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Abstract: This study critically reviews the scientific literature regarding machine-learning approaches
for optimizing smart bin collection in urban environments. Usually, the problem is modeled within a
dynamic graph framework, where each smart bin’s changing waste level is represented as a node.
Algorithms incorporating Reinforcement Learning (RL), time-series forecasting, and Genetic Algo-
rithms (GA) alongside Graph Neural Networks (GNNs) are analyzed to enhance collection efficiency.
While individual methodologies present limitations in computational demand and adaptability,
their synergistic application offers a holistic solution. From a theoretical point of view, we expect
that the GNN-RL model dynamically adapts to real-time data, the GNN-time series predicts future
bin statuses, and the GNN-GA hybrid optimizes network configurations for accurate predictions,
collectively enhancing waste management efficiency in smart cities.

Keywords: smart bins; routing; graph neural networks; hybrid models

1. Introduction

The role of AI in the domain of smart cities [1–4], especially in garbage collection, has
recently emerged in the landscape of urban development and sustainable practices. In the
contemporary landscape, the exploration of intelligent technologies—encompassing smart
bins, robotic systems, predictive modeling, and optimized routing algorithms—and their
pivotal role in optimizing waste collection processes has become essential. Thinking about
city administration and garbage management, collecting, removing, and re-utilizing the
produced garbage is an arduous task. The rapid accumulation of garbage necessitates a
well-organized and efficient system, with a focus on minimizing the environmental impact
wherever possible. The conventional garbage collection operation, with a rigid routine that
encompasses the continuous reiteration of the combination of manual collection and re-
moval with segregation and recycling tasks, can be both inefficient and resource-consuming.
Consequently, integrating advanced technologies such as AI and smart waste management
solutions is paramount. Pivotal components contributing to this transformation are smart
bins, smart routing, smart segregation, and smart prediction. Hence, a novel approach to
waste management is a characteristic of smart cities.

Smart bins, also called intelligent dumpsters, are the starting point towards smartness
in smart cities from a garbage collection perspective. Their functionality varies between the
alternative proposed implementations, but the core principle lies in the automatic detection
of fill level and smart notifications. The main feature of the bins lies in their integration
with both Internet of Things (IoT) sensors and Artificial Intelligence (AI) software. Despite
various practical alternatives that have been proposed, the core concept remains unchanged.

Collecting garbage from smart bins rationally and efficiently is a critical aspect of
modern waste management, significantly contributing to environmental sustainability, op-
erational efficiency, and cost reduction. The evolution of garbage collection methodologies,
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especially with the integration of technology and smart algorithms, showcases an inter-
esting journey from traditional methods to advanced, AI-driven approaches. The initial
phase in the evolution of garbage collection routes relied heavily on manual planning and
simple heuristics. These methods, while straightforward, often led to suboptimal routes,
increased fuel consumption, and excessive time spent on collection. The need for more
efficient systems led to the adoption of classical algorithms such as the Traveling Salesman
Problem (TSP) and the Vehicle Routing Problem (VRP). TSP, which aims to find the short-
est possible route that visits each location once and returns to the origin point, and VRP,
which extends this concept to multiple vehicles, were foundational in developing more
efficient garbage collection routes. However, these models often struggled with real-world
complexities such as varying bin capacities, traffic conditions, and dynamic scheduling.
The integration of Geographical Information Systems (GIS) into route planning marked a
significant advancement. GIS allowed for the incorporation of real-time geographic data,
traffic patterns, and road networks, enabling more realistic and adaptable route planning.
This integration significantly enhanced the efficiency of routes but still relied heavily on
predefined algorithms and lacked real-time adaptability. Algorithms based on AI, such as
Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs), began to address the
limitations of classical methods. These AI-based models can learn from past data, adapt to
changing scenarios, and even predict future waste generation patterns, leading to more
dynamic and efficient route planning. ANNs, for instance, can analyze vast amounts of
data, learning from various factors such as historical waste levels, seasonal variations, and
public events that might influence waste production. This analysis allows for the prediction
of waste generation patterns and the optimization of collection routes accordingly. GAs,
inspired by the process of natural selection, provide another robust method for route op-
timization. These algorithms generate multiple potential solutions and iteratively refine
them, mimicking the evolutionary process to arrive at the most efficient route. Smart bins
equipped with sensors can relay real-time data on their fill levels, allowing for dynamic
route planning based on actual waste levels rather than fixed schedules. This integration
not only optimizes routes but also ensures that bins are collected at the right time, reducing
overflow and associated environmental impacts.

The focus of this work is anchored in a comprehensive literature review, scrutinizing a
spectrum of routing algorithms pivotal for enhancing waste collection efficiency within
an urban framework, equipped with an interconnected array of intelligent waste bins.
This investigation is not merely descriptive but is also analytical, dissecting the opera-
tional framework and efficacy of these algorithms in the context of smart urban waste
management. Specifically, the contributions of this study are as follows:

• An in-depth exploration and critical analysis of traditional algorithms, primarily
focusing on their application and performance in static graph environments, laying a
foundation for understanding their suitability and limitations in the context of waste
management routing;

• A thorough examination and assessment of Machine-Learning (ML) methodologies
tailored for dynamic graph scenarios, effectively encapsulating the complexities and
real-time dynamics inherent in urban waste collection systems;

• A comparative critique through the lens of a hypothetical case study, methodically
evaluating the efficacy and applicability of both standalone traditional and ML-based
routing strategies, followed by an examination of the synergistic potential of hybrid
ML models in addressing the complexity of waste collection optimization.

This work not only reviews the current landscape of routing algorithms in smart city
waste management but also paves the way for future innovations and methodological
enhancements in this domain. It also concludes by supporting the adoption of hybrid ML
models as a transformative strategy for optimizing the smart bin collection process, paving
the way for the empirical realization of a real case study set against the backdrop of a smart
city in Italy.
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The intended readership of this article encompasses a diverse spectrum of stakeholders,
primarily from academic communities and industry sectors associated with environmental
engineering, urban development, and the burgeoning domain of smart city technologies.
This includes, but is not limited to, academicians and industry experts specializing in AI
and ML, with a particular emphasis on those engaged in the application and advancement
of Graph Neural Networks (GNNs), time-series forecast models, GAs, and sophisticated
optimization algorithms. Furthermore, the insights emerging from this study hold sub-
stantial relevance for municipal waste management entities and urban policy strategists
looking for cutting-edge and sustainable solutions to streamline resource management and
operational efficiency in urban settings.

The structure of the work is as follows. After the introductory part, Section 2 reviews
the related work. Section 3 delineates an array of smart city paradigms. An exploration of
predominant routing algorithms, encompassing both conventional approaches and method-
ologies rooted in ML, is articulated in Section 4. Evaluative metrics form the basis of Section 5,
wherein a critical assessment of the performance metrics associated with each model is under-
taken. Section 6 engages in a comparative analysis, offering a case study on a dynamic graph
while elucidating the advantages and limitations inherent in each paradigm. Finally, Section 7
encapsulates the findings and proposes trajectories for future research endeavors.

Figure 1 presents a visual representation of the work’s structure.

Figure 1. Visual representation of the work’s structure.
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2. Related Work
2.1. Smart Bins and Sensors

Automatic monitoring can be accomplished through the use of sensors mounted on
the bins, thus fulfilling the need for a way to accurately measure the state of each container.
The detection can be visual, where thresholds on fullness are registered, or practical, where
the weight of the content is constantly measured. The available sensors are connected to a
network and can communicate their status on a real-time basis. Hisham et al. [5] used an
ultrasonic sensor mounted on the cover of the dumpster to monitor fullness through the
measurement of distance propagation of emitted sound waves: the elapsed time between
emission and reception of the waves returns the distance between the amount of accumu-
lated waste and cover of the bin, and thus the fullness. Alternatively, Catarinucci et al. [6]
implemented a system based on a weight sensor installed under a double-bottom inside of
their bins.

Internet of Things (IoT) consists of the deployment of wireless communication systems,
spanning from close-range NFC to the extended reach of Sigfox. Therefore, according to
the desired characteristics of the infrastructure under development, different wireless IoT
systems are available, as shown in Table 1. A trade-off between the cost of implementation,
the required distance of transmission, desired maximum bitrate, and maximum frequency
band is needed.

Table 1. Characteristics of different available wireless IoT systems.

IoT Wireless System Distance Max Bitrate Main Freq. Bands

NFC <0.1 m 848 kbps 13.56 MHz

RFID 1–10 m 100 kbps to 4 Mbps

125 kHz,
134 kHz,

13.56 MHz,
2.4 GHz,
5.8 GHz

Bluetooth 10–100 m 3 Mbps 2.4 GHz

Zigbee 10–100 m 250 kbps 2.4 GHz

Thread 10–100 m 250 kbps 2.4 GHz

Wi-Fi 10–100 m 867 Mbps 2.4 GHz,
5 GHz

WSN 10 m–1 km kbps to Mbps

433 MHz,
868 MHz,
915 MHz,
2.4 GHz,
5.8 GHz

eMTC 1–10 km 1 Mbps 800–900 MHz

NB-IoT 1–10 km 50 kbps 800–900 MHz

EC-GSM-IoT 1–10 km 240 kbps 900–1800 MHz

LoRaWAN 5–10 km 50 kbps 868 MHz

Sigfox 10–50 km 600 bps 868 MHz

Likotiko et al. [7] suggest the deployment of a smart bin integrated with an Ar-
duino ultrasonic sensor powered by a battery, and configured to establish connectivity
through a Wi-Fi Shield equipped with GSM/GPRS capabilities. Chowdhury et al. [8] un-
derline the effectiveness of RFID sensors in the smart waste management field, as they can
(i) adapt to resist both substances and conditions and are (ii) simple, (iii) not expensive,
and (iv) versatile.
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Kumari et al. [9] suggest that it is possible to integrate smart bins with small solar
panels. Sigongan et al. [10] deployed a solar-panel-based system. Their smart bin is
equipped with both a battery and a Solar Panel Mono-crystalline 200-watt with MC4
Photovoltaic Connector. Solar energy is converted through a 12V DC to a 220–230V AC Car
Home Solar Power Inverter with Buzzer. Notifications are sent via SMS.

2.2. Smart Bins and Connectivity

A network of bins enables live communication, as the bins have a strong connection
and the capability to send messages. In a cloud-based waste monitoring system each bin
sends the registered data to the headquarters. Once the data are received through the
system of smart notification, they are analyzed and evaluated through AI and ML models.

The prospect of devising integrated systems boasting inherent intelligence has be-
come a reality due to recent advancements in microcontroller and microcomputer technolo-
gies, which are equipped with operating systems. Furthermore, with the recent promi-
nence of the era of edge computing, systems can autonomously process information lo-
cally. Simultaneously, cloud-based systems, accessible over the Internet, offer an alternative
paradigm by offloading computational tasks to connected machines. As a consequence,
the effective redistribution of the computational load and a new cost-effective strategy led
to the efficiency of information processing and management across various applications.
Ghahramani et al. [11] concur on the advantage of using a microcontroller-based platform
for the scope of smart routing.

In addition to cloud connectivity, smart bins often interface with external systems
and applications through Application Programming Interfaces (APIs). These APIs serve
as bridges that facilitate communication between the smart bin and other components of
the broader smart city infrastructure. For instance, by exposing relevant data and func-
tionalities through well-defined APIs, smart bins can seamlessly interact with municipal
waste management systems, transportation networks, or even mobile applications. This
interconnectedness not only enhances the overall efficiency of waste management but
also fosters the development of a comprehensive and integrated smart city ecosystem. As
different levels and thresholds of fullness are available, an API is used to query the state of
each component connected to the network. Each bin outputs its state (e.g., full or not) and
the action to take (e.g., leave it as is or empty it). Once a list of bins is created, it is input to
sorting algorithms. Each bin has a specific IP address and geographic coordinates, as it is
crucial to optimize the routing of the vehicles for garbage collection.

