(a): (1 – )kt + f (kt) < kg 
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As kt > 0 and from (35) we have that h(kt+1) is finite and positive at kt+1 = (1 – )kt + f (kt), that 
is, 

 0 < h[(1 – )kt + f (kt)] <   (36) 

By (34) and (36) it follows that 

 )].()[(1>})](){[(1 tttttk kfkhkfkg      (37) 

By continuity and thanks to (33) and (37), we conclude that there exists a unique 

 )),()(1(0,1 ttt kfkk 
     that is,   )ˆ(0,1 kkt 

  

which satisfies (Wt) (see Figure 5). 
 
(b) If 

 kg < (1 – )kt + f(kt),  (38) 

then gkk =ˆ  and curves )( 1ttk kg  and h(kt+1) appear as in Figure 6. By (38) we deduce that 

)( 1ttk kg  is finite and positive at kt+1 = kg, that is 

 0 < gkt
(kg) < + .  (39) 

On the other hand, by (30) we know that 

 h(kg) = 0.  (30) 

Hence, by (39) and (30) it follows that 

 gkt
(kg) > h(kg).  (40) 

 
Figure 6. Case 1(b): kg < (1 – )kt + f (kt) 
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By continuity and thanks to (33) and (40) we conclude that there exists a unique 

 ),(0,1 gt kk 
    that is,   )ˆ(0,1 kkt 

  

which satisfies (Wt) (see Figure 6). 
 
(c) If 

 kg = (1 – )kt + f(kt), 

then )()(1==ˆ
ttg kfkkk    and curves )( 1ttk kg  and h(kt+1) appear as in Figure 7. In this 

case 

   =})](){[(1)ˆ( tttktk kfkgkg    (41) 

and 

 0.=)()ˆ( gkhkh    (42) 

Hence by (41) and (42) it follows that 

 ).ˆ(>)ˆ( khkg
tk   (43) 

By continuity and thanks to (33) and (43)  we conclude that there exists a unique 

 )ˆ(0,1 kkt 
   (58) 

which satisfies (Wt) (see Figure 7). 

 
Figure 7. Case 1(c): kg = (1 – )kt + f (kt) 

2. Evaluate functions )( 1ttk kg  and h(kt+1) at kt+1 = kt: 
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])([=])()[(1=)( tttttttk kkfukkfkukg    

 ])([
])([

=)( 





t
tt

t kf
kkfu

kh  

hence )(<)( tttk khkg  as [f (kt)  ]/  > 1 for kt < k*. 

Curves )( 1ttk kg  and h(kt+1) appear as in Figure 8; hence the solution 
1tk  of (Wt) must thus 

lie on the right of kt. 

  
Figure 8. Lemma 1, item 2 

 
 
3. Draw curves )( 1ttk kg  and h(kt+1) on the same graph (see Figure 9). Two cases must be 

distinguished. 
 (i) If (1 – )kt + f(kt)  k*, by item 1 of the this Lemma 1,  cases  (a) or (c), we deduce that 


1tk  < (1 – )kt + f(kt); hence *

1 < kkt

 (see Figure 9(i)). 

(ii) If (1 – )kt + f(kt)  k*, evaluate )( 1ttk kg  and h(kt+1) at kt+1 = k*: 

)*(kg
tk  = u[f(kt)  kt  (k*  kt)]  

 ])*([
]*)*([

=)*( 





kf
kkfu

kh = u[f(k*)  k*]   due to (2). 

As kt < k*, then f(kt)  kt  (k*  kt) <  f(k*)  k*; as u is decreasing, then )*(kg
tk  > h(k*). 

Curves )( 1ttk kg  and h(kt+1) appear thus as in Figure 9(ii); hence the solution 
1tk  of (Wt) 

must thus lie on the left of k*. 
This completes the proof.  □ 
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Case (i): (1 – )kt + f(kt)  k* Case(ii): (1 – )kt + f(kt)  k* 

Figure 9. Lemma 1, item 3 
 
Now, we are going to show that if k0 = k*, equation (Wt) defines a constant sequence: kt = k*, 
t = 1, 2, 3, .... 
 
Lemma 2 If kt = k*, there exists a unique *1 kkt 

  which solves (Wt). 

