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1. Introduction

The economic forces which determine equilibrium market volatility and risk premia are

probably the most debated topics in the analysis of financial markets.  Part of the debate is the

empirical evidence revealing market "anomalies" which have challenged students of the subject. 

Consumption-based asset pricing theory, closely aligned with dynamic general equilibrium theory,

has had a profound impact on our view of financial markets and of asset price determination

process.  Early work of Leroy (1973), Lucas (1978), Breeden (1979), Grossman and Shiller (1981),

Mehra and Prescott (1985), Hansen and Singleton (1983) and others show how intertemporal

optimization of investor incorporates a subtle relationship between consumption growth and asset

returns.  However, when examined empirically, this same simple relationship fails to provide a

correct quantitative measure of the risk premia of different asset categories.  The Equity Premium

Puzzle (see, Mehra and Prescott (1985)) is a special case of the general fact that assets prices are

more volatile than can be explained by "fundamental" shocks and the observed premia on risky

assets are much larger than predicted by the theory. 

Risk premia which are difficult to account for are not confined to the consumption based

asset pricing theory; they arise while employing diverse models of asset pricing.  Three examples

will illustrate.  The Expectations Hypothesis is rejected by most studies of the term structure (e.g.

Backus, Gregory and Zin (1989), Campbell and Shiller (1991)) implying excessive risk premium on

longer maturity debt.  Foreign exchange markets exhibit a "Forward Discount Bias" (see Froot and
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Frankel (1989) and Engel (1996)) which implies an unaccounted for risk premium for holding

foreign exchange.  The market pricing of derivative securities generate excess implied volatility of

the underlying securities which results in unaccounted for risk premia associated with holding of

derivative assets.  Many writers treat these type of phenomena as unusual anomalies and give them

distinct labels, presuming standard models of capital asset pricing theory could then account for all

normal premia.  Our perspective is different.

This paper contributes to a unified theory of asset price volatility and the determinants of

risk premia.  We propose that risk premia are primarily determined by the structure of agents’

expectations called "the market state of belief."  Heterogeneity of belief is then the root cause of

price volatility and the main factor explaining risk premia.  Our theory incorporates agents who may

be "bulls" or "bears." An agent is a bull at date t if he expects the date t+1 rate of return on his

investment to be higher than normal, where "normal" returns are defined by the empirical

distribution of past returns.  A date t  bear expects returns at t+1 to be lower than normal.  

Agents in our economy do not hold Rational Expectations (in short RE) since the

environment is dynamically changing hence non stationary, and the true probability of events is

unknown.  In such an economy agents construct their own subjective models of the market. Some

may consider our agents irrational.  We think it is not reasonable to require agents to know what

they cannot know.  Hence, in a dynamically complex economy there is a wide gulf between the All

Knowing Rational Expectations agent and irrational behavior which can easily be improved upon. 

Our agents hold diverse but rational beliefs in accord with the theory of Rational Belief Equilibrium

(in short, RBE) due to Kurz [1994] and explored in papers included in Kurz [1996], [1997].  We

believe this rationality principle strikes a proper balance between RE and irrational behavior and to

assist readers unfamiliar with this theory, we briefly explain it.

  

The Rational Belief Principle

“Rational Belief”  (in short, RB) is not a theory which demonstrates that rational agents

should adopt any particular belief.   Indeed, since the RB theory explains the observed belief

heterogeneity, it would be a contradiction to propose that a particular belief is the “correct”  belief a

rational agents must adopt.  The RB theory starts by observing that the true stochastic law of
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motion of the economy is non-stationary with structural breaks and complex dynamics, where the

probability law of the process is not known by anyone.  Agents have a long history of past data

generated by the process which they use to compute relative frequencies of finite dimensional

events and correlation among observed variables.  With this knowledge they compute the empirical

distribution and use it to construct an empirical probability measure over sequences.  Since these

computations are based on the law of large numbers, the estimated probability model is stationary. 

Within the RB theory it is called the “empirical measure”  or the “stationary measure.”

In contrast with a Rational Expectations Equilibrium (in short, REE) where the true law of

motion is common knowledge, agents in an RBE form subjective and diverse beliefs based only on

market data.  Hence,  any principle on the basis of which agents can be judged as rational must be

based on the data rather than on the true but unknown law of motion.  Since a “belief”  is a model

of the economy together with a probability over sequences of variables, such a model can be used to

generate artificial data.  With simulated data an agent can compute the empirical distribution of

observed variables and the empirical probability measure the model implies. Based on these facts,

the RB theory proposes a simple Principle of Rationality.  It says that if the agent’s model generates

an empirical distribution which is not the same as the one known for the economy, then the agent’s

model (i.e. “belief” ) is declared irrational.   The converse also holds: for a belief to be rational its

simulated data must reproduce the known empirical distribution of the observed variables.  The RB

rationality principle declares a belief to be rational if it is a model which cannot be disproved with

the available empirical evidence.  Since diverse theories are compatible with the evidence, this

rationality principle permits diversity of beliefs among equally informed rational agents.  Agents

who hold rational beliefs may make “incorrect”  forecasts at date  t  but must be correct, on average. 

Date t forecasts may deviate from the forecasts implied by the empirical probability.  However, the

RB rationality principle requires the time average of forecasts to agree with the forecast implied by

the empirical frequencies.  It thus follows as a theorem that agents who hold rational beliefs must

have forecast functions which vary over time.  The tool we use to describe the beliefs of agents in

an economy is the “market state of belief.”    It is a state variable which uniquely defines the vector

of  conditional probability functions held by agents in the economy at each date t.

The RB rationality principle is compatible with several known theories.  An REE is a special
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case of an RBE and so are the REE with sunspots.  Most models of Bayesian learning satisfy the

RB rationality principle.  Also, several models of Behavioral Economics satisfy this principle for

some parameter values. 

Earlier papers using the RBE rationality principle have also argued that agents’  beliefs are

central to explaining the volatility of financial markets (e.g. Kurz (1996), (1997a),  Kurz and

Schneider (1996), Kurz and Beltratti (1997), Kurz and Motolese (2001) and Nielsen (1996)). 

These papers aimed to explain a list of financial "anomalies."  (for a unified treatment see Kurz and

Motolese (2001)).  The RBE theory was used by Kurz (1997b) and Nielsen (2003) to explain the

volatility of foreign exchange rates.  All these papers used OLG models in which exogenous shocks

are discrete random variables and agents have a finite set of states of belief .  Wu and Guo (2003)

(2004) study speculation and trading volume in the steady state of an infinite horizon model.  The

novel contribution of this paper consists of three parts: (i) ours is a full infinite horizon model, (ii)

all random variables are continuous and we use standard AR processes to describe beliefs and

exogenous shocks, and (iii) we explicitly model agents’  beliefs about the market state of belief,

which amounts to beliefs about the beliefs of others.  We argue that this mechanism is central to

understanding the volatility and risk premia in financial markets.

The Main Findings  

In this paper we show that there are two simple characteristics of diverse market beliefs

which fully account for the characteristics of market volatility and premia observed in real markets:

(A) high intensity of fat tails in the belief densities of agents;

(B) asymmetry in the proportion of bull and bear states in the market over time.  

High intensity means the subjective densities agents use to make forecasts have fat tails, the sizes of

which depend upon their states of belief.  Asymmetry in the time frequency of belief states is a subtle

characteristic which says that on average, agents are in bear states at more than 50% of the dates. 

Equivalently, on average, at more than half of the time agents do not expect to make above normal

return on their investments.  Therefore, it follows from the RB principle that when agents are in bull

states and expect above normal returns, their expected excess returns tend to be very high. This

asymmetry reflects the fact that major rises in stock prices occur over a relatively small fraction of
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time following market declines.  Hence, when agents are in states where they believe a bull market

is ahead, they also expect to make large excess return over relatively shorter periods.  

The same model we use to study the statistics of market volatility is used to study other

aspects of market dynamics.  We show that our model implies market returns must exhibit

stochastic volatility which is generated by the dynamics of the market state of belief.  In addition,

stock prices and returns exhibit a structure of forecastability which is observed in the real data.

We formulate a general equilibrium, consumption based, asset pricing model and study its

computational solutions.  However, the paper is not intended as calibration work. Although our

numerical results correspond well to the observed market data, the numerical results are used

merely to draw theoretical conclusions by highlighting the qualitative implications of our theory.

As to organization, in Section 1 we formulate a model with two infinitely lived dynasties of

agents and two assets.  In section 2 we study the volatility of the corresponding REE.  In section 3

we define the RBE, explain the rationality of belief conditions and the restrictions they impose on

beliefs.  In Section 4 we study moments implied by the RBE. In Section 5 we study the stochastic

volatility implied by the RBE and in Section 6 we take up the predictability of returns. 

1. The Economic Environment

The model economy has two types of agents and a large number of identical agents within

each type.  Each agent is a member of one of two types of infinitely lived dynasties identified by

their endowment, their utility which is defined over consumption and by their belief.  A member of a

dynasty lives a fixed short life and during his life makes decisions based on his own state of belief

without knowing the states of belief of his predecessors.  There are two traded assets: a stock and a

riskless, one period, bond.  The economy has an aggregate output process  whichY t , t � 1,2, .. .

is divided between dividends  paid to owners of the common stock and non -Dt , t � 1,2, .. .

dividend endowment which is paid to the agents.  The dividend process is described by

(1) Dt � 1
� Dt e

xt � 1

where { , t = 1, 2, ...}  is a stochastic process under a true probability which is non-stationary withxt

structural breaks and time dependent distribution.  We assume the growth process is a stable
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of the observable variables defined by the limits of relative frequencies of finite dimensional events. These limits
are used to define the empirical distribution which, in turn, induces a probability measure over infinite sequences
of observables which is central to the theory of Rational Beliefs. 

6 The key assumption is then that agents do not know the true probability but have ample past data from
which they deduce that (2) is implied by the empirical distribution.  Hence the data reveals a memory of length 1
and residuals which are i.i.d. normal.  This assumption means that even if (2) is the true data generating process,
agents do not know this fact.  An agent who holds a Rational Belief may believe the true process is non-stationary
and different from (2), but to be rational his model is required to generates the same statistics (i.e. empirical
distribution) as generated by (2).
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process5 hence it has an empirical distribution which the agents learn and know.  This empirical

distribution is represented by the growth rate being a stationary Markov process defined by6

(2)         with      i.i.d.xt � 1
� (1 � � x) x ��� � xxt ��� x

t � 1 � x
t � 1 � N(0 , � 2

x )

The infinitely lived agents are enumerated  j = 1, 2  and we use the following notation:

 - consumption of j  at  t;  C j
t

 - amount of stock purchased by j  at  t;  
	 j

t

- amount of one period bond purchased at discount by agent j  at  t;B j
t

  - stock price at date t;q̃s
t

 - the discount price of a one period bond at t;qb
t

 - non capital income of agent j at date t;

 j

t

 Ht - information at t,  recording the history of all observables up to t.

