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          Chapter 1 
 

INTRODUCTION 
Botrytis cinerea Pers.:Fr. is the causal agent of Botrytis bunch rot (BBR), a severe 

disease in vineyards (Elmer and Michailides 2007; Williamson et al. 2007). The 

fungus affects all vine organs and thereby reduces both the quantity and quality of 

the harvested grapes. Botrytis cinerea can develop and actively grows as a 

necrotrophic pathogen and as a saprophyte, affecting at least 580 genera of 

vascular plants and crop products during cultivation, storage, and transport (Elad 

et al. 2016). It can occur wherever its host plants are grown, ranging from tropical 

and subtropical areas to cold temperate zones and involves severe disease 

management problems all around the world (Elad et al. 2016). In grapevine, loss 

of crop yield results from damage to inflorescences before flowering, flowers during 

flowering, young berries at fruit set, and berries during ripening; the latter damage 

is referred to as bunch rot. Additionally, the fungus can cause early latent infections 

at flowering time, which damage the fruits after ripening (Jarvis 1977). Quality is 

reduced because rotted berries have an altered chemical composition that causes 

undesirable flavours in wine (Steel et al. 2013).  

 

The pathogen 

Botrytis cinerea Pers.:Fr. is the anamorphic stage of Botryotinia fuckeliana (de 

Bary) Whetzel (Kirk et al. 2008), and is included in phylum Ascomycota, class 

Leotiomycetes, order Helotiales, family Sclerotiniaceae. The genus Botrytis was 

first described by Pier Antonio Micheli in 1729 and contains more than 30 species 

(Elad et al. 2016). This genus is closely related to Sclerotinia, with the proteins 

encoded by the genomes of B. cinerea and S. sclerotiorum displaying 83% identity 

(Amselem et al. 2011). 

In the asexual stage, the mycelium of the species belonging to the genus 

Botrytis produces macroconidia (the Botrytis anamorph form), microconidia 

(spermatia), and sclerotia (Beever and Weeds 2007). In the sexual stage, 

microconidia may fertilize sclerotia to produce apothecia (the Botryotinia 

teleomorph stage), and ascospores are produced (Beever and Weeds 2007). The 

connection between the anamorph B. cinerea and its teleomorph B. fuckeliana 

(sensed by de Bary, 1866) has been established by Groves and Loveland (1953) 

and confirmed by Faretra et al. (1988a; 1988b). The Botrytis-research community 

recently decided to retain the asexual name, Botrytis, for fungi from this genus, 

and the teleomorph name should be used for the only Botryotinia species lacking 

a Botrytis equivalent (Johnston et al. 2014a). 

Botrytis cinerea is heterothallic (Groves and Loveland 1953); the mating is 

controlled by a single locus (MAT1) with two idiomorphs: MAT1-1 and MAT1-2 



Chapter 1 

 

4 
 

(Faretra et al. 1988a; 1988b). Few B. cinerea isolates fertile with both MAT1-1 and 

MAT1-2 strains and often auto-fertile, referred to as pseudo-homothallic (MAT1-

1/2) or ‘dual-mater’ (Amselem et al. 2011; Faretra and Grindle 1992). 

Heterokaryosis has traditionally been considered very important in phenotypic 

variability of the fungus (Büttner et al. 1994; Hansen and Smith 1932). In particular, 

it is the leading cause of secondary homothallism of field and monoconidial isolates 

of B. cinerea, since single multinucleate conidia may contain nuclei carrying 

opposite idiomorphs (Faretra et al. 1988b).  

Some studies showed that B. cinerea exhibits great phenotypic diversity 

(Chardonnet et al. 2000; Martinez et al. 2003; Yourman et al. 2001). Phenotypic 

diversity is caused by not only heterokaryosis or genes present in chromosomes 

but also by the presence of variety extrachromosomal genetic elements, such as 

mitochondrial DNA (De Miccolis Angelini et al. 2004; Yin et al. 2012), plasmids 

(Hiratsuka et al. 1987) and mycoviruses. These elements are likely transmitted via 

conidia, while transmission via ascospore progeny may, in some cases, be limited 

or occurs only via the maternal parent (Beever and Weeds 2007).  

Transposable elements (TEs) also contribute to phenotypic variability (Levis 

et al. 1997; McDonald 1993). In general terms, TEs can be divided into class I 

retroelements (LTRs) or class II DNA transposons (MITEs, TIRs) (Daboussi 1996; 

Kidwell and Lisch 2001). Two types of strains, named transposa and vacuma, have 

been distinguished based on two transposons, Boty and Flipper (Giraud et al. 

1999). The presence/absence of these two elements has been used to describe 

four transposon types in populations: vacuma (strains with neither of these 

elements), transposa (strains with both elements), Boty and Flipper (strains with 

one or other of the two elements) (Muñoz et al. 2002; Albertini et al. 2002; De 

Miccolis Angelini et al. 2004; Fournier et al. 2005; Isenegger et al. 2008; Martinez 

et al. 2008; Esterio et al. 2011). Frequencies of strains belonging to the different 

transposon types in the fungal population in vineyards were highly dependent on 

geographic location (Muñoz et al. 2002), isolation year (Váczy et al. 2008), and 

sampling time over the season (Martinez et al. 2005, 2008). Some studies led to 

the establishment of strains belonging to vacuma as the new species B. 

pseudocinerea (Walker et al. 2011; Fournier et al. 2005). However, this 

classification has become obsolete, because some transposa strains were found 

in B. pseudocinerea (Walker et al. 2011; Johnston et al. 2014b; Fekete et al. 2012). 

 

Life cycle and Epidemiology 

Botrytis cinerea has a necrotrophic lifestyle: after infection and death of host tissue, 

the fungus can survives and sporulates as saprophyte on the necrotic tissue 

including grape debris and weeds covering the soil (Elmer and Michailides 2007; 
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Jarvis 1977), or produces long-term survival structures (Holz et al. 2007). In late 

winter and early spring, conidia can be produced on over-wintering mycelium (Nair 

et al. 1995; Mundy et al. 2012; Seyb et al. 2000; Jaspers et al. 2013) and sclerotia 

within grape debris (old rachides, tendrils, mummified berries, dead leaves, and 

canes) (Elmer and Michailides 2007; Jarvis 1977; Holz et al. 2007; Nair and 

Nadtotchei 1987). Conidia can also be produced on alternative hosts close to 

vineyards (Elmer and Michailides 2007).  

Botrytis cinerea inoculum, in the form of conidia, is abundantly present in 

the vineyard throughout the growing season (Rodríguez-Rajo et al. 2010) and can 

be produced on grape bunch, bunch and leaf trash, and rotted berries under a wide 

range of environmental conditions (Ciliberti et al. 2016; Mundy et al. 2012; Nair et 

al. 1995). Mature conidia become airborne with a circadian periodicity, the 

maximum concentrations in the air occurs at about midday, and this periodicity is 

correlated positively with increasing temperature and wind velocity and negatively 

with increasing relative humidity (RH) and the presence of dew (Carisse 2016). 

Conidia are dispersed by wind, rain, and insects (Holz et al. 2007). When conidia 

are deposited on plant surfaces, they germinate by producing a germ tube; the 

germ tube forms an appressorium that penetrates the host surface actively by 

mechanical and enzymatic activity (Salinas and Verhoeff 1995; Holz 1999; Coertze 

and Holz 2002). Botrytis cinerea is an opportunist pathogen that can also initiate 

infection by passive penetration through wounds, lesions caused by other 

pathogens or insect pests, and open stomata (Puche-Planté and Mercier 1983). 

Several factors influence germination of conidia. Latorre and Rioja (2002) 

found that conidial germination occurs from 5 to 30 °C, with no germination at 0°C 

and optimum at 20°C. Similar results have been obtained by Ciliberti et al. (2015a), 

which observed a rapidly germination at 20°C and complete conidia germination 

after 24 h at temperatures between 10 and 30°C, no germination occurs at 40°C. 

No conidial germination occurs in the absence of free water on the host surface 

(Brown 1916; Blackman and Welsford 1916; Snow 1949; Williamson et al. 1995). 

However, relative humidity (RH) >90% can provide the free water needed for 

germination (Ciliberti 2014; Latorre and Rioja 2002). Botrytis cinerea is able to 

grow at 0°C (Schneider-Orelli 1912; Shiraishi et al. 1970), and optimal temperature 

for mycelial growth is between 20 and 25°C (Brooks and Coley 1917; Ciliberti 

2014; Shiraishi et al. 1970; Jarvis 1977); the growth rate decreases markedly 

above 25°C (Jarvis 1977). The pathogen needs >0.95 aw for optimal growth 

(Ciliberti 2014; Magan and Lacey 1984; Lahlali et al. 2007; Deytieux-Belleau et al. 

2009). 

In the early season, B. cinerea affects young leaves, young succulent 

shoots, and inflorescences in wet conditions (Jarvis 1977; Elad et al. 2007). 
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Leaves show a characteristic v-shaped arc of dead brown tissue, often surrounded 

by a yellow margin extending from the edge of the leaf into the central veins (Jarvis 

1977). Shoots show soft brown spots and often break at the nodes revealing brown 

discoloration of the internal tissues (Jarvis 1977). Young inflorescences develop 

brown, musty rot patches along the peduncle until the inflorescence is completely 

rotted.  

Grape inflorescences can be affected at any growth stage before flowering 

or to flowering, but they are more susceptible at flowering, fruit swelling, or “berry 

groat-size” than at earlier growth stages (Jarvis 1977; Ciliberti et al. 2015a). 

Flowers are highly susceptible to infection during flowering and when they senesce 

(Jersch et al. 1989) because of low resveratrol content (Keller et al. 2003) and the 

abundance of pollen (Ogawa and English 1960). In the early season, infection 

severity increases after brief exposure to wetness at temperatures near 20°C 

(Ciliberti et al. 2015a; 2015b; 2016; Latorre and Rioja 2002; Nair and Allen 1993). 

At 5, 10, and 30°C, low levels of infection occur (Nair and Allen 1993; Broome et 

al. 1995; Latorre and Rioja 2002). 

From flowering to young cluster, conidia germinate by producing a germ 

tube and infect the flower styles and ovules (pathway I), the stamens or petals 

(pathway IIa), or the fruit pedicel (pathway IIb) (Elmer and Michailides 2007). In 

Pathway I, the infection of the stylar tissue is followed by slow systemic hyphal 

growth into the ovule where B. cinerea enters in a latent phase (McClellan and 

Hewitt 1973; Nair and Parker 1985). In Pathway IIa, after the infection of stamens, 

the pathogen basipetally grows into the receptacle and vascular tissue of berries, 

where the fungus enters in the latent phase (Pezet and Pont 1986; Viret et al. 

2004). In addition, in Pathway IIb, the infection of the fruit pedicel is followed by 

latent infections (Elmer and Michailides 2007). After veraison, under suitable 

environmental conditions, latent infection of young berries may become visible as 

rotted berries and may contribute to final disease severity, but the contribution of 

latent infections to final disease remains unclear (Holz et al. 2007; Keller et al. 

2003; McClellan and Hewitt 1973).  

During the flowering stage, the pathogen also saprophytically colonizes the 

bunch trash (the dead stamens, aborted flowers, aborted berries, calyptras, and 

tendrils) retained within the developing bunches and then occurring conidial 

germination and extensive colonization of floral debris in grape bunches (pathway 

III, Elmer and Michailides 2007). Blighted inflorescence parts and floral debris have 

been considered a major source of inoculum within developing bunches (Nair and 

Parker 1985; Calvo-Garrido et al. 2014b) and have been correlated with the 

incidence of infected berries at harvest (McClellan and Hewitt 1973; Seyb et al. 

2000; Calvo-Garrido et al. 2014b). Besides, the mycelium colonizing the bunch 
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trash can produce conidia under favorable conditions, resulting in a source of 

inoculum for new infections of the ripening berries (pathway IV, conidial 

accumulation within the developing bunch; Elmer and Michailides 2007).  

After veraison, a classical pre-harvest polycyclic epidemic can develop 

under favorable weather conditions; rot develops, and a new crop of conidia are 

dispersed to new infection sites and cause infections of ripening berries (pathway 

Va; Elmer and Michailides 2007). In addition to conidial infection, ripening berries 

can be infected through contact with the aerial mycelium produced on adjacent 

moldy berries (pathway Vb, berry-to-berry infection; González-Domínguez et al. 

2015).  

From veraison to ripening, the berry infection rate is highest at temperatures 

between 15 and 25°C and increases with hours of wetness or high relative humidity 

(Broome et al. 1995; Ciliberti et al. 2015b; Latorre and Rioja 2002; Nair et al. 1988; 

Nair and Allen 1993). The appearance of symptoms is also promoted by the 

increased susceptibility of berries approaching maturity; this increase has been 

associated with structural and biochemical changing during this period (Deytieux-

Belleau et al. 2009; Hills et al. 1981; Kretschmer et al. 2007; Mundy and Beresford 

2007). Early symptoms of infection in ripening berries are the formation of small 

circular water-soaked (Jarvis 1977). When rubbed, the skin over these areas 

cracks and slips freely, revealing the inner pulp; this is known as the “slippery-skin” 

stage (Jarvis 1977). Usually, the skin ruptures in the center of the rotted area, and 

conidiophores with conidia develop in this broken area under high relative humidity 

or moisture (Jarvis 1977). In compact bunches, the rot can spread rapidly from 

berry to berry until entire bunches are rotted and covered with grey mold (Jarvis 

1977). 

Characters of the cultivar and cultural practices may influence the 

compactness of bunches and density of vegetation, increasing the wetness 

duration within bunches and consequently, the disease incidence (Jarvis 1977; 

Mlikota Gabler et al. 2003; Vail and Marois 1991). Excessive nitrogen fertilization 

leads to excessive vigor of clusters with high bunch compactness and cuticle 

thinning (Mundy and Beresford 2007). Calcium deficiency also influences the skin 

thickness and susceptibility to B. cinerea (Elad et al. 1992). Moreover, wounds 

caused by different factors increase the infection of berries (Jarvis 1977; Nair et al. 

1988; Mundy and Beresford 2007). 

 

Disease control  

BBR is commonly managed by routine applications of fungicides at four specific 

grape growth stages (GS): A, end of flowering (GS69 of Lorenz et al. 1995); B, 

pre-bunch closure (GS77); C, veraison (GS83); and D, before harvest (before 
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GS89) (Bulit et al. 1970; Nair and Allen 1993; Broome et al. 1995; Elmer and 

Michailides 2007; Deytieux-Belleau et al. 2009). This routine application of 

fungicides has become increasingly unacceptable for the high risk and effects of 

chemical use on human health and the environment (Alavanja et al. 2004; Epstein 

2014). Moreover, B. cinerea populations frequently develop resistance to 

fungicides (Leroux 2007), which is difficult to avoid with the current resistance-

management strategies (Fernández-Ortuño et al. 2016). Consequently, alternative 

approaches for systematic disease suppression are urgently needed. This goal 

can be achieved following an integrated pest-management framework, either by 

applying fungicides only when really needed, thus eliminating unnecessary sprays, 

or by integrating chemical and non-chemical measures, agronomic practices or 

applications of biopesticides (i.e., preparations based on living microorganisms 

and substances of natural origin; Nicot et al. 2016) (Fillinger and Walker 2016). 

The forecast models or Decision Support Systems (DSS) could also help to 

achieve this goal (Rossi et al. 2012).  

Fungicides. Chemical control is based on the application of synthetic fungicides 

and constitutes the principal means of efficient and reliable grapevine protection 

against BBR (Leroux 2007; Fillinger and Walker 2016).  

The fungicides mostly used to control BBR target either specifically essential 

cellular functions (single-site activity), or display multi-site activity, interfering with 

more than one cellular function (Fillinger and Walker 2016). Conventional synthetic 

fungicides used for Botrytis control are: i) succinate dehydrogenase inhibitors, 

which act by blocking fungal respiration (e.g., boscalid, penthiopyrad, fluopyram, 

isofetamid, and adepidyn); ii) methionine fungi biosynthesis interferers (e.g., 

cyprodinl and pyrimethanil); iii) quinone outside inhibitors (e.g., pyraclostrobin); 

and iv) sterol biosynthesis inhibitors (e.g., fludioxonil and fenhexamid) (Avenot and 

Michailides 2010; Bardas et al. 2008; Grabke et al. 2013). The Fungicide 

Resistance Action Committee have classified the risk of resistance of these 

fungicides by their modes of action (FRAC, 2019); moreover, B. cinerea is 

classified as a high-risk pathogen for acquired resistance development (FRAC, 

2019), due to its broad variability and adaptability. Fungicide resistance has been 

experienced with almost all fungicides used against B. cinerea and in numerous 

countries (Asadollahi et al. 2013; Fillinger and Walker 2016; Fernández-Ortuño et 

al. 2016; Hahn 2014). Resistance to multi-site fungicides has been observed only 

in a few cases (Leroux 2007).   

For these reasons, fungicides should be applied by following some anti-

resistance strategies aiming to reduce the development of acquired resistance in 

fungal populations. These strategies should combine the biological risk (inherent 

to the fungus’ life traits), the fungicide risk (inherent to the fungicide’s mode of 
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action), and the agronomic risk (reflecting cultural practices and the intensity of 

fungicide use) (Kuck and Russell 2006). Anti-resistance strategies include: i) the 

avoidance of repeated applications of fungicides with the same modes of action; 

ii) the use of mixtures or alternate non-cross-resistant fungicides in situations 

requiring multiple spray applications; iii) the use of fungicides with high risk of 

resistance only in the critical part of the season (only when strictly necessary), and 

if mixture or alternation is not possible; iv) the use of fungicides as recommended 

on the label without reduced doses; and v) the use of agronomic practices to 

reduce the risk of disease. However, the current anti-resistance management 

strategies have not been able to prevent the independent development of 

resistance to site-specific fungicides (Fernández-Ortuño et al. 2015). In this sense, 

the last findings encourage a limited use of fungicides and the alternation of active 

ingredients at full dose with different modes of action, more than the mixture 

strategy (Fillinger and Walker 2016). 

Biopesticide. In recent years, researchers have been increasingly exploring 

alternatives to chemical control, including the use of living microorganisms 

(referred to as biocontrol agents or “BCA”) and substances of natural origin such 

as microbials, botanicals, minerals and organic compounds (Nicot et al. 2016). A 

wide range of different biopesticides have been reported to exhibit inhibitory 

activity against B. cinerea in laboratory and greenhouse trials, but only a few have 

shown consistent field performance, and even fewer have been commercialized 

(Nicot 2011; Elmer and Reglinski 2006).  

BCAs include control products for B. cinerea with active ingredients ranging 

from yeasts, fungi, and bacteria. These microorganisms may suppress the 

pathogen via competition, antibiosis, and/or parasitism (Elmer and Reglinski 2006; 

Elad and Stewart 2007; Haidar et al. 2016). In vineyards, the most common 

biocontrol agents applied are: Trichoderma spp. (O’Neill et al. 1996; Elad and 

Stewart 2007; Pertot et al. 2017; Longa et al. 2009); Ulocladium spp. (Reglinski et 

al. 2005; Elmer et al. 2005; Schoene 2002); Aureobasidium spp. (Elad and Stewart 

2007; Pertot et al. 2017; Elmer and Reglinski 2006); Candida spp. (Calvo-Garrido 

et al. 2014a; 2014c; Carbó et al. 2017); and Bacillus spp. (Thomidis et al. 2016; 

Pertot et al. 2017; Jacometti et al. 2010). 

Plant extracts and other plant-based compounds such as essential oils have 

been tested for their efficacy in the management of a wide range of fungal diseases 

in plants (Abbey et al. 2018; Amini et al. 2012; Bhagwat and Datar 2014; De Corato 

et al. 2017). In recent years, several essential oils have been reported to have high 

antifungal activities and their acquired popularity in the agricultural sector is due to 

their volatility, ecological, and biodegradable properties (Abbey et al. 2018). 

Essential oils naturally contain bioactive compounds that can effectively manage 
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B. cinerea in vitro, but only a few inhibit B. cinerea infection in grape bunches and 

in leaves in planta (Walter et al. 2001; Jacometti et al. 2010; Rotolo et al. 2018). 

Although the specific modes of action of these essential oils are still unclear, it is 

believed that they act against the cytoplasmic cell membranes of microorganisms 

(Diao et al. 2014).  