 
Proof. Thanks to equation (2) it is straightforward to verify that equation gk*(kt+1) = h(kt+1) is 
satisfied by *1 kkt 

 . Thus, it is enough to observe that gk*(kt+1) is a monotonically 

increasing function of kt+1 while h(kt+1) is a monotonically decreasing function of kt+1 to 
conclude that *1 kkt 

  is the unique solution of gk*(kt+1) = h(kt+1). □ 

 
Lemmas 1 and 2 entail that, given k0  (0, k*], a sequence 

1=}{ ttk  contained in (0, k*] is 

univocally defined by recurrence by equation (Wt).  
 
Lemma 3. k = k* is the unique steady state of sequence 

1=}{ ttk . 

Proof. A steady state of 
1=}{ ttk  is a value of k such that kt = kt+1 = k. Substituting it into (Wt), 

we obtain: 

 u[f(k)  k  (k  k) ] = ])([
])([ 





kf

kkfu
 

which, after simplification, reduces to, [f (k)  ]/ = 1, whose unique solution is k = k* (see 
equation (2)). □ 
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Proposition. If *<= 00 kkk , the sequence 
1=}{ ttk  of capital/labour ratios defined by (Wt) 

converges monotonically to the steady state k* defined by the Ramsey modified golden rule 
(2). 
 
Proof. By Lemma 1, if *<0 kk  the sequence 

1=}{ ttk  is monotonically increasing (thanks to 

item 2) and upper bounded by k* (thanks to item 3). Hence it must converge to some k, i.e., 

 kkt
t




lim .  (44) 

In order to prove that k = k* observe that, by definition, the elements 
tk  of the sequence 

satisfy equations (Wt). Consider the limit for t → ∞ of (Wt): 

 ])([
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lim=)]()([lim 1
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Thanks to the continuity of functions u, f and f  we can write 
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which, thanks to (44), can be written as 

 ])([
])([

=)]()([ 


 


 kf
kkfu

kkkkfu ; 

after simplification, this equation in k reduces to  [f (k)  ]/ = 1, whose unique solution is 
k = k* (see equation (2)). This completes the proof. □ 

 
Figure 10 displays how 

1=}{ ttk  takes shape as sequence of the abscissas of the 

interceptions of curves )(
tkg  with curve h(). As *3210 kkkkk     and thanks to 

(28), curves g appear as in the diagram. Moreover, it is easy to verify that curve gk*(k) crosses 
curve h(k) at k = k*: in fact, gk*(k*) = u[f(k*) k*  (k* k*)] = u[f(k*) k*] and h(k*) = u 
[f(k*) k*] [f (k*) ]/  =  u[f(k*) k*].  
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 Figure 10. Sequence 
1=}{ ttk  

 
A simplest proof of the convergence result can be given as follows if we limit to a local 

result: calculate the total differential of (Wt) with respect to kt and kt+1: 

=}dd1])(]{[)([ 11   ttttttt kkkfkkkkfu   

 = ;d})(])([])(][)([{
1

1111
2

111   ttttttt kkfkkfukfkkfu 


 

evaluate at the steady state, k*,  (where f (k*) –  =  ) and re-arrange; we obtain 

 ,
1

1
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d

d
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where 
)*()(1

)*()*(
=




u

kfu



 and * = f(k*)  k*. As u > 0, u < 0 and f  < 0 then  > 0 and 

 1.<
d

d
<0

*

1

t

t

k

k   

This proves the local stability of k*: if 0k  is taken sufficiently close to k* then it converges to 

k* monotonically. The Proposition at page 25 contains a global result. 
 
A remarkable characteristic of the convergence results just seen is that they both have been 

obtained without assuming any transversality condition, i.e. without the need to anticipate the 
solution of infinitely many optimization problems. No perfect foresight is thus needed here. 
For any given level of the capital/labour ratio, kt, the consumer chooses kt+1 just by comparing 
the marginal utility of consumption in period t with the marginal utility of a constant flow of 
consumption in all future periods (from t + 1 to infinity) discounted at t. It could be observed 
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that the transversality condition has here been replaced with ‘terminal’ conditions (Yt-) 
which, if not as unrealistic as the assumption of perfect foresight (implicit in the transversality 
condition), bind the consumer to a sub-optimal choice. In fact, in each period the consumer 
chooses his present consumption assuming zero net savings from the subsequent period 
onwards. This is a myopic behaviour: the consumer will find it convenient to revise his past 
decision of consuming the whole net product in each period; consequently, all conditions (Yt-
) will be removed one after another. Hence, ‘terminal’ conditions (Yt-) will never be satisfied. 
Nevertheless, the transversality condition is satisfied by our convergent path. In fact, as kt and 
ct converge to positive and finite magnitudes, k* and c*, we have 

