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Abstract

We present a number of experiments on parsing the Ancient Greek Depen-
dency Treebank (AGDT), i.e. the largest syntactically annotated corpus of
Ancient Greek currently available (350k words ca). Although the AGDT is
rather unbalanced and far from being representative of all genres and peri-
ods of Ancient Greek, no attempt has been made so far to perform automatic
dependency parsing of Ancient Greek texts. By testing and evaluating one
probabilistic dependency parser (MaltParser), we focus on how to improve
the parsing accuracy and how to customize a feature model that fits the dis-
tinctive properties of Ancient Greek syntax. Also, we prove the impact of
genre and author diversity on parsing performances.

1 Introduction

Among the languages currently spoken in the world, Greek has one of the longest
documented histories. The first texts written in Greek that have survived to our days
date from the mid of the second millennium BCE (around 1420-1400). From the
phase that is commonly known as Ancient Greek (9th Century BCE - 6th Century
CE), a vast literature has been preserved and thoroughly studied. In rough numbers,
two of the most important digital collection of Ancient Greek texts, which are far
from being exhaustive, the Thesaurus Linguae Graecae (TLG)1 and the Perseus
Digital Library2, contain respectively more than 105 and 13 million words.

1.1 Annotated corpora of Ancient Greek

Some of the Ancient Greek texts are today included in two different treebanks.
The Ancient Greek Dependency Treebank (AGDT) [3] is a dependency-based

treebank of literary works of the Archaic and Classical age published by Perseus3.
1TLG: http://www.tlg.uci.edu/, which goes so far as to the fall of Byzantium (1453 BCE).
2Perseus Digital Library: http://www.perseus.tufts.edu/hopper/
3AGDT: http://nlp.perseus.tufts.edu/syntax/treebank/greek.html
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In its theoretical framework and guidelines, the AGDT is inspired by the analytical
layer of annotation of the Prague Dependency Treebank of Czech [5]. Currently,
the last published version of AGDT (1.6) includes 346,813 tokens.

The collection is constituted by unabridged works only: four major poets (Homer,
Hesiod, Aeschylus, Sophocles)4, belonging to two literary genres (epic poetry –
Homer, Hesiod – and tragedy – Aeschylus and Sophocles), are represented, as well
as one single work of philosophical prose (the Euthyphro by Plato). Chronologi-
cally, the texts range from the 8th to the late 5th Century BCE. The composition of
the AGDT 1.6 is resumed in table 1.

Author Work Tokens

Aeschylus Agamemnon 9,806
Eumenides 6,380
Libation Bearers 6,563
Prometheus Bound 7,064
Seven Against Thebes 6,206
Suppliants 5,949

Hesiod Shield of Heracles 3,834
Theogony 8,106
Works and Days 6,941

Homer Iliad 128,102
Odyssey 104,467

Sophocles Ajax 9,474
Women of Trachis 8,811
Electra 10,458
Antigone 8,716
Oedipus King 9,746

Plato Euthyphro 6,097

Total 346,813

Table 1: AGDT 1.6: Composition

The Pragmatic Resources in Old Indo-European Languages corpus (PROIEL)
[6], on the other hand, is a multilingual parallel corpus of translations of the New
Testament in a selection of Indo-European languages; the Greek section includes
also other prose texts of different periods (four books of Herodotus’ Histories, 5th
Century BCE, and Palladius’ Historia Lausiaca, 5th Century CE). The syntactic

4For Hesiod and Aeschylus, the AGDT includes the opera omnia of the integrally preserved
works (fragments are excluded). Of Sophocles’ 7 extant tragedies, 5 are annotated. A tradition
that dates from the Antiquity and was followed by convention in the AGDT indicates the legendary
figure of Homer as the author of Iliad and Odyssey (along with other minor compositions); the real
existence of one single author for both poems has been denied by the modern Homeric scholarship.
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annotation is also based on a dependency grammar, and it is partially inspired by
the AGDT. The total of the Ancient Greek annotated data is presently 153,730
tokens5.