In addition, mineral oils can be effective at suppressing B. cinerea 

(Jacometti et al. 2010). Applications of these oils are effective at low dosages 

because of their excellent spreading and sticking properties and, if highly refined, 

are quite disease-specific (Jacometti et al. 2010). 

Moreover, various biotic and abiotic compounds can elicit a plant defense 

response that can be highly effective at suppressing B. cinerea in grapes (Elmer 

and Reglinski 2006; Reglinski et al. 2005). These compounds include plant 

hormones, abiotic stimulants, plant and microbial extracts, and microbes 

(Jacometti et al. 2010). 

Agronomic practices. Agronomic practices also contribute to reducing the 

incidence and severity of B. cinerea (Gubler et al. 1988; English 1989; Valdés-

Gómez et al. 2008). Agronomic practices include canopy management (e.g., leaf 

removal, bunch trash removal, leaf plucking, shoot thinning, and pruning), soil and 

weeds management, reduction of nitrogen fertilization, and irrigation. All these 

practices influence the microclimate within the canopy and promote unfavorable 

conditions for disease development, as previously described. Moreover, leaf 

removal can contribute to reduce the compactness of bunch or increase the 

thickness of berry skin when applied in specific phenological stages (Fregoni 

1998).  Similar effects on the thickness of the skin may be due to foliar application 

of calcium fertilizers (Elad et al. 1992). Lastly, the control of grape berry moth 

(Lobesia botrana) and powdery mildew (Erysiphe necator) is essential to reduce 

the damage of berry skin (Jarvis 1977; Elad et al. 2007).  

 

Empirical rules, prediction models and an expert system for BBR control  

Use of prediction models embedded in warning or decision support systems is an 

efficient way to make decisions on whether and when it is necessary to control 

diseases (Madden et al. 2007; Rossi et al. 2012). Only a few works have been 

carried out to model the development of B. cinerea in vineyards. 

An empirical rule was proposed by Baldacci et al. (1962) and by Bulit et al. 

(1970). Baldacci et al. (1962) suggested to applying fungicides at three determined 

grape growth stages: (A) end of flowering; (B) pre-bunch closure; and (C) veraison. 

Treatments were proposed according to the susceptibility of grapevine at these 

growth stages after several observations in a vineyard of North Italy (Baldacci et 

al. 1962). Agulhon (1969) improved the method suggesting a fourth treatment (D) 
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to perform 3-4 weeks before harvest. Then, this method has been widely tested 

and commonly known as the “phenological method” in France (Agulhon 1969; 

1973; Lafon et al. 1972), Italy (Bisiach 1975; 1978a; 1978b), Germany (Gartel 

1977) and Swiss (Bolay and Rochaix 1975).  

At the same time, Bulit et al. (1970) formulated the “two fifteens rule”: an 

infection by B. cinerea may occur when the grapes remain wet for 15 consecutive 

hours at a temperature of at least 15 °C. This rule was developed based on field 

experiments consisted in preventative applications of fungicide during the season, 

recording of weather data (rain, temperature, and hours of wetness), assessment 

of conidia in the air and evaluation of BBR symptoms. This method has been tested 

in France (Lafon et al. 1972) and Italy (Bisiach et al. 1978a; Egger et al. 1994). 

This method allows to reduce the number of treatments in years little rainy (Bisiach 

et al. 1978) but not ensure constant results (Egger et al. 1994). In the following 

decades, four empirical models were developed for BBR (Strizyk 1985; Nair and 

Allen 1993; Broome et al. 1995; Rodríguez-Rajo et al. 2010).  

The EPI-Botrytis (Etat Potentiel Infection - Botrytis) model of Strizyk (1985) 

is an empirical model that predicts infection risk of BBR according to the 

susceptibility of the cultivars, the phenological stages, the quantity of airborne 

conidia, and the weather conditions. The model daily updates the EPI index 

according to wetness periods or relative humidity, temperature, and an empirical 

index of the number of conidia in the air considering the hours of day and 

phenological stages. The EPI index is an estimation of the quantity of bunches 

infected at harvest by BBR (Molot 1987). The model suggests if a fungicide 

treatment is required at the four grape growth stages considered critical in standard 

anti-Botrytis strategies (Molot 1987): end of flowering (A), bunch closure (B), 

veraison (C), and three weeks before harvest (D). A treatment is required when 

EPI index exceeds a specific threshold for each critical stage. The model was 

extensively validated in France and Italy (Molot et al. 1983; 1987; Egger et al. 1994; 

Brunelli and Cortesi 1990). The EPI-Botrytis model described with sufficient 

precision the development phases of BBR, with underestimation of infection risk 

at harvest (Molot 1987; Egger et al. 1994; Brunelli and Cortesi 1990; Molot et al. 

1983). This model permitted a good protection of vineyards, reducing the number 

of fungicide treatments according to the phenological method and ensured more 

constant results than the “two fifteens rule” (Molot et al. 1983; 1987; Egger et al. 

1994). 

Nair and Allen (1993) developed a simple model to predict the percentage 

of infection of B. cinerea on grape flowers and berries as a function of wetness 

duration and temperature. Grape flowers and mature berries were used in 

laboratory experiments to collect the data needed to develop the model. The model 
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was not validated in the field, and there are no indications on how to use the model 

for deciding when a fungicide application is necessary. 

Broome et al. (1995) developed a model to predict the incidence of BBR 

infection on mature berries as a function of wetness duration and temperature. To 

develop the model laboratory data were used and a multiple regression model was 

developed to calculate an infection index as a function of wetness duration and 

temperature. Broome et al. (1995) found that the infection rate increased with 

increasing wetness duration. The model was linked to an action threshold, and in 

this system, the fungicide applications were based on the level of risk that a grower 

is willing to accept. The model was programmed into an automated weather station 

(Envirocaster) and validated for two years on Chilean table grapes; fungicide 

applications based on the model allowed growers to reduce the use of fungicides 

by approximately 50% with equivalent disease control.  

A model for the prediction of airborne B. cinerea conidial concentrations was 

developed in Spain (Rodríguez-Rajo et al. 2010). A phenological and 

aerobiological survey was carried out from 2004 to 2008 on three grape varieties. 

Spore samplings were obtained by a volumetric spore trap located in the vineyards 

and related to weather variables trough an ARIMA (Autoregressive Integrated 

Model of Running Mean) time-series model. The model based on the dew-point 

occurring two days earlier was able to predict the B. cinerea airborne conidial 

concentrations with a prediction horizon of 24 hours. Validation was carried out 

with data of spore counts in 2008; the model predictions matched observed spore 

counts in most cases. The model is proposed to be used to apply fungicides when 

the concentration of spores in the air is high. 

In the late 1990s an expert system was developed in Australia as a set of 

“if-then” rules organized in a decision tree made up of three main sections: i) 

“fungicide coverage” (i.e., the residual presence or absence of a previous 

treatment); ii) the “economic threshold” (e.g., grapevines for premium quality or 

bulk wine); and iii) “disease risk” (e.g., due to a combination of different factors 

such as injury, growth stage, susceptibility, infections and symptoms) (Ellison et 

al. 1998a). The knowledge on B. cinerea population dynamics were used to 

estimate the disease risk (in a zero to one scale) according to: i) growth stage of 

grapevines; occurrence of infection by ii) conidia or iii) mycelium; iv) lesions on 

berries; v) presence of disease symptoms; and vi) cultivar susceptibility. The 

expert system uses two economic thresholds of damage, one for low-quality wine 

and one for high-quality wine. The “fungicides” component considers the duration 

of plant protection after the application of fungicides. The expert system produces 

a response to establish if applications of fungicides are necessary; a fungicide 

application is required when the risk of disease exceeds the economic thresholds 
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of damage, and the crop is not already protected against BBR. The expert system 

was validated from 1990 to 1994 in Australia (Ellison et al. 1998b).  

A Decision Support System (DSS) called the Botrytis Decision Support 

(BDS) was developed by Beresford et al. (2012) in Australia and New Zealand. 

The BDS model captures the main features of B. cinerea biology and simulates 

the effects of risk factors and control options on the development of BBR 

epidemics. The BDS system consists of an early-season model and a late-season 

model. The early-season model assesses the effects of weather on Botrytis risk by 

accessing vineyard weather stations. In particular, the Botrytis risk index is 

estimated using an algorithm, called the ‘Bacchus model’, which uses temperature 

and wetness data to determine the daily risk of infection by B. cinerea (Kim et al. 

2007). The late-season Botrytis risk model predicts BBR incidence according to 

berry sugar accumulation (°Brix) between veraison and harvest. Results from 

vineyard studies were used to calibrate the BDS model, and subsequently, it was 

turned into an online Botrytis management tool. The BDS system is being 

implemented for the wine industry of Australia and New Zealand. 

Recently, a new, mechanistic model for B. cinerea on the grapevine was 

developed González-Domínguez et al. (2015). The model was developed using 

the results of recent publications that investigated the effect of environmental 

conditions on the biology and epidemiology of B. cinerea isolates belonging to 

different transposon genotypes (Ciliberti et al. 2015a; 2015b; 2016). This model 

accounts for the full complexity of the B. cinerea life cycle and of Botrytis bunch rot 

epidemiology, and considers two infection periods. In the first infection period 

(between “inflorescences clearly visible” and “berries groat-sized, bunches begin 

to hang”), the model calculates a daily infection risk (RIS1) for infections by conidia 

on inflorescences and young clusters (pathways I and II of Elmer and Michailides 

2007). In the second infection period (between “majority of berries touching” and 

“berries are ripe for harvest”), the model calculates the daily infection risk on 

ripening clusters for infections caused by conidia (pathway Va of Elmer and 

Michailides 2007; RIS2) and for berry-to-berry infection by aerial mycelium 

(pathway Vb of González-Domínguez et al. 2015; RIS3). The model uses the 

vineyard’s weather data and vine growth stages to predict, on any day of the vine-

growing season, the epidemic group (severe, intermediate, or mild) at harvest 

(González-Domínguez et al. 2015). The model was evaluated with data collected 

from 21 vineyards in Italy and France and between 2009 and 2014; according to a 

discriminant function analysis (DFA), the model correctly classified 81% of the 

epidemics (González-Domínguez et al. 2015). This model is currently integrated 

into a Decision Support System (DSS) called vite.net (Rossi et al. 2012). 
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Objectives of the Thesis 

In the last years, the control of BBR based on calendar sprays of fungicides has 

been considered no more sustainable because of its important limitations. First, 

the treatments are preventive and do not take into account the real risk of infection, 

the treatments are sometimes unnecessary. Second, this method can increase the 

probability that B. cinerea develops resistance to fungicides. Finally, public 

concerns about the possible effects of chemicals on human health and 

environmental pollution require that fungicides not be applied when unnecessary. 

Thus, the sustainable control of BBR should include: i) the integration of the 

epidemiology knowledge of the disease with the fungicide applications strategies; 

ii) the applications of fungicides only when necessary considering the real risk of 

BBR development; and iii) the use of alternative products, like biological control 

agents (BCAs) and botanicals to control BBR. Following these aims, the research 

developed in this Thesis includes: 

A multi-treatment (or network) meta-analysis to compare different strategies 

of BBR control, based on combinations of 1, 2, 3, or 4 sprays applied in A, B, C, 

and/or D (Chapter 2); 

The analysis of the interactions among fungicide treatments applied at 

different timings for the control of BBR in vineyards (Chapter 3); 

The optimization and validation of a hydrolysis probe-based qPCR assay for 

the quantification of B. cinerea DNA in bunch trash (Chapter 4); 

The evaluation of the effects of different products (fungicides, biological 

control agents, and botanicals) applied at different timings on bunch trash 

colonization on and sporulation of B. cinerea (Chapter 5); 

The validation of the weather-driven mechanistic model developed by 

González-Domínguez et al. (2015) and the evaluation of its ability to account for 

latent infections (Chapter 6).  

A systematic literature review to study the effect of the environmental 

conditions on the fitness and efficacy of microorganisms for biocontrol of B. cinerea 

(Chapter 7);  

The further development of a model for biocontrol proposed by Jeger et al. 

(2009) by including i) the effect of environmental conditions on the pathogen-BCA 

interactions and ii) the dynamic of host growth and senescence (Chapter 8). 

Finally, how the findings rising from the present Thesis can be used to 

propose new managements of BBR in vineyards are discussed in the Conclusions 

(Chapter 9). 



Introduction 

 

15 
 

Literature cited 

Abbey JA, Percival D, Abbey L, Asiedu SK, Schilder A, 2018. Biofungicides as 

alternative to synthetic fungicide control of grey mould (Botrytis cinerea) – 

prospects and challenges. Biocontrol Sci Tech 0:1–22. 

Agulhon R, 1969. La pourriture grise des raisins. In Le maladies des plantes. 

ACTA, Paris, France. 

Agulhon R, 1973. Quelques aspects de la lutte contre la pourriture grise en 1972. 

Vigne vins 220:5–11. 

Alavanja MCR, Hoppin JA, Kamel F, 2004. Health effects of chronic pesticide 

exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197.  

Albertini C, Thebaud G, Fournier E, Leroux P, 2002. Eburicol 14α-demethylase 

gene (CYP51) polymorphism and speciation in Botrytis cinerea. Mycol Res 

106:1171–1178. 

Amini M, Safaie N, Salmani MJ, Shams-Bakhsh M, 2012. Antifungal activity of 

three medicinal plant essential oils against some phytopathogenic fungi. 

Trakia J Sci 10:1–8. 

Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, et al., 2011. 

Genomic analysis of the necrotrophic fungal pathogens Sclerotinia 

sclerotiorum and Botrytis cinerea. PLOS Genet 7:1–27. 

Asadollahi M, Szojka A, Fekete E, Karaffa L, Takács F, Flipphi M, et al., 2013. 

Resistance to QoI fungicide and cytochrome b diversity in the hungarian 

Botrytis cinerea population. J Agric Sci Technol 15:397–407. 

Avenot HF, Michailides TJ, 2010. Progress in understanding molecular 

mechanisms and evolution of resistance to succinate dehydrogenase 

inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29:643–

651. 

Baldacci E, Belli G, Fogliani G, 1962. Osservazioni sul ciclo vitale della Botrytis 

cinerea Pers. nella vite. Not Mal delle Piante 62:29–43. 

Bardas GA, Myresiotis CK, Karaoglanidis GS, 2008. Stability and fitness of 

anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology 

98:443–50. 

Beever RE, Parkes SL, 1993. Mating behaviour and genetics of fungicide 

resistance of Botrytis cinerea in New Zealand. New Zeal J Crop Hortic Sci 

21:303–310. 

Beever RE, Weeds PL, 2007. Taxonomy and genetic variation of Botrytis and 

Botryotinia. In Botrytis: Biology, Pathology and Control, ed. by Y Elad, B 

Williamson, P Tudzynski, N Delen, Springer Netherlands, pp. 29–52.  

Beresford R., Evans K., Hill G, 2012. Botrytis decision support: online tools for 

predicting seasonal risk of botrytis bunch rot. Wine Vitic J 27:46–52. 



Chapter 1 

 

16 
 

Bhagwat MK, Datar AG, 2014. Antifungal activity of herbal extracts against plant 

pathogenic fungi. Arch Phytopathol Plant Prot 47:959–965. 

Bisiach M, 1975. Nuove acquisizioni nella protezione antibotritica in viticoltura. Atti 

Gior Fitopatol 753–769. 

Bisiach M, Minervini G, Zerbetto F, 1978a. L’epidemia di Botrytis cinerea in due 

località dell’Italia settentrionale e la possibilità di interventi fitoiatrici. Inf 

Agra 24:2283–2286.  

Bisiach M, Zerbetto F, Minervini G, 1978b. Possibilità di lotta secondo il metodo 

fenologico e climatico. Inf Agra 24:2287–2290. 

Blackman VH, Welsford EJ, 1916. Studies in the physiology of parasitism. II. 

Infection by Botrytis cinerea. Ann Bot 30:389–398. 

Bolay A, Rochaix M, 1975. Heurs et malheurs des fongicides systémiques dans la 

lutte contre la pourriture grise des raisins. Rev Suisse Vitic Arboric Hortic 

7:137–147. 

Brooks C, Coley JS, 1917. Temperature relations of apple-rot fungi. J Agric Res 

8:139–164. 

Broome J, English JT, Marois JJ, Latorre BA, Aviles JC, 1995. Development of an 

infection model for Botrytis Bunch Rot of grapes based on wetness 

duration and temperature. Phytopathology 85:97–102.  

Brown W, 1916. Studies in the physiology of parasitism. III. On the relation 

between the “Infection Drop” and the underlying host tissue. Ann Bot 

30:399–406. 

Brunelli A, Cortesi P, 1990. Forecasting models in grapevine disease 

management. Dif delle Piante 13:131–150. 

Bulit J, Lafon R, Guillier G, 1970. Périodes favorables a l’application de traitments 

pour lutter contre la pourriture grise de la vigne. Phytiatr-phytopharm. 19: 

159–165. 

Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, et al., 1994. Variations in 

ploidy among isolates of Botrytis cinerea: implications for genetic and 

molecular analyses. Curr Genet 25:445–450. 

Calvo-Garrido C, Teixidó N, Roudet J, Viñas I, Usall J, Fermaud M, 2014a. 

Biological control of Botrytis bunch rot in Atlantic climate vineyards with 

Candida sake CPA-1 and its survival under limiting conditions of 

temperature and humidity. Biol Control 79:24–35. 

Calvo-Garrido C, Usall J, Viñas I, Elmer PA, Cases E, Teixido N, 2014b. Potential 

secondary inoculum sources of Botrytis cinerea and their influence on 

bunch rot development in dry Mediterranean climate vineyards. Pest 

Manag Sci 70:922–930. 



Introduction 

 

17 
 

Calvo-Garrido C, Viñas I, Elmer PAG, Usall J, Teixidó N, 2014c. Suppression of 

Botrytis cinerea on necrotic grapevine tissues by early- season 

applications of natural products and biological control agents. Pest Manag 

Sci 70:595–602. 

Carbó A, Torres R, Usall J, Solsona C, Teixidó N, 2017. Fluidised-bed spray-drying 

formulations of Candida sake CPA-1 by adding biodegradable coatings to 

enhance their survival under stress conditions. Appl Microbiol Biotechnol 

101:7865–7876. 

Carisse O, 2016. Epidemiology and aerobiology of Botrytis spp. In Botrytis - the 

fungus, the pathogen and its management in agricultural systems, ed. by 

S Fillinger, Y Elad, Springer Netherlands, pp. 127–148.  

Chardonnet CO, Sams CE, Trigiano RN, Conway WS, 2000. Variability of three 

isolates of Botrytis cinerea affects the inhibitory effects of calcium on this 

fungus. Phytopathology 90:769–774. 

Ciliberti N, 2014. Biology, epidemiology and modelling of Botrytis cinerea Pers.:Fr., 

the causal agent of grey mould in grapevine. Doctoral Thesis. 

Ciliberti N, Fermaud M, Languasco L, Rossi V, 2015a. Influence of fungal strain, 

temperature, and wetness duration on infection of grapevine 

inflorescences and young berry clusters by Botrytis cinerea. 

Phytopathology 105:325–333. 

Ciliberti N, Fermaud M, Roudet J, Languasco L, Rossi V, 2016. Environmental 

effects on the production of Botrytis cinerea conidia on different media, 

grape bunch trash, and mature berries. Aust J Grape Wine Res 22:262–

270. 

Ciliberti N, Fermaud M, Roudet J, Rossi V, 2015b. Environmental conditions affect 

Botrytis cinerea infection of mature grape berries more than the strain or 

transposon genotype. Phytopathology 105:1090–1096. 

Coertze S, Holz G, 2002. Epidemiology of Botrytis cinerea on grape : wound 

infection by dry, airborne conidia. South-African J. Oenol Vitic 23:72–77. 

Daboussi MJ, 1996. Fungal transposable elements: generators of diversity and 

genetic tools. J Genet 75:325. 

De Bary A, 1866. Morphologie und physiologie der pilze, flechten und 

myxomyceten. ed. Leipzig. Engelmenn. 

De Corato U, Salimbeni R, De Pretis A, Avella N, Patruno G, 2017. Antifungal 

activity of crude extracts from brown and red seaweeds by a supercritical 

carbon dioxide technique against fruit postharvest fungal diseases. 

Postharvest Biol Technol 131:16–30. 

De Miccolis Angelini RM, Milicevic T, Natale P, Lepore A, De Guido MA, Pollastro 

S, Cvjetkovic B, et al., 2004. Botryotinia fuckeliana isolates carrying 



Chapter 1 

 

18 
 

different transposons show differential response to fungicides and 

localizaion on host plants. J Plant Pathol 110:208–214. 