MQTT, or Message Queuing Telemetry Transport, excels in supporting efficient data
exchange between devices operating in resource-limited environments, particularly within
the burgeoning Internet of Things (IoT) landscape. Its publish–subscribe architecture
streamlines communication, enabling devices to publish messages to specified topics while
others subscribe to receive those messages. MQTT’s lightweight design, characterized by its
low overhead, renders it an ideal choice for applications demanding minimal bandwidth or
processing power. It facilitates real-time data exchange, ensuring seamless communication
between IoT devices and backend systems, enabling scalable and efficient data-driven
operations. Nagesh et al. [12] analyze the integration of MQTT with Map APIs within a
Smart Garbage Management scenario. The system described involves deploying sensor-
equipped garbage bins with low-cost embedded communication devices to monitor waste
levels. Each bin has a unique identifier, allowing easy tracking via a web interface and
smartphone app. Integration with Google Maps via APIs enables real-time tracking. When
a bin reaches a preset threshold, its status is transmitted via MQTT messages, allowing
municipal authorities to take immediate action. Additional features include bin tracking,
identifying the nearest bin, and remote garbage level indication. Python Big Data Analytics
is exploited to visualize the waste collection route heuristics of smart bin data in [13], where
the authors present a comprehensive set of waste management APIs, leveraging the power
of data science libraries to transform waste management data into actionable insights for
various stakeholders. These APIs effectively process and visualize waste management
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data, providing a wealth of information for council administrators, waste management
contractors, and the general public. They offer visualization options, including maps of
smart bin locations and fullness levels, bar charts of fullness frequency, and line charts of
fullness over time. Additionally, the APIs generate route optimization solutions for waste
collection trucks, reducing operational costs. The code developed for these APIs exhibits
modularity and extensibility, making it readily transferable to the analyses of data from
other smart bin systems and other local government areas.

2.3. Classic Algorithms

Norhafezah et al. [14] utilize Dijkstra’s algorithm to simulate and optimize municipal
solid waste collection routes. It aims to address inefficiencies caused by unsystematic
planning and multiple collection points by shortening travel distances, thereby enhancing
cost-effectiveness and reducing the time and costs associated with waste management.

Priyadarshi et al. [15] discuss optimized waste collection strategies, mainly focusing
on dynamic routing in resource-constrained societies. They highlight the importance of
real-time data in calculating optimal routes and introduce models that consider various
real-time considerations such as waste levels in bins and the location of collection vehicles.
The models aim to maximize waste collection while minimizing travel distance, utilizing a
mixed-integer linear programming approach for the solution.

Barth et al. [16] present the main highlights from the current scientific literature to
optimize solid waste collection. The reviewed approaches encompass IoT, web GIS systems,
tactical planning, discrete event simulation, and stochastic optimization.

2.4. ML Models

Liang et al. [17] offers a concise review of modern solutions, including various meta-
heuristic algorithms such as ant colony optimization, simulated annealing, and GAs, among
others. The study also explores Geographic Information Systems (GIS) as a tool for WCRP. It
concludes with a performance analysis using real-world benchmarks and outlines potential
areas for future research in the field of waste collection routing. Cha et al. [18] present a new
approach to improve waste generation rate (WGR) prediction using hybrid ML models.
Specifically, two primary ML algorithms were used: Artificial Neural Network (multi-layer
perceptron) (MLP) and Support Vector Machine Regression (SVMR). Categorical Princi-
pal Component Analysis (CATPCA) was applied to these algorithms. Furthermore, four
predictive models were developed: ANN (MLP), SVMR, CATPCA—ANN (MLP), and
CATPCA—SVMR. According to the authors, the CATPCA—ANN (MLP) model showed
improvements over the ANN (MLP) model in certain statistical metrics. The CATPCA—
SVMR model significantly outperformed the SVMR model across all statistical metrics.
Specifically, the best performance was observed in the CATPCA—SVMR model, and the
mean Daily Waste Generation Rate (DWGR) was very close between the observed values
and the predicted values (1161.52 kg/m2) for the CATPCA—SVMR model. As a result, the
use of CATPCA allows for the effective utilization of ML algorithms that are typically less
effective with categorical variables.

Lilhore et al. [19] discuss a study on improving waste management in the context
of increasing industrialization and smart city development. The work emphasizes the
importance of waste collection, classification, and planning, particularly for recycling pro-
cesses that aim to minimize pollution and promote sustainability. The research introduces
a smart waste classification system utilizing a hybrid model that combines Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. The model
incorporates transfer learning, leveraging the ImageNet database to improve its ability to
classify and predict waste categories into recyclable and organic. It addresses overfitting
and data sampling issues through an improved data augmentation process. The authors
support the evidence that the hybrid model showed superior performance, achieving the
highest precision compared to other models. It also demonstrated the best optimization and
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accuracy with the least modeling loss during training, validation, and testing, attributed to
the Adaptive Moment Estimation (AME) optimization algorithm.

Zhang et al. [20] focus on the challenges and advancements in using ML to improve
waste management processes such as collection, sorting, recycling, and disposal. The paper
introduces an optimized hybrid DL model specifically designed for waste classification. The
model utilizes a multi-step approach including data collection and preprocessing, feature
extraction using a Convolutional Neural Network (CNN) (specifically AlexNet), waste
prediction using a Deep Belief Network (DBN), and finally hyperparameter optimization
with Optuna to fine-tune the model.

Arunkumar et al. [21] review the development of an innovative waste management
system for smart cities, leveraging the capabilities of the Internet of Things (IoT) and ML. In
particular, the study utilizes a hybrid approach called Decision Tree with Extreme Learning
Machine (DT-ELM) to analyze city waste data. Unlike single classifiers that require time-
consuming iterative training, the proposed hybrid model is more efficient. Decision trees
effectively classify based on selected features, and additional weights are calculated to
enhance classification accuracy. Entropy theory is used to map the decision tree to ELM,
aiming for accurate prediction results.

3. Smart City Modelization: Model Review

Modeling a smart city encompasses a diverse range of perspectives and methodologies,
often employing a combination of technological tools and frameworks to capture the
intricacies of urban life. While graphs hold immense value for visualizing and analyzing
relationships within an urban center, there exist various alternative approaches to modeling
a smart city.

Numerous alternatives exist for representing and modeling the road network of a
city: (i) raster representation, (ii) vector representation, (iii) topology-based representation,
(iv) hierarchical representation, (v) graphical models, (vi) 3D models, and (vii) graphs
(static or dynamic).

In raster representation, the entire city is divided into cells, each of which represents a
portion of the whole urban network. The presence or absence of road segments in a cell is
indicated by an assigned value in pixels. In the obtained rendering, roads are depicted as
lines of pixels. Depending on the size of each unit of the produced matrix-like structure,
a certain level of detail in the representation is reached. The use of smaller cells brings
the advantage of higher resolution and precision, enabling a more detailed depiction of
the urban network, but this necessitates increased computational resources and memory
allocation. Walter et al. [22] explain that shortest path analysis in raster maps can be done
in four steps: (i) during the pre-processing phase the input map is converted into binary
format, where 1 denotes a traversable trait of the map (i.e., a road) and 0 an inaccessible
area of the map; (ii) the map is skeletonized (i.e., a process where a complex shape is
reduced to a minimal form that represents its general structure; specifically, it involves
converting the shape into a ’skeleton’ by stripping away the majority of the shape’s body
while preserving its fundamental topology) and converted into a graph; (iii) the shortest
path algorithm is applied; (iv) smoothing is performed and the resulting path is generated
via visibility calculations. Taillandier et al. [23] acknowledge that the prevalence of roadmap
representation via raster models is attributed to their simplicity of implementation and
their demand for fewer data for the modeling. Raster representation is well suited for
surface modeling or grid-based operations. The major drawback is that width, direction,
and other geometric details may be lost.

Compared to raster representation, a higher degree of precision is achievable via
vector representation. In the latter, each road of the city (i.e., a segment of the urban
network) is rendered as a line with associated attributes related to its characteristics (e.g.,
length, width, direction). Vector representation excels in handling dynamic attributes such
as real-time traffic data, road conditions, and speed limits, thus enhancing the ability to
model and analyze the changing nature of the road network. Consequently, this leads
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to the exploitation of connectivity, exploration of relationships, discovery of patterns,
and holistic analysis of the available road network. Chen et al. [24] acknowledge the
importance of vector representation for city road networks, as it enhances the discovery
of the consequences of the combined effects of various origins on the network of the
city, and propose a road vectorization mapping network framework. Chenjing et al. [25]
achieve road vectorization starting from historical maps input as raster images through
the following steps: (i) the map is converted into binary format and skeletonized; (ii) each
trait of the skeletons is approximated using a set of connected straight segments; (iii) each
segment is associated with symbols corresponding to the state of the road.

Topology-based representation exploits connectivity and relationships within the
streets of the city, providing insights for network analysis works. In this representation,
spatial coordinates and attributes take a secondary role, as the primary goal is to acquire
knowledge about the structure and behavior of the road network. This type of representa-
tion often results in more efficient storage and processing compared to detailed geometric
representations, especially for large and complex road networks. An advantage in the
usage of the topology-based approach for road representation is that it can accommodate
dynamic changes in the network, making it suitable for real-time applications, and par-
ticularly suitable for scenarios where the road network is subject to frequent updates or
where real-time traffic information needs to be considered. Jiang et al. [26] observed that
the topological representation of streets offers a better analytical means for the geographical
knowledge of streets, as vehicle flows are correlated to the morphological properties of
streets. Spadon et al. [27] developed a description of cities through the usage of vectors
of topological features derived from the roads, modeling cities as a complex network and
ultimately identifying groups of cities by extracting features from their topology.

Hierarchical representation networks are organized based on an importance criterion,
as roads are considered with a different significance level according to factors such as
capacity, speed, or a specific computed metric. This representation is valuable and essential
in modeling scenarios where traffic flow and the subsequent speed of occurrence are critical
factors as it enables the study of traffic volume and provides insights into such analyses.
Song et al. [28] handled efficient routing by using a hierarchical model based on community
structure on road networks.

Graphical models represent each road intersection as a node, and the relationships
between each couple of nodes (i.e., the arc) can be modeled based on historical data,
real-time traffic conditions, or other relevant time-dependent factors that reflect their
probabilistic dependencies. This approach is a suitable means to capture the probabilistic
relationships and variable interactions within the complex system of the network of a city’s
streets. Graphical models are a flexible means that allow for the representation of dynamic
systems where conditions change over time through graphical structures. Examples of
graphical models are Bayesian networks and Markov models. Jeong et al. [29] used a
Bayesian network to develop a risk-adaptive roadmap for autonomous vehicles, while
Alterovitz et al. [30] embraced Markov models for a roadmap maximizing the probability
of avoiding collisions.

Three-dimensional models are a valuable method to represent cities by incorporating
3D structures, allowing for capturing both the horizontal layout of streets and buildings and
the vertical dimension, thus including variations in terrain and elevation. This approach
can be useful for simulating traffic flow in complex urban environments, including features
such as hills, valleys, bridges, and tunnels, consequently allowing for a more accurate
visualization of the city landscape and the spatial relationships between different elements.
Modelling the urban network to include elevation data enhances the precision of the
simulation by considering the impact of factors such as slope or surrounding changes on
vehicle movement. Vitalis et al. [31] acknowledge the importance of 3D city models in
applications such as evacuation scenarios and energy consumption estimation as both
geometry and semantic information is considered.
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Graph theory is fundamental for modeling transportation networks and utilities within
the city. Nodes can represent intersections, buildings, or people, while edges can represent
roads, pathways, or relationships. The following summarizes the basic formalization of
this data structure.