1.2 Open questions and methodology

So far, the annotation of both treebanks has been performed manually. The two
collections started by annotating some of the most important texts for current uni-
versity curricula in Classics. Both on account of the difficulty of the works, which
require a hard linguistic and philological training, and of the pedagogical value that
can be attached to manual annotation, no use of NLP techniques has been made so
far. With the partial exception of [7]6, no comprehensive study has been dedicated
to evaluate and improve the performance of parsers on Ancient Greek.

Yet, the available syntactically annotated corpora cover only a small portion
of the attested documents, in terms of quantity as well as of representativeness
of the different genres and chronological phases. The vast majority of the prose
production is not included in the AGDT. Moreover, even for the two genres that are
adequately represented, a substantial number of texts still remain to be annotated;
apart from the missing 2 tragedies of Sophocles, this is the case with the 19 plays of
Euripides (170,118 words, 5th Century BCE) or, for epic poetry, the Argonautica
of Apollonius Rhodius (45,478 words, 3rd Century BCE) or the so-called Homeric
Hymns (18,211 words, traditionally attributed to Homer, ranging chronologically
from the 7th Century BCE to Late Antiquity).

An efficient dependency parser for Ancient Greek is thus a major acquisition
supporting the creation of a balanced annotated corpus.

A previous study on Latin treebanks [12], which share a number of features
with our collections, has shown that genre and chronology have a decisive influence
on the accuracy of different parsers. Three questions then appear to be relevant for
a preliminary study:

1. what are the parser’s settings (“feature model”) that fit best the AGDT?

2. what is the impact of genre and author on the parser’s performances?

3. following 2, how should a training set be built? Is the size more relevant than
data homogeneity in terms of genre and author?

In this paper, we provide a first answer to these three questions by studying
the performances of one single dependency parser, which is trained and tested
on different sections of our corpus. From the top-ranking list of the CoNLL-X
shared task7, we selected MaltParser [10], on account of its flexibility, in terms of

5This total was communicated to us by the general editor of the project. As the annotation process
is still in progress, the numbers change every day.

6By leveraging a Greek-Hebrew parallel corpus, [7] develops a target-specific method to improve
the parsing accuracy of the Greek Old Testament.

7http://ilk.uvt.nl/conll/
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both parsing algorithm and feature setting. For the task of algorithm and feature
selection, we used MaltOptimizer [2] as a starting point, whose output we have
evaluated and further improved8.

1.3 The data

Our data were taken from the AGDT and converted to the CoNLL format9.
The texts taken from the AGDT were organized by author and genre, in or-

der to evaluate how MaltParser performs with varying authors and genres. It is
well known [11] that non-projectivity crucially affects the efficiency of dependency
parsers. In comparison with the treebanks used in CoNLL-X [4, 155, tab. 1] and
CoNLL 2007 shared tasks [9, 920, tab. 1], our data show a remarkably higher rate
of non-projective arcs.

The subsets that we used, along with the number and percentage of non-projective
arcs, are resumed in table 210.

Data set Works/Authors Sentences Tokens Non-proj. arcs %

Homer Il., Od. 15175 232569 62013 26.66
Tragedy Aesch., Soph. 7897 95363 21747 22.80
Sophocles Soph. 3873 47205 10456 22.15

Table 2: Data sets

Each of the subsets in table 2 was randomly partitioned into 5 training and
testing sets, all in a ratio of approximately 9:1, in order to perform 5 different
experiments.

We first focused on the test sets of Homer (table 3) and Sophocles (table 4).
Then, we studied how genre and author affect MaltParser in detail. We used

a model trained on the Homeric poems to evaluate 3 different subsets: (a) the
whole annotated work of Hesiod (18,881 tokens: same genre as the training set,
but different author), (b) a sample from Sophocles of roughly the same size as
Hesiod (18,418 tokens: different genre and author), and (c) the whole available
Plato (6,091 tokens: different genre, different author, prose text).