Deytieux-Belleau C, Geny L, Roudet J, Mayet V, Donèche B, Fermaud M, 2009. 

Grape berry skin features related to ontogenic resistance to Botrytis 

cinerea. Eur J Plant Pathol 125:551–563.  

Di Lenna P, Marciano P, Magro P, 1981. Comparative investigation on 

morphological and physiological features of three isolates of Botrytis 

cinerea. J Phytopathol 100:203–211. 

Diao W-R, Hu Q-P, Zhang H, Xu J-G, 2014. Chemical composition, antibacterial 

activity and mechanism of action of essential oil from seeds of fennel 

(Foeniculum vulgare Mill.). Food Control 35:109–116.  

Egger E, Marinelli E, D’Arcangelo M, 1994. Valutazione del modello EPI-Botrytis 

in provincia di Arezzo. Atti Giorn Fitopatoln 3:157–166. 

Elad Y, Shtienberg D, Yunis H, Mahrer Y, 1992. Epidemiology of grey mould, 

caused by Botrytis cinerea in vegetable greenhouses. Recent Adv Botrytis 

Res Proc 10th Int Botrytis Symp. Crete, Greece, pp.147–158. 

Elad Y, Stewart A, 2007. Microbial control of Botrytis spp. In Botrytis: biology, 

pathology and control, ed. by Y Elad, B Williamson, P Tudzynski, N Delen, 

Springer Netherlands, pp. 223–241. 

Elad Y, Vivier M, Fillinger S, 2016. Botrytis, the Good, the Bad and the Ugly. In 

Botrytis: the fungus, the pathogen and its management in agricultural 

systems, ed. by S Filinger, Y Elad, Springer Netherlands pp. 1–15. 

Elad Y, Williamson B, Tudzynski P, Delen N, 2007. Botrytis spp. and diseases they 

cause in agricultural systems - an introduction. In Botrytis: biology, 

pathology and control, ed. by Y Elad, B Williamson, P Tudzynski, N Delen, 

Springer Netherlands, pp. 1–6. 

Ellison P, Ash G, McDonald C, 1998a. An expert system for the management of 

Botrytis cinerea in Australian vineyards. I. Development Agric Syst 

56:185–207. 

Ellison P, Ash G, Mcdonald C, 1998b. An expert system for the management of 

Botrytis cinerea in Australian vineyards . II . Validation Agric Syst 56:209–

224. 

Elmer PAG, Hoyte SM, Vanneste JL, Reglinski T, Wood PN, Parry FJ, 2005. 

Biological control of fruit pathogens. New Zeal Plant Prot 54:47–54. 

Elmer PAG, Michailides TJ, 2007. Epidemiology of Botrytis cinerea in orchard and 

vine crops. In Botrytis: Biology, Pathology and Control, ed. by Y Elad, B 

Williamson, P Tudzynski, N Delen, Springer Netherlands, pp. 243–272. 

Elmer PAG, Reglinski T, 2006. Biosuppression of Botrytis cinerea in grapes. Plant 

Pathol 55:155–177. 



Introduction 

 

19 
 

English JT, 1989. Microclimates of grapevine canopies associated with leaf 

removal and control of Botrytis Bunch Rot. Phytopathology 79:395. 

Epstein L, 2014. Fifty years since silent spring. Annu Rev Phytopathol 52:377–

402. 

Esterio M, Muñoz G, Ramos C, Cofré G, Estévez R, Salinas A, et al. 2011. 

Characterization of Botrytis cinerea isolates present in Thompson 

seedless table grapes in the Central Valley of Chile. Plant Dis 95:683–690.  

Faretra F, Antonacci E, Pollastro S, 1988a. Improvement of the technique used for 

obtaining apothecia of Botryotinia fuckeliana (Botrytis cinerea) under 

controlled conditions. Ann Microbiol 38:28–40. 

Faretra F, Antonacci E, Pollastro S, 1988b. Sexual behaviour and mating system 

of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. J Gen Microbiol 

134:2543–2550.  

Faretra F, Grindle M, 1992. Genetic studies of Botryotinia fuckeliana (Botrytis 

cinerea). In Recent advances in Botrytis research, ed. by K Verhoeff, NE 

Malathrakis, B Williamson, PUDOC, Wageningen, pp. 7–17. 

Faretra F, Pollastro S, 1993. Genetics of sexual compatibility and resistance to 

benzimidazole and dicarboximide fungicides in isolates of Botryotinia 

fuckeliana (Botrytis cinerea) from nine countries. Plant Pathol 42:48–57. 

Fekete È, Irinyi L, Karaffa L, Árnyasi M, Asadollahi M, et al., 2012. Genetic diversity 

of a Botrytis cinerea cryptic species complex in Hungary. Microbiol Res 

167:283–291. 

Fernández-Ortuño D, Grabke A, Li X, Schnabel G, 2015. Independent emergence 

of resistance to seven chemical classes of fungicides in Botrytis cinerea. 

Phytopathology 105:424–432. 

Fernández-Ortuño D, Torés JA, Chamorro M, Pérez-García A, de Vicente A, 2016. 

Characterization of resistance to six chemical classes of site-specific 

fungicides registered for gray mold control on strawberry in Spain. Plant 

Dis 100:2234–2239.  

Fillinger S, Walker A-S, 2016. Chemical control and resistance management of 

Botrytis diseases. In Botrytis: the fungus, the pathogen and its 

management in agricultural systems, ed. by S Filinger, Y Elad, Springer 

Netherlands, pp. 189–216.  

Fournier E, Giraud T, Albertini C, Brygoo Y, 2005. Partition of the Botrytis cinerea 

complex in France using multiple gene genealogies. Mycologia 97:1251–

1267. 

FRAC, Fungicide Resistance Action Committee, 2019. Available at: 

https://www.frac.info/. 

Fregoni M, 1998. Viticoltura di qualità. 1st ed. Phytoline, Italy. 



Chapter 1 

 

20 
 

Gartel W, 1977. Les problèmes posés par la pourriture grise sur la vigne, comment 

les résoudre. Vigne Vins 260:15. 

Giraud T, Fortini D, Levis C, Lamarque C, Leroux P, Lobuglio K, et al., 1999. Two 

sibling species of the Botrytis cinerea complex, transposa and vacuma, 

are found in sympatry on numerous host plants. Phytopathology 89:967–

73.  

González-Domínguez E, Caffi T, Ciliberti N, Rossi V, 2015. A mechanistic model 

of Botrytis cinerea on grapevines that includes weather, vine growth stage, 

and the main infection pathways. PLoS One 10:e0140444  

Grabke A, Fernández-Ortuño D, Schnabel G, 2013. Fenhexamid resistance in 

Botrytis cinerea from strawberry fields in the Carolinas is associated with 

four target gene mutations. Plant Dis 97:271–276.  

Grindle M, 1979. Phenotypic differences between natural and induced variants of 

Botrytis cinerea. J Gen Microbiol 111:109–120. 

Groves JW, Loveland CA, 1953. The connection between Botryotinia fuckeliana 

and Botrytis cinerea. Mycologia 45:415–425.  

Gubler WD, Marois JJ, Bledsoe AM, Bettiga LJ, 1988. Control of Botrytis bunch rot 

of grape with canopy management. Plant Dis 71:599–601. 

Hahn M, 2014. The rising threat of fungicide resistance in plant pathogenic fungi: 

Botrytis as a case study. J Chem Biol 7:133–141. 

Haidar R, Fermaud M, Calvo-Garrido C, Roudet J, Deschamps A, 2016. Modes of 

action for biological control of Botrytis cinerea by antagonistic bacteria. 

Phytopathol Mediterr 33:13–34. 

Hansen HN, Smith RE, 1932. The mechanism of variation in imperfect fungi: 

Botrytis cinerea. Phytopathology 22:953–964. 

Hills G, Stellwaag-Kittler F, Huth G, Schlösser E, 1981. Resistance of grapes in 

different developmental stages to Botrytis cinerea. Phytopathologische 

Zeitschrift 102:328–338. 

Hiratsuka K, Namba S, Yamashita S, et al., 1987. Linear plasmid-like DNA’s in the 

fungus Botrytis cinerea. Ann Phytopathol Soc Japan 53:638–642. 

Holz G, 1999. Behaviour and infection pathways of diverse fungal pathogens on 

fruit. In Conference Handbook, 12th Biennial Australasian Plant Pathology 

Society Conference, Camberra, Australia. 

Holz G, Coertze S, Williamson B, 2007. The Ecology of Botrytis on Plant 

Surfaces. In Botrytis: biology, pathology and control, ed. by Y Elad, B 

Williamson, P Tudzynski, N Delen, Springer Netherlands, pp 9–27.  

Isenegger DA, Macleod WJ, Ford R, Taylor PWJ, 2008. Genotypic diversity and 

migration of clonal lineages of Botrytis cinerea from chickpea fields of 

Bangladesh inferred by microsatellite markers. Plant Pathol 57:967–973. 



Introduction 

 

21 
 

Jacometti MA, Wratten SD, Walter M, 2010. Review: alternatives to synthetic 

fungicides for Botrytis cinerea management in vineyards. Aust J Grape 

Wine Res 16:154–172. 

Jarvis WR, 1977. Botryotinia and Botrytis species: taxonomy, physiology, and 

pathogenicity. Research Branch, Canada Department of Agriculture, 

Ottawa, Canada.  

Jaspers MV, Seyb AM, Trought MCT, Balasubramaniam R, 2013. Overwintering 

grapevine debris as an important source of Botrytis cinerea inoculum. 

Plant Pathol 62:130–138. 

Jersch S, Scherer C, Huth G, Schlösser E, 1989. Proanthocyanidins as basis for 

quiescence of Botrytis cinerea in immature strawberry fruits. J Plant Dis 

Prot 96:365–378.  

Johnston PR, Hoksbergen K, Park D, Beever RE, 2014a. Genetic diversity of 

Botrytis in New Zealand vineyards and the significance of its seasonal and 

regional variation. Plant Pathol 63:888–898. 

Johnston PR, Seifert KA, Stone JK, Rossman AY, Marvanová L, 2014b. 

Recommendations on generic names competing for use in Leotiomycetes 

(Ascomycota). IMA Fungus 5:91–120. 

Keller M, Viret O, Cole FM, 2003. Botrytis cinerea infection in grape flowers: 

defense reaction, latency, and disease expression. Phytopathology 

93:316–322.  

Kidwell MG, Lisch DR, 2001. Perspective: transposable elements, parasitic DNA, 

and genome evolution. Evolution (NY) 55:1–24. 

Kim KS, Beresford RM, Henshall WR, 2007. Prediction of disease risk using site-

specific estimates of weather variables. New Zeal Plant Prot 60:128–132. 

Kirk PM, Cannon PF, Minter DW, Stalpers JA, 2008. Dictionary of the fungi. 10th 

ed., CAB International, Wallingford, UK 

Kretschmer M, Kassemeyer H-H, Hahn M, 2007. Age-dependent grey mould 

susceptibility and tissue-specific defence gene activation of grapevine 

berry skins after infection by Botrytis cinerea. J Phytopathol 155:258–263.  

Kuck K, Russell PE, 2006. FRAC: combined resistance risk assessment. Assoc 

Appllied Biol 78:3–10. 

Lafon R, Verdu D, Bulit J, 1972. Mise au point sur le traitement de la pourriture 

grise dans le vignoble. Rev Zool Agric Pathol végétale 1:31–43.  

Lahlali R, Serrhini MN, Friel D, Jijakli MH, 2007. Predictive modelling of 

temperature and water activity (solutes) on the in vitro radial growth of 

Botrytis cinerea Pers. Int J Food Microbiol 114:1–9. 



Chapter 1 

 

22 
 

Latorre BA, Rioja M, 2002. The effect of temperature and relative humidity on 

conidial germination of Botrytis cinerea. 10.1094/PDIS-08-19-1593-RE 29:67–

72. 

Leroux P, 2007. Chemical control of Botrytis and its resistance to chemical 

fungicides. In Botrytis: biology, pathology and control, ed. by Y Elad, B 

Williamson, P Tudzynski, N Delen, Springer Netherlands, pp 195–222.  

Levis C, Fortini D, Brygoo Y, 1997. Flipper, a mobile Fot1-like transposable 

element in Botrytis cinerea. Mol Gen Genet 254:674–680. 

Longa CMO, Savazzini F, Tosi S, Elad Y, Pertot I, 2009. Evaluating the survival 

and environmental fate of the biocontrol agent Trichoderma atroviride SC1 

in vineyards in northern Italy. J Appl Microbiol 106:1549–1557. 

Lorbeer JW, 1980. Variation in Botrytis and Botryotinia. In The Biology of Botrytis, 

ed. by JR Coley-Smith, K Verhoeff, WR Jarvis, Academic Press, London, 

UK, pp. 19–39. 

Lorenz DH, Eichhorn KW, 1983. Untersuchungen an Botryotinia fuckeliana 

Whetz., dem Perfektstadium von Botrytis cinerea Pers. / Investigations on 

Botryotinia fuckeliana Whetz., the perfect stage of Botrytis cinerea Pers. 

Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz / J Plant Dis Prot 

90:1–11. 

Lorenz DH, Eichhorn KW, Bleiholder H, Klose R, Meier U, Weber E, 1995. 

Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) 

- Codes and descriptions according to the extended BBCH scale. Aust J 

Grape Wine Res 1:100–103. 

Madden LV, Hughes G, van den Bosch F, 2007. The study of plant disease 

epidemics. APS Press, St. Paul, MN. 

Magan N, Lacey J, 1984. Effect of water activity, temperature and substrate on 

interactions between field and storage fungi. Trans Br Mycol Soc 82:83–

93. 

Martinez F, Blancard D, Lecomte P, Levis C, Dubos B, Fermaud M, 2003. 

Phenotypic differences between vacuma and transposa subpopulations of 

Botrytis cinerea. Eur J Plant Pathol 109:479–488. 

Martinez F, Corio-Costet MF, Levis C, Coarer M, Fermaud M, 2008. New PCR 

primers applied to characterize distribution of Botrytis cinerea populations 

in french vineyards. Vitis J Grapevine Res 47:217–226. 

Martinez F, Dubos B, Fermaud M, 2005. The role of saprotrophy and virulence in 

the population dynamics of Botrytis cinerea in vineyards. Phytopathology 

95:692–700. 



Introduction 

 

23 
 

McClellan WD, Hewitt WB, 1973. Early Botrytis rot of grapes: time of infection and 

latency of Botrytis cinerea Pers. in Vitis vinifera L. Phytopathology 

63:1151–1157. 

McDonald JF, 1993. Evolution and consequences of transposable elements. Curr 

Opin Genet Dev 3:855–864. 

Mlikota Gabler F, Smilanick JL, Mansour M, Ramming DW, Mackey BE, 2003. 

Correlations of morphological, anatomical, and chemical features of grape 

berries with resistance to Botrytis cinerea. Phytopathology 93:1263–1273. 

Molot B, 1987. Modelling of grapevine grey mould by the potential state of infection 

system. Prog Agric Vitic 104:355–358. 

Molot B, Agulhon R, Boniface JC, 1983. Application d’un modéle contre Botrytis 

cinerea sur vigne. Bull OEPP 13:271–276. 

Mundy DC, Agnew RH, Wood PN, 2012. Grape tendrils as an inoculum source of 

Botrytis cinerea in vineyards - A review. New Zeal Plant Prot 65:218–227. 

Mundy DC, Beresford MR 2007. Susceptibility of grapes to Botrytis cinerea in 

relation to berry nitrogen and sugar concentration. New Zeal Plant Prot 

60:123–127. 

Muñoz G, Hinrichsen P, Brygoo Y, Giraud T, 2002. Genetic characterisation of 

Botrytis cinerea populations in Chile. Mycol Res 106:594–601. 

Nair N, Emmet R, Parker PE, 1988. Some factors predisposing grape berries to 

infection by Botrytis cinerea. New Zeal J Exp Agric 16:257–263.  

Nair N, Guilbaud-Oulton S, Barchia I, Emmett R, 1995. Significance of carry over 

inoculum, flower infection and latency on the incidence of Botrytis cinerea 

in berries of grapevines at harvest in New South Wales. Aust J Exp Agric 

35:1177–1180. 

Nair NG, Allen RN, 1993. Infection of grape flowers and berries by Botrytis cinerea 

as a function of time and temperature. Mycol Research 97:1012–1014. 

Nair NG, Nadtotchei A, 1987. Sclerotia of Botrytis as a source of primary inoculum 

for bunch rot of grapes in New South Wales. Austr J Phytopathol 119:42–

51. 

Nair NG, Parker FE, 1985. Midseason bunch rot of grapes: an unusual disease 

phenomenon in the Hunter Valley, Australia. Plant Pathol 34:302–305.  

Nicot PC, 2011. Classical and augmentative biological control against diseases 

and pests: critical status analysis and review of factors.IOBC Bullettin. 

Nicot PC, Stewart A, Bardin M, Elad Y, 2016. Biological control and biopesticide 

suppression of Botrytis-Incited Diseases. In Botrytis - the fungus, the 

pathogen and its management in agricultural systems, ed. by S Fillinger Y 

Elad. Springer Netherlands, pp. 165–187.  



Chapter 1 

 

24 
 

O’Neill TM, Elad Y, Shtienberg D, Cohen A, 1996. Control of grapevine grey mould 

with Trichoderma harzianum T39. Biocontrol Sci Tech 6:139-146.  

Ogawa JM, English H, 1960. Blossom blight and green fruit rot of almond, apricot 

and plum caused by Botrytis cinérea. Plant Dis Report 44:265–268. 

Paul WRC, 1929. A comparative morphological and physiological study of a 

number of strains of Botrytis cinerea Pers. with special reference to their 

virulence. Trans Br Mycol Soc 14:118–135. 

Pertot I, Giovannini O, Benanchi M, Caffi T, Rossi V, Mugnai L, 2017. Combining 

biocontrol agents with different mechanisms of action in a strategy to 

control Botrytis cinerea on grapevine. Crop Prot 97:85–93.  

Pezet R, Pont V, 1986. Infection florale et latence de Botrytis cinerea dans les 

grappes de Vitis vinifera (var. Gamay). Reveu suisse Vitic Arboric Hortic 

18:317–322. 

Puche-Planté B, Mercier M, 1983. Etude ultrastructurale de l’interrelation hoste-

parasite entre le raisin et le champignon Botrytis cinerea: exemple de la 

pourriture noble en Sautenais. Can J Bot 61:1785–1797. 

Reglinski T, Elmer PAG, Taylor JT, Parry FJ, Marsden R, Wood PN, 2005. 

Suppression of Botrytis bunch rot in Chardonnay grapevines by induction 

of host resistance and fungal antagonism. Australas Plant Pathol 34:481–

488. 

Rodríguez-Rajo FJ, Jato V, Fernández-González M, Aira MJ, 2010. The use of 

aerobiological methods for forecasting Botrytis spore concentrations in a 

vineyard. Grana 49:56–65.  

Rossi V, Caffi T, Salinari F, 2012. Helping farmers face the increasing complexity 

of decision-making for crop protection. Phytopathol Mediterr 51:457–479. 

Rotolo C, De Miccolis Angelini RM, Dongiovanni C, Pollastro S, Fumarola G, Di 

Carolo M, et al. 2018. Use of biocontrol agents and botanicals in integrated 

management of Botrytis cinerea in table grape vineyards. Pest Manag Sci 

74:715–725.  

Salinas J, Verhoeff K, 1995. Microscopical studies of the infection of gerbara 

flowers by Botrytis cinerea. Eur J Plant Pathol 101:377–386. 

Schneider-Orelli O, 1912. Versuche ȕber die Wachstumsbedingungen und 

Verbreitung der Faulnispilze des Lagerobstes. Zentralbl, bakteriol. 

Parasitenkd 32:161–169. 

Schoene P, 2002. Ulocladium atrum as an antagonist of grey mould (Botrytis 

cinerea) in grapevine. 

Seyb A, Gaunt R, Trought M, Frampton C, Balasubramaniam R, Jaspers M, 2000. 

Relationship between debris within grape bunches and Botrytis infection 



Introduction 

 

25 
 

of berries. In Proceedings of the New Zealand plant protection conference 

New Zealand Plant Protection Society, pp 451. 