Graphs excel in capturing the relationships and networks that define a smart city’s
infrastructure, from its roads and utilities to its communication networks. This intuitive
representation allows for easy expansion and modification, adapting to the ever-changing
landscape of urban environments. Specialized algorithms from the scientific literature
enable the efficient calculation of shortest paths, network flows, and connectivity, critical
aspects of transportation planning, logistics, and infrastructure management. Moreover,
the scalability of modern graph databases and algorithms makes them well-suited for
handling the vast datasets generated by a smart city.

However, the representation of spatial or hierarchical data may not be as straight-
forward as with other models, such as GIS or tree structures, potentially introducing
unnecessary complexity. Certain graph algorithms, especially for large and dense graphs
typical in smart city data, can be computationally intensive, posing performance challenges.
The learning curve associated with graph databases and graph theory can be steep, po-
tentially deterring teams or individuals without specialized knowledge. Visualizing and
interpreting large graphs can also become increasingly difficult as their size and complexity
grow, hindering effective insights and decision-making. Additionally, while graphs work
very well at handling dynamic changes, real-time management of events such as temporary
road closures or network topology shifts can be demanding, often requiring sophisticated
algorithms or frequent graph updates.

Table 2 summarizes the main characteristics of the proposed road representation
approaches, highlighting both the benefits and limitations of each.

Table 2. Conversion of a roadmap using different representation approaches.

Approach Description of Roads Benefits Limitations

Raster Pixel-based grids of cells Simple; intuitive; little
data demanding

Limited scalability, detail, and
precision; Loss of geometric details

Vector Vector geometry
More precise; efficient storage and
processing; excellent handling of

dynamic data

Computationally expensive for
large networks

Topology-
based Connectivity; relationships Exploits structure and behaviour

Requires accurate network dataset;
geometry and attributes

are secondary

Hierarchical Levels of importance Considers different significance
levels; flexible; scalable

Difficult definition of hierarchical
levels; requires accurate design;

higher storage demand

Graphical
Models Probabilistic relationships Considers time-dependent factors;

suitable for simulations
Computationally complex and

expensive; data-intensive

3D Models Three-dimensional space

Accurate and realistic
representation on more dimensions;

suitable for simulation and
planning; includes vertical data

Higher data, data storage, and
computation requirements

Graphs Nodes and edges
Complexity in representation;

computational overhead; difficulty
in visualizing large graphs

Intuitive representation of
relationships and networks;

flexibility; route and network
optimization

4. Graph-Based Algorithms

This section reviews the main algorithms used in graph theory for searching and
finding the shortest paths between nodes in a graph, grouped into classic and ML ap-
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proaches. Firstly, the classic algorithms, such as BFS, DFS, Bellman–Ford, A*, and Djkstra
are reviewed, comparing the computational complexity of each. Secondly, the section
compares algorithms based on ML, such as GNNs, GAs, and Reinforcement Learning (RL)
adapted to work on graph theory.

4.1. Classic Graph Algorithms

Let G = (V, E) be a directed graph with a cost function w : E→ R. A (minimum-cost)
path between a pair of vertices, x and y, connected in G is a path, pxy, that has a cost
less than or equal to that of any other path, pxy, between the same vertices: w(pxy) =
minp′xy∈G w(p′xy). An edge, (u, v) ∈ E, belongs to a minimum path from s to v if and only if
(i) u is reachable from s and (ii) dsu + w(u, v) = dsv.

As a mixed graph has both directed and undirected edges, it is suitable for representing
a road map, as schematized in Table 3. In the context of a graph, G, representing a city road
map, one can envisage the trajectory of a council worker collecting waste from dumpsters
by traversing a path within G. As a result, each street is conceptualized as a node, while
intersections serve as the connecting edges. This graph-based representation captures the
spatial relationships and connectivity between different segments of the city, providing
a structured framework for analyzing and optimizing transportation networks. Graphs
allow urban planners and researchers to model various attributes of streets, such as traffic
flow, accessibility, and connectivity, facilitating data-driven decision-making processes.
Graph-based representations of city streets offer a versatile platform for the application of
algorithms and analytics. Graph algorithms, such as Dijkstra’s algorithm or the A* search
algorithm, can be employed to find optimal routes, identify critical transportation corridors,
and optimize traffic flow. Moreover, the integration of additional data layers, such as land-
use information or demographic data, enables a more holistic understanding of the urban
landscape. This graph-centric approach not only aids in the planning of transportation
infrastructure but also contributes to the development of smart city initiatives, supporting
sustainable and efficient urban development.

Table 3. Conversion of a roadmap to a graph.

Street Component Graph Representation

Intersection between 2+ roads Vertex

Ending of a dead-end street Vertex

Road segment without intersections Edge

Two-way street Undirected edge

One-way street Directed edge

Length of the street Weight of the edge

Route between 2+ locations Subgraph of the given graph

4.1.1. Breadth-First Search (BFS)

Breadth-First Search (BFS) and Depth-First Search (DFS) are two fundamental al-
gorithms used for graph traversal and searching [32]. The Breadth-First Search (BFS)
algorithm is one of the simplest algorithms for graph search.

Given a graph, G = (V, E), and a starting vertex, s, BFS systematically explores the
edges of G to find every vertex reachable from s. It calculates the distance from s to every
other reachable vertex. Its main feature is that it expands the frontier between visited and
unvisited vertices uniformly: it visits all vertices at distance k from s before visiting any
vertex at distance k + 1.

The overall computational cost of BFS is O(V + E). The method is depicted in
Algorithm 1.
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Algorithm 1 Breadth-First Search

1: function BFS(G, s)
2: for each vertex u ∈ G.V − {s} do
3: u.status← notVisited
4: u.d← ∞
5: u.p← None
6: end for
7: s.status← visited
8: s.d← 0
9: s.p← None

10: Q← ∅
11: ENQUEUE(Q, s)
12: while Q ̸= ∅ do
13: u← DEQUEUE(Q)
14: for each vertex v ∈ G.Adj[u] do
15: if v.status == notVisited then
16: v.status← visited
17: v.d← u.d + 1
18: v.p← u
19: ENQUEUE(Q, v)
20: end if
21: end for
22: u.status← closed
23: end while
24: end function

4.1.2. Depth-First Search (DFS)

The strategy of Depth-First Search (DFS) is based on exploring as deeply as possible
in the graph. It traverses the edges from the most recent vertex, v, and its predecessors are
temporarily left with unexplored outgoing edges. When all edges of v have been explored,
the search backs up to explore other outgoing edges from the vertex from which v was
discovered. This process continues until all vertices reachable from the source vertex have
been discovered. If there are remaining unexplored vertices, one of them is selected as the
new source, and the search is repeated from this new source. The algorithm repeats the
entire process until every vertex has been discovered. The overall computational cost of
BFS is O(V + E). The method is depicted in Algorithm 2.

4.1.3. Bellman–Ford Algorithm

The Bellman–Ford algorithm [33–35] solves single-source shortest path problems in
a general case where the edge weights may also be negative. Given a directed weighted
graph, G = (V, E), with a source, s, and a weight function, w : E→ R, the Bellman–Ford
algorithm returns a Boolean value indicating whether there is or is not a path with a
negative weight cycle. If there is a cycle of that kind, then the algorithm indicates that there
is no solution. In this case, the algorithm finds and returns the minimum paths and their
respective costs. The method is depicted in Algorithm 3.

4.1.4. Dijkstra’s Algorithm

Dijkstra’s algorithm (see, for example, [36–38]) solves the single-source shortest-paths
problem on a directed and weighted graph, G = (V, E), in the case where all vertices are
non-negative. It is assumed that w(u, v) ≥ 0 for every edge (u, v) ∈ E. A set, S, of vertices
is maintained, whose total costs of minimum paths from the source s have already been
determined. The algorithm repeatedly chooses a vertex, u ∈ V − S, with the minimum
estimated path, adds that vertex to S, and relaxes all edges outgoing from u. The method is
depicted in Algorithm 4.
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Algorithm 2 Depth-First Search

1: function DFS(G)
2: for each vertex u ∈ G.V do
3: u.status← NOTVISITED
4: u.p← None
5: end for
6: time← 0
7: for each vertex u ∈ G.V do
8: if u.status = NOTVISITED then
9: DFS-VISIT(G, u)

10: end if
11: end for
12: end function

DFS-VISIT Procedure
1: function DFS-VISIT(G, u)
2: time← time + 1
3: u.d← time
4: u.status← VISITED
5: for each vertex v ∈ G.Adj[u] do
6: if v.status = NOTVISITED then
7: v.p← u
8: DFS-VISIT(G, v)
9: end if

10: end for
11: u.status← CLOSED
12: time← time + 1
13: u. f ← time
14: end function

Algorithm 3 Bellman–Ford Algorithm

Require: Graph G(V, E), source vertex s
Ensure: Shortest distances from s to all other vertices, or detection of negative weight

cycles
1: Initialize distance to all vertices as infinite and distance to source s as 0
2: for each vertex v ∈ V − 1 do
3: for each edge (u, v) ∈ E do
4: dist[v]← min(dist[v], dist[u] + weight(u, v))
5: end for
6: end for
7: for each edge (u, v) ∈ E do
8: if dist[v] > dist[u] + weight(u, v) then
9: Report negative weight cycle

10: end if
11: end for
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Algorithm 4 Dijkstra’s Algorithm

Require: Graph G(V, E) with non-negative weights, source vertex s
Ensure: Shortest distances from s to all other vertices

1: Create vertex set Q
2: Initialize distances: dist[v]← ∞ for all v ∈ V, except dist[s]← 0
3: Add all vertices to Q
4: while Q is not empty do
5: u← vertex in Q with min dist[u]
6: Remove u from Q
7: for each neighbor v of u still in Q do
8: alt← dist[u] + length(u, v)
9: if alt < dist[v] then

10: dist[v]← alt
11: end if
12: end for
13: end while

4.1.5. A* Algorithm

The A* algorithm (see, for example, [39,40]) is a search algorithm that finds a path
from a given source node to a given goal node. It ranks each node based on an estimate
of the best path passing through that node. It is complete, optimal, and efficient. In many
cases, it is the best solution and can be seen as an extension of Dijkstra’s algorithm; it is
also classified as a greedy algorithm.

The key idea is to define a heuristic function, h(v), that estimates how far a given
vertex, v, is from the destination vertex (the goal). The notion of distance to minimize is
defined as the sum of the actual distance and the “heuristic distance”, no longer as the
simple distance from the initial vertex. As a result, when a vertex is extracted from the
queue, the algorithm chooses the vertex that minimizes the sum, h(v) + g(v), where g(v) is
the cost to reach the node under consideration. The method is depicted in Algorithm 5.

Table 4 summarizes the different algorithms by comparing different metrics.

Table 4. Comparison of pathfinding algorithms.