Given probability belief  , agent  j  selects portfolio and consumption plans to solve the problemQ j
t

(3a) Max
(C j , � j ,B j )

EQ j [ ��
t � 0

� t 1
1 ��� (C j

t )1 ��� | Ht ]

subject to:

(3b)  .C j
t � q̃s

t � j
t � q b

t B j
t ��� j

t � ( q̃s
t � Dt ) � j

t � 1 � B j
t � 1

We assume additively separable, power utility over consumption, a model that failed to generate

premia in other studies (see, Campbell and Cochrane (2000)).  We focus on diverse beliefs hence

assume the two utility functions are the same.  Introduce the normalization for j = 1, 2
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 .� j
t
�
� j

t

Dt

, c j
t
� C j

t

Dt

, q s
t
� q̃s

t

Dt

, b j
t
� B j

t

Dt

With this normalization the budget constraint becomes

(3b’) .c j
t � q s

t

� j
t � q b

t b j
t ��� j

t � (q s
t � 1)

� j
t � 1 � b j

t � 1 e
� xt

The Euler equations are

(4a) (c j
t ) �
	 q s

t �
�

EQ j
t
[ ( c j

t � 1 ) �
	 (1 � q s
t � 1 )e

(1 �	 )xt � 1 | Ht ]

(4b) (c j
t ) �
� q b

t ��� EQ j
t
[ ( c j

t � 1 ) �
� e ��� xt � 1 | Ht ]

and the market clearing conditions are then

(4c) � 1
t � � 2

t � 1

(4d) .b 1
t � b 2

t � 0

2. A Rational Expectations Equilibrium (REE)

To evaluate the volatility of an REE in an annual model we specify parameters of the growth

process (2).  Unfortunately, different estimates of the parameter values are available, depending upon

time span of data, unit of time (annual vs. quarterly) and the definition of terms (see, for a sample,

Backus, Gregory and Zin (1989), Campbell (2000) and Rodriguez (2002) Appendix 2, based on

Shiller in (http://www.econ.yale.edu/shiller)).  We use the annual estimates reported in Campbell

(2000) Table 3, which are consistent with estimates of Mehra and Prescott  (1984).  For the rest of

this paper we set  ,  and ,  all well within��� 0.96 , � � 2.00 , x � � 0.01773 � x ��� 0.117 � x � 0.03256

the empirically estimated range.  Ours is a theoretical paper aiming to draw qualitative conclusions. 

Still, we select realistic parameter values since we wish our simulations to result in numerical values

as close to the observed data as possible.  For simplicity we assume , a constant.   Total� j
t � �

resources, or GNP, is equal to  (1+2 � )Dt  hence the Dividend/GNP ratio is .   As we model1
1  2 !

only income from publically traded stock ownership, the ratio of Dividends to Household Income

should include dividends of the corporate sector but exclude self employed income and imputed

income from other asset categories.  This ratio is about 15%  (see survey data in Heaton and Lucas

(1996))  hence we select .  This has little effect on the results.! j
t " 3

We define the REE as a solution when agents believe (2) is the truth.  We simulated this REE

and report in Table 1the mean and standard deviations of  (i) the price\dividend ratio , (ii) theq s
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Weil [1989] and others.  For more details see Kocherlakota [1996].  Some degree of excess volatility can also be
explained with explicit learning mechanism which does not die out (see for example Timmermann (1996)).
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risky return R on the stock,  (iii) the one year riskless interest rate  the premium of equity returnr , ep

over the return on one year bond, the Sharp Ratio and the correlation between  x  and stock returns.

Moments of market data vary with sources reporting and methods of estimation.  The estimates in

Table 1 are based on Shiller (http://www.econ.yale.edu/shiller) and others.  They represent our best

approximation of the order of magnitude of the data reported in most studies.

       Table 1: Simulated Moments Of Key Variables In REE
(all moments are annualized)

        R              q s �
q s

�
R r �

r ep shrp � Rx

Model Data  16.71   0 .055   7.94%  3.78%  7.70%  0.79%   0.24%  0.064  .995

Market Data  25   7.1    7% 18.00%  1.00%  5.70%   6.00%   1/3  .100

The results in Table 1 are familiar.  Note that apart from the low equity premium, the

volatility of the REE in Table 1 is low: all model volatility measures are lower than market data by

an order of magnitude.  The debate about these results under the heading of the "Equity Premium

Puzzle" is important since the asset pricing theory is derived in a general equilibrium framework. 

Hence the puzzle requires us to reevaluate the economic foundations of the REE paradigm.  

Some writers argued in favor of introducing habit formation in utility to generate time

variability of risk aversion (e.g. see Abel (1990), (1999), and Constantinides (1990)8).  Campbell and

Cochrane (1999), (2000) assume that at habit the marginal utility of consumption and degree of risk

aversion rise without bound.  Hence, when consumption declines to habit risk aversion increases,

stock prices decline and risk premium rises.  Although the model generates moments which are

closer to those observed in the market, the theory is unsatisfactory.  First, with Xt = habit, utility is

.  But why should the marginal utility and risk aversion explode when  Ct 
1

1 ���
(Ct � Xt)

1 ���

approaches the mean of past consumption?   Campbell and Cochrane (1999, page 244) show that for

the model to generate the desired moments, the degree of risk aversion is 80 at steady state and

exceeds 300 frequently along any time path.   If instead we use Abel’s (1990), (1999) formulation
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, marginal utility is normalized to be 1 at habit but the model does not generate
1

1 ���
(

Ct

Xt

)1 � �

volatility.  Second, big  fluctuations of stock prices are observed during long periods when

consumption grows smoothly as was the case during the volatile period of 1992 - 2002.  Finally, the

model predicts perfect correlation between consumption growth and stock returns but the record

(see Table 1) shows date t stock returns have low correlation with date t consumption growth. 

Above all, the habit formation model proposes a theory which claims that asset premia are caused by

an unreasonably high degree of risk aversion.  Our alternative view proposes that risk premia are

determined primarily by the structure of market expectations.

3. Constructing a Rational Belief Equilibrium (RBE)

3.1 States of Belief and RBE

In a typical RBE agents believe the environment is not stationary and past data do not

provide a perfect guide to the future.  As a result, a given stochastic process of exogenous shocks is

compatible with diverse beliefs about the future and hence with diverse RBE.  Our methodology of

studying RBE is to construct a large family of such equilibria and to examine the volatility

characteristics of its members.  The family is characterized by an AR stochastic law of motion of the

state and by a structure of agents’  beliefs.   We think the structure of beliefs is as primitive an

explanatory variable of economic phenomena as utility, technology or financial constraints.  Hence

we aim to understand the characteristics of those belief structures which generates volatility and

premia in the order of magnitudes observed in the data.  

To define RB, consider the economy as a data generating mechanism so that from past data

agents know the empirical distribution of observables.  A Rational Belief is a probability measure on 

sequences of future states together with a model of the economy.  It has a property that if simulated,

it generates the same empirical distribution as the empirical distribution of the observables in the real

economy.  Conditional forecasts induced by an RB may be wrong at any date but their time average

are correct in the sense that they equal the forecasts that would be made with the probability measure

implied by the empirical distribution.  We call this probability The Stationary, or Empirical,



9 The empirical distribution of the observable variables or their moments induce a probability measure
over infinite sequences of observables which is central to the theory of Rational Beliefs.  A general definition and
construction of this probability measure is explained in Kurz (1994), (1997) or Kurz-Motolese (2001) where it is
shown that this probability must be stationary.   Statements in the text about “ the stationary measure”  or “ the
empirical distribution”  is always a reference to this probability.  Its centrality arises from the fact that it is derived
from public information and hence the stationary measure is known to all agents and agreed upon by all to reflect
the empirical distribution of observable equilibrium variables.  In terms of equilibrium concepts, an RBE has the
property that within the set of market beliefs an RBE is a fixed point in empirical distributions.

10 For a detailed account of the theory of Rational Beliefs see Kurz (1997a) and for additional details
regarding the constructive approach to RBE, see Kurz and Motolese (2001), Section 2.4.
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Measure9.   To use these ideas we need a tractable way to describe beliefs and this is our next task.

The tool we use to describe the distribution of beliefs at date t is the “market state of belief.”  

In a two agent economy it is a vector  which defines uniquely date  t  conditionalzt
� ( z1

t , z2
t ) ��� 2

probability functions of the agents.  In any equilibrium endogenous variables are functions of state

variables, lagged endogenous variables and in our case we add .  If we denote exogenous(z1
t , z2

t )

shocks and lagged endogenous variables by , the equilibrium price process { , t = 1, 2, ...}st (q s
t , q b

t )

is then defined by a map like

(5) .
qs

t

qb
t

��� ( st , z1
t , z2

t )

Our equilibrium is thus a Radner (1972) equilibrium with an expanded state space that includes state

of belief .  The map (5) reflects this fact.  Since agents use the price map (5) to forecast(z1
t ,z2

t )

future prices, they need to forecast future market states of beliefs, which are the future beliefs of 

“other”  agents.  Although both agents use  �   in (5) to forecast  t+1 prices, their price forecasts are

different since each agent forecasts future state variables and future market beliefs given his private

state of belief.  We explore this issue later when we discuss the subjective models of the agents. 

In this paper we construct an RBE, use perturbation methods to compute it and study its

volatility via simulations.  Since we wish to demonstrate our economy exhibits fluctuations which are

qualitatively similar to those observed in the market, our construction proceeds in three steps10. 

(i) Specify a family of empirical distributions of state variables which is then assumed known to

agents who learn it from the data.  Most parameter values are based on their empirical estimates,

known from other studies.  Some values are based on our best judgement.
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(ii) Specify the beliefs of agents and formulate conditions which then rationalize them relative to the

empirical distribution specified in (i).  These are the rationality conditions of the RBE.

(iii) Use the equilibrium conditions developed earlier to define equilibrium prices and endogenous

variables, and then study the dynamics of an equilibrium by simulating the model economy. 

3.2 The Empirical Distribution of the State 

In a Markov economy a probability is represented by transition functions over states.  In our

constructed RBE the state vector is  where  is the growth rate of dividends and(xt , z1
t , z2

t ) xt

 is the market state of belief.  In a large economy it would be a distribution but here we(z1
t , z2

t )

have only two dynasties.  For an empirical distribution we specify stationary transition functions for

the state variables.  The true process of the shocks { , t = 1, 2,...}  is a stable and non-stationaryxt

process, incorporating structural changes, with a probability law which is not known to the agents. 

However, for equilibrium analysis the true process does not matter: all that matters is the empirical

distribution of the process and what agents believe about the true process.  We assume the joint

empirical distribution of the exogenous shocks and the states of belief is an AR process of the form

(6a) xt � 1
� (1 �

�
x)x ���

�
xxt ���

x
t � 1

(6b)  ,      z1
t � 1
� �

z1z
1
t �

� z1

x (xt � x � ) ��� z1

t � 1

� x
t � 1

� z1

t � 1

� z2

t � 1

	 N

0

0

0

,


 2
x, 0, 0

0, 1, 

12

0, 

12, 1

��� , i.i.d.