Shiraishi M, Fukutomi M, Akai S, 1970. On the mycelial growth and sporulation of 

Botrytis cinerea Pers. and the conidium germination and appressorium 

formation as affected by the conidial age. Ann Phytopathol Soc Japanes 

36:230–233. 

Snow D, 1949. The germination of mould spores at controlled humidities. Ann Appl 

Biol 36:1–13. 

Steel CC, Blackman JW, Schmidtke LM, 2013. Grapevine bunch rots: impacts on 

wine composition, quality, and potential procedures for the removal of wine 

faults. J Agric Food Chem 61:5189–5206. 

Strizyk S, 1985. Modéle d’état potential d’infection. Application au Botrytis cinerea 

de la vigne. ACTA, Paris, France. 

Thomidis T, Pantazis S, Konstantinoudis K, 2016. Evaluation of Serenade Max to 

control fruit rot of grapes. J Agric Sci 8:212. 

Váczy KZ, Sándor E, Karaffa L, Fekete E, Árnyasi M, et al., 2008. Sexual 

recombination in the Botrytis cinerea populations in Hungarian vineyards. 

Phytopathology 98:1312–1319. 

Vail ME, Marois JJ, 1991. Grape cluster architecture and the susceptibility of 

berries to Botrytis cinerea. Phytopathology 81:188–191. 

Valdés-Gómez H, Fermaud M, Roudet J, Calonnec A, Gary C, 2008. Grey mould 

incidence is reduced on grapevines with lower vegetative and reproductive 

growth. Crop Prot 27:1174–1186. 

Viret O, Keller M, Jaudzems VG, Cole FM, 2004. Botrytis cinerea infection of grape 

flowers: light and electron microscopical studies of infection sites. 

Phytopathology 94:850–857. 

Walker A-S, 2016. Diversity within and between species of Botrytis. In Botrytis - 

the Fungus, the Pathogen and its Management in Agricultural Systems, 

ed. by S Fillinger, Y Elad. Springer Netherlands, pp. 91–125.  

Walker A-S, Gautier A, Confais J, Martinho D, Viaud M, Le Pêcheur P, et al., 2011. 

Botrytis pseudocinerea, a new cryptic species causing gray mold in french 

vineyards in sympatry with Botrytis cinerea. Phytopathology 101:1433–

1445. 

Walter M, Jaspers MV, Eade K, Frampton CM, Stewart A, 2001. Control of Botrytis 

cinerea in grape using thyme oil. Austral Plant Pathol 30:21–25. 

Williamson B, Duncan GH, Harrison JG, Harding LA, Elad Y, Zimand ANDG, 1995. 

Effect of humidity on infection of rose petals by dry-inoculated conidia of 

Botrytis cinerea. Mycol Res 99:1303–1310. 



Chapter 1 

 

26 
 

Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL, 2007. Botrytis cinerea: The 

cause of grey mould disease. Mol Plant Pathol 8:561–580. 

Yin YN, Kim YK, Xiao CL, 2012. Molecular characterization of pyraclostrobin 

resistance and structural diversity of the cytochrome b gene in Botrytis 

cinerea from apple. Phytopathology 102:315–322. 

Yourman LF, Jeffers SN, Dean RA, 2001. Phenotype instability in Botrytis cinerea 

in the absence of benzimidazole and dicarboximide fungicides. 

Phytopathology 91:307–315. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 
           





 

29 

 

          Chapter 2 

A network meta-analysis provides new insight into fungicide 

scheduling for the control of Botrytis cinerea in vineyards1 

 

 

Abstract 

Control of Botrytis bunch rot (BBR) is currently based on the application of 

fungicides at four timings corresponding to specific growth stages of vines: end of 

flowering (A), pre-bunch closure (B), veraison (C) and before harvest (D). The 

current research provides a network meta-analysis of 116 studies conducted 

between 1963 and 2016 in nine countries, in which 14 strategies (based on 

combinations of 1, 2, 3, or 4 sprays applied in A, B, C, and/or D) were compared.  

When a 1-spray strategy was applied, BBR control was more effective with sprays 

applied in A, C, or D than B. With a 2-spray strategy, strategy AC provided similar 

control as strategy BC; strategy CD also provided good control. For a 3-spray 

strategy, the best disease control was consistently obtained with strategy ACD. 

Four sprays strategy ABCD provided the best control but often involved needless 

sprays so that the routine application of four sprays is not justified.  

Spraying at timing A seems to be very important for achieving efficient and flexible 

disease control. Flexibility is reduced by spraying at timing B rather than A. 

  

                                                 
1 González-Domínguez E, Fedele G, Caffi T, Delière L, Sauris P, Gramaje D, Ramos-Sáez de Ojer 

JL, Díaz-Losada E, Díez-Navajas AM, Bengoa P, Rossi V, 2019. Pest Management Science 75:324-
332. 
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Introduction 

The fungus Botrytis cinerea Pers. Fr. (teleomorph Botryotinia fuckeliana (de Bary) 

Whetzel) infects more than 200 plant species and causes among the most 

important plant diseases worldwide (Elad et al. 2007). On grapevines, B. cinerea 

causes the devastating disease called Botrytis bunch rot (BBR) (Elmer and 

Michailides 2007), which can affect all of the herbaceous organs of the vines; 

damage to ripening berries is especially serious, leading to severe losses in yield 

and reductions in wine quality (Steel et al. 2013).  

The biology of B. cinerea and its epidemiology on vine crops have been 

studied in detail (Elmer and Michailides 2007; Ciliberti et al. 2015a; 2015b; 2016; 

Deytieux-Belleau et al. 2009), and multiple infection pathways have been identified 

that occur in two periods: from flowering to young cluster development, and after 

veraison. In the early season, B. cinerea infects inflorescences and young berries, 

resulting in (i) inflorescence and blossom blight, (ii) latent infections of berries, and 

(iii) saprophytic colonisation of grape bunch trash (Ciliberti et al. 2015a). After 

veraison, latent infections may become visible as rotted berries, and the colonized 

bunch trash may serve as a source of inoculum inside the bunches. In addition to 

conidial infection, ripening berries can be infected through contact with the aerial 

mycelium produced on adjacent infected berries (berry-to-berry infection) 

(González-Domínguez et al. 2015). The susceptibility of berries from veraison to 

ripening increases according to a sigmoid curve (Deytieux-Belleau et al. 2009; 

Kretschmer et al. 2007). Modifications of the berry cuticle also make cracks more 

likely, and the wounded berries can be easily infected (Nair et al. 1988).  

The complexity of the life cycle of B. cinerea has caused growers to rely 

heavily on routine applications of fungicides at four specific grape growth stages: 

A, end of flowering (growth stage 69 of Lorenz et al. 1994); B, pre-bunch closure 

(growth stage 77); C, veraison (growth stage 83); and D, before harvest (before 

growth stage 89). This calendar schedule of applications, sometimes called the 

“phenological method”, was conceived based on the experiments in the 1960s 

(Agulhon 1969; Baldacci et al. 1962; Bulit et al. 1970). Baldacci et al. (1962) 

proposed 3 sprays: at the end of flowering, to reduce flower infections and 

infestation of floral debris; at pre-closure of bunches, as the last chance to disinfest 

the trash inside the bunch; and at veraison because of the increase in susceptibility 

of bunches from this period until harvest. Agulhon (1969) improved the method 

suggesting that a fourth treatment can be applied 3 to 4 weeks before harvest. 

The phenological method is easy to follow and provides good protection 

against BBR (Agulhon 1973; Lafon et al. 1972; Bisiach et al. 1978b). However, the 

method has important limitations. First, because the treatments are preventive and 

do not take into account the real risk of infection, the treatments are sometimes 
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unnecessary. Second, the phenological method can increase the probability that 

B. cinerea develops resistance to botryticides (Leroux 2007). Finally, public 

concerns about the possible effects of chemicals on human health (Alavanja et al. 

2004) and environmental pollution (Epstein 2014) require that fungicides not be 

applied when unnecessary.  

In response to these limitations in the phenological method, researchers 

have studied the possibility of reducing the number of fungicide applications by 

identifying the key timings in which fungicides should be recommended. In Europe, 

these studies have been performed in France (Agulhon 1969; 1973; Lafon et al. 

1972), Italy (Bisiach et al. 1978a; Carniel et al. 1980; Flori et al. 1978), Germany 

(Gartel 1977), Spain (Pérez-Marín 1998), and Switzerland (Bolay and Rochaix 

1975). The findings have resulted in varying and sometimes conflicting 

recommendations for BBR management.  

There is therefore a need to assess the effectiveness and consistency of the 

different management strategies for BBR control. To our knowledge, a quantitative 

review of multiple studies on different control strategies has not been published. 

An excellent tool for integrating and interpreting multiple individual studies is meta-

analysis (Madden and Paul 2001).  

In this work, a multi-treatment (or network) meta-analysis was used to 

integrate the results of different strategies for BBR control. Network meta-analysis 

allows direct comparisons of all the strategies to each other and takes into account 

all of the correlations (Madden et al. 2016). This multi-treatment analysis can also 

use a large number of individual studies, because it does not require that all of the 

studies include all of the treatments to be compared. The meta-analysis reported 

here was preceded by a systematic review of peer- and non-peer-reviewed 

studies; unpublished data from studies developed or collected by some of the co-

authors were also included.   

 

Materials and methods 

Database of studies on Botrytis bunch rot control  

A database concerning studies of BBR control was assembled from the following 

sources: (i) JCR (Journal Citation Reports)-indexed journals, (ii) non-JCR journals, 

and (iii) experimental reports. For (i) and (ii), a structured search on the Web Of 

Science was carried out using the following search string: (“Botrytis” OR “mould”) 

AND “grapevine” AND “control”. For (ii), additional searches were performed in the 

following journals: Giornate Fitopatologiche, EPPO Bulletin, and Phytoma (French 

and Spanish version), which are not included in the Web Of Science. For (iii), 

unpublished experiments were considered that were conducted by the co-authors 

of this report or that were collected from the archives of their institutions. To be 
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included in the database, an experiment had to meet the following criteria: the 

experiment included disease severity assessment (X); the experiment had a 

suitable experimental design with at least 3 replicates and an untreated control 

(NT); and the experiment evaluated at least one fungicide treatment that was 

applied at timings A, B, C, or D, or at several timings, e.g., strategy AB. For source 

(i), 22 studies were selected from 5 papers published in Food Additives & 

Contaminants, Journal of Environmental Science and Health, American Journal of 

Enology and Viticulture, European Journal of Plant Pathology, Phytopathologia 

Mediterranea and Plant Pathology. For source (ii), 62 studies were selected from 

22 papers published in Giornate Fitopatologiche, Vitis, EPPO Bulletin, New 

Zealand Plant Protection, and Scientific Papers. For source (iii), 32 studies were 

considered from experiments in France (Bordeaux), Spain (Logroño, Ourense, 

Fraisoro, Laguardia, and Zalla), and Italy (Piacenza, Ravenna, and Cormons). In 

total, 116 studies were included, and these were conducted between 1963 and 

2016 in Australia, France, Italy, Luxemburg, New Zealand, Spain, Romania, 

Switzerland, and USA. Most studies were conducted with a randomized complete 

block design, with 4 replicate blocks. The vine variety, the fungicide/s used (active 

ingredient/s), and application timing varied among studies.  

Fourteen treatment strategies were evaluated and were grouped into four 

types: one spray per season (applied at timings A, B, C, or D); two sprays per 

season (strategies AB, AC, BC, BD, or CD); three sprays per season (strategies 

ABC, ACD, ABD, or BCD); or four sprays per season (strategy ABCD). Strategy 

AD was excluded because it was assessed in only one study. To increase the 

number of studies for each strategy, a disease severity value (X) was calculated 

from other strategies included in the same experiment when possible. For 

example, if disease severities were available for strategies ABC and BC (XABC and 

XBC, respectively) in one experiment, then the disease severity of strategy A in that 

experiment was calculated as XA = XABC - XBC. 

 

Meta-analysis  

Effect of fungicide treatments. A network meta-analysis was conducted to 

evaluate the effect of the different treatment strategies in reducing disease severity 

compared to the non-treated control (Machado et al. 2017; Paul et al. 2008). For 

each study and treatment (included the non-treated control), disease severity data 

were extracted from the publication/report and used to conduct the analysis. A 

detailed explanation of the procedure is provided in the supplementary material 

(Analysis explanation). Briefly, the meta-analysis was conducted with the software 

R (v 3.4.0; package ‘metafor’; CoreTeam R 2017; Viechtbauer 2010) by using a 

multivariate random effects model. Assumptions of residual heterogeneity and 
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consistency were assessed (Donegan et al. 2013). For heterogeneity, residual 

heterogeneity (QE) was tested and I2 statistic calculated (Higgins and Thompson 

2002; Jackson et al. 2012). The QE test evaluates whether the variability in the 

observed effect that is not accounted by the fungicide treatment strategy is larger 

than one would expect based on sampling variability only; I2 was calculated for 

each treatment and indicates the proportion of total variation in the estimates of 

treatment effect that is due to heterogeneity between studies. An I2 of 0% indicates 

that all of the variability in the estimated effect is due to sampling error within trials, 

and that none is due to heterogeneity. An I2 value near 100%, in contrast, indicates 

that most of the observed variance is due not to sampling error but to variance 

between studies (Higgins and Thompson 2002). For consistency, the hypothesis 

that the treatment effect from direct evidence is consistent with the treatment effect 

from indirect evidence (i.e., calculated cases) was tested (Donegan et al. 2013).  

Treatment effect is presented as L, the difference (in the log of the severity 

mean) for each treatment (T) relative to the untreated control (NT) in the form 

LT=ln(XT)-ln(XNT); the log severity of treatments was used instead of X because its 

distribution is closer to the normal one, as requested by the analysis. Therefore, 

negative values of L indicate that BBR severity was lower in the treated plot than 

in the NT control, i.e., that the treatment reduced the disease severity compared 

to the untreated control. Standard errors, confidence intervals, and significant 

statistics were calculated as described in the supplementary material (Analysis 

explanation). A Wald-type test statistic was used to determine whether the 

treatment effects L were significantly different from zero, i.e., whether the disease 

severity in the treated plots ln(XT) differed from that in the untreated plots ln(XNT). 

The percentage of disease reduction relative to the control was also estimated 

(Ngugi et al. 2011; Paul et al. 2008). 

Differences between pairwise combinations. Differences between treatment 

strategies were tested for all pairwise treatment combinations (i.e., the 14 

strategies of 1, 2, 3, or 4 sprays). In total, 98 pairwise combinations were tested by 

a contrast analysis between the values of L.  

To assess the across-studies variability, the frequency of studies was determined 

when (i) X1 was significantly higher than X2, (ii) X2 was significantly higher than X1, 

and (iii) no significant differences were observed between X1 and X2. 

Effect of publication type and fungicide class. A multivariate meta-analysis 

model was also used to evaluate the effect of two categorical variables: (i) 

publication type, and (ii) fungicide class. For publication type, studies were 

categorized as no-JCR, JCR, and experimental report (as described above). For 

fungicide class, a new database was created that excluded the untreated control, 

and studies were categorized into 18 groups based on the combination of 
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fungicides used. Fungicides were grouped based on the chemical classes defined 

by the Fungicide Resistance Action Committee (FRAC; FRAC 2017). The 

fungicide class E3 (dicarboximides, including chlozolinate, dimethachlone, 

iprodione, procymidone, and vinclozolin) was used as reference in the meta-

analysis because the fungicides in this class were used, alone or in combination, 

in 69 of the 116 studies. E3 fungicides have been extensively applied against B. 

cinerea worldwide (Williamson et al. 2007). 

A separate analysis was performed for each of the two categorical variables. 

The interaction between the treatment strategy and these two factors was not 

evaluated because of the complexity of the models obtained (45 interactions for 

publication type, and 111 interactions for fungicide class) and because of the low 

number of cases for some of these interactions. 

 

Results 

Database overview  

BBR severity in the untreated plots of the 116 studies ranged from 0.1 to 87.4%, 

with 90% of the values ranging from 3.9 to 64.8%, indicating that the database 

included a wide range of epidemics (Fig. 2.1). The average disease severity in the 

untreated controls was 32.5% (s.e. 2.1%) with some asymmetry (0.55) and a 

negative kurtosis (-0.65). Disease severity also showed high variability among 

plots treated with fungicides; this variability generally decreased with increasing 

number of sprays (from 1 to 4) per season (Fig. 2.1). For example, with the 1 spray 

in A, 90% of the disease severity values ranged from 0.9 to 54.8%; with the 2 

sprays in AC, the values ranged from 1.5 to 43.6%; with 3 sprays in ACD, the 

values ranged from 1.6 to 26.8%; and with 4 sprays in ABCD, the values ranged 

from 0.2 to 13.2% (Fig. 2.1). 
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Figure 2.1. Box plots representing the distribution of Botrytis bunch rot severity in different 

studies in which a fungicide treatment strategy (T) was compared to an untreated control 
(NT). Strategies are combinations of treatments applied in A (end of flowering, growth stage 
69 of Lorenz et al.1994), B (pre-bunch closure, growth stage 77), C (veraison, growth stage 
83), and/or D (before harvest, before growth stage 89). 

 

Treatment effects and pairwise comparisons  

Both heterogeneity and consistency tests indicated that the results of the meta-

analysis can be considered robust. The test for residual heterogeneity rejected the 

null hypothesis of homogeneity across studies (QE= 47672; df = 585; P<0.0001) 

and the values of I2 were >80% for all strategies except BC and ABC (Table 2.1). 

Therefore, the heterogeneity in the estimated L values was mainly due to the 

among-studies variability and not to the sampling errors in each study. Based on 

the Wald test, no significant interaction between treatment effect and the nature of 

the case (i.e., if they were calculated) was found (P>0.1), suggesting lack of 

inconsistency within the dataset used. 

The average values of L were significantly <0 for all 14 strategies (i.e., 

estimated BBR severity was lower in the treated than in the untreated plots; Table 

2.1). A value of L close to 0 (i.e., the treatment had no/low effect) was estimated 

for strategy B, whereas L values were approximately -0.5 for strategies A, C, and 

D (Table 2.1). Pairwise comparison by linear contrasts showed that L values 

estimated for strategies A, C, and D were not significantly different from but were 

lower than the L value estimated for strategy B (Table 2.2); therefore, strategies A, 
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C, and D provided better disease control than strategy B, with the percentage of 

disease reduction ranging from 36.7% to 41.7% (Fig. 2.2).  

Estimated values of L were lower compared to the untreated control when 2 

sprays were applied instead of 1, except for strategy AB (Table 2.1). The value of 

L for strategy AB was not significantly different than those for strategies A, C, and 

D, and was higher only than the value for strategy B (P=0.002; Table 2.2). 

Estimated values of L were not significantly different for strategies AC and BC 

(P=0.082) and were lower than for the single sprays (P<0.05), except when 

strategy AC was compared with strategy C (P=0.12). When 2 sprays were applied, 

the lower values of L were estimated for strategies BD and CD, which caused with 

an average disease reduction of 70.5 and 68.4%, respectively (Fig. 2.2). These 

strategies were not significantly different from each other (P=0.717), and provided 

better control than all other 1- and 2-spray strategies (P<0.05; Table 2.2).   

When 3 sprays were applied, estimated values of L were sometimes not 

significantly different from those values obtained when only 2 sprays were applied. 

Estimated values of L for strategies ABC and ABD were close to -0.7 (48.5 and 

53.6% disease reduction, respectively; Table 2.1 and Fig. 2.2). Based on 

estimated values of L, strategies ABC and ABD were only better than strategy AB 

but were not better than the other 2-spray strategies (Table 2.2). The estimated 

value of L was larger for strategy ABC than for BC, BD, or CD, and the estimated 

value of L was larger for ABD than for BD or CD (P<0.011; Table 2.2). A L value 

of -0.92 was estimated for strategy BCD (60.0% disease reduction), but when 

compared with 2- and 3-spray strategies, the estimated effect of strategy BCD was 

significantly lower only than those of AB and ABC (P<0.05; Table 2.2). The lowest 

value of L for the 3-spray strategies was estimated for ACD (L=-1.23; 70.7% 

disease reduction), which was lower than for all other 3- and 2-spray strategies 

(P<0.05), except for BD and CD (Table 2.2).  

Finally, the value of L estimated for the 4-spray strategy ABCD (-1.69) was 

significantly lower than those for all other strategies (P≤0.007; Tables 2.1 and 2.2). 

The average disease reduction with strategy ABCD was 81.6% (Fig. 2.2).  