Criteria A* DFS BFS Bellman–Ford Dijkstra

Time Complexity O(bd) O(bm) O(bd) O(VE) O(V2)
Space Complexity O(bd) O(bm) O(bd) O(V + E) O(V)

Works with
Negative Weights No No No Yes No

Optimal Yes No Yes Yes Yes

Use Cases Shortest path in
weighted graphs

Maze solving,
Topological Sorting

Shortest path in
unweighted

graphs

Shortest paths with
negative weights

Shortest path in
weighted graphs
without negative

weights
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Algorithm 5 A* Algorithm

Require: Graph G(V, E), start node start, goal node goal, heuristic function h
Ensure: Shortest path from start to goal if it exists

1: function ASTAR (start, goal)
2: Create open set openSet and initialize it with start
3: Create cameFrom map to store navigation paths
4: gScore[start]← 0 ▷ Cost from start along best known path
5: f Score[start]← h(start) ▷ Estimated total cost from start to goal
6: while openSet is not empty do
7: current← the node in openSet with the lowest f Score[current]
8: if current = goal then return RECONSTRUCTPATH(cameFrom, current)
9: end if

10: Remove current from openSet
11: for each neighbor neighbor of current do
12: tentativegScore← gScore[current] + dist(current, neighbor)
13: if tentativegScore < gScore[neighbor] then
14: cameFrom[neighbor]← current
15: gScore[neighbor]← tentativegScore
16: f Score[neighbor]← gScore[neighbor] + h(neighbor)
17: if neighbor not in openSet then
18: Add neighbor to openSet
19: end if
20: end if
21: end for
22: end whilereturn Failure
23: end function
24: function RECONSTRUCTPATH(cameFrom, current)
25: Total path← [current]
26: while current in cameFrom.Keys do
27: current← cameFrom[current]
28: Prepend current to Total path
29: end whilereturn Total path
30: end function

4.2. ML-Based Methods
4.2.1. Graph Neural Networks (GNNs)

GNNs have emerged as a powerful tool for learning from data that is structured as
graphs [41–44]. A GNN operates on a graph, G = (V, E), where each node, v ∈ V, has an
associated feature vector, xv.

The goal of a GNN is to learn a representation vector, hv, for each node, which captures
not only its features but also the structure of its neighborhood.

The core idea of GNNs is to update the representation of a node by aggregating
features from its neighbors:

h(l+1)
v = UPDATE

(
h(l)v , AGGREGATE

({
h(l)u : u ∈ N (v)

}))
, (1)

where h(l)v is the representation of node v at layer l,N (v) is the set of neighbors of v, and AG-
GREGATE and UPDATE are differentiable functions, often implemented as neural networks.

Training a GNN involves learning the parameters of the AGGREGATE and UPDATE
functions. This is typically done using a supervised learning approach, where the GNN is
trained to minimize a loss function on a set of labeled examples.

For a node classification task, the loss function is often the cross-entropy loss between
the predicted labels and the true labels of nodes. The parameters are optimized using
gradient descent, where gradients are computed via backpropagation.
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GNNs can determine the shortest path between two points in a graph by learning the
underlying structure through node embedding and message passing. Initially, each node is
given an embedding, which is iteratively updated as the network processes information
from neighboring nodes. This helps the GNN understand the graph’s structure. For path
prediction between source and destination nodes, the GNN interprets the node embeddings
to suggest a path. Training involves adjusting the network to minimize errors between
predicted and actual shortest paths, enabling the GNN to predict shortest paths in similar,
unseen graphs after training. The process is summarized in Algorithm 6.

Algorithm 6 Training GNN for Shortest Path Prediction

Require: Graphs with known shortest paths, Node features for each graph, Number of
training epochs, Learning rate

1: Initialize GNN model with random weights
2: for each epoch do
3: for each graph in the training dataset do
4: for each pair of nodes (source, target) in the graph do
5: Calculate node embeddings using GNN
6: Predict path from source to target using embeddings
7: Compute actual shortest path from source to target
8: Calculate loss (e.g., path length difference)
9: Update GNN weights using backpropagation and learning rate

10: end for
11: end for
12: end for

Scaling up GNNs to manage waste collection in larger urban areas with more complex
infrastructures poses several challenges, but it can be effective with careful consideration
and appropriate strategies.

For instance, GNNs rely on large volumes of data to learn meaningful representations
of the urban environment. In larger urban areas, acquiring comprehensive data regarding
waste collection routes, bin locations, traffic patterns, and other relevant factors becomes
essential. Collaborations with local governments, waste management agencies, and other
stakeholders are crucial to gather and maintain such data.

As urban areas grow larger and more complex, GNN models need to scale accord-
ingly to capture the intricacies of the urban infrastructure. This involves designing GNN
architectures that can handle larger graphs with more nodes and edges while ensuring
computational efficiency and scalability. Techniques such as graph partitioning, parallel
processing, and distributed computing can be employed to handle the increased complexity.

Waste collection in larger urban areas often involves dynamic spatial and temporal
factors, such as varying traffic patterns, changing waste generation rates, and evolving in-
frastructure. GNNs must be capable of incorporating both spatial and temporal information
to adaptively optimize waste collection routes in real-time. Time-aware GNN architectures
and recurrent or temporal graph convolutional networks (TGCNs) can be employed to
model temporal dynamics effectively.

Efficient resource allocation becomes critical when managing waste collection in larger
urban areas. GNNs can assist in optimizing resource allocation by predicting optimal col-
lection routes, scheduling collection activities, and allocating resources based on predicted
waste generation rates and demand patterns. Multi-objective optimization techniques can
be integrated into GNN-based models to balance various objectives, such as minimizing
collection costs, reducing environmental impact, and maximizing service coverage.
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At the same time, GNN models must be robust and capable of generalizing across di-
verse urban environments to effectively manage waste collection in larger urban areas with
varying infrastructural characteristics. Transfer learning techniques, domain adaptation
methods, and robust training strategies can help GNNs generalize well to unseen urban
environments and adapt to changing conditions.

Finally, collaboration and engagement with local authorities, waste management
agencies, urban planners, and residents are essential for the successful implementation and
scaling of GNN-based waste collection management systems. Feedback loops and iterative
improvements based on real-world observations and stakeholder input can help refine
GNN models and optimize waste collection operations over time.

While scaling up GNNs to manage waste collection in larger urban areas presents
challenges, it can be effectively achieved by leveraging comprehensive data, designing
scalable and adaptable models, considering spatial and temporal dynamics, optimizing
resource allocation, ensuring robustness and generalization, and fostering collaboration
and stakeholder engagement.

4.2.2. Genetic Algorithms (GAs)

Evolutionary Algorithms (EAs) are a class of optimization algorithms that are inspired
by natural biological evolution [45,46]. The idea of EAs is rooted to the inherent search
and selection mechanisms found in nature that lead to the survival and reproduction
of the most suitable individuals. Considering the continuous process of environmental
change, adaptation is a fundamental mechanism for survival within a species, connected to
the intricate interplay between an individual’s unique traits and the underlying genetic
content dictating these traits through gene regulation [47]. Indeed, genes play a crucial role,
as they are responsible for individual characteristics and, consequently, for survival and
proliferation in a competitive environment.

GAs belong to EAs and provide an alternative to classical algorithms for optimization.
The basis of their functioning is a selection mechanism used for the generation of a sequence
of populations, and crossover and mutation as search mechanisms. Two classes of problems
can be simplified through GAs: (i) problems that involve the pruning of numerous possible
solutions, (ii) problems demanding adaptability and high performance in a dynamic and
evolving environment.

GAs are based on the creation of a population of chromosomes (i.e., the individuals). A
chromosome consists of genes, each of which represents a specific parameter or variable in
the solution space. First, the population is created randomly and, hypothetically, each indi-
vidual could be accounted as a solution for the given problem, as stated in [48]. Mitchell [49]
explains that the GAs involve at least three operations: (i) selection, (ii) crossover, (iii) muta-
tion. Selection is operated according to a fitness function that rates each potential solution.
Each chromosome receives a score based on its ability to fit and solve the given problem.
Chromosomes scoring the highest values are selected for reproduction, as they will create
the subsequent generation of individuals. Crossover (or recombination) combines the
selected individuals, generating new chromosomes (i.e., descendants or offspring) with
(ideally) better characteristics than the previous ones. Mutation slightly and randomly
manipulates genes, introducing new features in chromosomes as genetic diversity helps
to prevent local optima trapping. The operations are repeated until a certain criterion
is verified.

Algorithm 7 summarizes the functioning of a generic GA in the shortest path-
finding context.
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Algorithm 7 GA for Shortest Path Problem

Require: Graph G(V, E) with node features, Set of training source-target pairs with known
shortest paths

Ensure: the Shortest path from start to goal if it exists
1: Randomly initialize chromosomes ▷ i.e., routes
2: repeat
3: Calculate fitness values ▷ Calculate total distance for each route
4: Evaluate objective function
5: Select parents for reproduction ▷ Select routes for crossover
6: Perform crossover to create offspring ▷ Create new routes via crossover
7: Apply mutation to the offspring ▷ Apply swap mutation to the offspring routes
8: Replace old population with the new one
9: until convergence or maximum number of iterations is reached

Fujdiak et al. [50] and Ikram et al. [51] use GAs applied to the smart waste management
problem. Ochelska-Mierzejewska et al. [52] discuss the usage of GAs for solving the
routing problem.

4.2.3. Reinforcement Learning (RL)

RL is a subset of ML where an agent learns to make decisions by taking actions in
an environment to achieve some notion of cumulative reward. In the context of graph
theory, RL can be applied to find the shortest path between two nodes. The agent learns
to navigate through the graph, from a start node to a target node, by interacting with the
environment (the graph) and receiving feedback in the form of rewards or penalties.

Consider a graph, G = (V, E). The goal is to find the shortest path from a start node,
s ∈ V, to a target node, t ∈ V. Then, the RL problem can be formulated as follows. The
state space represents all possible situations the agent can be in. In a graph scenario, a state,
s ∈ S, can be defined as the current node the agent is positioned at. Moreover, the action
space consists of all possible actions the agent can take from a given state. For a node, v,
the possible actions, a ∈ A, are moving to any adjacent nodes, i.e., a = {(v, u)|u ∈ N (v)},
where N (v) represents the neighbors of node v. The reward function, R(s, a, s′), defines
the immediate reward the agent receives after transitioning from state s to state s′ by taking
action a. A typical reward setting for the shortest path problem is to give a small negative
reward for each step to encourage shorter paths and a large positive reward when the target
node, t, is reached.

A policy, π, is a strategy that the agent employs to determine the next action based
on the current state. It maps states to actions, i.e., π : S → A. The goal of RL is to learn
an optimal policy, π∗, that maximizes the cumulative reward. Finally, Q-Learning is a
model-free RL algorithm used to find the optimal action-selection policy for any given finite
Markov decision process. It works by learning an action-value function, Q(s, a), which
gives the expected utility of taking action a in state s and following the optimal policy
thereafter. The Q-Learning update rule is as follows:

Q(s, a)← Q(s, a) + α[R(s, a, s′) + γ max
a′

Q(s′, a′)−Q(s, a)] (2)

where α is the learning rate, γ is the discount factor, and R(s, a, s′) is the reward received
after transitioning from state s to state s′ by taking action a.

Applying RL to the shortest path problem in graphs involves defining the states,
actions, and rewards in the context of the graph structure. The agent learns to navigate the
graph by interacting with it and receiving feedback based on the defined reward structure.
With a well-defined reward function and an appropriate RL algorithm such as Q-Learning,
the agent can efficiently learn to find the shortest path between two nodes. Algorithm 8
summarizes the described approach.
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Algorithm 8 Q-Learning for Shortest Path in Graphs

Require: Graph G = (V, E), Start node s, Target node t, Learning rate α, Discount factor γ
Ensure: Optimal policy π∗ to reach from node s to node t

1: Initialize Q(s, a) arbitrarily for all s ∈ V and a ∈ A(s)
2: Initialize V (Visited set) as an empty set
3: repeat
4: Set current_node← s
5: while current_node ̸= t do
6: Choose a from A(current_node) using policy derived from Q (e.g., ϵ-greedy)
7: Take action a, observe reward R and next node s′

8: Q(current_node, a) ← Q(current_node, a) + α[R + γ maxa′ Q(s′, a′)
−Q(current_node, a)]

9: Add current_node to V
10: current_node← s′

11: end while
12: if all nodes in V are visited then
13: break
14: end if
15: until convergence or maximum number of iterations is reached
16: Extract policy π∗ from Q

5. Performance Evaluation
5.1. Standard Metrics

This subsection reviews the models previously discussed through a set of standard
metrics, i.e., accuracy, response time, resources, efficiency, and energy consumption.