(6c) z2
t � 1
� �

z2z
2
t �

� z2

x (xt � x � ) ��� z2

t � 1

Values for were set in Section 2.  We normalize by setting variances of  equal to 1.  (
�

x , x � , 
 x) � z j

t � 1

To specify parameters of the  zj equations we explain later the index  zj  measures how optimistic an

agent is about future returns on investment.  With this in mind we used forecasts reported by the

Blue Chip Economic Indicators and the Survey of Professional Forecasters, and “purged” them of

observables.  We then estimated principal components to handle multitude of forecasted variables

(for details, see Fan (2003)).  The extracted indexes of beliefs imply regression coefficients around

0.5 - 0.8  hence we set .  There is high correlation across investors who forecast
�

z1
� �

z2
� 0.7

financial variables such as corporate profits.  Even higher correlation exists with respect to forecasts

of productivity growth.  We thus set  .   In this paper we study only symmetric

z1z2
� 0.90
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economies where agents differ only in their beliefs hence we assume .  The evidence
� z1

x
� � z2

x
� � z

x

shows that positive productivity shocks lead agents to revise upward their economic growth

forecasts implying .  Our best guess of this parameter leads us to set  but we discuss it
� z

x > 0
� z

x
� 2.0

again later.  Finally, we denote by  m  the probability measure on infinite sequences implied by (6)

together with the invariant distribution as the initial distribution.

To write (6) in a more compact notation let  ,  andwt
� ( xt � x � , z1

t , z2
t ) � t

� ( � x
t , � z1

t , � z2

t )

denote by  A  the 3×3 matrix of parameters in (6).  We then write (6a) - (6c) as

(7) wt � 1
� Awt ��� t � 1 , � t � 1

	 N(0 , � )

where  �   is the covariance matrix in (6).  Denote by V  the 3×3  unconditional covariance of   w 

defined by .   We later need the value of V and compute it as solution of the equationV � Em(ww � )

(8)  .V � AVA � � �

3.3 Personal States of Belief and the Anonymity Principle

In a non-stationary environment, an agent’s conditional probability is time dependent and

over time he deviates from the forecasts implied by the empirical distribution.  His conditional

probability may be above the empirical probability (he is “optimistic” ) or below it (he is

“pessimistic” ).  But why specify the  formal belief formation model our agent uses to deviate from

the stationary empirical forecasts?  A theory that uses the distribution of heterogenous beliefs to

explain observed phenomena faces the problem of determining a level of detail at which agents

explain why they adopt the beliefs they hold.  If we require a complete specification of such

modeling, a theory is doomed to get bogged down in details about inference from small samples and

information processing.  Such approach is useful, but from the perspective of equilibrium theory it is

not needed.  All we need is a method to describe how an agent’s model affects his conditional

probability and to ensure the rationality of belief conditions are satisfied.  Since the rationality

principle requires the time average of the conditional probabilities to equal the empirical frequency,

his conditional probability beliefs fluctuate around the empirical measure.  Hence we seek a tractable



11 Thus let X be a space of observables and let ( , � ( ) be the space of infinite sequences of(X) � (X) �
observables where � ( ) is the Borel � -field of .  To describe a non-stationary process we use variables(X) � (X) �

 with a marginal probability space ( , � ( , µ ).   We then define the desired non-stationaryy j
t � Y j (Y j) � (Y j) �

probability to be , the conditional probability of  Qj with respect to the sequence  yj.  Qj satisfiesQ j

y j � Q j (( � ) | y j )
the condition that for all A �  � (X � ) and B � � ( ) (Y j) �

      . Q j (A ×B) � �
B

Q j

y j (A)µ(dy j)

The effective probability space ( , 	 ( , ) implies non-stationary dynamics of the observables since(X) 
 (X) 
 Q j

y j

probabilities of events in 	 ( ) are not time invariant: they change with the time varying parameters .  (X) 
 y j
t
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mathematical description of non-stationarity with which to keep track of the statistical regularity at

which an agent deviates from stationary forecasts.  

Our tool to accomplish the above goals is the state of belief  of  j.  It  is an indexy j
t � Y j

which fully specifies his conditional probability function.11  It is formally similar to models where Y

is a set of possible regimes, and  are “regime variables.”   The subjective variables  areyt y j
t � Y j

parameters the agent uses to describe his belief.   Their main benefit is statistical since the stochastic

structure specifies the empirical regularity of  and this regularity is used to state the rationality ofy j
t

belief conditions.  Since rational agents do not deviate systematically from empirical forecasts, in

order to establish rationality of belief we need a statistical measure of an agent’s deviations from

these forecasts.   are simple mathematical devices used to measure such regularity.y j
t � Y j

We remark that   are privately perceived by agent  j  and have meaning only to him.  Sincey j
t

a dynasty consists of a sequence of decision makers,  used by one has no bearing on they j
t

description of beliefs by other dynasty members.   and  do not even need to be theY j Y k for j � k

same spaces: an agent’s theory about investing in technology of one era (when j lives) has nothing to

do with the reality of investments at a different era (when k lives).  Unfortunately, diversity of

 is not tractable.  To improve tractability we make two assumptions.  First, we useY j � Y k for j � k

the same space   for all  j and assume an agent knows only the short history of his own .  Y j �� y j
t

He does not know the states of belief of his predecessors.  Second, we assume individual states are

made public and their distribution   is recorded as a “market state of beliefs”  subject to the(z1
t , z2

t )

anonymity of individuals behind public data.  To maintain competitiveness, each agent is assumed not

to associate his own belief with market states.  Due to the fact that there are two types of agents this

anonymity assumption needs clarification.

Although the market state of beliefs at t is nothing but a distribution of the , anonymityy j
t



12 This requirement on the agent is analogous to the behavior of producers in a competitive market with a
finite number of firms who are required to disregard their impact on prices.  By looking at past data a competitive
firm in a market with a finite number of firms can demonstrate that it had an effect on prices in violation of this
assumption.  This type of empirical “ test”  is what is assumed away here to ensure competitive behavior of agents.
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requires that agents do not make any connection between their own  and the distribution ofy j
t

 beliefs in the market12.  Anonymity is so central that we use three notational devices to highlight it.

(i)     denotes the state of belief of  j  as known by the agent only. y j
t

(ii)    denotes the market state of belief, observed by all agents.  Being competitive,(z1
t , z2

t )

they do not associate  with  although   is a basic consistency condition. y j
t (z1

t , z2
t ) y j

t
 z j

t

(iii)  describes agent  j’s  forecast of the market state of belief at future date t+1.(z j1
t � 1 , z j2

t � 1 )

To state the rationality of belief conditions we specify a sequence of individual states { , t = 1, 2,y j
t

...} for  j = 1, 2.   The consistency condition  requires the empirical distribution of   to bey j
t
� z j

t y j
t

the same as the distribution of   in (6).  Thus, the agent’s state of belief is characterized by az j
t

sequence of random variables  such that { , t = 1, 2, ...} are the realizations of˜� y j

t , t � 1 ,2 , . . . y j
t

(9) .y j
t � 1
���

z j y
j

t �
� z j

x (xt � x � ) � ˜� y j

t � 1 , ˜� y j

t � 1 � N( 0 , ˜	 2

y j ) , j � 1, 2

(9) is compatible with the  equation in (6) except that (6) specifies a joint distribution of all statez j
t

variables while (9) specifies only a marginal distribution of  j as perceived by agent j (for more

details, see Appendix B).  Since { , t = 1, 2, ...} exhibit serial correlation, we exclude from ally j
t y j

t

information already in the market at  t  in order to isolate the pure subjective component of belief. 

To that end introduce a variable as follows.  Denote by  agent  j’su j
t ( y j

t ) rj
� Cov(w , y j)

covariance vector and, keeping in mind (8), define    by the following regression filteru j
t ( y j

t )

(10) .u j
t (y j

t ) 
 y j
t � r

�
j V  1wt

By construction, the pure belief  is uncorrelated with date  t  public information.  We showu j
t ( y j

t )

later that it is serially uncorrelated.  Note that  acquires meaning only when we specify what ju j
t ( y j

t )

does in state .  The formal structure to do that are the perception models of the agents.y j
t



13 From the perspective of the agent the sequence   is just a sequence of parameters.  However, for thesey j
t

rationality conditions we need to study the empirical distribution of sequences { , t = 1, 2,...)} which
�

t � 1(u j
t )

depend upon the .  In order to do that we need to know the empirical regularity of the  and this is where theu j
t y j

t
specification (9), about the statistical regularity of these assessment variables, come into play.
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3.4 Perception Models and the Rationality of Belief Conditions

A perception model is a set of transition functions of the state variables, reflecting the

agent’s belief about date t+1 transition probability.  We first explain the general form of a

perception model, using (7), providing details later.  Let  be a vector of state variables at datew j
t � 1

t+1 as perceived by agent  j and let  be a  3  dimensional vector of date t+1 random
�

t � 1(u
j

t )

variables conditional upon parameter .  A perception model has then the general formy j
t

(11a)    together with    (9).w j
t � 1 � Awt �

�
t � 1( u j

t )

Since   write (11a) in the simpler formEm(wt � 1 |Ht) � Awt

(11b)  . w j
t � 1 � Em( wt � 1 | Ht) �

�
t � 1(u j

t )

In general  hence the mean value of the agent’s forecast changes with the state ofE[
�

t � 1|u
j

t ] � 0

belief .  (11a) -(11b) show how agent  j’s  expectations deviate from  and how theEm( wt � 1 | Ht)

deviations depends upon  via .  If  as in (7),  j  uses the empirical probability y j
t u j

t
�

t � 1(u j
t ) �	� t � 1

m  as his belief.  With this formulation we can state the rationality of belief conditions.  These

require the empirical distributions of (7) and (11a) to be the same.  For    to havewt � 1 � Em( wt � 1 |Ht)

the same empirical distribution as    means that the empirical distribution ofw j
t � 1 � Em( wt � 1 | Ht)

{ , t = 1, 2,...)} in (11a) is the same as the distribution of   in (7), which is N(0, 
 ).  This
�

t � 1(u
j

t )  t � 1
implies the empirical distribution of { , t = 1, 2,...)}  is N(0, 
 )13 and  does not

�
t � 1(u

j
t )

�
t � 1(u

j
t )

exhibit serial correlation.  We now explain the details of these requirements.

3.4a Formulating The Perception Models

In modeling  we consider several factors.  Agents may be over confident by being
�

t � 1(u
j

t )

optimistic or pessimistic relative to the empirical  forecasts.  Evidence from the psychological

literature (e.g. Svenson (1981), Camerer and Lovallo (1999) and references there) shows agents
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exhibit such behavior.  Since in an RBE agents do not know the true probability, in our context

such behavior is not irrational if it respects the rationality principle.  But why do agents make either

bullish or bearish forecasts in our model?  Condition (6) specifies only the empirical distribution of a

non-stationary state process.  Moreover, for stating the Euler equations and equilibrium map the

true process is not relevant; all that matters is what agents believe the process is.  Technological and

institutional changes are central features of our economy and past statistics do not provide the best

forecasts for the future.  Deviations from the empirical forecast reflect judgements, based on limited

recent data, about “structural breaks”  or, more generally, about market “timing”  and about changes

in market conditions an agent believes are occurring.  The motive for making such judgments arises

from the substantial financial gains to agents who assess correctly the conditions which determine

future dividends and prices.  However, the formal subjective belief formation modeling is kept in

the background.  A second factor to be considered in modeling  is related to the rationality
�

t � 1(u
j

t )

conditions which require that  is serially uncorrelated.  Finally, the effect of the state of
�

t � 1(u
j

t )

belief   on the forecast of agents has two different components which are operative in an RBE: u j
t

(i)  frequency at which  induces deviations from the stationary forecast in each direction;u j
t

(ii) intensity of forecast deviation generated by any given value of  .u j
t

Rationality of belief implies a tradeoff between these two effects and this substitution is important

and will be explored later when we discuss the results.