The frequency distribution of studies in which the mean severity of one 

strategy was higher than, equal to, or lower than that of the second strategy 

revealed substantial variability among individual studies (Fig. 2.3). For instance, 

when strategy A was compared with D, BBR severity did not significantly differ in 

62% of the studies, was significantly lower for D than for A in 35% of the studies, 

and was significantly lower for A than for D in 3% of the studies (Fig. 2.3). 

Comparisons concerning the 4-spray strategy ABCD showed that, even though 

the average (all studies considered) mean severity was significantly higher for 

ABCD than for all of the other strategies (Table 2.2), the frequency of studies in 
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which ABCD was not significantly different from that of a second strategy was 

sometimes high (Fig. 2.3). 

No significant differences were observed between the different publication 

types (P=0.556). In contrast, significant differences were observed for fungicide 

groups (Table 2.3); the fungicide combinations D1/E2 (anilino-

pyrimidines/phenylpyrroles) and E3/MS (dicarboximides/multi-site) significantly 

(P<0.001) reduced BBR severity compared to the E3 group (dicarboximides), 

which was used as the reference.
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Table 2.1. Effect in the reduction of Botrytis bunch rot severity compared to the untreated control of fourteen fungicide 

treatment strategies based on 1, 2, 3, or 4 fungicide sprays applied at timings A (end of flowering, growth stage 69 of Lorenz 
et al.1994), B (pre-bunch closure, growth stage 77), C (veraison, growth stage 83), and/or D (before harvest, before growth 
stage 89). 

Fungicide treatment 
strategy 

   Estimated effect in disease reduction  

Kꝉ I2,§  L¥ se of L 95% confidence interval of L P 

A 55 93.9  -0.46 0.076 -0.61  -0.31 <0.001 

B 44 86.1  -0.25 0.042 -0.33   -0.17  <0.001 

C 50 93.9  -0.54 0.060 -0.66   -0.42 <0.001 

D 34 89.0  -0.45 0.059 -0.57   -0.34 <0.001 

AB 34 97.1  -0.54 0.089 -0.72   -0.37 <0.001 

AC 32 93.0  -0.71 0.100 -0.90   -0.51 <0.001 

BC 36 66.0  -0.89 0.057 -1.01   -0.78 <0.001 

BD 23 90.7  -1.22 0.131 -1.48   -0.96 <0.001 

CD 26 94.0  -1.15 0.095 -1.34   -0.97 <0.001 

ABC 25 78.1  -0.66 0.075 -0.81   -0.51 <0.001 

ABD 26 86.3  -0.77 0.094 -0.95   -0.58 <0.001 

ACD 24 84.7  -1.23 0.126 -1.47   -0.98 <0.001 

BCD 31 94.8  -0.92 0.102 -1.11   -0.72 <0.001 

ABCD 44 81.1  -1.69 0.132 -1.95 -1.43 <0.001 

ꝉ Total number of studies included in the analysis.  

§ I2 indicates the percentage of total variation in the estimates of treatment effect that was due to heterogeneity between studies. An I2 value 
near 100% indicates that most of the observed variance was real, i.e., was not due to sampling error but was due to variance between 
studies. 
¥ Summary estimated effect for each treatment strategy relative to the untreated control NT, in the form LT=ln(XT)-ln(XNT), where X is the 
disease severity at harvest.
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Table 2.2. Pairwise comparison of the effect in the reduction of Botrytis bunch rot severity compared to the non-treated control 

for 14 fungicide treatment strategies based on 1, 2, 3, or 4 sprays applied at timings A (end of flowering, growth stage 69 of 
Lorenz et al.1994), B (pre-bunch closure, growth stage 77), C (veraison, growth stage 83), and/or D (before harvest, before 
growth stage 89). 

ꝉ Value in the cell corresponds to L(A)-L(B)=-0.46–(-0.25)=-0.21, where L is the estimated effect; a negative value indicates that the severity of Botrytis bunch rot estimates 
in the row is lower than that estimates in the column; the probability value of the comparison is in parenthesis.

Fungicide 
treatment 
strategy 

B C D AB AC BC BD CD ABC ABD ACD BCD ABCD 

A 

-0.21ꝉ 
(0.020) 

0.08 
(0.333) 

-0.01 
(0.980) 

0.08 
(0.142) 

0.25 
(<0.001) 

0.44 
(<0.001) 

0.76 
(<0.001) 

0.69 
(<0.001) 

0.21 
(0.018) 

0.31 
(0.002) 

0.77 
(<0.001) 

0.46 
(0.001) 

1.23 
(<0.001) 

B  

0.29 
(<0.001) 

0.21 
(0.002) 

0.30 
(0.002) 

0.46 
(<0.001) 

0.65 
(<0.001) 

0.97 
(<0.001) 

0.90 
(<0.001) 

0.41 
(<0.001) 

0.52 
(<0.001) 

0.98 
(<0.001) 

0.67 
(<0.001) 

1.44 
(<0.001) 

C   
-0.09 

(0.228) 
0.01 

(0.960) 
0.17 

(0.120) 
0.36 

(<0.001) 
0.68 

(<0.001) 
0.61 

(<0.001) 
0.12 

(0.201) 
0.23 

(0.046) 
0.69 

(<0.001) 
0.38 

(0.002) 
1.15 

(<0.001) 

D    
0.09 

(0.423) 
0.25 

(0.039) 
0.44 

(<0.001) 
0.76 

(<0.001) 
0.70 

(<0.001) 
0.21 

(0.049) 
0.31 

(0.002) 
0.77 

(<0.001) 
0.46 

(<0.001) 
1.24 

(<0.001) 

AB     
0.16 

(0.036) 
0.35 

(0.001) 
0.67 

(<0.001) 
0.61 

(<0.001) 
0.12 

(<0.001) 
0.22 

(0.034) 
0.68 

(<0.001) 
0.37 

(0.012) 
1.14 

(<0.001) 

AC      
0.19 

(0.082) 
0.51 

(<0.001) 
0.44 

(<0.001) 
-0.04 

(0.618) 
0.06 

(0.562) 
0.52 

(0.001) 
0.21 

(0.171) 
0.98 

(<0.001) 

BC       
0.32 

(0.030) 
0.26 

(0.007) 
-0.23 

(0.011) 
-0.13 

(0.264) 
0.33 

(0.014) 
0.02 

(0.863) 
0.79 

(<0.001) 

BD        
-0.07 

(0.717) 
-0.55 

(<0.001) 
-0.45 

(0.002) 
0.01 

(0.971) 
-0.30 

(0.098) 
0.47 

(0.007) 

CD          

-0.49 
(<0.001) 

-0.38 
(0.001) 

0.07 
(0.558) 

-0.24 
(0.032) 

0.53 
(<0.001) 

ABC          

0.10 
(0.270) 

0.56 
(<0.001) 

0.25 
(0.034) 

1.03 
(<0.001) 

ABD           

0.46 
(<0.001) 

0.15 
(0.167) 

0.92 
(<0.001) 

ACD            

-0.31 
(0.033) 

0.46 
(<0.001) 

BCD             

0.77 
(<0.001) 
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Figure 2.2. Efficacy of different fungicide treatment strategies for the control of Botrytis 

bunch rot expressed as the percentage of disease reduction relative to the untreated control 
as estimated by the meta-analysis; whiskers show the 95% confidence interval; the dot size 
increases with the precision of estimates. Strategies are combinations of treatments applied 
in A (end of flowering, growth stage 69 of Lorenz et al.1994), B (pre-bunch closure, growth 
stage 77), C (veraison, growth stage 83), and/or D (before harvest, before growth stage 89). 
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Table 2.3.  Effect in the reduction of Botrytis bunch rot severity of different fungicide 

classes. 

Fungicide 
classꝉ 

    Estimated effect 

K§  L¥ se( L ) 95% CI ( L ) P 

E3 (intercept) 287  2.86 0.154 2.56 / 3.16 <0.001 
C2/G3 6  -0.17 0.802 -1.74 / 1.40 0.829 

C5 4  -1.20 0.721 -2.61 / 0.21 0.095 
D1 3  -1.09 0.766 -2.59 / 0.41 0.156 

D1/C2 6  0.12 0.801 -1.45 / 1.69 0.879 
D1/C5 7  -1.35 0.803 -2.92 / 0.22 0.093 

D1/C5/G3 7  -0.34 0.800 -1.90 / 1.23 0.675 
D1/E2 75  -1.68 0.350 -2.37 / -1.00 <0.001 
D1/G3 16  -0.64 0.530 -1.68 / 0.39 0.224 

E0 14  0.65 1.115 -1.54 / 2.83 0.561 
E3/C5/G3 3  0.37 1.118 -1.82 / 2.56 0.742 

E3/D1 5  0.15 0.814 -1.45 / 1.74 0.857 
E3/D1/B2 6  0.41 1.115 -1.78 / 2.59 0.714 

E3/G1 9  -0.32 0.665 -1.62 / 0.98 0.628 
E3/MS 8  -2.33 0.657 -3.61 / -1.04 <0.001 

G3 21  -0.73 0.408 -1.53 / 0.07 0.073 
MS 3  0.63 1.118 -1.56 / 2.82 0.573 

MS/D1/C2 5  0.96 1.116 -1.22 / 3.15 0.387 
ꝉ Fungicides were grouped based on the chemical classes defined by the Fungicide Resistance 
Action Committee (FRAC 2017).  
§ Total number of studies included in the analysis for each combination of fungicide class.  
¥ Results are presented as the difference (L) in the log mean of disease severity for each fungicide 
class relative to class E3 (intercept). se= standard error; CI= confidence interval; P = probability value 
(significance of the effect in the reduction of the disease). 
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Figure 2.3. Frequency distribution of the studies in which the differences of disease severity 

between two fungicide treatment strategies for the control of Botrytis bunch rot were 
significant; white, grey, and black bars indicate the frequency of studies in which severity 
was less in the first strategy than in the second strategy, equal in both strategies, or greater 
in the first than in the second strategy, respectively. Strategies are combinations of 
treatments applied in A (end of flowering, growth stage 69 of Lorenz et al.1994), B (pre-
bunch closure, growth stage 77), C (veraison, growth stage 83), and/or D (before harvest, 
before growth stage 89). 

 

 

Discussion and conclusion 

Since the 1970s, several experiments have been carried out to assess the 

effectiveness of different fungicides and timings for controlling BBR of grapevines. 

In these experiments, fungicide strategies were based on the application of sprays 

during four grape growth stages: A, end of flowering; B, pre-bunch closure; C, 

veraison; and D, 1 to 3 weeks before harvest (Agulhon 1973; Bisiach et al. 1978a). 

Most of these experiments were published in national technical journals or were 

conducted by local institutions with the objective of developing practical 

recommendations for viticulturists; other experiments remained unpublished. To 

our knowledge, this paper is the first to summarize the information from those 
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experiments (from 116 studies) with the aim of drawing robust conclusions 

(Donegan et al. 2013; Madden and Paul 2011; Scherm et al. 2014).  

Meta-analysis was used in the current study, and researchers have 

expressed the concern that the results of meta-analyses may not be robust 

because of “publication bias”. The concern is that negative results often remain 

unpublished or are not included in JCR-indexed journals and are therefore less 

likely to be included in a meta-analysis (Madden and Paul 2011; Scherm et al. 

2014). In the current research, publication bias was unlikely for two reasons. First, 

only 19% of the studies were obtained from JCR-indexed journals; the other 81% 

were either published in journals/reports not accessible by a systematic review of 

the main scientific databases or were unpublished. Second, publication source 

(i.e., JCR-indexed journal, non-JCR journals, or experimental reports) did not 

affect the results of this work.  

There are two additional reasons for considering the findings of this paper 

robust. First, the database included a wide range of BBR epidemics; disease 

severity ranged from 0.01% to approximately 90%. Second, the variability in 

disease severities was caused by among-studies variability rather than by 

sampling errors within experiments, as indicated by the I2 statistic (Higgins and 

Thompson 2002; Madden and Paul 2011); among-studies variability may be 

mainly related to different environmental conditions that promoted or restricted 

BBR development (Madden and Paul 2011; Madden and Piepho 2016).  

With a 1-spray strategy, BBR control was, on average, more effective 

when fungicides were applied at timing A, C, or D rather than B. Based on the B. 

cinerea infection pathways defined by Elmer and Michailides (2007), spraying in A 

(flowering) would simultaneously affect various infection pathways: i) conidial 

infection of the style and ovules; ii) conidial infection of the stamens or petals; iii) 

fruit infection via the fruit pedicel; and iv) colonisation of floral debris. Treatments 

in B (pre-bunch closure), when berries are not susceptible to B. cinerea infection 

(Deytieux-Belleau et al. 2009), have the main aim of disinfesting the colonised 

floral debris before the debris is enclosed in the growing bunch (Elmer and 

Michailides 2007). In this meta-analysis, it is therefore not surprising that fungicide 

sprays were more effective at timing A than B. Later during the season, sprays at 

timings C and D would reduce the infection of ripening berries caused by both 

conidial and berry-to-berry infection (Elmer and Michailides 2007; González-

Domínguez et al. 2015).  

With a 2-spray strategy, strategy AB provided similar disease control as A 

but better control than B. This result shows that spraying in B after having sprayed 

in A is not convenient when a 2-spray strategy is used, probably because the two 

sprays affect the same infection pathway (i.e., the production of inoculum on bunch 
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trash). Recent results of Calvo-Garrido et al. (2014) (not included in this meta-

analysis) confirmed that treatments applied with strategy A vs. AB did not differ in 

their control of B. cinerea on bunch trash and of latent infections at veraison, 

indicating that a treatment in B did not provide additional control if a treatment had 

been applied in A. Control was better with strategy AC than AB; unfortunately, AD 

was not included in this work because only few studies with this strategy were 

retrieved with the literature search. When the spray in A was missed, strategies 

BC, BD, and CD provided good control. Therefore, combining treatments affecting 

both early infection pathways (at timing A or B) and late infection pathways (at 

timing C or D) results in effective disease control. With a 3-spray strategy, disease 

control was consistently better with strategy ACD than with BCD and this may be 

explained based on the effect of A or B on the infection pathways, as described 

before.  

Although the 4-spray strategy, ABCD, provided the best control, it often 

led to unjustified fungicide applications. The latter inference is supported by Figure 

2.3B, which shows that spraying 4 times in ABCD did not always provide better 

disease control than spraying 1, 2, or 3 times. Therefore, recommending a routine 

BBR control strategy based on 4 sprays is not justified; it is not profitable for the 

grower and has negative consequences on human health, environmental pollution, 

and fungicide resistance management (Alavanja et al. 2004; Epstein 2014; 

Fillinger and Walker 2016; Leroux 2007).  

The inferences and conclusions presented in the previous paragraphs can 

be considered relevant regardless of the specific fungicides used. Even though 

fungicide class (defined based on the chemical classes from FRAC; FRAC 2017) 

had a significant effect on BBR control, only 2 of 18 classes (or combinations of 

classes) were significantly different from the reference class, the dicarboximides 

(E3). Control was better with the fungicide combinations D1/E2 (anilino-

pyrimidines/phenylpyrroles) and E3/MS (dicarboximides/multi-site) than with E3. 

Results concerning E3/MS should be interpreted cautiously, because only 3 

studies were considered, and all were carried out by the same research group; in 

those studies, E3/MS may have been more effective than E3 because the B. 

cinerea population may have been resistant to E3, which is a well-known problem 

(Fillinger and Walker 2016; FRAC 2013; Leroux 2007). Results for D1/E2 

(cyprodinil/fluxodinil) may be considered more consistent than those for E3/MS 

because results for D1/E2 were from 14 studies that were conducted by different 

research groups. Investigating the efficacy of single fungicides or fungicide 

combinations against B. cinerea was not the aim of the present research.  

Given the results of this study and irrespective of the fungicides used, 

practical recommendations for BBR control should be based on the following 
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findings: i) strategy A provides better control than B; ii) strategy AC provides similar 

control as BC (there are no data for a robust comparison of AD vs BD); iii) strategy 

ACD is slightly better than BCD; and iv) strategy ABCD is useful only when severe 

epidemics are expected. Therefore, spraying at timing A seems to be very useful 

for achieving efficient and flexible BBR control in vineyards. Spraying at timing B 

instead of A does not provide the same flexibility because, if the grower initially 

decides to adopt a 1-spray strategy and the season subsequently becomes highly 

favourable for B. cinerea, the grower would no longer be able to adopt strategy 

ABCD. Similarly, the BC or BCD strategies, which are still possible if a spray is not 

applied at timing A, provide the same control as AC or less control than ACD; 

strategy BD provides good average control, but comparison with AD was not 

possible because the latter strategy was not evaluated in this work. If a spray is 

applied in A, spraying in B is useful only if the grower decides to adopt the ABCD 

strategy; otherwise, AC or ACD provide satisfactory solutions for 2- or 3-spray 

strategies, respectively.  

In some viticultural areas, spraying at timing A has been considered much 

less effective than spraying in B. After conducting a 2-year experiment in which 

strategy ABCD provided the same control as BCD, Corvi and Tullio (1980) 

proposed to eliminate the spray in A; however, in both years of that experiment, 

the environmental conditions during flowering were unfavourable for BBR 

development. Pérez-Marín (1998) recommended strategy BC based on a 4-year 

experiment in the same vineyard, but no statistical analysis was provided. In Italy 

and Spain, most of the regional public sanitary services recommend spraying in B 

rather than in A to their viticulturists (CODILE 2017; Costacurta et al. 2004; DOG 

2005; IRVV 2017). On the other hand, some recent papers emphasize the 

importance of spraying at timing A rather than B (Calvo-Garrido et al. 2014; Ciliberti 

et al. 2015a, González-Domínguez et al. 2015). 

Results of this work provide information on the efficacy of different BBR 

control strategies based on 1, 2, 3, or 4 sprays per season. How many sprays are 

necessary to control BBR in a vineyard may depend on several factors, including 

weather conditions, the susceptibility level of the variety, the microclimate as 

influenced by the canopy structure and density, and presence of powdery mildew 

and berry moth insects (Elad et al. 2007). This decision can clearly be made easier 

by use of a mathematical model that is able to predict the risk of the disease 

development. A recently published mechanistic model for B. cinerea (González-

Domínguez et al. 2015) predicts, on a daily basis, the relative infection severity 

during two infection windows corresponding to the two grape-growing periods 

relevant for B. cinerea infection: i) between “inflorescences clearly visible” and 

“berries groat-sized, bunches begin to hang”; and ii) ripening berries (Elmer and 
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Michailides 2007). The model, which is based on relative infection severity values, 

predicts the final BBR as light, intermediate, or severe. The model has been 

integrated in a Decision Support System (DSS) for the sustainable management 

of vineyards and is therefore available for growers (Caffi et al. 2017). The findings 

of the current study, combined with the model predictions, should improve BBR 

management in vineyards.
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Supplementary material  

Meta-Analysis procedure 

For each study, disease severity data (X) from fungicide-treated (T) and untreated 

plots (NT) were used to estimate the treatment effects. The log mean severity of 

treatments, i.e.,ln(𝑋̅) was calculated as the effect size for each study and strategy. 

The log severity of treatments was used because ln(X) instead of X because its 

distribution is closer to the normal one, which is required by the model used for the 

meta-analysis (see below).  

The within-study variance was estimated for each treatment of a single study 

as s2=V/(n𝑋̅2), where V is the residual error component of the study, n is the 

number of replicates, and 𝑋̅ is the mean disease severity. To calculate V for each 

study, different approaches were used (Ngugi et al. 2011a; Paul et al. 2007): i) 

when the original data were available, V was extracted directly from the ANOVA 

table of the study (i.e., the residual variance or mean square error); ii) when the 

study did not include the ANOVA table but did include the least significant 

difference (LSD), V was calculated as (n (LSD/1.96)2/2); iii) when only the 

significant mean separation was provided (i.e., significant differences between 

means were denoted by letters in a graph or a table), the estimated LSD was 

computed as the average between the smallest observed significant difference and 

the largest observed non-significant difference; iv) when V was not available and 

the mean separation had not been calculated by LSD (this occurred in 54 studies), 

V was estimated based on the relationship between V and mean 𝑋 ̿observed in the 

other 62 studies, where (𝑋 ̿) is the average of mean across all the treatments of 

each study (including the untreated control). In the latter case, a power-law model 

was fitted to the disease severity data as ln(𝑉) = 𝑎 + 𝑏 · ln (𝑋̿) to calculate V for 

the studies with missing variance information; the power-law model provided highly 

significant fits to sampling variance with a=0.226±0.227, b=1.385±0.088, 

R2=0.834, and P<0.001.  