DFS has low accuracy due to its tendency to find paths quickly, but not necessarily
the shortest or most optimal ones. Both BFS and GA have moderate accuracy. While BFS
ensures finding the shortest path, it may not always be the most optimal; GA may find
good solutions but not always the best path. Dijkstra’s algorithm and GNNs have high
accuracy; the former guarantees finding the shortest path and the latter can learn from
data and provide accurate predictions for optimal paths. Similarly, time-series forecasting
models can leverage historical data to predict optimal paths accurately.

Concerning response time, GAs perform poorly because they involve iterative pro-
cesses that may take longer to converge. GNNs, BFS, time-series forecast, and Dijkstra’s
algorithm models would instead perform moderately: GNNs may require some computa-
tion to learn optimal paths but can respond in a reasonable time; BFS explores all possible
paths, which can be time-consuming; time-series forecasting models require processing his-
torical data but can provide timely predictions once trained; Dijkstra’s algorithm explores
the graph based on distance and is faster than BFS but slower than DFS. Moreover, DFS is
fast because it explores one path until the end of a dead end, making it faster than BFS in
some scenarios.

In the evaluation process, resource efficiency plays an important factor, which is low
for BFS and DFS. BFS explores all possible paths, which can be resource-intensive, while
DFS may backtrack and explore deep branches, consuming resources without guaranteeing
optimality. On the other hand, Dijkstra’s algorithm consumes moderate resources by ex-
ploring the graph based on distance, and similarly for GAs, as they may require significant
computational resources for convergence. On the other hand, time-series and GNN models
would exhibit high resource usage. In the first case, a model would leverage historical data
efficiently once trained; in the second, it would be possible to learn representations from
data and provide efficient predictions for optimal paths.

Energy consumption holds significant importance in smart cities, particularly con-
cerning algorithmic operation, from different perspectives: (i) sustainability, as smart cities
prioritize environmental concerns, necessitating energy-efficient algorithms to align with
these goals; (ii) cost reduction, because high energy consumption translates to increased
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operational costs, making energy-efficient algorithms essential for minimizing expenses;
(iii) resource conservation, as energy-efficient algorithms contribute to preserving resources
such as electricity and computing resources, supporting sustainable urban development;
(iv) infrastructure resilience, because energy-efficient algorithms help ensure the resilience
of smart city infrastructure by reducing energy demands, particularly during periods of
high demand or shortages; (v) device longevity, since in many smart city applications
algorithms run on battery-powered devices and energy-efficient algorithms extend device
battery life, enhancing system reliability and reducing maintenance requirements; and
lastly, (vi) community engagement, because demonstrating a commitment to sustainability
through energy-efficient practices fosters community engagement and support for smart
city initiatives.

In this sense, DFS requires low energy because it explores one path at a time, resulting
in lower energy consumption. Instead, BFS and time-series models are moderate: the
former may require moderate energy due to its exploration of all possible paths, while the
latter may consume moderate energy for processing historical data and making predictions.
Equivalently, Dijkstra’s algorithm consumes moderate energy by exploring the graph
based on distance. Energy consumption is instead high for GNNs and GAs: the first may
require significant energy for training and inference processes, and the second involves
iterative processes that may consume significant energy resources. Table 5 summarizes the
evaluation factors for each model.

Table 5. Comparison of pathfinding algorithms for smart bin collection.

Algorithm Accuracy Response Time Resource Efficiency Energy Consumption

BFS Moderate Moderate Low Moderate
DFS Low Fast Low Low

Dijkstra High Moderate Moderate Moderate
A* High Moderate to High Moderate Moderate
B.F. High Low to Moderate Moderate Moderate to High

GNNs High Moderate High High
RL High Variable Moderate to High Moderate to High
GA Moderate Slow Moderate High

T. S. Models High Moderate High Moderate

A*’s heuristic-driven search can provide highly accurate results for pathfinding, espe-
cially if the heuristic is well-tuned to the specific characteristics of the urban environment.
Moreover, the algorithm is generally faster than uninformed search algorithms due to its
heuristic, which guides the search towards the goal. However, its performance can vary
based on the complexity of the heuristic calculation and the topology of the search space.
While A* is more resource-efficient than some algorithms due to avoiding exploration
of unlikely paths, it can still consume significant memory, especially in large or complex
graphs, as it needs to store all explored nodes. In this sense, the energy consumption of A*
correlates with its computational and memory usage. Efficient heuristics can reduce energy
consumption by minimizing unnecessary computations and path explorations.

Bellman–Ford is very accurate, especially in graphs with negative edge weights where
other algorithms such as Dijkstra’s might fail. It guarantees finding the shortest path if
one exists, without restrictions on edge weights. However, the response time can be a
limitation due to the algorithm’s higher time complexity, requiring multiple iterations over
all edges in the graph, especially noticeable in large and dense networks. The algorithm’s
resource usage is primarily dictated by the need to iteratively process all edges in the graph.
While it does not require storing multiple paths, its iterative nature over all edges can
lead to significant resource use in dense networks. Given its computational intensity and
the need for repeated iterations over all graph edges, Bellman–Ford can consume more
energy, particularly in complex or dynamically changing environments where frequent
recalculations are necessary.
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Regarding ML models, GNNs allow for accurate predictions and decision-making,
especially when node features and edge attributes are significant in determining the opti-
mal path for bin collection. The response time for GNNs can vary based on the network’s
complexity and the size of the graph. While GNNs can be efficient in processing localized
node information, the aggregation and update steps across layers can become compu-
tationally intensive for large graphs. Moreover, GNNs require sufficient computational
resources for training and inference, especially as the number of nodes and edges in the
graph increases. The memory requirement for storing node features, edge attributes, and
network parameters can also be substantial. The energy consumption of GNNs generally
correlates with their computational intensity and resource usage. Training GNNs can be
particularly energy-intensive due to the need for multiple forward and backward passes
through the network during the optimization process.

GAs can provide highly accurate solutions to optimization problems, including routing
for smart bin collection. However, the accuracy is heavily dependent on the design of the
fitness function, genetic operators (crossover and mutation), and other parameters. The
response time can be high, especially if the population size is large or if the problem space is
complex. Furthermore, this approach requires memory to store the population of solutions
and their respective fitness values. The resource efficiency depends on the population size
and the complexity of the individuals (solutions). The energy consumption of GAs can be
significant due to the need for multiple evaluations of the fitness function and the genetic
operations applied over several generations.

In smart bin collection, RL can learn highly effective strategies for routing and schedul-
ing by interacting with the environment and optimizing the cumulative reward, which
might represent factors such as route efficiency, fuel consumption, or the timeliness of
bin collection. The response time in RL depends on the complexity of the state space, the
learning algorithm used, and the convergence criteria. However, in dynamic environments,
the model might require continuous learning or frequent retraining, which can impact the
response time. RL models, especially those with deep-learning architectures (Deep RL), can
be resource-intensive during the training phase due to the need for numerous iterations
and data storage.

In the considered case study, time-series models can predict waste generation patterns
or bin fullness levels with high accuracy if historical data are representative and the models
are well-tuned. Making predictions is usually fast, as it involves applying the model to
the most recent data. However, training and tuning the model, especially in the presence
of large datasets or complex models, can be time-consuming. These models are generally
resource-efficient during the inference phase, as they require less computational power
compared to complex ML models. However, resource efficiency during the training phase
can vary depending on the model complexity and data volume. The energy consumption
of time-series forecasting models is primarily associated with the training phase, where
model selection and parameter tuning can be computationally intensive. However, the
energy consumption during the forecasting (inference) phase is usually low.

Finally, RL can optimize routes and schedules by learning from interactions with the
environment, leading to highly efficient strategies for bin collection, traffic navigation,
and resource allocation. The response time for RL is contingent on the complexity of
the state space and the architecture of the learning model. While the training phase can
be time-consuming and requires numerous iterations, a well-trained RL agent can offer
real-time decision-making capabilities. However, dynamic environments might necessitate
continuous learning or periodic retraining, impacting the response time. Once an RL
model is trained, the inference or decision-making process can be relatively resource-
efficient. The energy consumption of RL models is considerable during the training phase,
attributed to the computational demands for processing extensive data and updating model
parameters. However, for a trained agent making decisions, the energy consumption can
be significantly lower.
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5.2. Integration in Diverse Urban Architectures

Integrating models with existing waste management systems in smart cities involves
understanding the capabilities of each model and their applicability within diverse urban
system architectures.

DFS could be used for route planning in waste collection by exploring one path until
reaching the end of a dead end. Moreover, DFS could be implemented as part of a routing
algorithm within a waste management system. It could be integrated with GIS (Geographic
Information Systems) data to efficiently navigate through city streets. Similar to DFS, BFS
could also be employed for route planning, exploring all possible paths from the starting
point. In urban system architecture, BFS could complement DFS by providing alternative
routes or exploring areas that may have been missed. It could be integrated into a waste
management system as an additional route optimization algorithm.

In waste management systems, Dijkstra’s algorithm could be utilized for optimal route
planning, considering factors such as distance, traffic conditions, and waste bin fill levels.
It could be integrated as a core component of route optimization modules within existing
waste management software.

It should be noted that A* can be paired with GIS data to provide real-time, context-
aware navigation, considering factors such as traffic conditions, road closures, and bin
locations. Furthermore, A* can be tailored to reflect the priorities of the waste management
system, such as minimizing travel time, reducing fuel consumption, or prioritizing bins
that are known to fill up quickly. Notably, A* can complement DFS and BFS, offering a more
directed search towards the goal while still considering multiple paths. In combination with
time-series analysis, A* could utilize forecasts of waste generation rates or traffic patterns to
inform its heuristic, enhancing the efficiency of the route planning process. Bellman–Ford’s
capability to handle negative weights makes it suitable for urban environments where
certain paths may have attributes that make them less desirable, effectively acting as a ’cost’
(e.g., congested areas, zones with higher waste levels). It can be used in waste management
systems to plan routes that avoid these high-cost areas or dynamically adjust the routes
based on changes in these weights, such as sudden increases in traffic or changes in bin
fill levels.

The Bellman–Ford algorithm can be integrated into the optimization modules of waste
management systems, particularly for scenarios where the graph’s edge weights are not
static and can change over time, providing robust route solutions. It can work alongside
GAs or time-series analysis techniques to periodically update and optimize the routes based
on historical and real-time data. In combination with GNNs, Bellman–Ford could provide
initial route solutions that GNNs can further optimize based on the learned patterns from
historical data. It can also complement Dijkstra’s algorithm in systems where the graph
might contain negative weight edges or dynamic weight calculations and need frequent
updates.

GNNs can learn from graph-structured data and provide predictions for optimal
paths. In waste management systems, GNNs could be trained on the historical data of
waste collection routes, bin fill levels, and traffic patterns to predict efficient routes in
real-time. They could be integrated into route planning modules to provide adaptive and
context-aware route suggestions.