To address all these issues we specify the random sequence  to take the form
�

t � 1(u
j

t )

(12a) .
�

t � 1(u j
t ) �

� x

y j  j
t � 1(u j

t ) � ˜ x
t � 1

� z1

y j  j
t � 1(u j

t ) � ˜ z j1

t � 1
� z2

y j  j
t � 1(u j

t ) � ˜ z j2

t � 1
 are i.i.d. zero mean Normal variables with covariance matrix  which is˜ j

(t � 1) � ( ˜ x
t � 1 , ˜ z j1

t � 1 , ˜ z j2

t � 1) �����

pinned down by the rationality conditions.   is a 3×3 matrix, the same as 
   in (7).  But a� ���

perception model has  as a fourth dimension with a covariance matrix denoted by � , reflectingy j
t

the vector   for  j = 1, 2.  The parameters   rj � Cov(w,y j)
�

y � (
� x

y 1,
� z1

y 1,
� z2

y 1) � (
� x

y 2,
� z1

y 2,
� z2

y 2)

(equality due to symmetry) are the object of our study and their effect on volatility is examined

later.  We next construct the random variables .  j
t � 1(u j

t )
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 Asymmetry and Intensity of fat tails in the Random Variables 
� j

t � 1
 allow belief to exhibit asymmetry and "fat" tails, reflecting over confidence.  We j

t � 1(u
j

t )

define  by specifying its density, conditional on  as a step function of the form  j
t � 1(u

j
t ) u j

t

(12b) P(  j
t � 1 |u j ) �

�
1(u j ) � (  j

t � 1) if  j
t � 1 � 0

�
2( u j) � ( � j

t � 1 ) if � j
t � 1 < 0

where  and   (in (9)) are independent and where   .  The functions� j
t � 1 ˜� y j

t � 1 � ( � ) � [1/ 2 � ] e
	 
 2

2

 are defined by a logistic function with two parameters  a  and  b( �
1(u) , �

2(u) )

(13)     ,   and define  G � E � ( uj ) , � ( u j ) � 1

1  e b(u j 	 a)

(14)   a > 0 ,   b > 0   and  . �
2 ( u j ) �

� ( u j )
G

, �
1 ( u j ) � 2 � �

2 (u j)

The parameter  a  measures asymmetry and the parameter b  measures intensity of fat tails in

beliefs.  Technical details of this construction are discussed in Appendix A.

To explain (12)-(14),  note that for   large,  goes to zero,  implying that  u j
t � ( u j ) � 2 ( u j )

goes to zero.  Hence, by (12b)  large > a  implies high probability that .  Similarly, smallu j
t � j

t � 1 > 0

< a  implies high probability that   .  To interpret what  > a  means requires a modelu j
t � j

t � 1 < 0 u j
t

convention.  Any convention must specify what  means and this depends upon .  In� j
t � 1 > 0 � t � 1(u

j
t )

an economy with  ( , , ),   raises j’ s forecast of .  This
� x

y>0
� z 1

y >0
� z 2

y >0 � j
t � 1 > 0 w j

t � 1 � (x j
t � 1 ,z1j

t � 1 ,z2j
t � 1)

motivates a  formal definition of bull and bear states.

Definition:  Let  be the probability belief of agent j.  Then    is said to be Q j u j
t

a bull state for agent  j  if   ,EQ j[w
j

t � 1 |u j
t ,Ht] > Em(wt � 1 |Ht) � EQ j[ � t � 1(u j

t ) |u j
t ,Ht] > 0

a bear state for agent j   if  .EQ j[w
j

t � 1 |u j
t ,Ht] < Em(wt � 1 |Ht) � EQ j[ � t � 1(u j

t ) |u j
t ,Ht] < 0

The random vector  depends upon parameters while it’s expected value is� t � 1(u j
t )

       .EQ j[ � t � 1 |u j
t ,Ht] �

� x

y j EQ j � j
t � 1 (u j

t )
� z 1

y j EQ j � j
t � 1 (u j

t )
� z 2

y j EQ j � j
t � 1 (u j

t )



14 It will become clear that shifts in probability of positive and negative outcomes means changes of
probability belief in gains or losses of investments.  Hence, it will reflect unequal valuation of gains and losses and
this may remind the reader ideas developed in the psychological literature under the heading of Prospect Theory
(see Kahneman and Tversky (1979)).  Prospect Theory suggests that apart from concavity, it is inherent in the
utility of agents to treat a small loss as more significant than an equal gain.  Our agents do indeed place heavier
weight on losses when they are pessimistic about investment returns and they place a heavier weight on gains when
they are optimistic about returns.  However, this difference in weight arises because they do not believe that the
gains and losses are equally likely.  Moreover, under our treatment they may place increased weight either on
losses or on gains, depending upon their state of belief.
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Hence, if  the condition  > a  says agent  j  is a bull who is optimistic about date t+1
� x

y > 0 u j
t

dividend growth being above normal.  If  ( ),   > a   says agent j believes date t+1
� z 1

y > 0 ,
� z 2

y > 0 u j
t

market state of belief will be above normal. Higher market optimism implies higher future capital

gains and hence higher total returns.  “Normal” is defined by the empirical forecast under  m.  In

the development below we study two types of economies which we now define.

Economy 1:  for all agents   and bear states are more frequent, while  
� x

y > 0 ,
� z 1

y > 0 ,
� z 2

y > 0

 >  a   means agent j is optimistic about dividend growth and stock returns at t+1u j
t

 <  a   means agent j is pessimistic about dividend growth and stock returns at t+1.u j
t

Economy 2:  for all agents  and bull states are more frequent, while  
� x

y < 0 ,
� z 1

y < 0 ,
� z 2

y < 0

 >  a   means agent j is pessimistic about dividend growth and stock returns at t+1u j
t

 <  a   means agent j is optimistic about dividend growth and stock returns at t+1.u j
t

What are the beliefs in bull and bear states?  Consider Economy I.  As  increase,(u j
t � a)

 rises and  declines.  Hence when  > a  an agent increases the positive part of a� 1(u
j

t ) � 2(u
j

t ) u j
t

normal density in (12b) by a factor and decreases the negative part by .  When� 1(u
j

t ) > 1 � 2(u
j

t ) < 1

  the opposite occurs: the negative part is shifted up by  and the positive part isu j
t < a � 2(u

j
t ) > 1

shifted down by 14.  The amplifications  are defined by  uj,  by  a  and by� 1(u
j

t ) < 1 ( � 1(u) , � 2(u) )

the“fat tails” parameter  b.  The parameter  b  measures the degree by which the distribution is

shifted per unit of  .  In Figure 1 we draw densities of  for  uj > a and for  uj < a.(u j
t � a) � j(u j)

These are not normal densities.  As   varies, the densities of   change.  However, theu j
t � j

t � 1 (u j
t )

empirical distribution of  is normal with zero unconditional mean and hence the empiricalu j
t

distribution of  , measured over time, also has these same properties.� j
t � 1 (u j

t )

FIGURE 1 PLACE HERE
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The parameter  a  measures asymmetry.  It determines the frequency at which agents are

bulls. To see why note that if  a = 0,  (13) is symmetric around  0 ( the unconditional mean of  uj)

and the probability of  uj > 0 is 50%.  When a > 0  the probability of uj > a  is less than 50% and if

, the frequency at which  j is pessimistic, exceeds 50%.  In a large market this
� x

y>0 ,
� z 1

y >0 ,
� z 2

y >0

would mean that , on average, a majority of traders is pessimistic about t+1 returns.  However,

“optimism” does not mean a belief in high returns but rather, it is a high probability belief in above

normal returns. Also, it is irrational to always be a bull or always be a bear.  Hence, if an agent is a

bear more than 50% of the time, the intensity of his optimism (when optimist) must be greater than

the intensity of pessimism (when pessimist).  “Intensity” means deviations from the empirical

probabilities.  This discussion shows that when  ,  bears are in the majority and
� x

y>0
� z 1

y >0 ,
� z 2

y >0

hence an agent is more intense when he is a bull.

Each component of  is a sum of two random variables.  The first is as in Figure 1� t � 1(u
j

t )

and the second is normal.  In Figure 2 we draw two densities of .  Each is a convolution of� t � 1(u
j

t )

a normal density with a density as in Figure 1: one for  uj > a and one for  uj < a,  showing each has

a “fat tail” relative to the empirical distribution. Note that since  b  measures the intensity by which

the positive and negative portions of the distribution in Figure 1 are shifted, it measures the degree

of fat tails in the distributions of .  Since the empirical distribution of   is normal, when � t � 1(u
j

t ) u j

uj varies over time, averaging of the densities over  generates a random variable which is� j(u j) u j

normal.  This averaging of densities is the way we check the rationality conditions.

FIGURE 2 PLACE HERE

 The parameters  a  and  b are central as they regulate asymmetry and intensity of the agents’

confidence about future states.   The feasible values of the parameters are determined by the

rationality conditions developed in Appendix B.  The question we ask is then simple: are there

feasible values of the parameters so the model replicates the empirical record of the U.S. economy? 

Moreover, what is the economic interpretation of the behavior implied by these parameter values?

The Explicit Form of the Perception Models

We can now combine the development up to now to formulate the final form of the

perception models of the agents:
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(15a) x j
t � 1 � (1 �

�
x)x
��� �

x xt

� � x

y j � j
t � 1(u j

t )
�

˜� x j

t � 1

(15b) z j1
t � 1 �

�
z 1 z 1

t

� � z 1

x (xt � x
�
)
� � z 1

y j � j
t � 1( u j

t )
�

˜� z j1

t � 1

(15c) z j2
t � 1 �

�
z 2 z 2

t

� � z 2

x (xt � x
�
)
� � z 2

y j � j
t � 1( u j

t )
�

˜� z j2

t � 1

(15d) .y j
t � 1 �

�
z j y

j
t

� � z j

x (xt � x
�
)
�

˜� y j

t � 1

is i.i.d. Normal with mean zero and covariance matrix  to be specified. ˜� j
t � 1 � (˜� x j

t � 1 , ˜� z j1

t � 1 , ˜� z j2

t � 1 , ˜� y j

t � 1)
�

We note two items.  First , the terms  in the first equation reflects diverse beliefs
� x

y j � j(u j
t )

about dividend shocks and about interpreting public news  for forecasting .  The agent’sxt xt � 1

forecast of   is ,  not   as in (6a).   measuresxt � 1 EQ j
t
x j

t � 1 �
�

xxt

� � x

y j EQ j
t

� j
t � 1(u

j
t )

�
xxt

� x

y j EQ j
t

� j
t � 1(u

j
t )

the agent’s forecasted deviation from the value in (6a). Second, the terms  
� z1

y � t � 1( u j
t ) ,

� z2
y � t � 1( u j

t )

in the third and fourth equations measure the effect of  j’s belief on his forecast of the belief of

others  at t+1.  Since prices depend on , the terms  and (z k1
t � 1 , z k2

t � 1) (z 1
t � 1 , z 2

t � 1)
� z j1

y � j
t � 1(u j

t )
� z j2

y � j
t � 1 (u j

t )

add heterogeneity to forecasts of  t+1 prices and endogenous variables.  These are the key forces

which generate market volatility.