The meta-analysis was conducted using the software R (v 3.4.0; package 

‘metafor’; CoreTeam R 2017; Viechtbauer 2010). A multivariate random effects 

model was fitted, via linear (mixed-effects) models, by using the rma.mv function 

of the ‘metafor’ package4. The model was fitted in the form Y~N(μ, Σ+S), where 

~N indicates a multivariate normal distribution, µ is the expected value for the 

different treatments, Σ is the between-study variance-covariance matrix, and S is 

the within-study variance-covariance matrix.  

To run the model, the ln(𝑋̅) and the corresponding sampling variances 

(within-study sampling variance; s2) were specified in the arguments of the function 

rma.mv. The restricted maximum-likelihood estimation (REML) method was used 
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for model fitting. An unstructured matrix was selected for Σ (Machado et al. 2017; 

Paul et al. 2008); for S, the diagonal elements were the s values for each treatment 

and study, and the off-diagonal elements were 0 (Paul et al. 2008). Random effects 

were specified in the form ~ inner|outer, with the outer factor corresponding to the 

study identification and the inner factor corresponding to the treatment type (i.e., 

the strategy; Machado et al. 2017).  

To evaluate model assumptions, heterogeneity and consistency were 

considered (Donegan et al. 2013). A test for residual heterogeneity (QE) was 

conducted with the rma.mv function, that evaluate whether the variability in the 

observed effect that is not accounted by the moderators included in the model is 

larger than one would expect based on sampling variability alone. To assess the 

nature of the residual heterogeneity, I2 statistics were calculated as proposed by 

Higgins and Thompson (2002) and Jackson et al. (2012). Prior to perform the 

analysis, a similar model of that described, but with fixed effects was calculated. 

For each treatment, I2 statistic was based on the relation between the variance-

covariance matrix of models with fixed and random effects, in the form: 

(vcov(random)[1,1]-vcov(fixed)[1,1]) / vcov(random)[1,1]). Different positions of the 

diagonal of the matrix were selected for the different treatments. To assess 

consistency, an independent analysis was run as proposed by Madden et al. 

(2016) and Piepho et al. (2015). Two consistency groups were created, one with 

the cases directly obtained from the studies and the other with the cases inferred. 

A significant interaction of the treatment and consistency groups, evaluated based 

on the Wald test statistic, was an indication of inconsistency. 

Results were presented as the difference, L, in the effect sizes for each T 

treatment relative to the untreated control NT, in the form LT=ln(XT)-ln(XNT). L was 

used instead of the response ratio (ratio of the means in the treatment and control) 

to avoid functional correlations between effect sizes within a given study arising 

from a common denominator (Ngugi et al. 2011a). Standard errors and confidence 

intervals were likewise calculated for these values of L. A Wald-type test statistic 

was used to determine whether the mean differences L were significantly different 

from zero, i.e., whether the disease severity in the treated plots ln(XT) differed from 

that in the untreated plots ln(XNT). The percentage of disease reduction relative to 

the control was also estimated as (1− exp(L)) x 100, and the 95% confidence 

intervals were calculated as in Ngugi et al. (2011b) and Paul et al. (2008).  
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          Chapter 3 

Interactions among fungicides applied at different timings for 

the control of Botrytis bunch rot in grapevine1 

 

 

Abstract  

Botrytis bunch rot (BBR), caused by Botrytis cinerea, is one of the main diseases 

affecting grapevines. Due to the complexity of the B. cinerea life cycle and the 

existence of different infection pathways affecting grapevine tissues at both early 

and late growth stages, fungicides are usually applied sequentially at the end of 

flowering (A), pre-bunch closure (B), veraison (C), and before harvest (D). 

Interactions among fungicides (from different groups) applied at these growth 

stages were evaluated in this work, with focus on the strategies in which early- and 

late-season applications are combined (i.e., strategies AB, CD, ABC, ABD, ACD, 

BCD and ABCD). The evaluation was performed in a set of 116 studies carried out 

in different years and locations, by comparing the observed (bobs) and expected 

(bpred) efficacies in controlling BBR; bobs was calculated as the reduction of BBR 

severity in treated plots compared to untreated ones, while bpred was calculated by 

using a mathematical function. Early-season sprays (i.e., A and B) showed non-

additive interactions (i.e., the observed efficacy was significantly lower than 

expected in case of additive effect) while late-season sprays (i.e., C and D) did. 

No significant synergistic effects were observed among fungicide sprays. In the 

early-season, spraying in A was more effective than in B, and both sprays (A and 

B) were useful under high disease pressure only, when the full ABCD strategy was 

needed for effective BBR control. Otherwise, the most effective combination was 

ACD, able to exploit the additive control of the early-season infection pathways 

and the multiple infection events during berry ripening.  

  

                                                 
1 González-Domínguez E, Fedele G, Languasco L, Rossi V, 2019. Crop Protection 120:30-33.  
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Introduction 

Botrytis bunch rot (BBR), one of the main diseases affecting grapevines, is caused 

by Botrytis cinerea Pers. Fr. (teleomorph Botryotinia fuckeliana (de Bary) Whetzel). 

The fungus affects more than 200 plant species; on grapevine, it may cause 

significant losses, and markedly reduces the quality of the wines (Elad et al. 2007; 

Ribereau-Gayon et al. 1980).  

Multiple infection pathways of B. cinerea have been described, occurring in two 

periods (Elmer and Michailides 2007): in the early season, from inflorescence 

clearly visible and when berries are groat sized (corresponding to growth stages 

53 and 73 of Lorenz et al. 1995, respectively), and in the late season, from veraison 

to berry maturity (growth stages 79 and 89, respectively). In the early season, 

conidia cause infection of inflorescences and young berries through diverse 

pathways (infection of the style and ovule, stamens or petals, or young fruit 

infection via the pedicel; Elmer and Michailides 2007). These infections cause 

either inflorescence blight or they develop into latent infections of berries, which 

result in berry rot after veraison (Holz et al. 1997; Keller et al. 2003; McClellan and 

Hewitt 1973). During the flowering stage, the pathogen also colonizes 

saprophytically bunch trash (aborted flowers, calyptras and stamens), which are 

retained within the developing bunches; this saprophytic mycelium has been 

considered a major source of inoculum for late season infections (Nair and Parker 

1985). After veraison, a classical pre-harvest polycyclic epidemic can develop 

under favourable weather conditions; rot develops, and new infections can be 

caused by both conidia or mycelium form the adjacent infected berries (berry-to-

berry infections) (Elmer and Michailides 2007; González-Domínguez et al. 2015).  

Due to the complexity of the life cycle of B. cinerea, growers usually apply 

fungicides at four specific grape growth stages: A, end of flowering (growth stage 

69); B, pre-bunch closure (growth stage 77); C, veraison (growth stage 83); and 

D, before harvest (before growth stage 89) (Baldacci et al. 1962; Bulit et al. 1970). 

This calendar schedule is easy to follow and provides good protection against BBR 

(Agulhon 1971; Lafon et al. 1972). However, it may result in unnecessary sprays 

with damaging consequences on environment, public health and the rise of 

fungicide resistance (Epstein 2014; Panebianco et al. 2015). Several works have 

then studied the key timings for fungicide applications with the objective of 

reducing the number of sprays; a number of these works have been recently 

reviewed quantitatively in a network meta-analysis by González-Domínguez et al. 

(2019, see Chapter 2). Results of this meta-analysis showed that, when only one 

spray is applied, BBR control is more effective when fungicides are applied in A, 

C, or D than in B. For strategies with more than one spray, CD and ACD provide 
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good disease control; the full control strategy ABCD is profitable only in case of 

severe epidemics.  

An interesting research question is whether and, if so, how repeated fungicide 

applications interact one to each other. This area has been investigated for 

fungicide mixtures, and it is known that the biological effect (i.e., the control of the 

target pathogen) of a fungicide mixture may be equal, greater or smaller than the 

effect of the single fungicides administered separately; these interactions have 

been defined as additive, synergistic and antagonistic (or non-additive), 

respectively (Gisi 1996; Levy et al. 1986). Whether the fungicides affect the 

development of the target organism simultaneously or separately over time has 

also been considered, which depends on the specific physiological activity, or vital 

system, or growth stage of the pathogen affected by each fungicide; for example, 

one fungicide affects spore germination, and another affects mycelial growth but 

not spore germination. Based on this approach, the following cases have been 

defined: the fungicides have different simultaneous action, similar simultaneous 

action or nonsimultaneous action (Kosman and Cohen 1996). Mathematical 

formulas have been developed to study these interactions, and they were used for 

different target organisms (Abbott 1925; Colby 1967; Drury 1980; Gisi 1996; 

Kosman and Cohen 1996; Wadley 1945).  

Paveley et al. (2003) adapted these formulas to study the efficacy of fungicide 

spray programmes in which two treatments are applied sequentially. In this 

function, a second application is considered to act on that proportion of the total 

pathogen population that was uncontrollable at the time of the first application plus 

any additional part of the population that survived the first application as a result 

of a finite dose being applied. Paveley et al. (2003) also speculated that this 

equation for two sprays might be expanded to predict the combined efficacy of 

multiples sprays. 

In this work, an expanded version of the function of Paveley et al. (2003) was used 

to evaluate the interactions among fungicide treatments applied at different timings 

for the control of BBR in vineyards. The work focuses on those strategies in which 

treatments are combined in such a way to control different infection pathways, 

applied in early (A and/or B) and late (C and/or D) season. Specifically, the 

combinations of early-season (AB) vs. late-season (CD), and strategies in which 

early- and late-season applications are combined (ABC, ABD, ACD, BCD and 

ABCD) were considered. To assess the interaction among these fungicide 

strategies, observed and expected efficacies in controlling BBR were compared, 

and their ratio was evaluated. 
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Materials and methods 

Observed efficacy of the different treatment strategies 

The observed efficacy (bobs) of the fungicide strategies evaluated in this work (A, 

B, C, D, AB, CD, ABC, ABD, ACD, BCD and ABCD) was calculated by a meta-

analysis carried out by González-Domínguez et al. (2019, see Chapter 2) by using 

116 different studies. Details on fungicide applications and disease assessments 

were provided in González-Domínguez et al. (2019, see Chapter 2). In short, the 

database for the meta-analysis included experiments in which BBR severity was 

assessed in studies with at least one fungicide (applied at timings A, B, C, or D, or 

at their combinations), and an untreated control (NT). The database was built with 

a wide range of epidemics with BBR severity in the NT plot from 0.1% to 87.4%. 

The active ingredient/s used varied among studies, and were grouped based on 

the chemical class as defined by the Fungicide Resistance Action Commite, FRAC 

(González-Domínguez et al. 2019, see Chapter 2; FRAC, 2018). Dicarboxamides 

were the most used fungicides in the above studies (60% of the studies) and are 

the most used ones worldwide (Williamson et al. 2007); therefore, they were 

considered as the reference group in the meta-analysis to test the effect of different 

fungicide groups on BBR control. 

The values of bobs for each fungicide strategy were calculated as bobs = 1 – β; β is 

the slope of the linear regression between the BBR severity at harvest in treated 

(D) and the untreated control (D0) in the form D = β × D0. Both severities, D and 

D0, are in a 0-1 scale where 1 = 100% disease severity. Values of bobs and their 

95% confidence intervals are shown in Table 3.1; these values range between 

0.22 (for B) and 0.81 (for ABCD), and the correlation coefficients range between 

0.67 (for ABCD) and 0.98 (for B). Figure 3.1 shows, for the example of A, AB, ABC, 

and ABCD, the regression lines and how the bobs increases with the number of 

fungicide sprays. 
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Table 3.1. Observed and predicted efficacy of fungicide strategies for controlling Botrytis 

bunch rot in vineyards, and summary statistics for assessing their interactions. 

Fungicide 
treatment 
strategya 

Observed 
efficacy 

(95% CI)b 

rc Predicted efficacy 
(95% CI)d 

Pe Ratio 
bobs/bpred f 

A 0.37 (0.26-0.45) 0.96    

B 0.22 (0.15-0.28) 0.98    

C 0.42 (0.48-0.34) 0.94    

D 0.36 (0.29-0.43) 0.93    

AB 0.42 (0.31-0.51) 0.94 0.51 (0.38-0.61) 0.08 0.83  

CD 0.68 (0.62-0.74) 0.89 0.63 (0.53-0.71) 0.91 1.08  

ABC 0.48 (0.40-0.55) 0.91 0.72 (0.59-0.81) 0.03 0.67  

ABD 0.53 (0.44-0.61) 0.83 0.69 (0.56-0.79) 0.16 0.77  

ACD 0.71 (0.62-0.77) 0.90 0.78 (0.66-0.85) 0.07 0.91  

BCD 0.60 (0.51-0.67) 0.88 0.72 (0.61-0.80) <0.001 0.83  

ABCD 0.81 (0.76-0.86) 0.67 0.83 (0.72-0.90) 0.62 0.98  
a Fungicide strategies are based on 1, 2, 3, or 4 fungicide sprays applied at timings A (end of 
flowering, growth stage 69 of Lorenz et al.1995), B (pre-bunch closure, growth stage 77), C (veraison, 
growth stage 83), and/or D (before harvest, before growth stage 89). 
b 1 minus the regression coefficients (and their 95% confidence intervals) between the BBR severity 
at harvest in treated and the untreated control. Data from the meta-analysis developed by González-
Domínguez et al. (2019, see Chapter 2). 
c Pearson correlation coefficients for the linear regression between the Botrytis bunch rot severity in 
the untreated control (independent variable) and in the fungicide treatment strategies (dependent 
variable).  
d Efficacy predicted in this work using equation (2).  
e Probability value of the t test conducted to assess the differences between observed and predicted 
efficacy.  
f Ratio between observed and predicted efficacy. 

 

 

Expected efficacy of the different treatment strategies 

An expanded version of the function of Paveley et al. (2003) was used to predict 

the efficacy of repeated applications of fungicides in controlling BBR severity, in 

the following form:  

                       𝐷 = 𝐷0 × ∏ [1 − 𝑏𝑡 × (1 − 𝑒−𝑘×𝑑𝑡)]𝑛
𝑡=1               (1) 

 

where: D and D0 are BBR severity in the treated and the untreated control (dose = 

0), respectively; ∏ indicates a product, i.e., the multiplication of the terms in 

brackets for the number t of treatments applied (with t ranging from 1 to n, with 

n=2, 3 or 4); b is the amount of disease that might potentially be controlled by the 

treatment t with an infinite dose (i.e., the efficacy of the treatment expressed as a 
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proportion of D0); k is the rate of change of disease severity with dose, which is 

expressed as dose-1, and increases as the dose decrease; and dt is the dose used 

for each treatment. For example, for strategy ACD, the equation is as follows:  

 

  𝐷 = 𝐷0 × [1 − 𝑏𝐴 × (1 − 𝑒−𝑘×𝑑𝐴)] × [1 − 𝑏𝐶 × (1 − 𝑒−𝑘×𝑑𝐶)][1 − 𝑏𝐷 × (1 − 𝑒−𝑘×𝑑𝐷)]      (2) 

 

To calculate the value of D for each strategy (i.e., AB, CD, ABC, ABD, ACD, BCD, 

and ABCD) values of b for the different 1-spray applications, bA, bB, bC, and bD, 

were the bobs for A, B, C and D, respectively, calculated as previously described 

(Fig. 3.1); d was set d=1, because all the fungicides were applied at the label dose.  

The parameter k was estimated by using the data from Markoglou and Ziogas 

(2002), referring to the efficacy of different SBIs (sterol biosynthesis inhibitors) 

fungicides against B. cinerea on cucumber seedlings, namely fenpropimorph, 

pyrifenox, flusilazole, triflumizole, and propiconazol.  In this research, the efficacy 

was assessed as the reduction of disease severity compared to an untreated 

control, after artificial inoculation of B. cinerea conidial suspensions and incubation 

under optimal conditions; fungicides were applied at different dosages from 25% 

to 200% of the label dose. In this work, it was assumed that the k values calculated 

for cucumber seedlings and grape berries do not change, as it has been shown 

that botryticides have similar mode of action, efficacy and resistance mechanisms 

in different host plants of B. cinerea (Fillinger and Walker 2016; Leroux 2007; 

Rosslenbroich and Stuebler 2000). 

The values of k for each fungicide and for the overall fungicides were estimated by 

fitting the experimental data of disease severity D to equation (1) (with t=1), using 

the function nls of the ‘stats’ package of R v. 3.4.0 (R Core Team 2017). Results 

are shown in Table 3.2. For the overall fungicides, k was estimated as k = 

3.37±0.25. Since SBI fungicides did not show any significant effect in comparison 

to dicarboxamides and most of the fungicide groups used against B. cinerea 

(González-Domínguez et al. 2019, see Chapter 2), this value of k can be 

considered valid for a wide number of fungicides used against BBR.  

The expected efficacy (bpred) for each fungicide strategy was calculated from 

equation (1) in the form:  

                                 𝑏𝑝𝑟𝑒𝑑 =
1−(

𝐷

𝐷0
)

1−𝑒−𝑘×𝑑
                                                (3) 

 

where: d=1 and k = 3.37. Values of bpred (with their 95% Cis) are shown in Table 

3.1.  
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Table 3.2. Estimation of the parameter k for different fungicides used for controlling 

Botrytis cinerea.  

Fungicides ka SE R2 

Fenpropimorph 6.72 0.49 0.996 

Flusilazole 3.11 0.19 0.994 

Propiconazole 2.49 0.10 0.991 

Pyrifenox 4.01 0.39 0.987 

Triflumizole 2.21 0.16 0.992 

Overall  3.37 0.25 0.950 
a k was estimated by fitting the experimental data of disease severity D from Markoglou and Ziogas 
(2002) to equation (1) (with t=1). SE= standard error; R2= coefficient of determination.  

 

 

 
Figure 3.1. Linear regression (y=(1-bobs)x) between Botrytis bunch rot severity in the 

untreated control (x) and in four fungicide treatment strategies (y) (see Table 3.1 for the 

regression parameters); dots are the observed disease severities in the meta-analysis of 

González-Domínguez et al. (2019, see Chapter 2). Strategies are combinations of 

treatments applied in A (end of flowering, growth stage 69 of Lorenz et al. 1995), B (pre-

bunch closure, growth stage 77), C (veraison, growth stage 83), and D (before harvest, 

before growth stage 89).  
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Interaction among fungicide applications 

To assess the interaction among fungicides applications, the ratio between 

observed and expected efficacy, bobs/bpred, was calculated for each strategy; when 

bobs/bpred =1 the effect of each treatment is considered as additive, when > 1 the 

effect is more than additive (synergistic) and when < 1 is less than additive (non-

additive) (Gisi 1996; Levy et al. 1986). Whether the difference between bobs and 

bpred was statistically significant was tested with a t test. The t test was conducted 

for two normal populations generated randomly from the observed and predicted 

efficacy of each strategy (using the functions rnorm and t.test of the ‘stats’ package 

of R v. 3.4.0); standard deviations (SD) were calculated from the 95% CI. Values 

of bobs/bpred were considered =1 (additive) when bobs and bpred were not statically 

different one from each other at P ≥ 0.01, 0.05 or 0.1; otherwise, there were 

considered significantly < or > 1 (i.e., non-additive and synergistic, respectively). 

 

Results and discussion 

Interaction were non-additive for some fungicide strategies, and additive for others 

(Table 3.1). No synergistic effects were observed for any of the strategies 

evaluated; i.e., the efficacy observed in the field was never significantly higher than 

that predicted. Significant non-additive effects were observed for AB (bobs/bpred = 

0.83, P=0.08), ABC (bobs/bpred = 0.67, P=0.03) and BCD (bobs/bpred = 0.83, 

P<0.001). Concerning AB, Gonzalez-Dominguez et al. (2019, see Chapter 2) 

discussed that both treatments, in A and B, affect the same infection pathway, i.e., 

the colonisation of bunch trash (Elmer and Michailides 2007). Treatment in A also 

affects the latent infection pathway, and this may justify the higher efficacy of A 

(bobs = 0.34) compared to B (bobs = 0.22). This also agree with previous results in 

which the strategy AB provide similar control than A (Calvo-Garrido et al. 2014; 

González-Dominguez et al. 2019, see Chapter 2).  