GAs could be employed for route optimization by evolving a population of candidate
routes over successive generations. They could be integrated into optimization modules to
continuously improve waste collection routes based on feedback and performance metrics.

Finally, time-series analysis techniques could be applied to the historical data of waste
collection routes, bin fill levels, and traffic patterns to identify patterns and trends over
time. In waste management systems, time-series analysis could help in forecasting future
waste generation rates, optimizing collection schedules, and predicting optimal collection
routes based on historical trends. It could be integrated into decision support systems
to enhance route planning and resource allocation strategies. In diverse urban system
architectures, these models could be implemented as standalone modules or integrated into
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existing waste management software systems. They could leverage real-time data streams
from IoT sensors, GPS devices, and traffic monitoring systems to adaptively optimize
waste collection routes and schedules, leading to more efficient and sustainable waste
management practices in smart cities.

5.3. Cost-Benefits Analysis

Performing a comprehensive cost-benefit analysis comparing the models proposed so
far with traditional waste management approaches would require detailed data and context-
specific considerations beyond the scope of this work. However, a theoretical analysis can
be undertaken by considering the following aspects: (i) costs, (ii) benefits, (iii) risk and
uncertainty, (iv) long-term viability, and (v) social and environmental sustainability. Each
factor can be studied concerning classic algorithms (BFS, DFS, Dijkstra) and ML models
(GNN, GA, time-series-based forecast models).

Regarding classic approaches, the costs can be decomposed into implementation,
operation, infrastructure, and training/education. Implementation costs include the initial
setup costs for deploying the waste management system and integrating the chosen algo-
rithmic models. Ongoing operation expenses are related to system maintenance, software
updates, and data management. The infrastructure costs refer to the investment required
for hardware, sensors, and other IoT devices used in waste collection. Furthermore, it is
necessary to account for costs associated with training personnel to use and maintain the
waste management system effectively.

The benefits can vary. For example, efficiency gains may occur if algorithmic models
lead to more efficient waste collection routes, reducing fuel consumption, vehicle wear and
tear, and labor costs. By optimizing route planning and resource allocation, algorithmic
models can minimize unnecessary trips and improve overall resource utilization, leading to
an optimized resource allocation. The quality of the service can be improved by enhancing
route optimization, leading to more timely waste collection, reducing the risk of overflow-
ing bins, and improving overall cleanliness and sanitation. From a similar perspective,
reduced fuel consumption and emissions resulting from optimized routes contribute to
environmental sustainability and may lead to long-term cost savings and health benefits for
residents. It is also worth noting that algorithmic models provide valuable insights through
data analysis, enabling informed decision-making and proactive problem-solving in waste
management operations. The risks associated with the implementation and integration
of algorithmic models into existing waste management systems, including technical chal-
lenges, data quality issues, and stakeholder resistance, need to be evaluated. This process
also includes the fact that the actual benefits of algorithmic models may vary depending
on factors such as data accuracy and model performance, as wall as external factors such
as weather and traffic conditions. The long-term viability factor can be subdivided into
scalability and adaptability. The former consists of the consideration of whether the chosen
algorithmic models can scale effectively to meet the evolving needs of growing urban
populations and changing waste management requirements. The latter describes the ability
of algorithmic models to adapt to new challenges, emerging technologies, and regulatory
changes over time. Moreover, social and environmental impacts can be quantified by
different aspects. For example, community acceptance identifies the social acceptability
of algorithmic waste management approaches and their perceived impact on residents’
daily lives and communities. As a counterpart, environmental sustainability denotes the
evaluation of the environmental impacts of algorithmic models compared to traditional
waste management approaches, including their contribution to reducing greenhouse gas
emissions and mitigating pollution.

Concerning ML-based methods, implementation costs are related to the initial setup
costs for deploying and training the ML models, including data acquisition and prepro-
cessing. Ongoing expenses related to the model maintenance, updates, and computational
resources required for inference and analysis denote the operational costs. Investment
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in computational resources and expertise for training the ML models on historical data
compose the training effort.

Regarding the benefits, in terms of predictive accuracy ML models can offer improved
predictive accuracy for waste collection route optimization, leading to more efficient re-
source allocation and service delivery. Similarly, ML models provide valuable insights
through data analysis, enabling informed decision-making and proactive problem-solving
in waste management operations, from the perspective of a data-driven approach. Within
the context of ML models, adaptive optimization reflects on the ability of the models to
adapt to changing environmental conditions, traffic patterns, and waste generation rates in
real-time.

Risks can be associated with the performance and reliability of ML models in real-
world applications, including overfitting, data biases, and model drift. Moreover, depen-
dence on the quality and availability of historical data for training the ML models may be
subject to inaccuracies and inconsistencies.

In terms of long-term viability, it is necessary to ensure the robustness and general-
ization capabilities of ML models across diverse urban environments and evolving waste
management scenarios. Evaluating the scalability of ML models is important for handling
larger datasets and more complex urban infrastructures over time.

Finally, ML models can be evaluated from the point of view of engagement with
stakeholders to ensure the ethical and responsible deployment of ML models in waste man-
agement operations, addressing concerns related to privacy, fairness, and transparency. On
the other hand, assessing the environmental impacts of ML models, including their energy
consumption and carbon footprint, and exploring strategies for minimizing their ecological
footprint is of paramount importance when considering smart cities and responsible AI.

5.4. Hybrid Models Scalability

The scalability of a hybrid model based on a GNN and another ML paradigm for waste
collection in larger urban areas with complex infrastructures depends on various factors.
While such models offer promising solutions, scaling them effectively involves addressing
several challenges: (i) Data volume and diversity, as in larger urban areas there is typically
a substantial increase in data volume due to a greater number of bins and more diverse
environmental factors. The model must handle these larger and more diverse datasets
efficiently: (ii) Model complexity, as waste collection logistics become more complex as
urban areas grow. Models must consider factors such as traffic patterns, road conditions,
and varying waste generation rates across neighborhoods. Scaling the model effectively
requires addressing this complexity. (iii) Computational resources, because larger urban
areas require more computational resources for real-time decision-making. Ensuring that
the infrastructure can support the computational demands of the hybrid model is crucial.
(iv) Latency and response time, since maintaining low latency and fast response times is
essential for real-time waste collection optimization. Delays in decision-making can lead to
inefficiencies. Scaling should not compromise response times. (v) Resource allocation, as
efficiently allocating collection resources, such as vehicles and personnel, across a vast urban
landscape is a complex optimization problem. Scaling up the model involves adapting
resource allocation strategies to handle larger areas effectively. (vi) Environmental impact,
as minimizing the environmental impact of waste collection is increasingly important.
Scaling the model should consider sustainability objectives, aiming to reduce emissions
and align with the goals of greener, more sustainable urban environments. (vii) Data quality
and integration, as in larger urban areas data may come from various sources and formats.
Ensuring data quality and effective data integration are essential for the model’s accuracy
and performance at scale. (viii) Infrastructure and connectivity, since the availability of
infrastructure, including edge computing capabilities and high-speed connectivity, plays a
significant role in scaling the model. Ensuring that the necessary infrastructure is in place
is crucial. (ix) Adaptability, as the model should be adaptable to changing conditions and
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evolving urban infrastructure. Regular updates and retraining with new data are essential
to maintain effectiveness as the urban environment changes.

6. Discussion

This section proposes a hypothetical case study based on the collection of smart bins in
an urban area. The bins are subjected to a constraint, i.e., they need to be emptied only if the
amount of waste exceeds a certain threshold. As a consequence, if the area is modeled as a
graph, different strategies to implement the optimal waste collection can be evaluated. The
considered approaches can be monolithic (both classic and ML-based) or hybrid. Although
the literature about hybrid models including GNNs and RL is not new (see Section 2), the
presented algorithms target a specific problem and, in this sense, are novel. Each method is
presented and discussed from the perspective of space and time complexity.

The second part of the section reviews monolithic models through standard perfor-
mance metrics such as (i) accuracy, (ii) response time, (iii) resource efficiency, and (iv) energy
consumption, which suits the context of greener smart cities. Furthermore, the debate
is extended to an evaluation analysis through cost-benefits and integration in diverse
urban architectures.

Performing a similar analysis for hybrid models requires a deeper investigation in-
volving experiments on a real case study and is outside the scope of this work.

6.1. Case Study

Consider a town with a geographically defined layout and a network of smart bins
strategically placed throughout the cityscape. To effectively manage waste collection
and optimize resource allocation, a graph model, G, can be employed to represent the
distribution of these smart bins and their connectivity within the town’s infrastructure.
Each smart bin is represented as a node in the graph. These nodes are uniquely identified
and characterized by their physical location within the town. A node, g ∈ G, is denoted by
the following attributes:

• Smart Bin ID: A unique identifier assigned to each smart bin for unambiguous identi-
fication.

• Location: The precise geographical coordinates of the smart bin, represented by
latitude and longitude.

• Current Waste Level: A real-time indication of the amount of waste present in the bin,
ranging from a minimum value to a maximum value.

Edges E of G are introduced to connect neighboring smart bins, representing the
physical proximity between them. The existence of an edge between two nodes indicates
that there is a direct route connecting the corresponding smart bins.

Edge attributes are characterized by a weight (i.e., a numerical value assigned to each
edge to represent the distance between the connected smart bins) and a connectivity density
(i.e., a measure of the relative density of smart bins in a given area. Higher values indicate
a more densely distributed network of smart bins, while lower values suggest a more
sparsely distributed network). For the sake of clarity, a simplified example of this scenario
is displayed in Table 6.

Table 6. Example of a connected smart bin network.

Smart Bin ID Location (Lat, Long) Current Waste Level Neighboring Bins

001 (35.6895, 139.6917) 75% 002, 003, 004
002 (35.6897, 139.6920) 50% 001, 003, 004
. . . (. . . , . . . ) . . . . . . , . . . , . . .
007 (35.6898, 139.6918) 40% 001, 002, 003
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The last column in the table, “Neighboring Bins”, indicates the connections each smart
bin has with other bins in the network. It lists the IDs of bins that are nearby or directly
linked to each bin, reflecting the dense connectivity in the network. This information is
crucial for planning efficient waste collection routes, as it shows which bins are adjacent
and can be serviced together.

Figure 2 reports a sandbox example of the conversion from a roadmap to a graph. First,
the roadmap is visualized, complete with both one-way streets (denoted by arrows showing
the direction) and two-way streets. Then, the nodes (i.e., the bins, which are supposed to be
located at road intersections and dead-ends) are individuated, together with the edges (i.e.,
streets) connecting them. Subsequently, weights (i.e., distances) are applied. The resulting
graph is obtained as the composition of seven vertices and seven weighted edges (three
oriented and four unoriented). Each vertex contains valuable information about its status:
the ID of the smart bin, its location (latitude and longitude), its current waste level, and
its neighboring bins. If a bin exceeds a certain previously set threshold of fullness, it is
marked in red as it needs to be emptied. Last, a graph made of bins that need to be emptied
is produced.

The depicted scenario can be modeled by using a dynamic graph, i.e., a type of graph
where the structure changes over time [53]. This can involve the addition or removal
of nodes and edges. More formally, a dynamic graph can be represented as G(t) =
(V(t), E(t)), where V(t) and E(t) denote the sets of vertices and edges at time t, respectively.
The changes in V(t) and E(t) across different time steps capture the dynamic nature of
the graph. This representation allows for the modeling of real-world systems where
relationships and entities evolve, such as social networks or transportation systems.

6.2. Classic Monolithic Approaches

In the dynamic scenario of smart bin collection, traditional graph traversal algorithms
have unique applications and constraints.