8In all our experiments, we used LIBSVN as learning algorithm for MaltParser.
9The CoNLL format includes the following 10 fields, although only the first 8 contain non-

dummy values: ID (token counter), FORM, LEMMA, CPOSTAG (coarse-grained PoS), POSTAG
(fine-grained PoS), FEATS (unordered set of morphological features), HEAD (head of current to-
ken, i.e. a value of ID), DEPREL (dependency relation to the HEAD); http://nextens.uvt.nl/
depparse-wiki/DataFormat

10Since not all of the tragedies of Sophocles were already published at the time when we started
our work, we used an unfinished version of the Oedipus King: 1361 tokens from the ca. last 100
lines of the play were unannotated.
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Set Name Sentences Tokens % Train/Test

Homer_Test1 1686 25898 11.14
Homer_Test2 1562 23258 10.00
Homer_Test3 1469 23267 10.00
Homer_Test4 1500 23274 10.01
Homer_Test5 1486 23259 10.00

Table 3: Homer: Test sets

Set Name Sentences Tokens %Train/Test

Sophocles_Test1 430 5186 10.99
Sophocles_Test2 389 4725 10.01
Sophocles_Test3 389 4726 10.01
Sophocles_Test4 384 4731 10.02
Sophocles_Test5 386 4721 10.00

Table 4: Sophocles: Test sets

2 Results and evaluation

2.1 Algorithm and feature selection

Not surprisingly, given the above reported non-projective rates in our data sets,
MaltParser scores rather poorly with the default algorithm (Nivre, a linear-time
algorithm limited to projective dependency structures) and model (Arceager). With
this configuration, training and testing the parser on the Homeric poems (tab. 3),
we attained the following results (baseline): 44.1% LAS, 60.3% UAS, 49.2% LA
[4]11.

By applying the options suggested by MaltOptimizer, we increased the accu-
racy of the parser considerably. Due to the high number of non-projective trees
and of nodes attached to the root, MaltOptimizer recommends the adoption of the
following options12:

• adoption of a non-projective algorithm: Covington non-projective is sug-
gested;

• use of the label “AuxK” (terminal punctuation) as default for unattached

11The metrics used are the following: Labeled Attachment Score (LAS): the percentage of tokens
with correct head and relation label; Unlabeled Attachment Score (UAS): the percentage of tokens
with the correct head; Label Accuracy (LA): the percentage of tokens with the correct relation label.

12For a quick introduction to MaltParser optimization, see [8]; for a detailed explanation of each
option see [1].
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tokens that are attached to the technical root node;

• covered root set to “left” (see [8, 7]);

• “shift” allowed: the parser is allowed to skip remaining tokens before the
next target token is shifted to the top of the stack;

• root node treated as a token: root dependents are allowed to be attached with
a RightArc transition.

The feature model suggested by MaltOptimizer is reported in Appendix, tab.
10.

Starting from these customized options for the Covington non-projective algo-
rithm, we modified the feature model, according to our knowledge of both Ancient
Greek and the annotation style of AGDT. We tested and evaluated 6 different con-
figurations: the best performances were attained with experiment n. 4 (Exp4).

The feature model was then modified according to the requirements of the other
non-projective algorithm (Stacklazy), so as to evaluate the parser with both non-
projective algorithms available for MaltParser13. Then, we compared the perfor-
mances using two different training and test sets: Homer (trained on Homer) and
Sophocles (trained on the Tragedy training set: see sec. 2.2 for the choice). Table 5
lists the results of these experiments with MaltOptimizer configuration (MO) and
with our feature models for both algorithms (Exp4), all compared to the baseline
(first line of tab. 5).