The non-additive effect of the strategy ABC may be related to the non-additive 

effect of AB. The ratio bobs/bpred = 0.77 of the strategy ABD confirms that AB does 

not provide additive effects. For ABD the difference between bobs and bpred was not 

significant (P=0.16) due to high variability in the estimation of both bobs and bpred 

(Table 3.1). The non-additive effect for BCD show that the treatment in pre-bunch 

closure (B) does not increase the efficacy of the late-season treatments CD, being 

bobs = 0.6 for BCD and = 0.68 for CD. A slight non-additive effect was also found 

for ACD, with bobs/bpred = 0.91 (P=0.07), but the observed efficacy was, however, 

rather high, with bobs = 0.71.  

Additive effects were observed for CD (bobs/bpred = 1.08, P=0.91) and ABCD 

(bobs/bpred = 0.98, P=0.62). ABCD was the most effective strategy, with bobs = 0.816. 

Concerning CD, both treatments affect the same pathway (infection of ripening 
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berries) and therefore no-additive effects might be expected. The observed 

additive effects may be related to the long time elapsing between veraison (C) and 

pre-harvest (D), and to the classical polycyclic pattern of BBR epidemics in this 

period (Elmer and Michailides 2007). The conidia of B. cinerea are generally 

present in the vineyard during grape ripening (Rodríguez-Rajo et al. 2010; Vercesi 

and Bisiach 1982) and environmental conditions are frequently conducive being 

the pathogen able to cause infection under a wide range of temperature and 

moisture conditions (Ciliberti et al. 2015; Nair et al. 1988). Moreover, the 

susceptibility to B. cinerea of berries considerably increases with maturity 

(Deytieux-Belleau et al. 2009). Thus, spraying in C and D may enable the control 

of repeated infections during the grape ripening period.  

In conclusion, the present work increases our knowledge about the interaction of 

repeated fungicide applications against BBR in vineyards. Results of this work 

indicated that the decision about fungicide application would benefit from an 

analysis of the infection pathways the different sprays are able to affect, 

considering that the subsequent application of fungicides controlling the same 

pathway is not fully beneficial in the early-season, as for AB. Spraying in A is more 

convenient than in B, and performing both sprays is only recommended under 

conditions of high BBR pressure, in which the strategy ABCD should be 

recommended. Otherwise, strategies CD or ACD are the most convenient, being 

able to exploit the additive effect of the interventions on repeated infection events 

(for CD) or different infection pathways of B. cinerea (for ACD). 
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          Chapter 4 

Quantification of Botrytis cinerea in grapevine bunch trash by 

Real-time PCR1 

 

 

Abstract  

Quantification of colonization of grape bunch trash by Botrytis cinerea is crucial for 

Botrytis bunch rot (BBR) control. A previously developed qPCR method was 

adapted to quantify B. cinerea DNA in grape bunch trash, and a colonization 

coefficient (CC) was calculated as the ratio between the DNA concentrations of B. 

cinerea and of Vitis vinifera. CC values increased linearly with the number of 

conidia of B. cinerea or the quantity of mycelium of B. cinerea added to the bunch 

trash increased. CC values also increased linearly in bunch trash samples 

containing increasing percentages of B. cinerea-colonized bunch trash; in the latter 

samples, CC values were correlated with subsequent assessments of B. cinerea 

colonization of trash (as determined by plating on agar) and sporulation on the 

trash (as determined by spore counts after incubation in humid chambers). The 

qPCR assay was also validated using trash collected from bunches treated or not 

treated with fungicides in three vineyards in 2 seasons. CC values reflected the 

reduction in sporulation and in latent infections of mature berries caused by 

fungicide application. The qPCR assay enables rapid, specific, sensitive, and 

reliable quantification of the degree of colonization of bunch trash by B. cinerea, 

which makes it a useful tool for studies of the epidemiology and management of 

BBR.  

  

                                                 
1 Si Ammour M, Fedele G, Morcia C, Terzi V, Rossi V, 2019. Phytopathology 109:1312-1319. 
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Introduction 

Botrytis bunch rot (BBR) is an economically important disease of grapevines (Vitis 

vinifera L.) and is caused by the fungus Botrytis cinerea Pers.: Fr (Elmer and 

Michailides 2007). Control of BBR is challenging for the following reasons: i) B. 

cinerea can function as a saprophyte, necrotroph, or parasite; ii) the fungus can 

overwinter and sporulate on multiple inoculum sources (including bunch trash, leaf 

trash, and rotted berries); iii) grapevines are susceptible at multiple growth stages; 

iv) multiple infection pathways exist; and v) infections can occur under a wide range 

of environmental conditions, which differ among infection pathways (Ciliberti et al. 

2015a; 2015b; 2016; Elad et al. 2007; Elmer and Michailides 2007; Hill et al. 2014; 

Nair et al. 1995).  

After flowering, the pathogen is able to saprophytically colonize the “bunch 

trash”, i.e., the dead stamens, aborted flowers, aborted berries, calyptras, tendrils, 

and leaf pieces retained within developing bunches (Seyb et al. 2000). Under 

favorable conditions, the fungus produces abundant conidia on the colonized 

bunch trash, and these conidia are a source of inoculum for berry infection, mainly 

after veraison. Elmer and Michailides (2007) referred to these phenomena as 

infection pathway III (conidial infection and extensive colonization of floral debris 

in grape bunches), IV (conidial accumulation within the developing bunch), and V 

(conidial infection of ripening fruit), respectively.  

Bunch trash colonized early by B. cinerea is a major source of berry infection 

(Elmer and Michailides 2007), and has been related to the severity of BBR at 

harvest (Holz et al. 2003; Keller et al. 2003; Nair et al. 1995; Viret et al. 2004). 

Thus reducing the quantity of bunch trash, and reducing colonization of bunch 

trash by B. cinerea at flowering and post-flowering, should contribute to control of 

BBR (Calvo-Garrido et al. 2014; González-Domínguez et al. 2015). Reduction of 

available bunch trash has been explored by removal of floral debris from clusters 

either at early or at late fruit set using compressed air or leaf blowers (Wolf et al. 

1997), and fungicide sprays (González-Domínguez et al. 2015) and the application 

of biocontrol agents and other natural products (Calvo-Garrido et al. 2014; Pertot 

et al. 2017) have been investigated to reduce colonization of bunch trash by 

cinerea.  

Evaluation of the effectiveness of these interventions requires methods to 

quantify the colonization of bunch trash by B. cinerea and the subsequent 

production of spores. Traditionally, B. cinerea colonization of bunch trash has been 

quantified by plating on selective media (Abdelwahab and Younis 2012; Edwards 

and Seddon 2001) or by microscopic assessment (Calvo-Garrido et al. 2014). 

Sporulation on bunch trash was measured using a sporulation index on a 0–5 scale 

(Calvo-Garrido et al. 2014) or by microscope counts of conidia (Jaspers et al. 2013; 
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Keller et al. 2003; Mundy et al. 2012; Nair et al. 1995). As alternatives to traditional 

methods, molecular tools may offer rapid, specific and accurate estimation of the 

quantity of B. cinerea in bunch trash (Diguta et al. 2010; Abdelwahab and Younis 

2012).  

A direct polymerase chain reaction (PCR) assay has been described for the 

detection of B. cinerea in pea-sized berries and receptacles (Gindro et al. 2005). 

Real-time quantitative PCR (qPCR) assays have been developed for the detection 

and quantification of B. cinerea inoculum (conidia and/or mycelium) from air 

samples and the surface of ripe berries (Carisse et al. 2014; Diguta et al. 2010), 

and for the quantification of the colonization of B. cinerea in developing grape 

berries and receptacles (Cadle-Davidson 2008; Saito et al. 2013), grape stamens 

and ripe berries (Celik et al. 2009; Hill et al. 2014; Sanzani et al. 2012). 

The objectives of the current study were to: (i) optimize a hydrolysis probe-

based qPCR assay for the quantification of B. cinerea DNA in bunch trash; (ii) 

investigate the relationships between the quantity of B. cinerea DNA measured by 

qPCR, and the colonization measured based on the plating method, and as 

measured by sporulation potential of bunch trash using microscope counts of 

conidia; and (iii) evaluate the qPCR assay under vineyard conditions. 

 

Materials and methods 

Real-time qPCR optimization  

Fungal isolates. Strains of B. cinerea belonging to the transposon genotypes 

transposa (isolate 213 T) and vacuma (isolate 351 V) (Ciliberti et al. 2016), and 

other fungal isolates (Table 4.1) were obtained from the culture collection of the 

Department of Sustainable Crop Production of the Università Cattolica del Sacro 

Cuore (UCSC), Piacenza, Italy. The biotrophic pathogens Plasmopara viticola and 

Erysiphe necator were collected from symptomatic leaves (cv. Merlot) in the 

vineyard of UCSC in 2017 and 2018, and were maintained on container-grown 

grape plants (cv. Merlot) in a greenhouse kept at a temperature of 24±3°C and 12 

h photoperiod. 

Plant material. Bunch trash was obtained from plants grown in a greenhouse to 

minimize natural colonization by B. cinerea. Woody cuttings were collected in 

winter from an experimental vineyard (V. vinifera cv. Merlot) at the Università 

Cattolica del Sacro Cuore. Cuttings were grown in a greenhouse maintained at 

24±3°C and 12 h photoperiod, and flowers were obtained following the technique 

of Mullins and Rajaskekaren (1981). At full flowering, bunch trash was collected by 

gently shaking the inflorescences inside paper bags. Bunch trash samples were 

desiccated at 35-40°C for 72 h, and the dry weights determined. Samples were 

stored at room temperature until use.  
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DNA extraction. Genomic DNA was obtained from 15 fungal species (Table 4.1) 

and bunch trash samples. Except in the case of P. viticola and E. necator, genomic 

DNA was extracted from fresh mycelium (obtained by scraping the surface of 10 

day-old-colonies grown on potato dextrose agar [PDA], at 20°C and 18h 

photoperiod). DNA of P. viticola and E. necator was obtained from leaf discs with 

lesions showing abundant and fresh sporulation (100 mg of leaf material). In brief, 

mycelium (100 mg fresh weight) or bunch trash (100 mg dry weight) was placed in 

2 ml microcentrifuge tubes containing 100 mg of glass sand (425-600 µm 

diameter), two glass beads (5 mm diameter), and 500 µl of cetyl 

trimethylammonium bromide (CTAB) extraction buffer (2% CTAB, 100 mM Tris-

HCl pH 8.0, 20 mM ethylenediaminetetraacetic acid [EDTA], 1.4 M NaCl, and 1% 

polyvinylpyrrolidone [PVP]). The tubes were placed in a Mixer Mill MM200 (Retsch 

GmbH, Haan, Germany) for 1 min at 30 cycles/s. Subsequently, a CTAB DNA 

extraction procedure was conducted as described by Saito et al. (2013). The yield 

and purity of the extracted DNA were determined using a NanoDrop™2000 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA). The extracts 

were adjusted to 10 ng/µl of DNA for fungal samples and to 20 ng/µl of DNA for 

bunch trash samples.  

Primers and hydrolysis probes. The qPCR assay was based on two specific 

primers and a hydrolysis probe (Bc3) designed to target the intergenic spacer 

region (IGS) of the nuclear ribosomal DNA (Suarez et al. 2005) of B. cinerea. To 

normalize the quantification DNA of B. cinerea in plant tissues, two specific primers 

and a hydrolysis probe (Res) designed to target the V. vinifera resveratrol synthase 

gene I (Valsesia et al. 2005) were used as an internal control, with the fluorescent 

reporter JOE as a substitute for FAM (6-carboxyfluorescein). The sequences for 

Bc3 were as follows: 5′-GCT GTA ATT TCA ATG TGC AGA ATC C-3′ (forward 

[Bc3F]); 5′-GGA GCA ACA ATT AAT CGC ATT TC-3′ (reverse [Bc3R]); 5′-6-FAM-

TCA CCT TGC AAT GAG TGG-BHQ-1-3′ (probe [Bc3P]). The sequences for Res 

were as follow: 5’-CGA GGA ATT TAG AAA CGC TCA AC-3’ (forward [ResF]); 5’-

GCT GTG CCA ATG GCT AGG A-3’ (reverse [ResR]); and 5’-JOE-TGC CAA GGG 

TCC GGC CAC C-TAMRA-3’(probe [ResP]).  

Singleplex and duplex reactions. Singleplex reaction mixtures contained 1x 

QuantiTect Multiplex PCR Kit (Qiagen, Milano, Italy), 150 nM of probe (Bc3P or 

ResP), 500 nM of each primer (Bc3F/R or ResF/R), and 2 µl of DNA template in a 

final volume of 10 µl. Duplex reaction mixtures contained 1x QuantiTect Multiplex 

PCR Kit, 150 nM of the V. vinifera probe ResP, 150 nM of the B. cinerea probe 

Bc3P, 100 nM of each V. vinifera primer (Res F/R), 500 nM of each B. cinerea 

primer (Bc3F/R), and 2 µl of DNA template in a final volume of 10 µl. Both 

singleplex and duplex assays were performed using an Applied Biosystems 7300 
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Real-Time PCR System (Thermo Fisher Scientific Inc., Waltham, MA) with an 

initial incubation at 95°C for 15 min followed by 40 cycles of 95°C for 15 s and 

60°C for 45 s. 

Specificity. The specificity of the qPCR assay for the detection of B. cinerea in 

grape tissue was determined in a test that included the most common grape 

pathogens and other fungal species frequently found in grapevines and in air 

samples (Table 4.1); several of these species were not assessed by Suarez et al. 

(2005).  

Standard curves, calibration DNA, and qPCR optimization. Standard curves 

were obtained from two singleplex qPCR assays: the Res assay with DNA of V. 

vinifera from bunch trash as template in a 10-fold dilution series (from 20 to 0.02 

ng/µl), and the Bc3 assay with DNA of B. cinerea extracted from the mycelium 

(isolate 213T, Ciliberti et al. 2016) as template in a 10-fold dilution series (from 10 

to 0.001 ng/µl). Singleplex qPCR assays were carried out twice, and for each 

assay, each dilution was replicated three times. A water control was included in 

triplicate in each assay. To detect any potential inhibition of amplification of B. 

cinerea DNA by V. vinifera DNA, duplex qPCR assays were performed with DNA 

of B. cinerea mixed with DNA of V. vinifera, following the approach described by 

Saito et al. (2013). In brief, 1 µl from each of the previously described DNA dilutions 

for B. cinerea was mixed with 1 µl of V. vinifera DNA (20 ng/µl), yielding a 10-fold 

dilution series from 1:2 to 1:20 000 w/w B. cinerea: V. vinifera DNA. The duplex 

qPCR assay was performed twice with three replicates for each dilution. Standard 

curves of both singleplex and duplex qPCR assays were produced by linear 

regression, and the coefficient of determination (R2) was calculated. The 

amplification efficiency (E) of all assays was determined from the slope of the 

standard curves (Bustin et al. 2009). To allow comparisons among the results of 

different tests, all duplex qPCR plates contained a calibration DNA template in 

triplicate consisting of 1 ng/µl of B. cinerea DNA diluted in 20 ng/µl V. vinifera DNA 

(1:20 w/w B. cinerea:V. vinifera DNA). 

Colonization coefficient. To quantify DNA of B. cinerea in bunch trash, known 

numbers of conidia or known weights of fresh mycelium were added to non-

colonized bunch trash; the trash was obtained from the plants grown under 

isolation, and the absence of B. cinerea was confirmed by a Bc3 qPCR assay. 

Conidial suspensions (10 µl containing from 1 to 1,250 conidia/µl) or fresh mycelia 

(5.0, 1.0, 0.5, or 0.1 mg) were added to 0.1-g bunch trash samples in 2-ml 

microcentrifuge tubes. The total DNA from two biological replicates of each sample 

was then extracted as described earlier; non-colonized bunch trash without 

addition of B. cinerea was used as a negative control. Duplex qPCR assays were 
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performed twice for each experiment with two technical replicates of each template 

DNA. A water control and calibration DNA were included in each assay.  

The quantification of DNA of B. cinerea in the presence of DNA of V. vinifera 

was expressed in terms of a colonization coefficient (CC), which was the ratio 

between DNA concentrations of B. cinerea and V. vinifera, corrected by a 

correction coefficient (ΔCC) (Gusberti et al. 2012). CC values were calculated as 

follows:  

 

CC = DNAB.cinerea / DNAV.vinifera + ΔCC                                                               (1)  

 

DNA amounts were obtained by transforming the quantification cycles (Cq) 

values of both targets (B. cinerea and V. vinifera) according to the standard curves 

obtained from the serial dilution assays (Table 4.2) as follows:  

 

DNA (ng/µl) = 10[(Cq value – y-axis intercept)/slope]                                                     (2)  

 

ΔCC was calculated as the difference between the average CC value of 

calibrator DNA calculated in the standard curve (CCSt= 5.15) and the average CC 

value of calibrator DNA of the assay (CCA), (i.e., ΔCC = CCSt – CCA).  

 

Evaluation of the qPCR method with inoculated bunch trash  

Plant material. Bunch trash samples were collected in 2017 in a vineyard located 

in Castell’Arquato (CA) in the Emilia-Romagna region of Northern Italy 

(44°51′26.1′′N 9°51′20.7′′E, 400 m above sea level). The CA vineyard was planted 

to Merlot, which is highly susceptible to B. cinerea (Bisiach et al. 1996; Corvi and 

Tullio 1980). The vines were 10 years old and were trained using the Guyot 

system. The within and between-row spacings were 1.0 m and 2.3 m, respectively. 

The vineyard was managed following an integrated pest management (IPM) 

program, with between-row grass, branches pruned to 10-12 buds per cane, and 

no irrigation. Vines were not treated for control of B. cinerea. At full flowering (stage 

65 of Lorenz et al. 1994), bunch trash was collected from the vines by gently 

shaking grape bunches inside paper bags. Bunch trash samples were transported 

to the laboratory and were immediately desiccated at 35-40°C for 72 h, and the dry 

weights determined. Samples were stored at room temperature.  

Preparation of inoculum of B. cinerea and inoculation of bunch trash. Conidia 

of B. cinerea (isolate 213T) were obtained from 10-day-old cultures grown on PDA. 

The conidial suspensions were prepared by flooding the dishes with sterile-distilled 

water and gently scraping the agar surface with a sterile rod. The suspension was 
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filtered through two layers of autoclaved gauze and quantified using a 

hemocytometer. The inoculum concentration was adjusted to 105 conidia/ml. 

The samples of bunch trash (0.1 g) collected in the vineyard were placed on 

autoclaved filter paper discs in Petri dishes (60 mm diameter), and inoculated with 

1 ml of the conidial suspension of B. cinerea by using a micropipette. The samples 

were incubated at 20°C for 18 h in the dark to favor conidial germination and bunch 

trash colonization. The colonized samples were dried in a laminar flow hood at 

room temperature for 2h. Bunch trash samples with different degrees of 

colonization by B. cinerea (0, 25, 50, 75, and 100%) were obtained by mixing 

colonized and non-colonized bunch trash; for example, 75% colonization 

comprised 0.75 g of colonized bunch trash and 0.25 g of non-colonized bunch 

trash. Three replicate 1.0 g samples were prepared for each colonization level. 

Colonization of inoculated bunch trash as determined by qPCR. In a first 

assay, genomic DNA was extracted from 0.1 g of two replicate samples for each 

of the five bunch trash colonization levels. The extracted DNA was quantified by 

the duplex qPCR assay described earlier. A water control and calibration DNA 

were included in each assay. The quantity of DNA of B. cinerea in the presence of 

DNA of V. vinifera was expressed as a CC value.  

Colonization of inoculated bunch trash as determined by plating. In a second 

assay, colonization of inoculated bunch trash by B. cinerea was quantified for three 

replicate samples of each of the five colonization levels by randomly and 

individually plating 50 pieces (stamens, aborted flowers, aborted berries, calyptras, 

tendrils, or leaf fragments) on PDA in Petri dishes (diameter 90 mm). The dishes 

were incubated at 20°C with an 18 h photoperiod for 3 days. The dishes were 

examined using a stereomicroscope, and the colonization rate (CR) was 

expressed as the percentage of pieces with characteristic grayish sporulation 

indicating the growth of B. cinerea.  