BFS, exploring the network level by level, can efficiently find the shortest routes for
nearby bins but might not effectively prioritize bins based on dynamic waste levels.

In contrast, DFS delves deeply into each path, offering thorough exploration at the
cost of potentially longer, inefficient routes and not necessarily addressing high-priority
bins first. Different urban layouts can significantly impact the performance of graph-based
models employing traversal algorithms such as BFS and DFS. For instance, urban areas
with a high density of nodes, such as downtown areas, can pose challenges for BFS as it
may traverse a larger number of nodes due to increased connectivity. DFS might encounter
difficulties with deep branches, potentially resulting in longer traversal times. Furthermore,
sparse urban layouts, such as suburban areas, may present different challenges. BFS might
need to navigate longer paths between nodes, while DFS could traverse fewer nodes but
may encounter dead ends more frequently. The structure of the road network also plays a
crucial role. BFS may perform better in grid-like networks with uniform connectivity, while
DFS might excel in complex networks with multiple interconnected pathways. Moreover,
obstacles or blocked paths within the urban environment can hinder traversal efficiency for
both BFS and DFS. The former may adapt better to changes by exploring alternative paths,
while the latter may get stuck in blocked routes. Furthermore, the choice between the two
algorithms depends on the balance between finding the best path and speed, influenced by
urban layout and task requirements. While BFS guarantees the shortest path, DFS is faster
but does not guarantee optimality.
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Figure 2. Conversion from a roadmap to a graph of full bins. The image consists of 6 sub-images,
labeled from (a–f). From sub-image (a) to sub-image (c) grey rectangles represent buildings, white
areas depict streets, and black arrows indicate one-direction-only streets. Starting from (b), pink
circles with uppercase letters denote available nodes (i.e., bins). The lines and arrows connecting each
node represent arcs of the resulting graph, with assigned costs (distances). Grey dotted lines depict
the possibility of a scenario with additional nodes and arcs, meaning more roads are considered. Red
circles in sub-images (e,f) mark the selected nodes (i.e., bins to be emptied) for the routing operation,
while grey circles mark the discarded nodes.

Dijkstra’s algorithm, adept at navigating weighted graphs, could use waste levels as
weights to find efficient routes to service high-priority bins. However, its computational
complexity and the need for frequent recalculations in response to changing bin levels
pose significant challenges. Different urban layouts can also impose penalties on classic
algorithms such as Dijkstra’s algorithm, in several ways. For instance, irregular road
networks or complex spatial configurations in urban layouts can complicate pathfinding
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for Dijkstra’s algorithm. This can lead to longer paths as the algorithm navigates detours or
dead ends, resulting in suboptimal routes. Additionally, obstacles such as buildings, parks,
closed roads, or traffic congestion can disrupt Dijkstra’s algorithm by forcing it to explore
alternative paths. Consequently, this can cause longer traversal times and suboptimal
route choices.

A* uses a heuristic to estimate the cost to reach the target from a given node, which can
be particularly beneficial in urban environments where certain paths may be predictably
more efficient due to traffic patterns, road types, or bin locations. In high-density areas,
A* can be effective by prioritizing paths that seem most promising, avoiding unnecessary
exploration of dense node networks. In sparse suburban areas, A*’s heuristic can guide the
search, reducing the time spent exploring less promising paths. The algorithm can adapt
to dynamic changes in the environment if the heuristic and cost functions are defined to
account for varying waste levels or traffic conditions, allowing real-time re-calibration of
routes. However, the efficiency heavily depends on the accuracy of the heuristic function.
An inaccurate heuristic might lead to suboptimal paths or increased computation time.
A* might still face challenges due to computational load in highly dynamic environments
where frequent recalculations are necessary.

The Bellman–Ford algorithm can handle graphs with negative weight edges, which
could be useful if certain paths have attributes that make them less desirable, effectively
acting as a ’cost’ (e.g., high waste levels or areas prone to traffic jams). The algorithm
can be beneficial in complex urban layouts, as it iteratively relaxes the distances to nodes,
effectively adapting to intricate pathways and sudden changes in the graph. Moreover,
the same algorithm could be used for dynamic route recalculations as it does not assume
initially known or fixed distances, making it adaptable to changing conditions such as
sudden road closures or waste bin status updates. However, the Bellman–Ford algorithm
has a higher time complexity compared to algorithms such as Dijkstra’s or A*. In large,
dense urban graphs, the computational load might be significant. Finally, due to its nature
of iterating over all edges, the performance might degrade in large, dense urban networks
with many bins and connecting paths.

6.3. ML Monolithic Approaches

A GNN can learn from historical data, identifying patterns that indicate when bins
are nearing full capacity. By training on these data, the model can predict which bins are
likely to need emptying, as it would consider not just the fill level of each bin but also
the context provided by the network of bins. This approach would lead to an optimized
waste collection route, focusing on bins that are full while bypassing those that are not,
thus improving efficiency in urban waste management. A generic proposal of an algorithm
can be found in Algorithm 9, which depicts a new procedure employing a GNN for smart
bin collection, articulated in the following steps:

1. Initialization: It starts by initializing the graph G(V, E), representing the smart bins
as nodes with features such as location and current waste level.

2. Training: The GNN model M is trained on historical data to learn patterns of bin fullness.
3. Real-time Monitoring: The algorithm continuously receives real-time waste level

updates for each bin.
4. Update and Prediction: Node features in the graph are updated with new waste levels,

and the GNN model predicts which bins are likely to be full.
5. Identification of Full Bins: For each bin, if its waste level exceeds the threshold, θ, it is

marked for collection.
6. Route Determination: The algorithm determines an optimized collection route that

covers all marked bins.
7. Waste Collection Execution: The waste is collected along the determined route.
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Algorithm 9 Smart Bin Collection using a GNN

1: Initialize GNN to model smart bin network:
2: Define GNN architecture and parameters
3: Initialize GNN weights
4:
5: Train GNN Model on historical bin data
6:
7: repeat
8: Receive real-time waste levels for bins
9: Update node features in the graph G with real-time data

10: Apply GNN model to predict full bins
11: for each bin v in V do
12: if waste level of v ≥ θ then
13: Mark v as a collection target
14: end if
15: end for
16: Determine collection route covering marked bins
17: Perform waste collection on the route
18: until end of operation

Based on the existing scientific literature (see, for instance, Feng et al. [54],
Hadou et al. [55], and Ding et al. [56]), it can be noticed that the space complexity for
storing node features depends on the number of bins in the graph (n) and the number of
features associated with each bin (k). Therefore, it can be expressed as O(nk). Moreover,
the space complexity of the GNN model primarily depends on its architecture and the
number of nodes in the graph (N). Typically, GNNs have a space complexity of O(N).
Another point to be considered concerns storing the collection route, which is contingent
on the number of bins marked as collection targets. In the worst case, if all bins are marked
the space complexity would be O(n). Overall, the total space complexity of the algorithm
can be approximated as O(nk + N). The time complexity of this algorithm comprises
several key steps. The initialization of node features for each bin takes O(nk) time. The
time complexity for training the GNN model depends on the number of training iterations
(m) and the complexity of forward and backward passes. If each iteration takes O(N) time,
then the training complexity is O(mN). Furthermore, receiving real-time waste level data
and updating node features for bins takes O(nk) time in each iteration; similarly, applying
the GNN model to predict full bins takes O(N) time since it operates on the entire graph.
Looping through each bin to check if its waste level exceeds the threshold takes O(n) time
while determining the optimized collection route may involve various algorithms, but it
typically ranges from O(N2) or better, depending on the specific optimization techniques
used. Finally, the actual waste collection along the route would depend on factors such as
vehicle speed and the number of collection targets. It may involve traversing the entire
route, which would take O(N) time.

Overall, the time complexity is primarily determined by the training process (O(mN)),
real-time updates (O(nk)), and route optimization (typically O(N2) or better). The training
process is the most computationally intensive part of the algorithm, and its complexity can
vary based on factors such as the GNN model’s architecture and the number of training
iterations. Table 7 recaps the complexity for each step of the proposed method.

Table 7. Summary of time complexity for each process.

Process Time Complexity

Initialization of node features for each bin O(nk)

Training the GNN model (per iteration) O(N)

Total training complexity O(mN)
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Table 7. Cont.

Process Time Complexity

Receiving real-time waste level data O(nk)

Updating node features for bins (per iteration) O(nk)

Applying the GNN model to predict full bins O(N)

Looping through bins to check waste level O(n)

Determining the optimized collection route O(N2) or better

Waste collection along the route O(N)

Algorithm 9 faces several challenges. Its scalability is a concern, as performance may
decrease with large-scale networks due to high computational and memory demands. The
effectiveness of the model hinges on the availability of extensive, accurate historical data.
Adapting swiftly to sudden changes in the network, such as adding new bins or shifts
in waste patterns, can be difficult for GNNs. The model’s generalization across different
regions might require retraining, given the variability in waste generation habits. Real-time
data updates are crucial but could be hampered by transmission delays or sensor errors.
Additionally, the substantial computational resources needed for GNNs might pose a
challenge for smaller organizations with limited IT infrastructure.

To address adaptability issues in a GNN, several strategies can be employed. One
approach is to incorporate mechanisms that allow the GNN to adjust to changes in the
graph structure over time. This can be achieved through techniques such as incremen-
tal learning [57] or transfer learning [58], where the network is trained not only on the
initial data but also continuously adapts to new data. Additionally, using more flexible
aggregation functions that can handle varying node degrees and changing graph dynamics
can improve adaptability. Regularly updating the model with new data and employing
architectures that can efficiently process dynamic graphs are also crucial for enhancing the
adaptability of GNNs.

On the other hand, Algorithm 9 offers significant benefits. Firstly, GNNs excel in
capturing complex relationships within data, allowing for a nuanced understanding of
the spatial distribution and fill patterns of smart bins. This leads to more effective routing
for waste collection, optimizing resource allocation. Additionally, GNNs can adapt to
changes in the network, such as the addition of new bins or shifts in usage patterns and
incorporating node features such as location, connectivity, and urban characteristics. They
can process these changes without the need for complete model retraining, ensuring that
the system remains efficient and up-to-date. Furthermore, the ability of GNNs to learn
from historical data enables predictive insights, potentially improving waste management
strategies. They can handle spatial heterogeneity, which makes them well-suited for diverse
urban environments.

6.4. Hybrid ML Models
6.4.1. Hybrid Models: GNN and RL

Coupling the GNN approach with RL or other ML techniques can offer several benefits
for the smart bin collection scenario. RL, in particular, could enable the system to learn
optimal collection routes through trial and error, continuously improving efficiency based
on feedback from real-world operations. It can also adapt to changing environmental con-
ditions and bin usage patterns. Integrating other ML approaches might provide additional
predictive capabilities, such as forecasting future fill rates of bins, further enhancing the
effectiveness and efficiency of the waste collection system. This integration leads to a more
robust and adaptive waste management solution.