Test set Training Algorithm Feature mod. LAS UAS LA

Homer Homer nivreager arceager 44.1 60.3 49.2
Homer Homer covnonproj MO 69.02 76.46 78.66
Homer Homer covnonproj Exp4 70.96 77.9 80.34
Homer Homer stacklazy Exp4 71.72 78.26 81.62

Soph. Tragedy covnonproj MO 55.24 64.12 67.48
Soph. Tragedy covnonproj Exp4 57.7 65.52 70.14
Soph. Tragedy stacklazy Exp4 56 63.92 69.12

Table 5: Evaluation of algorithms and models: Average of 5 experiments

The configuration Exp4 improves the accuracy for all the metrics. Covington’s
algorithm surpasses Stacklazy with the corpus of the tragic poems, but the opposite
is true in the case of Iliad and Odyssey.

We first evaluated the accuracy of the parser by grouping the results of the best
scoring configuration (Exp4) by dependency relations (tab. 6). The main depen-

13The modified feature models are reported in the Appendix, tab. 11 (Covington) and tab. 12
(Stacklazy).
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dency relations (PRED, OBJ, SBJ, ADV, ATR, PNOM)14 attain a good level of
accuracy in both subsets, while the performances decrease considerably whenever
coordination is concerned.

Homer Sophocles

DepRel Cov St Cov St

ADV 77.48 75.12 58.94 55.78
ADV_CO 39.32 38.92 18.56 7.36
ATR 75.52 74.84 62.38 64.96
ATR_CO 39.04 39.88 16.28 12.86
AuxC 63.48 57.78 47.96 41.56
AuxP 77.7 73.72 58.72 57.82
OBJ 79.44 76.08 61.26 59.36
OBJ_CO 57.98 63.18 27.36 28.56
PNOM 69.44 68.46 38.28 32.04
PNOM_CO 36.48 36.68 1.82 1.82
PRED 83.52 81.56 85.6 74.8
PRED_CO 61.7 78.78 32.42 43.78
SBJ 82.96 81.5 64.74 58.86
SBJ_CO 58.48 61.26 11.64 6.1

Table 6: Accuracy (LAS) grouped by DEPREL

Non-projectivity’s impact on results is quite strong. As reported in table 7,
accuracy is considerably lower in case of non-projective relations.

Finally, we grouped the results by PoS tag. Fig. 1 show the different perfor-
mances for each of the 13 part-of-speech labels used in the AGDT.

14The tag PRED is given to the predicate of the main clause of a sentence. An ATR is a sentence
member that further specifies a noun in some respect; typical attributives are adjectives, relative
clauses and nouns in the genitive case. The difference between OBJ and ADV roughly corresponds
to the one between arguments and adjuncts of verbs or adjectives. SBJ: subject. PNOM: nomi-
nal predicate. AuxP: prepositions; AuxC: conjunctions. In the event that a node is member of a
coordinated construction, the DEPREL label is appended with the suffix _Co.

Homer Sophocles

Projectivity Cov St Cov St

Projective 72.18 73.32 60.28 58.34
Non-proj. 60.84 58.46 36.24 36.5

Table 7: Accuracy (LAS) grouped by arc projectivity
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Figure 1: Accuracy (LAS) grouped by PoS tag

2.2 Differences in genre and author

In order to evaluate the role of genre and author diversity and the composition of
the best training set both in terms of accuracy of the results and of computational
costs, we performed two different experiments.

Firstly, we parsed the 5 sets of approximately 5,000 tokens of Sophocles (tab.
4) using our best performing configuration (Exp4 with Covington non-projective)
and with models trained on: (a) the Sophocles training set, (b) all the available
tragedies, and (c) the whole AGDT. The average results are reported in table 8.