3.4c The Rationality of Belief Conditions

As noted before, the rationality principle requires that 

(16)   has the same joint empirical distribution as .� t � 1(u
j

t ) �

� x

y j � j
t � 1 ( u j

t )
�

˜� x j

t � 1

� z j1

y j � j
t � 1 ( u j

t )
�

˜� z j1

t � 1

� z j2

y j � j
t � 1 ( u j

t )
�

˜� z j2

t � 1

� t � 1 �

� x
t � 1

� z 1

t � 1

� z 2

t � 1

In Appendix B we show two facts:  (a) that these conditions fully specify the covariance matrix  �  

of the innovations  , and (b) that  is serially uncorrelated. ˜� j
t � t � 1( � j

t � 1( u j
t ))

Positive Definiteness of �  as Implied Restriction of the Rationality Conditions

We study here only the symmetric case and for the empirical distribution we assume  

      ,      .
�

z �
�

z1 � � z2

� z
x �
� z1

x �
� z2

x

For the beliefs we use the symmetric notation 



15  The feasible set is open as it requires the covariance matrix to be positive definite hence no maximal
values can be taken.  The objective is then is to set the parameters so that they are close to the boundary but do not
destabilize the computational procedure, generating error in the Euler Equations.  For example,  is

� x
y � 0.027

feasible but  is not hence  is sufficiently far from the boundary to enable computed
� x

y � 0.028
� x

y � 0.025
solutions with low error in the Euler Equations .
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     ,     ,      and   .  
� x

y 1 �
� x

y 2 � � x
y

� z11

y 1 �
� z12

y 1 �
� z21

y 2 �
� z22

y 2 �
� z

y a1 � a2 � a b1 � b2 � b

Hence, beliefs are determined by four parameters .  These are then drastically(
� x

y ,
� z

y , a , b)

restricted by the condition that  �   is positive definite.  Some implications of this condition are:

•  implies .  The covariance structure further restricts  .  �

x � 0.03256 |
� x

y | < 0.03 |
� x

y | < 0.028

• The covariance structure implies that   .|
� z

y | < 0.35

• The parameter b has a feasible range between  0  and   9.

3.4d Model Parameters and a Note on Computed Equilibria

Our goal is to explore the effect of belief parameters  on market volatility and(
� x

y ,
� z

y , a, b)

provide an economic interpretation.  We also test which of the two economies (Economy 1 vs.

Economy 2) is more compatible with the data.  For Economy 1 we select  , 
� x

y � 0.025
� z

y � 0.30

which are positive and as large as possible in the feasible region.15  Setting them as high as

consistent with rationality allows a focused discussion of the effect of the parameters (a , b) in the

following way.  First, given the selected values of  , we ask if there exist values of the(
� x

y ,
� z

y )

asymmetry parameter  a  and intensity of fat tails parameter  b  such that an economy with these

parameters generates volatility with characteristics that are familiar from the data?  Second, what

are the qualitative properties of economies with such parameter values?

We compute equilibria in this paper using perturbation methods and utilizing a program 

developed by Hehui Jin (see Jin and Judd (2002) and Jin (2003) ). A solution is declared to be an

equilibrium if the following holds: (i) a model is approximated by at least second order derivatives; 

(ii) errors in market clearing conditions and Euler equations are less than .  In Appendix C we10
� 3

provide more details on our computational model.

4. Characteristics of Volatility I: Moments

We now study the moments of the time series generated by our model.  Intensity of fat tails
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and asymmetry in beliefs are crucial components of our theory.  They enable the model to generate

time series that match the U.S. record.  But, what is the role of intensity and asymmetry in the

propagation of volatility and which of the two types of economies discussed earlier are compatible

with the empirical record?   The answers to these questions show how the model matches the data. 

However, they also explain on a theoretical level the forces which generate volatility and risk

premia without reference to the particular values of the moments recorded in the U.S.

4.1 The Role of Intensity

We thus start with an experiment disabling the asymmetry parameter by setting  a = 0  while

varying the intensity parameter  b.  Keeping in mind that parameters of the real economy imply

riskless steady state values ,  we vary  b  from  b = 1 up to a value atq s � � 16.57 , R � � r � � 7.93

which the mean riskless rate reaches the value of  0.5%.   Table 3 reports the results.  These show

the market exhibits substantial non - linearity in response to rising market volatility as  doq s and �

q s

not change monotonically with market volatility.  However, as market volatility increases the

following change in a monotonic manner:

• The risky rate  R   rises from 7.89% to 11.40%

• The standard deviation   of the risky rate rises from 4.72%  to 24.23% �

R

• The riskless rate  r  declines from 7.48% to 0.55%

• The correlation coefficient  declines from 0.76 to 0.11� (x,R)

• The Sharp Ratio (Shrp) rises from 0.09 to 0.45.

Without a detailed numerical demonstration we add the fact that the pattern observed in Table 3

remains the same for all feasible belief parameter of the model.  Hence, the reasoning offered

below does not depend upon parameter values such as  . (
� x

y ,
� z

y)

Table 3 shows the riskless rate declines towards 1% simply because the RBE  becomes

more volatile.  This affects both the volatility of individual consumption growth rates as well as

their correlation with the growth rate of aggregate consumption.  In an REE this correlation is close

to 1 but not in an RBE where variability of individual consumption growth depends upon the

agents’  beliefs.   The low observed riskless rate has been a central problem in the equity premium

puzzle debate (see Weil (1989)) and the effect of the parameter  b  goes to the heart of this issue. 
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Our theory offers the intuitive explanation that non normal belief densities with fat tails and high

intensity propagate high market volatility hence risk, making financial safety costly.  

              Table 3: The Effect of Pure Intensity
          (all moments are annualized)

b �
a = 0

  1.00   2.00 3.00 4.00 4.25 4.75    4.95
Record

q s
�

q s

R
�

R
r

�
r

ep� (x ,R)
Shrp

16.92
  0.63%
  7.89%
  4.72%
  7.48%
  2.45%
  0.43%
  0.76
  0.09

17.60
  1.42%
  7.86%
  7.42%
  7.13%
  3.71%
  0.72%
  0.46
  0.10

18.88
  2.51%
  7.86%
11.30%
  6.61%
  3.67%
  1.24%
  0.28
  0.11

19.99
  3.87%
  8.28%
16.37%
  5.55%
  1.98%
  2.74%
  0.18
  0.17

19.74
  4.12%
  8.61%
17.90%
  4.94%
  1.48%
  3.67%
  0.16
  0.20

17.27
  4.07%
10.11%
21.84%
  2.44%
  3.24%
  7.67%
  0.12
  0.35

15.20
  3.72%
11.40%
24.23%
  0.55%
  5.26%
10.86%
  0.11
  0.45

25
  7.1%
  7.0%
18.0%
  1.0%
  5.7%
  6.0%
  0.12
  0.33

Now compare Table 3 with the empirical record.  As volatility increases and the riskless rate

r  reaches  0.5% we see that (i)  qs declines below 25, (ii) R rises above 7.0%,  (iii)  rises above�
R

18.0%,  (iv) the Sharp Ratio rises above 0.33.  A moment’s reflection shows that these are

reasonable conclusions for a symmetric volatile economy.  In a symmetric economy bear and bull

states are perfectly symmetric: each bull market state has an exact opposite bear market state. Such

symmetry implies that as risk level increases, the riskless rate should decline as the cost of safety

increase and the risky rate should rise for symmetric reasons.  For the riskless rate to decline but for

the risky rate to remain the same in response to market volatility, there must be some asymmetry in

the belief structure to induce a rise in the price to dividend ratio.  The instrument for asymmetry is

the parameter  a  which provides a measure of the time frequency of bear states.  This frequency is

, and since  a > 0 we conclude that   > 50% ( 
�

 is the cumulative standard normal). 
�

( a
�

u

)
�

( a
�

u

)

But when  a > 0  the tail on the bull side must compensate for the higher frequency on the bear side

hence the bull distribution must be more skewed than the bear distribution.  As discussed earlier,

there are two asymmetries within our model which define two types of economies that we consider. 

In Economy 1 bear states are more frequent while in Economy 2 bull states are more frequent.

4.2 Which Asymmetry? 

In Table 4 we test the two asymmetries with the following experiment.  We fix   b = 4.85 , 

a = 0.40  and pick three random pairs of values for  .  We then simulate the equilibria
� x

y > 0 ,
� z

y > 0

for these pairs and for the negative values of the same pairs.  The aim is only to examine the effect
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of switching positive to negative signs.  The results for , on the left side of Table 4,
� x

y < 0 ,
� z

y < 0

are entirely counter-factual.  Asymmetry according to which bull states are more frequent imply too

low Price/Dividend ratio and too high risky and riskless rates. These qualitative conclusions remain

the same for all   for which this experiment is feasible.  Hence we rejecta > 0 , b > 0 ,
� x

y > 0 ,
� z

y > 0

the hypothesis that bull states are more frequent.  However, we now give an intuitive explanation

for the higher Price/Dividend ratio and the lower returns on the right side of Table 4.

            Table 4: Which Asymmetry?
                 (all moments are annualized)

       Economy 2          Economy 1� x
y ��� 0.025� z
y ��� 0.26

� x
y ��� 0.023� z
y ��� 0.28

� x
y ��� 0.023� z
y ��� 0.30

� x
y � 0.023� z
y � 0.30

� x
y � 0.023� z
y � 0.28

� x
y � 0.025� z
y � 0.26

   6.20
   0.88%
 19.33%
 13.91%
 23.40%
 26.67%
  -4.07%
   0.34
 - 0.29

   6.34
   0.86%
 18.87%
 13.44%
 22.96%
 25.75%
  -4.09%
   0.35
 - 0.30

   5.66
   0.80%
 20.95%
 14.23%
 24.57%
 27.76%
  -3.62%
   0.34
 - 0.25

q s

 � q s

R� R
r� r
ep� (x ,R)
Shrp

 26.92
   4.98%
   6.96%
 16.64%
   3.06%
   2.94%
   3.90%
   0.17
   0.23

29.74
  5.95%
  6.74%
17.44%
  3.85%
  1.97%
 2.89%
  0.16
  0.17

34.55
  7.97%
  6.72%
20.05%
  3.28%
  1.89%
  3.44%
  0.13
  0.17

Agents in Economy 1 are in bear states at a majority of dates.  This means that at more than

50% of the dates they do not expect to make abnormal stock returns in the subsequent date.  They

expect dividends to grow slower than normal and their stock portfolio to produce lower than

normal returns.  The question is: what is the resulting equilibrium “normal” Price/Dividend ratio?  