 0.=
1

1
lim)*(*=

1

1
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t

t

t

tt
t

cukcuk 


















 

 

But in the present setting, it is just a consequence of the adjustment process. It is not a 
requirement to identify the equilibrium path15. 

6. ‘Backward’ re-adjustments: towards a generalization 

As observed in the Remark on p. 15, as at the beginning of each period the consumer revises 
his present and future consumption choices taken in the previous period and provides 
additional savings, the consumption choices adopted in previous periods should be revised in 
order to make them coherent with the consumption-savings profile that is taking shape as time 
goes by. We could disregard these further re-adjustments as we assumed that by the end of 
each period t the consumer consumed the entire flow of consumption determined for that 
period, i.e., 

tc , before the beginning of period t + 1. We could, however, imagine less 

simplified settings, where the consumer displays a longer foresight in anticipating his future 
behaviour. As already noted, in the Ramsey model the decisions to be adopted in the various 
periods are all connected to each other. If we want to avoid assuming that the consumer 
actually chooses all future optimal consumption levels in order to select the present one, we 
could imagine that he (provisionally) smoothes his consumption profile over a finite number 
of periods only. The step subsequent to that considered in the previous pages is to extend the 
consumer planning horizon from two periods (the present one and the entire future) to three 
periods, as described in the following optimization problem:  

    max W0 
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1

)(
)(=


cucucu

cu  

     s.v.  c0 = f(k0)  k0 – (k1  k0), 
  c1 = f(k1)  k1 – (k2  k1), 
  c = f(k2)  k2,      2. 

                                                 
15 Curiously enough, all provisional paths resulting from any finite number of steps of our adjustment process—
and paradoxically even the initial path from which our adjustment process starts, where ct is provisionally set 

equal to 00 )( kkf   for any t = 0, 1, 2, ...—satisfy the transversality condition. 
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After substituting the constraints into the objective function the problem can be re-expressed 
in terms of variables k1 and k2 only: 

 max
2,1 kk

W0 
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In the case considered in the previous sections, once given k0, then k1 was chosen under the 
assumption that the ensuing net product, f (k1) – k1, was entirely consumed in each period 
from the subsequent period onwards. 

In the present case, given k0, variables k1 and k2 are chosen under the assumptions that net 
product f (k1) – k1 is partially consumed and partially saved in period 1 and that this saving is 
chosen under the assumption that the entire net product f (k2) – k2 will be consumed in each 
period from period 2 onwards. 

The first order conditions of problem (45)W0/k1 = W0/k2 = 0, entail:  
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At t = 2 the consumer perceives that c = f(k2)  k2,  ≥ 2 is not optimal. He revises his 
constant consumption profile into 

 c2 = f(k2)  k2 – (k3  k2),  (47a) 

 c3 = f(k3)  k3 – (k4  k3),  (47b) 

 c = f(k4)  k4,      4.  (47c) 

where k3 and k4 are the solution of 

 max W2 
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 with c2,  c3  and  c,    4,  given by (47a), (47b) and (47c) respectively. 

The solution of (48) gives rise to another pair of equations analogous to (46) but displaced by 
two periods. 

In general, the dynamics of kt is obtained by solving the following maximization 
problem, 
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whose first order conditions, Wt /k1 = Wt /k2 = 0, entail: 
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Equations (49) implicitly describe a second degree difference system. A detailed study of its 
analytical properties goes beyond the purpose of the present work. 

A simple result is at hand: substituting  kt = kt+1 = kt+2 = k in (49) both equations reduce to 

 f (k) =  + , 

whose unique solution is k = k*. Hence k* is the unique steady state equilibrium of (49). 