Training LAS UAS LA Learning Time

Sophocles 56.14 64.32 68.82 09:20
Tragedy 57.7 65.52 70.14 42:15
AGDT 57.65 66 70 14:26:42

Table 8: Accuracy (LAS) for Soph. with different training sets

As it can be seen, adding more data from texts belonging to the same genre
(i.e. tragedy) improves the parser’s performances sensibly. Training a model on
the whole available treebank slightly decreases the accuracy of LAS and LA, and
furthermore, at the cost of a disproportionate growth of learning time. It seems
that, in order to parse a text of an author like Sophocles, building a training set
from works of the same genre is the most rewarding strategy.

The importance of genre homogeneity is confirmed also by the second experi-
ment we performed. Using our best performing feature models (Exp4 for Coving-
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ton and Stacklazy), we trained a model on the available epic poems of Homer and
we used it to parse the whole work of the epic poet Hesiod, a sample of roughly
equivalent size taken from the tragedies of Sophocles and the only philosophic
dialogue of Plato that is included in the AGDT. The results are reported in table 9.

Cov Stack

Test set LAS UAS LA LAS UAS LA

Hesiod 60.7 69.3 72 60.9 68.8 73.7
Sophocles 48.48 58.72 61.3 46.84 56 61.24
Plato 47.1 60.7 60.1 48.2 60.2 62.9

Table 9: Different authors with models trained on Homer

Hesiod’s text, the one which is closer to the language of the poems used in
the training set both chronologically and for genre, performs far better than the
two others. Plato’s set is considerably smaller, but it seems that a prose text like a
philosophical dialogue is more difficult to parse for a parser trained on epic poetry
than a complex poetic text like the one of Sophocles. This result confirms the
well known fact that the Homeric poems are a fundamental model and a source of
inspiration for the language of Greek poetry. Further studies will be required as
soon as new prose texts are added to the collection, in order to confirm this result.

3 Conclusion and future work

We have focused on the performances of a probabilistic dependency parser (Malt-
Parser) on Ancient Greek literary texts. By tuning a series of features, we have
considerably improved the efficiency of the parser.

In the process, we have used MaltOptimizer and further improved the feature
model suggested by the software, by using the lemmata of the words (in addition
to forms) and introducing other modifications that are resumed in tab. 11 and 12.

From our experiments, it emerged that, in order to parse a given Ancient Greek
literary work, texts that belong to the same genre as the target text should be used
as a training set, rather than the totality of the available collection. This is proved
in the case of Sophocles, whose work is not yet fully annotated. Our results can
help in providing a more accurate and reliable basis for semi-automatic annotation
of the remaining texts of this author and, arguably, for Euripides’ work as well.

In the future, we will test other parsers, in order to compare their performances
and see whether we can further improve our preliminary results. In particular, we
intend to test: DeSR, ISBN, MST, Anna (Mate-Tools)15. We will also include

15DeSR: https://sites.google.com/site/desrparser/; ISBN: http://cui.unige.ch/
~titov/idp/; MST: http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html;
Anna: http://code.google.com/p/mate-tools/.
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prose texts from the PROIEL corpus, in order to improve the performances on
prose texts16.

Appendix: Feature Models

The feature models used for the experiments are reported in the following tables.
The lines of the tables are grouped by Feature Function and Column Name. For
an explanation of Feature Functions, Address Functions (both parsing-algorithm-
specific functions and dependency-graph functions), as well as of the syntax of the
feature-model files, see [1].

Values of FEATS are split by “|” in Left[0], Left[1] for MO; in Left[0], Left[1],
Right[0] for Exp4-Cov; in Stack[0], Stack[1], Stack[2], Stack[3] for Exp4-Stack.

Feature Function Column Name Address Function

InputColumn FEATS Left[0]; Right[0]
InputColumn FORM Left[0]; Right[0]; Right[1];

head(Left[0])
InputColumn POSTAG LeftContext[0] ;Left[0]; Left[1];

RightContext[0]; Right[0];
Right[1]; Right[2]; Right[3]

OutputColum DEPREL Left[0]; Right[0]; ldep(Left[0]);
ldep(Left[0]); ldep(Right[0]);
rdep(Left[0])

Table 10: MO feature model
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