To answer this question we distinguish between the price of the stock and the Price/Dividend ratio

.  The non - normalized Euler equation (4a’) is  . q s (C j
t ) �
	 q̃ s

t � � EQ j
t
[ (C j

t  1 ) �
� (Dt  1 � q̃ s
t  1 ) ]

Hence, if an agent becomes bullish about future dividend growth rate his demand for the stock

increases and if most agents become optimistic, equilibrium stock price rises.  If a majority become

bearish about future dividend growth the price declines.  The situation is different for  as can beq s

seen from the normalized Euler equation  (4a) . (c j
t ) �
� q s

t � � EQ j
t
[ (c j

t  1) �
� (1 � q s
t  1)e

(1 �
� )xt � 1]
Suppose an agents’ perceived conditional distribution of  is shifted downward.  The effect onxt  1
equilibrium  depends upon the elasticity of substitution between  ct  and  ct+1  which is .  q s � 1�
Being pessimistic about future returns is the same as considering present consumption as less

expensive.  Since  
�
 = 2,  for a pessimistic agent a 1% decreased relative cost of today’s

consumption leads only to a 0.5% increase in today’s consumption.  Equivalently,  in an economy



16  Shilling(1992) shows that during the 552 months from January 1946 through December of 1991 the
mean real annual total return on the Dow Jones Industrials was 6.7%.  However, if an investor missed the 50
strongest months the real mean annual return over the other 502 months was -0.8%.   Hence the financial
motivation to time the market is very strong, as is the case with the agents in our model 
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where agents are, on average,  more frequently bearish about the time average of   is higher. xt  1 q s

This implies that in an economy where agents are, on average, bearish more than 50% of the time

the average price to dividend ratio is higher and the average rate of return is lower than in an

economy where agents are, on average, bullish more than 50% of the dates.  This is exactly what

happens in Table 4. 

 We do not have direct evidence in support of our conclusion that the frequency of bear

states is, on average, higher than 50%.   However, this conclusion is supported by the empirical fact

that, on average, most above normal stock returns are made over relatively small proportion of

time in which asset prices rally strongly (see Shilling(1992)).  An agent who invests for the long run

experiences large above normal returns only a small proportion of time.  Hence, on average, the

proportion of time that one may expect to make above normal return is much less than 50%16. 

Additional indirect support comes from the psychological literature which suggests agents place

heavier weight on losses than on gains.  In our treatment this is indeed the case at majority of dates

due to the fact that on those dates agents believe abnormally lower return are more likely than

higher.  It follows from the RB principle that the higher frequency of bear states implies that when

in bull states, an agent’s intensity of optimism is higher than the intensity of pessimism.  This means 

the average size of the positive tail in the belief densities is bigger than the average size of the

negative tail.  When in optimistic states our agents expect to make abnormal returns and with

positive correlation in beliefs among such agents, these beliefs can rationalize market behavior that

may look like a local bubble.  Let us explain this fact.

The asymmetry results (i.e.  a > 0 ) implies optimistic agents tend to be intense.  We have

noted that beliefs are highly correlated across agents hence we should expect to observe periods of

high optimism across a majority of agents.  When the level of optimism is very high, agents expect

to make such high returns on their investments that they want to borrow and finance present and

future consumption.  This they cannot all do since bonds are in zero net supply. At such dates the

only way markets can clear is by exhibiting sharp rises in stock prices together with high borrowing
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rates.  Hence, our theory predicts that we should expect to observe rapidly rising stock prices

induced by bursts of correlated optimism together with high realized growth rates of dividends.  We

would also expect to see crashes induced by correlated pessimistic agents together with low

realized growth rates of dividends.

4.3 Matching the Moments

We now combine the effects of intensity and asymmetry to exhibit a region of parameters

where the simulated moments are close to the empirical record.  Table 5 provides a summary.  

              Table 5: The Combined Effect of Intensity and Asymmetry
               (all moments are annualized)

  0.10    0.25    0.40b� , a �

q s

 � q s

R
� R
r
� r
ep� (x ,R)
Shrp

  4.75

17.40
  4.04%
  9.97%
21.38%
  2.68%
  3.05%
  7.29%
  0.12%
  0.34

23.22
  4.90%
  8.06%
19.40%
  2.38%
  3.22%
  5.67%
  0.14%
  0.29

28.06
  5.52%
  7.03%
18.00%
  2.19
  3.44%
  4.84%
  0.15%
  0.27  Record

q s

 � q s

R
� R
r
� r
ep� (x ,R)
Shrp

  4.85

16.51
  3.91%
10.49%
22.40%
  1.87%
  3.92%
  8.62%
  0.12%
  0.38

22.04
  4.62%
  8.36%
19.81%
  1.51%
  4.08%
  6.85%
  0.14%
  0.35

26.61
  5.09%
  7.22%
18.05%
 1.24%
  4.38%
  5.98%
  0.15%
  0.33

25
  7.1%
  7.0%
18.0%
  1.0%
  5.7%
  6.0%
  0.1%
  0.33

q s

 � q s

R
� R
r
� r
ep� (x ,R)
Shrp

  4.95

15.45
  3.72%
11.17%
23.62%
  0.89%
  4.96%
10.27%
  0.11%
  0.44

20.59
  4.26%
  8.76%
20.29%
  0.44%
  5.15%
  8.32%
  0.13%
  0.41

24.77
  4.57%
  7.50%
18.10%
  0.07%
  5.55%
  7.43%
  0.15%
  0.41

It is clear from Table 5  that for values of   b  around 4.75 - 5.00 and  a  around 0.25 - 0.40

all moments are close to the moments observed in the market.  Most significant is the fact that

around this region of the parameter space all model statistics match simultaneously the moments

and premium in the empirical record.  We show later that the model with these parameter values

exhibit qualitative dynamic properties such as forecastability of returns and stochastic volatility

which are similar to those observed in the empirical record. 
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The fact that our model matches simultaneously the moments and the diverse phenomena

associated with market volatility provides strong support for our theory.  However, a property of

simultaneous explanation of diverse phenomena by a single model rather than a specialized model

for each phenomenon, is a crucial property any good theory of market volatility must have.

The results in Table 5 are due primarily to the two factors discussed: intensity of fat tails and

asymmetry.  We have already commented on evidence regarding asymmetry.  We add the fact that it

is well documented that the distribution of asset returns exhibit fat tails (e.g. see Fama (1965) and

Shiller (1981)).  It is natural to ask where these tails come from.  Our theory proposes that these fat

tails in returns come from fat tails in the probability models of agents’ beliefs. 

We do not propose that the exact parameter values of  a  or  b have particular significance. 

Indeed, since the parameters  also measure intensity of optimism, there is some
� x

y > 0 ,
� z

y > 0

substitution between  and  b   hence there exists a manifold of parameter values for which(
� x

y ,
� z

y )

the model simulations would approximate the empirical record .  Our procedure has been to select

the largest feasible values of   and then seek values for (a , b) to match the data.  Table
� x

y > 0,
� z

y > 0

5 is the results.  However, the stronger component of our conclusions is qualitative.  We maintain

that our theoretical conclusion are general and consist of three parts:  

1.  Asset pricing is a non stationary process reflecting technological and institutional

change in our modern economy.  As a result, the true underlying process is not known,

giving rise to a wide diversity of beliefs about profitability of investments.  This diversity is

the main mechanism for propagating market volatility.

2. The first factor of volatility is the high intensity of fat tails of the agents’  conditional

densities: it is the crucial force which generates volatility and low riskless rate.

3. The second component of market volatility is the asymmetry in the belief densities giving

rise to markets in which the frequency of bear states is higher than 50%.

We also add that we arrived at our conclusions without specifying the formal subjective

belief formation models of the agents.  All we specified is how subjective states of belief affect the

deviation of the agents’ forecasts from the stationary empirical forecasts.  Indeed, from the point of

view of a general equilibrium, this is all that matters.  Hence, the role of the Principle of Rationality

consists of two parts.  First, it provides the restrictions on the covariance matrix �   of the belief
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innovations and consequently our modeling choice is restricted only to the parameters . (
� x

y ,
� z

y , a , b)

Second, the Principle of Rationality implies that asymmetry in the frequency of bear or bull states is

compensated by asymmetry in the size of the positive and negative fat tails of the belief densities. 

These factors turned out to be important for the way in which our model works.  The empirical

evidence supports this asymmetry as a real phenomenon.

4.3 Why Does the RBE Resolve the Equity Premium Puzzle?

Risk premia are compensations for subjective risk perception by risk averse agents.  Since

normal degrees of risk aversion are less than 10, to explain the observed risk premia we need to

explain why volatility of an asset justifies the risk premia the market awards it.  In most single agent

models, aggregate consumption is exogenous hence volatility is exogenously fixed.  In such models

the market portfolio is identified with a security whose payoff is aggregate consumption. The

Equity Premium Puzzle is the observation that the small volatility of aggregate consumption growth

rates cannot justify a large equity premium of this security over riskless debt.  Our theory of risk

premia, which is based on the diversity of beliefs, takes a very different approach. 

Heterogenous beliefs cause diverse individual consumption growth rates even if aggregate

consumption is exogenous, which is the case in our model.  Hence, individual consumption growth

rates need not equal the aggregate rate.  Since the agents’ states of belief are as essential to them as

the stochastic aggregate growth rate, they do not seek to own a portfolio whose payoff is aggregate

consumption.  Moreover, they disagree on the riskiness of this hypothetical asset.  As a result, we

do not focus on the relation between asset returns and aggregate consumption growth but instead,

on the relation between asset returns and the volatility of individual consumption growth rates.  We

can thus sum up the factors contributing to the formation of risk premia in Table 5.

(i) Low riskless rate and market volatility. In discussing Table 3 we noted that low riskless rate is a

direct consequence of the high volatility of the RBE which creates added perceived risk.  This

added riskiness is called "Endogenous Uncertainty."

(ii) Higher volatility of individual consumption growth rates and correlation with x which is less

than 1. It is clear that to satisfy individual Euler equations the standard problem of the Equity

Premium Puzzle cannot arise.  The key question is how volatile do individual consumption growth 
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rates need to be in order to generate an equity premium of 6% and a riskless rate of 1%?  The

answer is: not very much.  For the case  a = 0.40  and b = 4.85 in Table 5 we find that

although , the standard deviation of individual consumption growth rates is only  0.038�

x
� 0.03256

and the correlation between individual consumption growth rate and  x  is only 0.83 (compared to

1.00 in a representative household model).  Both figures are compatible with survey data showing

individual consumption growth are more volatile than the aggregate.  Finally, we note that such

volatility of consumption growth cannot occur in a single agent model since in that economy

consumption growth rate is determined exogenously.  More generally, in our view single agent

models are ill suited for the study of phenomena associated with market volatility.