7. Concluding remarks 

The present work has aimed to challenge i) the idea that the instability phenomena of the 
Cass-Koopmans model (capital zeroing or capital over-accumulation) are strictly connected to 
a myopic foresight by the consumer in discovering his optimal accumulation path, and, in 
parallel, that ii) only the introduction of a transversality condition, that is, a sort of perfect 
foresight condition, is necessary to ensure the convergence of the system to the steady state 
equilibrium. 

Given the practical impossibility of solving the infinitely many optimization problems 
entailed in the case of an infinite horizon problem or, similarly, placing the initial 
consumption exactly on the saddle-path, we have proposed an adjustment process in which 
savings of each period are chosen optimally by assuming, provisionally, the same 
conventional level of consumption for all future periods. This conventional level is then 
revised period by period by the same bounded rational procedure. The ensuing adjustment 
process turns out to be monotonically convergent to the steady state equilibrium. By 
accepting a ‘smaller amount of rationality’ for the consumer, the device to approach step by 
step the optimal path instead of ‘jumping’ immediately on it has made it possible to select a 
consumption level for each period without the need to immediately solve the entire set of 
allocation problems between any of the infinitely many pairs of future periods. The obtained 
path is optimal within the set of constraints assumed on the consumer’s ability to optimize 
over the future; it is sub-optimal if regarded from a longer horizon. More refined adjustment 
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processes, involving more than two periods in each step, should probably be less sub-optimal. 
Nevertheless, even the simple process here presented leads the consumer to converge to the 
steady state equilibrium without the necessity to impose a transversality condition, i.e. 
without assuming perfect foresight or rational expectations. 

In conclusion, diverging phenomena like those emerging in the Cass-Koopmans version of 
the Ramsey model appeared not to be inherent to the main problem analysed (the choice of 
the optimal consumption-savings path), nor directly connected to myopic optimization. They 
arise from the presumption that the consumer must select all optimal future consumption 
levels in order to optimally select the present one. 

A generalization of the results here obtained to the case with more than one capital good 
still needs to be done; however, I suspect that the roots of diverging forces operating in 
infinite horizon models with more than one good are of the same nature as of those found in a 
one-commodity model. If this is the case, they should be easily handled without the need of 
assuming long run perfect foresight optimizing consumers. In other terms, it does not seem 
imputable to consumers’ structural inability to foresee and optimize over the future the main 
cause for crises, bubbles, etc. A satisfactory explanation of these phenomena is to be found in 
other directions, probably outside the Neoclassical dynamic capital theory. 

References 

AZARIADIS, C. (1993): Intertemporal Macroeconomics. Blackwell, Cambridge, 
Massachusetts. 

BLANCHARD, O.J., and S. Fischer (1989): Lectures on Macroeconomics. The MIT press, 
Cambridge, MA. 

BLISS, C. (2010): “The Cambridge Post-Keynesians: An Outsiders Insider View”, History of 
Political Economy, 42(4), 631-652. 

CASS, D. (1965): “Optimum Growth in an Aggregative Model of Capital Accumulation”, The 
Review of Economic Studies, 32(3), 233-40. 

HELLER, W.P. (1975): “Tâtonnement Stability of Infinite Horizon Models with Saddle-Point 
Instability”, Econometrica, 43(1), 65-80. 

HICKS, J. (1965), Capital and Growth, Clarendon Press, Oxford. 

KOOPMANS, T.C. (1965): “On the Concept of Optimal Economic Growth”, Pontificia 
Academia Scientiarum Scripta Varia, 28(1), 225-87. 

MALINVAUD, E. (1965): “Croissances optimales dans une modèle macroeconomique”, 
Pontificia Academia Scientiarum Scripta Varia, 28(1), 301-78. 

Mas-Colell A., Whinston M. D. and Green J. R. (1995): Microeconomic Theory, Oxford 
University Press, Oxford. 

NICOLA, P. (2000): Mainstream Mathematical Economics in the 20th Century, Springer, 
Berlin. 



 
31 

 

RAMSEY, F.P. (1928): “A Mathematical Theory of Saving”, The Economic Journal, 
XXXVIII(152), 543-59. 

STOCKEY, N., and R. LUCAS (1989): Recursive Methods in Economic Dynamics. Harvard 
University Press, Cambridge Mass., with the collaboration of Edward C. Prescott. 

 