To articulate a hybrid model combining a GNN with RL for smart bin collection, the
implementation strategy would involve the steps described in Algorithm 10.
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Algorithm 10 Hybrid GNN-RL Model for Smart Bin Collection

1: Initialization:
2: Initialize GNN to model the smart bin network:
3: Define GNN architecture and parameters
4: Initialize GNN weights
5: Integrate RL Agent for route optimization:
6: Define RL agent architecture and policy
7: Initialize RL agent parameters
8: Define Actions and Rewards for collection efficiency
9: repeat

10: Update GNN with current bin fill levels:
11: Receive real-time waste level data for bins
12: Update GNN node features with real-time data
13: Predict Full Bins using GNN:
14: Apply GNN model to predict which bins are full
15: RL Agent decides the collection route based on GNN output:
16: RL agent processes GNN’s predictions and selects a collection route
17: Define actions for the RL agent (e.g., bin selection and order)
18: Execute Collection following RL agent’s route:
19: Waste collection is performed according to the RL agent’s selected route
20: Receive Reward based on route efficiency:
21: Evaluate the efficiency of the collection route based on predefined criteria
22: Calculate a reward signal indicating the route’s performance
23: RL Agent Updates policy based on reward feedback:
24: The RL agent updates its policy through RL, learning from reward feedback
25: Retrain GNN periodically with new data:
26: Accumulate new data from waste collection operations
27: Periodically retrain the GNN model to adapt to changing conditions
28: until end of operation

The combination of GNN with RL in smart bin collection is discussed in the literature
(see, for example, [59], where the authors focus on control policies such as offloading,
routing, and resource allocation). Models of this sort can be employed to study complex
spatial relationships and optimize dynamic collection routes. However, this approach has
limitations, such as high computational demands, potential overfitting in GNN to specific
bin patterns, and the challenge of RL in handling large state spaces. Overcoming these
involves optimizing model architectures, incorporating regularization techniques, and
applying efficient learning algorithms. Additionally, simplifying the RL problem or using
hierarchical approaches can make the system more manageable and effective. GNNs have a
space complexity of O(N), where N is the number of nodes in the graph. Concerning the RL
agent, the space complexity is determined by its architecture, including the number of states,
actions, and policy parameters. Depending on the RL algorithm used, this complexity can
vary. For example, Q-learning might require storing a Q-table with dimensions related to
the number of states and actions, while policy gradient methods might involve parameter
vectors. Fathinezhad et al. [60] explore the structural and computational intricacies involved
in such a paradigm, underscoring its potential modeling of multi-agent and multi-task
goals. This insight can substantiate a short discussion regarding the complexity of such a
hybrid model. Storing the collection route’s complexity depends on the number of bins
marked as collection targets. In the worst case, if all bins are marked the space complexity
for the collection route would be O(n). In general, the space complexity of the hybrid
algorithm can be approximated as O(N + M), where N is the space complexity of the GNN
model and M represents the space complexity of the RL agent and the collection route.

Regarding the time complexity, Munikoti et al. [61] provide a comprehensive review
of the hybridization of DRL and GNN, highlighting how this combination can lead to
increased generalizability and a reduction in computational complexity. Moreover, ref. [62]
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discuss how models such as the Deep Q-learning (DQN) utilize deep neural networks to
approximate Q-values, which represent the expected rewards for specific actions in given
states. The study explores the trade-off between expressivity and computational cost, noting
that achieving higher expressivity in models can exponentially increase computational
demands. The work introduces a framework where DQN is adapted to optimize the
identification of the most discriminative subgraphs, aiming to balance expressivity and
computational efficiency.

Again, this insight can support some considerations for the specific case study. In
particular, initializing the GNN model and the RL agent is typically done offline and
does not significantly contribute to the runtime of the algorithm. However, the algorithm
involves real-time updates, including updating node features with waste level data (O(nk)),
applying the GNN model for predictions (O(N)), RL agent decision-making (depends on
RL algorithm and model complexity), and route execution (depends on route length and
vehicle speed). The time complexity for evaluating the efficiency of the collection route
and calculating rewards depends on the specific criteria used and the size of the route.
This complexity is application-dependent. On the other hand, the RL agent updates its
policy based on reward feedback, which depends on the RL algorithm used. The update
process can vary in complexity, but it is typically efficient. Retraining the GNN model
periodically with new data is an offline process and does not impact the real-time operation
of the algorithm.

In summary, the time complexity of the hybrid algorithm is mainly determined by the
real-time updates (including GNN predictions, RL agent decision-making, and route execu-
tion) and reward calculation, which can be influenced by factors such as the size of the graph
and the specific RL algorithm used. The initialization and periodic GNN retraining are typ-
ically one-time or periodic tasks that do not significantly affect the runtime performance.

6.4.2. Hybrid Models: GNN and Time Series

Another ML technique that could effectively complement a GNN in addressing the
smart bin collection issue is time-series forecasting. This approach can predict future bin
fill levels based on historical data trends. By integrating time-series forecasting as per
Algorithm 11, the system can not only respond to current fill levels (as identified by the
GNN) but also anticipate when bins will likely become full. This predictive capability can
enhance the efficiency of collection routes, allowing for proactive management of waste
collection before bins reach critical levels.

A hybrid approach combining GNN and time-series forecasting for smart bin collection
has limitations, such as potential overfitting in GNN to specific data patterns, complexity
in integrating time-series predictions with GNN outputs, and the challenge of forecasting
accuracy for time series in rapidly changing environments. Moreover, the computational
demands for both models can be significant, especially for large networks.

In addition to the GNN model complexity (O(N)), the space complexity of the time-
series model depends on its specific architecture and the number of parameters used for
forecasting. It can vary but is often manageable. The space complexity for storing historical
bin data depends on the amount of data collected over time and the number of features
associated with each data point. If m represents the number of historical data points and k
represents the number of features per data point, the space complexity for historical data
storage is O(mk). Also in this scenario, in the worst case, if all bins are marked for collection
the space complexity would be O(n).

Overall, the space complexity of the hybrid algorithm can be approximated as
O(N + M + mk), where N is the space complexity of the GNN model, M represents
the space complexity of the time-series model, m is the number of historical data points,
k is the number of features per data point, and n is the number of bins.
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Algorithm 11 Hybrid GNN-Time Series Model for Smart Bin Collection

1: Initialization:
2: Initialize the GNN for analyzing the current bin status.
3: Set up the time-series model for predicting future bin fill levels.
4: Input Historical Bin Data into the time-series model.
5: repeat
6: Update GNN with real-time bin fill levels:
7: Receive real-time data on bin fill levels.
8: Update the GNN with current bin fill data.
9: Forecast Future Fill Levels using the time-series model.

10: Combine GNN and time-series output to identify bins for collection:
11: Combine predictions from the GNN and the time-series model to assess which bins

are likely to reach capacity.
12: Plan Collection Route prioritizing bins likely to be full:
13: Use the combined output to plan an efficient collection route, giving priority to bins

expected to be full soon.
14: Execute Waste Collection following the planned route:
15: Perform waste collection based on the planned route to empty bins efficiently.
16: Collect New Data on bin fill levels post-collection:
17: After collection, record new data on bin fill levels to update the models.
18: Retrain GNN and time-series model periodically with updated data:
19: Periodically update and refine the GNN and time-series model using the newly

collected data to improve accuracy.
20: until end of operation.

Again, initializing the GNN model and setting up the time-series model is usually
done offline and does not impact the runtime of the process. The algorithm involves
real-time updates, including updating the GNN with real-time bin fill levels (O(nk)), fore-
casting future fill levels using the time-series model (depends on the forecasting method),
combining GNN and time-series output (O(n)), planning the collection route (typically
O(N2) or better, depending on optimization techniques), and executing waste collection
(depends on route length and vehicle speed). Collecting new data on bin fill levels and
periodically retraining the GNN and time-series model are offline processes and do not
impact the real-time operation of the algorithm.

Overall, the time complexity of the hybrid algorithm is primarily determined by the
real-time updates, including GNN updates, forecasting, route planning, and waste collec-
tion. The algorithm’s efficiency can be influenced by the choice of GNN and time-series
model architectures, as well as the specific optimization techniques used for route planning.

The initialization and periodic data collection and retraining are typically one-time
or periodic tasks that do not significantly affect the runtime performance. The choice of
specific forecasting methods and their optimizations can further refine the actual runtime
characteristics of the algorithm in practice.

6.4.3. Hybrid Models: GNN and GAs

Pairing a GNN with GAs could offer a robust approach for optimizing smart bin
collection. GAs, known for their ability to find solutions in complex search spaces, could
refine and optimize the parameters or structure of the GNN. For instance, they could help
in determining the most effective network topology or in tuning hyperparameters. This
hybrid approach could enhance the GNN’s performance in accurately predicting full bins
and improving the overall efficiency of the waste collection routes. The evolutionary nature
of GAs adds a layer of optimization that adapts to the dynamically changing scenarios of
urban waste management. The method is described by Algorithm 12.
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Algorithm 12 Hybrid GNN-GA Model for Smart Bin Collection

1: Initialization:
2: Initialize the GNN for predicting bin fullness. The GNN architecture, including the

number of layers and parameters, is set up.
3: Define the GA population, consisting of various GNN configurations or individuals.

Each individual represents a potential GNN configuration.
4: GA Iterations:
5: for each generation in the GA do
6: for each individual (GNN configuration) in the population do
7: Evaluate GNN: Execute the GNN with the given configuration and assess its

performance using a fitness function. The fitness function measures how accurately the
GNN predicts bin fullness.

8: end for
9: Select Best-Performing Configurations: Identify the best-performing GNN configu-

rations based on their fitness scores. These configurations represent the most promising
candidates for accurate bin fullness prediction.

10: Apply Genetic Operators: Utilize genetic operators such as crossover (combining
attributes of two configurations) and mutation (introducing random changes) to create a
new generation of GNN configurations. This mimics the natural selection and evolution
process.

11: end for

The space complexity of the GA population depends on the number of individuals
(GNN configurations) in each generation. If there are P individuals and each individual
has a fixed space complexity related to GNN configuration, it is possible to denote the
space complexity of the population as O(P). As a result, the space complexity can be
approximated by Algorithm 12 as O(N + P), where N is the space complexity of the GNN
model and P is the space complexity of the GA population.

The time complexity of running the GA primarily depends on the number of genera-
tions (iterations) and the number of individuals evaluated in each generation. Let G denote
the number of generations and P the number of individuals. The time complexity of a single
generation, including GNN evaluation, selection, and genetic operators, can be represented
as O(P). The time complexity of evaluating each GNN configuration involves executing the
GNN with a particular set of hyperparameters and assessing its performance using a fitness
function. If evaluating a single GNN configuration takes O(M) time, where M represents
the evaluation time, the total evaluation time for all P individuals in a generation is O(PM).
The time complexity for selecting the best-performing GNN configurations and applying
genetic operators such as crossover and mutation depends on the specific methods used.
Typically, this part of the algorithm is efficient and can be represented as O(P). Finally,
selecting the best GNN configuration for deployment as the optimized model for real-time
smart bin collection optimization takes constant time and does not significantly impact the
overall time complexity. In conclusion, the time complexity of the algorithm is determined
by the number of generations, G, and the evaluation time for each GNN configuration,
represented as O(GPM). Table 8 summarizes the space and time complexity regarding the
hybrid models.

Table 8. Space and time complexities for hybrid algorithms.

Hybrid Algorithm Space Complexity Time Complexity

GNN and RL O(N + P + mk) O(GPM)
GNN and Time Series O(N + M + mk) O(nk + NM2)

GNN and GAs O(N + P) O(GPM)



Electronics 2024, 13, 836 34 of 36

7. Conclusions

This paper effectively highlights the potential of hybrid models, particularly those
integrating GNNs with classic and ML routing algorithms, in enhancing the efficiency of
smart bin collection in urban landscapes.

Specifically, it acknowledges the strengths of individual methodologies while also
highlighting the synergistic benefits of combining these approaches to address the dynamic
and complex nature of urban waste management. Limitations are acknowledged in the
realms of computational demand and real-time adaptability, underscoring the need for
further refinement and optimization.

Future work is promising, especially in the empirical part, as the authors plan to
focus on a real case of smart bin deployment in a town located in northern Italy, aiming to
translate theoretical advancements into practical, real-world solutions.
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