5. Characteristics of Volatility II: Predictability of Returns and Stochastic Volatility

We turn now to two other dimensions of asset price dynamics and market volatility with a

view to compare predictions of our theory with the empirical record.  More specifically, we study

the predictability of stock returns and stochastic volatility, or GARCH, properties of stock prices

and returns.  All results reported below were computed for a sample of 20,000 equilibrium data

points generated by Monte Carlo simulation of our model with  a =  0.40  and  b = 4.85  in Table 5.

5.1. Predictability of stock returns

The problem of predictability of risky returns generated an extensive literature in empirical

finance (e.g. Fama and French (1988a,1998b), Poterba and Summers (1988), Campbell and Shiller

(1988), Timmermann and Paye (2003)).  This debate is contrasted with the simple theoretical

observation that under risk aversion asset prices and returns are not martingales, hence they

contain a predictable component.  It appears the disagreement is not about the empirical record

itself but about the interpretation of the record and about the stability of estimated forecasting

models.  For example, Timmermann and Paye (2003)  report parameter instability in a sequence of

models, estimated for different periods, for which out of sample predictions are unstable and

inaccurate.   Here we focus only on the empirical record.

We examine the following: (i) Variance Ratio statistic; (ii) autocorrelation of returns and

of price/dividend ratios; (iii) regressions of cumulative returns, and  (iv) the predictive power of
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the dividend yield.  We first introduce notation.  Let  be the log of gross one�
t � log[

(q s
t � 1)e

xt

q s
t � 1

]

year stock return,  be the cumulative log-return of length  k  from  t-k+1 to  t,  and� k
t �

� k � 1
i � 0

�
t � i

be the cumulative log-return over a  k-year horizon from t+1 to  t+k.� k
t 	 k �

� k
j � 1

�
t 	 j

5.1a Variance Ratio Test

Define the variance-ratio statistic by .  It converges to one if returnsVR(k) �
var( � k

t )

(k var( �
t))

are uncorrelated.  However, if returns are negatively autocorrelated at some lags, the ratio is less

than one.  Our results show that there exists a significant higher order autocorrelation in stock

returns hence there is a long run predictability which is consistent with U.S. statistics on stock

returns, as reported in Poterba and Summers (1988).  In Figure 3 we present a plot of the

variance ratios computed from our model.  For  k >1 the ratio is less than 1 and declines with  k.

FIGURE 3 PLACE HERE

In Table 6 we report computed values of the ratios for k = 1, 2, ..., 10 and compare them

with ratios computed for U.S. stocks by Poterba and Summers ((1988) ,Table 2, line 3)  for k = 1,

2,...,8.   Our model’s prediction is very close to the U.S. empirical record

Table 6: Variance Ratios for NYSE 1926 - 1985

k 1 2 3 4 5 6 7 8 9 10

VR(k) 1.00 0.84 0.72 0.63 0.57 0.50 0.45 0.41 0.37 0.34

U.S. 1.00 0.96 0.84 0.75 0.64 0.52 0.40 0.35 --- ---

5.1b The Autocorrelation of Log-Returns and Price-Dividend ratios

In Tables 7 we report the autocorrelation function of log annual returns.   Our model 

Table 7: Autocorrelation of Log-Returns

Model Empirical Recordcorr( 
 t , 
 t � i )

i = 1
i = 2
i = 3
i = 4
i = 5

-0.163
-0.096
-0.066
-0.035
-0.037

   0.070
 -0.170
 -0.050
 -0.110
 -0.040

predicts negatively autocorrelated returns at all lags.  This implies a long horizon mean reversion
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of the kind documented extensively by Poterba and Summers (1988), Fama and French (1998a)

and Campbell and Shiller (1988).   Thus, apart from the very short returns which exhibit positive

autocorrelation, the model reproduces reasonably well the empirical record.

In Table 8 we report the autocorrelation function of the price-dividend ratio.  Table shows

the model generates a highly autocorrelated price/dividend ratio which matches reasonably well

the behavior observed in the U.S. stock market data.  The empirical record in Tables 7 and 8 is for

NYSE data covering the period 1926-1995 as reported in Barberis et al. (2001).

Table 8: Autocorrelation of Price-Dividend Ratio

Model Empirical Recordcorr(q s
t ,q s

t � i)

i = 1
i = 2
i = 3
i = 4
i = 5

0.691
0.479
0.331
0.228
0.147

0.700
0.500
0.450
0.430
0.400

5.1c Mean Reversion of Log-Returns

Mean reversion of stock returns was studied under several models.  We compare our

results with the results of Fama and French (1988a).  Thus, consider the regression model

(17) .� k
t � k ��� k �

�
k
� k

t ��� t ,k

The evidence suggests that stock prices have a random-walk and a stationary component (see

Fama and French (1988a)), depending upon the horizon  k.  If there was no stationary component

the slopes  in (17) would be 0 for all k.  If there was no random-walk component the slopes
�

k

would approach  -0.5  for large values of k.  When prices have both a random walk and a slowly

decaying stationary components, the slopes   in (17) should form a U-shaped pattern, starting
�

k

around 0 for short horizons, becoming more negative as k increases, and then moving back to 0 as

the random walk component begins to dominate at very long horizons.  Our model produces

exactly this pattern.  Figure 4 and Table 9  report such a pattern.

FIGURE 4 PLACE HERE
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Table 9: Properties of Returns from regression (17)

k      k      k     R 2 �
k R 2 �

k R 2 �
k

1 
2
3
4 
5
6 
7 
8
9
10

 0.0267 
 0.0637 
 0.0952 
 0.1245 
 0.1544 
 0.1773 
 0.1872 
 0.1915 
 0.1902 
 0.1833 

 -0.1634 
 -0.2524 
 -0.3085 
 -0.3528 
 -0.3930 
 -0.4211 
 -0.4327 
 -0.4377 
 -0.4361 
 -0.4281 

11 
12
13
14
15
16
17
18
19
20

 0.1753 
 0.1708 
 0.1649 
 0.1610 
 0.1564 
 0.1609 
 0.1584 
 0.1571 
 0.1522 
 0.1504 

 -0.4186 
 -0.4131 
 -0.4060 
 -0.4012 
 -0.3953 
 -0.4010 
 -0.3979 
 -0.3963 
 -0.3901 
 -0.3878 

31 
32
33
34
35
36
37
38
39
40

 0.1076 
 0.1009 
 0.0970 
 0.0957 
 0.0922 
 0.0906 
 0.0887 
 0.0886 
 0.0891 
 0.0865 

 -0.3282
 -0.3177
 -0.3116
 -0.3093
 -0.3038
 -0.3009
 -0.2977
 -0.2977
 -0.2984
 -0.2940

5.1d Dividend Yield as a Predictor of Future Stock Returns

The papers cited above show that the price/dividend ratio is the best explanatory variable

of long returns.   To test this fact in our model we consider the following regression model

(18) .� k
t � k �

�
k ��� k (Dt / �qs

t � 1) ��� t ,k

The empirical evidence reported in Fama and French (1988b) shows that the power of the

dividend yields to forecast stock returns, measured by regression coefficient of (18), increasesR2

with the return horizon. We find that our model captures the main features of the empirical

evidence and we report it in Table 10.

Table 10: The behavior of the regression slopes in (18)

Time horizon   Model Empirical Record

k   � k R 2 � k R 2

1  
2  
3  
4  

  4.86 
  8.30 
 10.66 
 12.38 

 0.08 
 0.14 
 0.18 
 0.21 

   5.32 
   9.08 
  11.73 
  13.44 

 0.07
 0.11
 0.15
 0.17

To conclude the discussion of predictability, we observe that the empirical evidence

reported by Fama and French (1998a, 1998b), Campbell and Shiller (1988), Poterba and Summers

(1998) and others is consistent with asset price theories in which time-varying expected returns

generate predictable, mean-reverting, components of prices (see Summers (1986)). The important

economic question, motivated but left unresolved by these papers, is what drives the predictability
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of returns implied by such mean-reverting components of prices?  One component of the answer

is the persistence of the dividend growth rate via the equilibrium map (5).  Our theory offers a

second and stronger persistent mechanism which is also seen in (5).  It shows these results are

primarily driven by the dynamics of market state of beliefs which exhibit correlation across agents

and persistence over time.  Agents experience bull and bear states of beliefs.  This causes their

perception of risk to change and expected returns to vary over time.  Equilibrium asset prices are

functions of the state of belief which exhibit memory and mean reversion.  Hence both prices and

returns exhibit these same properties.

5.2 GARCH Behavior of the Price-dividend Ratio and of the Risky Returns

The presence of stochastic volatility in asset prices and returns has been well documented

(e.g. Bollerslev, Engle and Nelson (1994), Brock and LeBaron (1996)).  Indeed, in a partial

equilibrium context it is standard to model the price of an asset by a stochastic differential

equation which assumes an exogenously driven stochastic volatility.  But where does stochastic

volatility come from?  The dividend process certainly does not exhibit stochastic volatility hence it

cannot be the source of it.  One of the most important implication of our theory is that it explains

why asset prices and returns exhibit stochastic volatility.  We start by presenting in Figures 5 and

6 the results of simulated 500 observations: in Figure 5 we report equilibrium price/dividend ratios

and in Figure 6 the associated risky rates of return.   Casual inspection of Figures 5 and 6 reveals

that volatility is time varying with such time variability in the variance of both prices and returns. 

However, GARCH behavior is more subtle than volatility clustering as it requires volatility to be

persistent, exhibiting serial correlation and this requires a formal test.

FIGURE 5 PLACE HERE

FIGURE 6 PLACE HERE

To formally test the GARCH property of the price/dividend ratio and of the risky return

we used the 20,000 equilibrium observations discussed in the previous section.  Using these data

we estimated the following econometric model of the dynamics of the price/dividend ratio

q s
t ���

q
� µqq s

t � 1 � � qt

(19) � q
t � N(0 , h q

t )
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.h q
t �

� q
0 �

� q
1( � qt � 1)2 ���

q
1h q

t � 1
Since the price dividend ratio is postulated to be an AR(1) process, the process in (19) is

GARCH(1,1).  Similarly, for the risky rates of return we postulated the econometric model
� s

t �	��
�� µ 
 q
s

t � � 
 t

(20) � 
t � N(0 , h 
t )

.h 
t �
�

0 �

�

1( � 
t � 1)2 ��� 
1h 
t � 1

For a specification of (19) and (20) we have also tested ARCH(1) and GARCH(2,1) but have

concluded that the proposed GARCH(1,1) as in (19)-(20) , describes best the behavior of the data

over time.  Due to the large sample we ignore standard error and report our model implies that

the estimated model for the price-dividend ratio satisfies the GARCH(1,1) specification

q s
t � 8.11907 � 0.69137q s

t � 1 � �
qt

� qt � N(0 , h q
t )

.h q
t � 3.85997 � 0.01634( � qt � 1)2 � 0.70539h q

t � 1 , R2 � 0.477

For the risky rates of return the estimated model satisfies the GARCH(1,1) specification
�

t �� 0.22024 � 0.01039q s
t � � 
t

� 
t � N(0 , h 
t )

.h 
t � 0.00720 � 0.10914( � 
t � 1)2 � 0.61160h 
t � 1 , R2 � 0.111

Stochastic volatility in our model is the direct consequence of the dynamics of the market

state of beliefs .   To understand why note first that for any pattern of values whichzt � (z1
t , z2

t )

 take, persistence of beliefs and correlation across agents cause the persistence of that(z1
t , z2

t )

pattern.  When agents disagree  they offset the demands of each other and as that( i.e. z1
t z2

t <0)

pattern persists, prices do not need to change by much for markets to clear.   In such periods

prices exhibit low volatile and persistence of belief states induce persistence of low volatility. 

When agents agree they compete for the same assets and prices are determined by(i.e. z1
t z2

t > 0)

difference in intensity of their beliefs.  Variations in the degree of the bull or bear states generate

high volatility in asset prices and returns.  Persistence of beliefs cause such high volatility regimes

to exhibit persistence.  Thus, the level of market volatility is time dependent.  It changes with the

market state of beliefs  and hence it has a predictable component as in (19)-(20).   From azt

formal perspective, this is an extension of a similar result in Kurz and Motolese (2001).
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The virtue of the above argument is that it explains the presence of stochastic volatility as

an endogenous consequence of equilibrium dynamics.  Some “fundamental”  shocks (such as an

oil shock) surely cause market volatility, but it has been empirically established that market

volatility cannot be explained consistently by any repeated “fundamental”  exogenous shocks

(compare with Timmermann and Pesaran (1995)).  Hence, our explanation of stochastic volatility

is consistent with the empirical evidence and is compatible with our general paradigm which views

market expectations as the primary cause of market volatility.

6. Concluding Remarks

This paper presents a unified paradigm proposing that market volatility is driven primarily

by market expectations.  This conclusion extends and supports our previous results (cited earlier)

on the subject.  We constructed a simple model and tested it on all aspects of market volatility and

found the model to match well the empirical record.  The structure of the model is applicable to

any phenomenon associated with market volatility since our main results are qualitative rather

than quantitative.  These results are driven by the fact that, under the Rational Belief principle, we

do not write down a formal belief formation model.  For a general equilibrium formulation all we

need is a quantitative measure of how forecasts of an agent deviate from the empirical forecast.  

This is accomplished via the main tool of this paper which is the individual and market states of

belief.  These are indexes identifying the distribution of conditional probability functions of the

agents at each date.  Using this tool we show that there are two simple forces through which

beliefs drive volatility:  (i) over confidence of an agent’  forecasts described by amplification of the

agent’s probabilities which, in turn, generate densities with fat tails, and (ii) asymmetry in the

frequency of bull or bear states.  Although these principles can be satisfied by different belief

formation models, the simplest way to think of them is as an expression of animal spirits.

The important role market states of belief play in our theory is reflected in the fact that

agents hold diverse individual forecasts of future market states of belief when they write down

their Euler equations.  In a mathematical sense our model is then a fully developed general

equilibrium structure within which Keynes’  intuitive “Beauty Contest”  aspect of asset pricing is

formally well defined.  However, on a deeper level heterogenous individual forecasts of future
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market states of belief is entirely equivalent to heterogenous forecasts of future asset prices and

interest rates and heterogenous price forecasting is the essence of our theory.  In a general

equilibrium context the tool of a market state of belief is a formal method for allowing agents to

be rational and use the same equilibrium map (5) yet make heterogenous price forecasts.  This

suggest that we could build models in which agents make heterogenous price forecasts but then it

will be equivalent to a model in which they know the equilibrium map but make heterogenous

forecasts of an object like the market state of beliefs.
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Appendix A: construction of the random variables  ρj
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the stationary forecast. Agents pick the frequency parameter a and the intensity parameter b.

Given that we can carry out computations only with standard normal variables we need to
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t&ā)

where ,  and .b̄ ' bFu j
t
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We need another condition to make sure  is a density function for all . This requiresp(Dj
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Appendix B: Statement of the Rationality Conditions

The rationality of belief principle requires that 

(B1) has the same joint empirical distribution as  .Ψt%1(u
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To clarify the mathematical development below it is useful to keep in mind the consistency

conditions between yj and zj.  These conditions require that the realizations of the two are the same

and hence they have the same marginal empirical distribution.  This does not mean we require the

covariance between yj and any state variable to be the same as the covariance implied by the system

(6) between  zj and that variable .   Indeed, the presence of in all equations of theD
j
t%1(u

j
t )

perception model (15) generates covariance between yj and other state variables which is not

present in (6).  The idea is that any covariance between an agent’s own state of belief and other

variables in the economy are strictly in the mind of the agent and no rationality conditions are

imposed on them.  A striking way to see this is to note that under the condition of anonymity an

agent sees no relationship between his own state of belief and the market belief.  We then assume

that in the subjective perception model  Cov (yj , zi) = 0. 

We now show that (B1)  fully specify the covariance matrix    of the three dimensionalE
DD

vector  in the  perception models (15)-(16).  To see this rewrite (11a) in the form#D
j
t%1
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Given parameters (a , b, )  all magnitudes on the right of  (B2) are known and this pins down the8y j

covariance matrix  .   Since perception models include (9), the covariance  Ω  of the innovationsE
DD

is specified when   is known.  We now show that these are pinned down by therj / Cov(w , y j )

condition of no serial correlation of   . Qt%1(u j
t )
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t )

public information.   To see why recall that    henceQt%1(u j
t ) ' wt%1 & Awt

.E[Qt%1(u j
t )Qt( u j

t&1 )] ' E[Qt%1( u j
t )(wt & Awt&1] ' E[Qt%1( u j

t )(wt)] & E[Qt%1(u j
t )Awt&1] ' 0

To ensure the above we seek conditions on   to ensure   are not correlated with any  all i. rj u j
t w j

t&i

We denote by   the vector of   w  parameters in the  yj  equation (9).  Thenaj ' (8z j

x , 0 , 0)

.u(y j
t%1 ) ' y j

t%1 & r N

j V &1wt%1 ' 8z j y
j

t % ajNwt % #D
y j

t%1 & rjNV
&1(Awt % 8y jD

j
t%1 (ut ) % #D

j
t%1 )

The condition    requires   Cov(u j
t%1 , wt) / E[ u j

t%1 , wtN] ' 0 8z j rjN % ajNV & rjNV
&1 AV ' 0

hence the covariance vector   is determined by the equationrj

(B3) .[AN & 8z j I ] V &1 rjN ' aj

We study here only the symmetric case .   In this case we have that8z 1 ' 8z 2 ' 8z

  

 AN '

8x , 8
z1

x , 8
z2

x

0 , 8z , 0
0 , 0 , 8z

hence the matrix   is singular with the last two rows being zero.  This is compatible with[AN & 8z I]

the fact that   hence, only one components of   rj  matters.  In accord with anonymityaj ' (8z
x , 0 , 0)
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we set  Cov (z1 , yj )  =  Cov( z2 , yj)  =  0  and  (B3) determines  rj.   Finally, when rj  is known, #F2

y j

is pinned down as follows.  Since we know that   ,  we can computeF
2

u j ' var( y j ) & rjNV
&1rj

.#F
2

y j ' ( 1 & 82

z j ) var(y j ) & ajNVaj & 28z j ajNrj using the condition var(y j ) ' var(z j )

Appendix C: the computational model

This appendix explores several computational issues which have not been discussed in the text. We

want to provide here a complete description of the computed equilibrium conditions.

C.1 Equilibrium set and indeterminacy in the riskless economy

To ensure the existence of bounded solutions and hence exclude explosive solutions which

violate transversality we impose quadratic utility penalties on deviation of asset holdings away from

steady state. The penalty functions are:  for stock holdings and  forD 1&(
t

Js

2
(2j

t&0.5)2 D &1&(
t

JB

2
(B j

t )2

bond holdings with . The penalty functions are then subtracted from utility.Js ' JB ' 0.005

Indeterminacy of the optimal portfolio allocation at the riskless steady state is also a

problem for perturbation models with a number of financial assets greater or equal to two. This is

due to the fact that financial assets exhibit the same rate of return in the riskless economy and work

as perfect substitutes. The penalty functions also insure that the steady state solution   and 2
j
t ' 0.5

 is unique.B j
t ' 0

C.2 The revised optimization problem and the system of Euler equations

Given the above, the optimization problem of agent j is then reformulated as follows:

Max
(C j,2j ,B j)

EQ j j
4

t'0

$t 1
1&(

(C j
t ) 1&(

&D 1&(
t

Js

2
(2j

t&0.5) 2
&D &1&(

t

JB

2
(B j

t ) 2 | Ht

subject to:

C j
t % #qs

t 2
j
t % q b

t B j
t ' 7

j
t % ( #qs

t % Dt )2
j
t&1 % B j

t&1

The Euler equations are:

(C j
t )&(#qs

t % D 1&(
t Js(2

j
t&0.5) ' $EQ j

t
[ (C j

t%1 )&((#q s
t%1 % Dt%1) | Ht]

(C j
t )&(q b

t % D &(&1
t JB(B j

t ) ' $EQ j
t
[(C j

t%1 )&( | Ht ]
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After normalization the budget constraint becomes:

c j
t % q s

t 2
j
t % q b

t b j
t ' T % (q s

t % 1)2j
t&1 % b j

t&1 e
&xt

and the Euler equations become:

(c j
t )&(q s

t % Js(2
j
t&0.5) ' $EQ j

t
[ ( c j

t%1 )&( (1 % q s
t%1 )e

(1 & ( )xt%1 | Ht ]

(c j
t )&(q b

t % Jb(b
j

t ) ' $EQ j
t
[ ( c j

t%1 )&( e
&(xt%1 | Ht ]

C.3 The riskless steady state

In the riskless steady state quantities are as follows:

b 1(
'b 2(

' 0, 21(
'22(

' 0.5, c 1(
'c 2(

' T%0.5.

And prices are:

q s
'

$e x ((1&()

1&$e x ((1&()
, q b

' $e &(x (

.

C.4 The perturbation structure

We specify here how we formulated the perturbation model. Let  g  be the perturbation

variable then the perturbation structure of the agent's perception model is as follows:

x j
t%1 ' (1 & λx)x (

% λx xt % λ
x
y ρ̂

j
t%1( ũ j

t , ε ) % ερ̃
x j

t%1

z j1
t%1 ' 8zz 1

t % 8
z
x (xt & x () % 8

z
y $D

j
t%1( #uj

t , g ) % g#D
z j1

t%1

z j2
t%1 ' 8zz 2

t % 8
z
x (xt & x () % 8

z
y $D

j
t%1( #uj

t , g ) % g#D
z j2

t%1

y j
t%1 ' 8z y j

t % 8
z
x ( xt & x () % g #D

y j

t%1

where   as defined in Appendix A.$D
j
t%1( #u j

t , g ) ' µ(#uj
t) % g s( #u j

t )<
j
t%1



6

-

uj > 0 uj < 0

Figure 1: Non-Normal Belief Densities.
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Figure 2: Density of Ψ(uj
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Figure 3: Variance Ratios.
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Figure 4: Properties of Returns from Regression (17).
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