Sporulation potential on inoculated bunch trash as determined by incubation 

and spore enumeration. In a third assay, the sporulation potential (SP) of B. 

cinerea on inoculated bunch trash was determined for three replicate samples 

(0.05 g each) at each colonization level. The bunch trash was placed on a disc of 

autoclaved filter paper in Petri dishes (diameter 60 mm); sterile water (0.5 ml per 

dish) was used to moisten the filter paper to maintain a saturated atmosphere. The 

dishes were sealed with Parafilm and incubated at 20°C with an 18 h photoperiod 

to induce sporulation of B. cinerea. After 3 days of incubation, the bunch trash was 

suspended in 5 ml of sterile water in a 15-ml Falcon tube and mixed with a vortex 

apparatus for 10 seconds. Conidia of B. cinerea were counted using a 

hemocytometer and expressed as the number of conidia per g of dry bunch trash.  
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The bunch trash inoculation experiment and quantification B. cinerea by 

qPCR, plating and sporulation was performed three times. 

 

Evaluation of the qPCR method with naturally inoculated bunch trash 

Vineyards and treatments. Experiments were conducted in the CA vineyard and 

in two additional vineyards (designated MA and CO), located in Northern Italy in 

2016 and 2017. The MA vineyard (44°41′57′′N 12°19′66′′E, at sea level) is located 

in Mandriole in the Emilia-Romagna region, and the CO vineyard (45°57′05′′N 

13°27′19′′E, 1 m at sea level) is located in Cormons in the Friuli-Venezia Giulia 

region of Italy. The MA vineyard was planted with cv. Trebbiano Romagnolo, which 

were trained using the Casarsa system. Vines were 12 years old in 2016. The CO 

vineyard was planted with cv. Merlot, which were trained using the Guyot system. 

Vines were 7 years old in 2016. The within and between-row spacing in the MA 

and CO vineyard were 1.0 m and 3.0 m, and 0.8 m and 2.4 m, respectively. The 

MA vineyard was managed according to standard IPM practice in this region 

(Ministero delle politiche agricole alimentari, forestali e del turismo 2017), with 

between-rows was grass, vines pruned to 10 to 12 buds per cane, and emergency 

irrigation. The CO vineyard followed a conventional pest management strategy, 

with between-rows grass, vines long pruned, and irrigation. Like cv. Merlot in the 

CA and CO vineyards, cv. Trebbiano Romagnolo in the MA vineyard is highly 

sensitive to B. cinerea (Bisiach et al. 1996; Corvi and Tullio 1980). 

In each of the three vineyards, fungicide treatments were applied to obtain 

a range of colonization of bunch trash by B. cinerea. There were two treatments: 

(i) NT, non-treated control; and (ii) T, fungicide applied at full flowering (stage 65). 

Treatments were arranged in a complete randomized block design with four 

replicate plots per treatment and with six plants per plot. The T treatment was a 

commercial mixture of fludioxonil (25%) and cyprodinil (37.5%) (Switch, Syngenta 

Crop Protection) applied at 0.8 g/l of water until run-off using a 15-L Elettroplus 

knapsack sprayer (Davide e Luigi Volpi S.p.a, Casalromano, Italy). Seven days 

after the treatment, bunch trash was collected from five random bunches per plot; 

these were combined to yield four replicate trash bunches per treatment.   

Colonization of naturally inoculated bunch trash as determined by qPCR. 

Genomic DNA in the naturally inoculated bunch trash was extracted from each of 

the four replicate samples per treatment (0.1 g each) and was quantified by the 

duplex qPCR assay as described previously; there were two technical replicates 

of each template DNA. A water control and calibration DNA were included in each 

assay. The quantities of DNA of B. cinerea in the presence of DNA of V. vinifera 

were expressed as CC values.  
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Sporulation potential on naturally inoculated bunch trash as determined by 

incubation and spore enumeration. The sporulation potential (SP) of B. cinerea 

in the naturally inoculated bunch trash was determined for each of the four 

replicate samples per treatment by wrapping the bunch trash in three layers of 

sterile filter paper to which 5 ml of sterile water was added. The bunch trash in filter 

papers was sealed in polyethylene bags and incubated at 20°C for 5 days to induce 

sporulation in B. cinerea. Each sample of bunch trash was suspended in 15 ml of 

sterile water in a 50-ml falcon tube and vortexed. The conidia of B. cinerea were 

counted using a hemocytometer and the quantity expressed as the number of 

conidia per g of dry bunch trash.  

Latent infection of naturally inoculated berries. The incidence of latent infection 

(ILI) of berries by B. cinerea was assessed in the three vineyards; 25 randomly 

selected, symptomless berries with the pedicel attached were collected at maturity 

(stage 89) in each replicate plot in both years. The berries were rinsed in tap water, 

surface sterilized by immersion for 1 min in a 30% sodium hypochlorite solution, 

and rinsed in sterile-distilled water for 1 min. Berries were positioned individually 

over a metal grid that was placed in a sterile metal box, the bottom of which was 

covered with wet, sterile paper. The boxes were sealed in plastic bags to maintain 

a saturated atmosphere and were incubated for 7 days at 25°C. The ILI was 

visually assessed as the percentage of berries showing typical sporulation of B. 

cinerea.   

 

Data analysis 

All statistical analyses were performed using SPSS (Version 24; IBM SPSS 

Statistics, IBM Corp., Armonk, NY). For experiments with inoculated bunch trash, 

regression analysis was used to investigate the relationships between the number 

of conidia of B. cinerea or the quantity of mycelium added and the colonization 

coefficient (CC), and between the CC and the colonization rate of bunch trash (CR) 

or the sporulation potential (SP) on bunch trash. Both linear and non-linear 

regression functions were used to explore these relationships: Y = a + bX; and Y 

= Ymax/(1+exp(a-bX)), in which a and b are intercept and slope parameters, and 

Ymax is the maximum value of Y in the experiments. The coefficient of 

determination (R2) was used to assess the strength of the relationship. 

The data from the field experiment were subject to a factorial analysis of 

variance (ANOVA) to determine whether the quantity of DNA of B. cinerea in bunch 

trash, SP, and ILI were affected by main effects of year (2016 and 2017), vineyard 

(CA, CO, and MA), treatment (T and NT), and their interactions. Prior to the 

ANOVA, the SP and ILI values were transformed by natural logarithm and arcsine 

functions, respectively, to ensure homogeneity of variances. 
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Results 

qPCR specificity and standard curves 

The Bc3 probe/primer set did not amplify the purified DNA of non-target organisms 

but did amplify the purified DNA of B. cinerea (Table 4.1), demonstrating excellent 

specificity. In the singleplex qPCR reaction, the B. cinerea standard curve revealed 

a high reaction efficiency of 96% with a close relationship between the Cq values 

and the concentrations of DNA of B. cinerea obtained by dilution (Table 4.2). The 

Bc3 assay was able to amplify the lowest concentration of DNA of B. cinerea tested 

(0.001 ng/µl), demonstrating excellent sensitivity. In the duplex assay, the 

presence of grape DNA did not influence the sensitivity or coefficient of 

determination (R2 value), whereas the reaction efficiency of the Bc3 set was slightly 

reduced (Table 4.2). Similar results were obtained for the V. vinifera standard 

curve. The Res assay was able to amplify the lowest concentration of DNA of V. 

vinifera tested (0.02 ng/µl). 

 

Table 4.1. List of isolates screened during specificity tests of the real-time qPCR assay used 
to quantify Botrytis cinerea in grape bunch trash. 

Genus and species Isolate code qPCR resulta 

Alternaria alternata 5 - 

Alternaria sp. 23 - 

Aspergillus flavus 4 - 

Aspergillus niger A1 - 

Botrytis cinerea 213T and 351V + 

Erysiphe necator FP 2017 and FP 2018b - 

Guignardia bidwellii Q15 and C14 - 

Monilia laxa 11 - 

Penicillium sp. 2 - 

Phomopsis viticola Pho-1 and Pho-6 - 

Plasmopara viticola FP 2017 and FP 2018 - 

Rhizopus sp. 26 - 

Rhizopus stolonifer MUCL38013 - 

Sclerotinia sclerotiorum 22 - 

Stemphylium sp. 14 - 
a Minus signs indicates not amplified, and the plus sign indicates amplified. 
b FP = field population and year of collection. 
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Table 4.2. Linear regression results and reaction efficiencies (E) for the relationship between 

serially diluted DNA concentrations (log transformed) of Botrytis cinerea and Vitis vinifera 
and corresponding Cq values obtained in singleplex and duplex qPCR assays. 

a In the equations, y refers to the Cq value, and x refers to the DNA concentration. 
b R2 = coefficient of determination of the regression. 
c P value = indicates fit of the regression model. 

 

Evaluation of the qPCR assay using inoculated bunch trash 

The CC values, which represented the quantity of DNA of B. cinerea detected in 

the presence of DNA of V. vinifera, were proportional to the number of conidia of 

B. cinerea added to the bunch trash (Fig. 4.1A) and to the quantity of mycelium of 

B. cinerea added to the bunch trash (Fig. 4.1B); the coefficients of determination 

indicated a strong linear regressions between these variables (R2 = 0.92 and 0.97, 

respectively). When the qPCR assay was used with bunch trash samples 

containing different proportions of non-colonized bunch trash and B. cinerea-

colonized bunch trash, the CC values were strongly related to the percentage of 

bunch trash colonized by B. cinerea (Fig. 4.2A) (R2 = 0.93). 

For inoculated bunch trash, the relationship between the CC value and the 

sporulation potential (SP, as determined by incubation followed by microscopic 

counting of spores) and between the CC value and the colonization rate (CR, as 

determined by plating bunch trash pieces) was non-linear (Fig. 4.2B and 4.2C). As 

CC increased, both SP and CR increased, but the rate of increase of SP and CR 

declined while CC continues to increase resulting in a logistic relationship; the 

coefficients of determination indicated a strong relationship between these 

variables (R2 = 0.92 and 0.97, respectively).  

  

qPCR assay DNA template Linear equationa R2 b P value c E (%) 

Singleplex Bc3 B. cinerea y = -3.42 x + 22.5 0.99 <0.001 96 

Singleplex Res V. vinifera y = -3.37 x + 23.7 0.99 <0.001 98 

Duplex Bc3/Res 
B. cinerea + V. 
vinifera 

y = -3.56 x + 24.0 0.99 <0.001 91 
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Figure 4.1. Relationship between the colonization coefficient (the ratio between DNA 
concentrations of Botrytis cinerea and Vitis vinifera as determined by the quantitative 
polymerase chain reaction assay) and A, the number of conidia added per gram of bunch 
trash, and B, the weight of fresh mycelium added to the bunch trash in inoculation 

experiments. Markers indicate means, whiskers indicate standard errors, and dotted lines 
indicate the linear relationships. In A, Y=0.011+0.001X (R2=0.92); and in B, 
Y=1.75+710.74X (R2=0.97).  
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Figure 4.2. Relationship between the colonization coefficient (the ratio between DNA 
concentrations of Botrytis cinerea and Vitis vinifera as determined by the qPCR assay) of 
grape bunch trash and A, the proportion (%) of bunch trash that had been inoculated with 
and colonized by B. cinerea, B, the sporulation potential of the bunch trash (expressed as 

the number of conidia produced per gram of bunch trash as determined by incubating the 
bunch trash in humid chambers), and C, bunch trash colonization (expressed as the 
proportion (%) of bunch trash pieces that were colonized by B. cinerea as determined by 
plating the bunch trash on PDA). The grape bunch trash was inoculated with B. cinerea 
prior to being assayed for DNA of B. cinerea, sporulation potential, and colonization rate. 
Markers indicate means, whiskers indicate standard errors, and dotted lines indicate linear 
and non-linear relationships; in A: Y=1.79+13.81X (R2=0.93); in B: Y=95.5/(1+exp(3.38-
1.19X)) (R2=0.99); in C: Y=1.17E+07/(1+exp(4.31-1.41X)) (R2=0.99). 
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Evaluation of the qPCR assay using naturally colonized bunch trash 

The application of fungicides to control B. cinerea at flowering significantly reduced 

the CC (colonization coefficient) (Fig. 4.3A), the SP (sporulation potential) (Fig. 

4.3B), and the ILI (incidence of latent infection on berries) (Fig. 4.3C) (P<0.001 for 

all three variables; Table 4.3). Year had a significant effect on CC (P≤0.001): the 

degree of colonization of bunch trash was greater in 2017 (CC=1.76±0.45) when 

compared with colonization in 2016 (CC=0.23±0.09). Main effects of year also 

affected SP (P<0.0001), but not ILI (P=0.3). The main effect of vineyard affected 

SP (P=0.02) and ILI (P=<0.0001), but not CC (P=0.7). In addition, SP was 

significantly influenced by the interaction year × vineyard, and ILI by the 

interactions year × vineyard and year × treatment. Thus, the fungicide treatment 

reduced CC, SP and ILI in all the vineyards, irrespective of the initial degree of 

colonization of bunch trash by B. cinerea, the sporulation potential of the bunch 

trash, or the incidence of latent infection of berries. 

The interaction year × vineyard × treatment had no significant effect on CC 

(P=0.6), SP (P=0.5) or ILI (P=0.8), demonstrating that beyond the two-way 

interactions of main effects, there were no more complex associations in this study. 

These results indicate that the CC values reflected the reduction in sporulation of 

B. cinerea and the latent infection of berries caused by fungicide application at 

flowering. The qPCR method was able to detect differences between treated and 

nontreated plots in vineyards whether the colonization coefficient of bunch trash 

by B. cinerea was < 0.1 (Fig. 4.4A), < 3 (Fig. 4.4B), or < 5 (Fig. 4.4C). 
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Figure 4.3. Effect of the application of fungicides (a mixture of fludioxonil (25%) and 
cyprodinil (37.5%) to control Botrytis cinerea at flowering on A, the colonization coefficient 
(the ratio between DNA concentrations of B. cinerea and Vitis vinifera in naturally colonized 
grape bunch trash as determined by the qPCR assay), B, the sporulation potential of bunch 

trash (expressed as the number of conidia produced per gram of naturally inoculated bunch 
trash after incubation in humid chambers), and C, the incidence of grape berries with latent 

infection (expressed as the percentage of berries showing the characteristic sporulation of 
B. cinerea). Bars indicate means of treated (T) and non-treated (NT) plots in three vineyards 
from two years data, and whiskers indicate standard errors (n=24 [3 vineyards, 2 years, 4 
replicates]). In each panel, means are significantly different (P<0.001).  
  



Chapter 4 

 

86 
 

 
Figure 4.4. Ability of the qPCR assay to detect differences in the natural colonization by 
Botrytis cinerea of fungicide-treated (T) and non-fungicide-treated (NT) vines when the 
colonization coefficient of grape bunch trash was < 0.1 (A), < 3 (B), and < 5 (C). The data 

for A, B, and C were from the CA vineyard in 2017, the CO vineyard in 2016, and the MA 
vineyard in 2016, respectively. Fungicides (fludioxonil (25%) and cyprodinil (37.5%)) were 
applied at flowering. Bars indicate means of the colonization coefficient (the ratio between 
DNA concentrations of B. cinerea and Vitis vinifera in naturally inoculated grape bunch trash 
as determined by the qPCR assay), and whiskers indicate standard errors (n=4; based on 
4 replicates). In all panels treatments are significantly different at P<0.001. The interaction 
year × vineyard × treatment was not significant (P=0.6). 

 
 
Table 4.3. Results of the analysis of variance performed to explore main effects of fungicide 
treatment, vineyard and year, and main effect interactions on the quantity of DNA of Botrytis 
cinerea in bunch trash, the sporulation potential of bunch trash, and the incidence of grape 
berries with latent infectiona 

Main effects and 
interactions 

d.f.b 

Colonization 
coefficient 

Sporulation 
potential 

Incidence of 
latent infections 

F value P value F value P value F value P value 

1. Year 1 17.4 <0.001 2309.3 <0.001 1.3 0.3 

2. Vineyard 2 0.4 0.7 4.4 0.02 78.5 <0.001 

3.Treatment 1 17.8 <0.001 50.6 <0.001 54.9 <0.001 

1×2 2 1.7 0.2 21.8 <0.001 8.4 0.001 

1×3 1 2.7 0.08 1.8 0.2 4.8 0.04 

2×3 2 0.2 0.8 2.1 0.1 2.6 0.09 

1×2×3 2 0.6 0.6 0.8 0.5 0.2 0.8 
a The quantity of DNA of B.cinerea in bunch trash was defined as the colonization coefficient determined 
by the quantitative polymerase chain reaction assay,the sporulation potential of bunch trash was 
defined as the natural logarithm of the number of conidia produced per gram of naturally inoculated 
bunch trash after incubation in humid chambers, and the incidence of grape berries with latent infection 
was defined as the arcsin transformation of the percentage of berries showing the characteristic 
sporulation of B. cinerea. Samples were collected from a field experiment comparing grape bunches 
either treated with a commercial mixture of fludioxonil (25%) and cyprodinil (37.5%) (Switch; Syngenta 
Crop Protection) applied at 0.8 g/liter of water or not treated, with the experiment conducted in 2016 
and 2017 in three vineyards in Italy. 
b df = degrees of freedom.  
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Discussion 

We evaluated a qPCR assay for the quantification of B. cinerea DNA in grape 

bunch trash. The qPCR assay was based on the procedure developed by Saito et 

al. (2013), with a few adaptations regarding the handling of plant material prior to 

DNA extraction and the qPCR reaction mixture and conditions. The qPCR assay 

was compared to traditional mycological techniques for quantifying B. cinerea 

based on colonization of, and sporulation on bunch trash. Our results indicate that 

the qPCR assay and the colonization coefficient (CC) calculation provide a 

sensitive and reliable method for quantifying colonization by B. cinerea of the trash 

materials (stamens, aborted flowers, aborted berries, calyptras, tendrils, and leaf 

pieces) remaining in grape bunches after flowering. 

Colonized bunch trash serves as one of the primary sources of inoculum for 

the infection of ripening berries (Elmer and Michailides 2007; Holz et al. 2003; Nair 

et al. 1995). Thus, quantitative assessments of bunch trash colonization by B. 

cinerea is important for both research purposes and practical disease 

management, in order to make decisions regarding control of BBR. When the 

bunch trash has a low incidence of B. cinerea, subsequent development of BBR 

during berry ripening is likely to be low too (Keller et al. 2003; McClellan and Hewitt 

1973; Pezet et al. 2003), and the number of fungicide applications can therefore 

be reduced (González-Domínguez et al. 2019, see Chapter 2). Visual assessment, 

plating on agar media, and microscope counts of spores have been commonly 

used to evaluate the colonization and the sporulation potential of B. cinerea in 

bunch trash (Abdelwahab and Younis 2012; Calvo-Garrido et al. 2014; Jaspers et 

al. 2013; Mundy et al. 2012); these traditional techniques are time-consuming and 

require expertise for the identification of B. cinerea colonies and/or conidia. 

The results of Suarez et al. (2005) and those of our study indicate that the 

qPCR assay is highly specific to B. cinerea. We found that the Bc3 system 

amplified the DNA of different B. cinerea strains, including strains that belong to 

the transposon genotypes transposa (T) or vacuma (V) (Ciliberti et al. 2016), but 

did not amplify the DNA of phylogenetically related species (B. fabae, Monilia laxa, 

and Sclerotinia sclerotiorum). Also, the Bc3 system did not amplify the DNA of 

other common grapevine pathogens (E. necator, Guignardia bidwellii, Phomopsis 

viticola, and Plasmopara viticola) or of other fungal species frequently present in 

vineyards (Alternaria spp., Aspergillus spp., Penicillium spp., and Rhizopus spp.). 

In addition to its specificity, the qPCR assay is also sensitive because the 

targeted IGS region is a multi-copy gene (Bruns et al. 1991). The lowest DNA 

concentration of B. cinerea tested in this study (0.001 ng/µl) was amplified in both 
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the singleplex Bc3 assay and the duplex Bc3/Res assay in the presence of grape 

DNA, which is consistent with the results obtained by Saito et al. (2013) and Hill et 

al. (2014). Suarez et al. (2005) showed that the Bc3 assay is able to detect DNA 

concentrations as low as 20 fg/µl.  

The results of the qPCR assay were used to calculate CC, i.e., the ratio of 

the pathogen and host DNA concentrations (Gusberti et al. 2012). In duplex qPCR 

analyses, researchers have described several methods for calculating the quantity 

of DNA of a pathogen in host tissue. To account for variation among samples and 

qPCR runs in terms of tissue weight, pipetting volumes, and efficiencies of DNA 

extraction and amplification, these methods account for amounts of host plant DNA 

in order to provide internal normalization. Sanzani et al. (2012), for example, 

normalized the DNA concentration of B. cinerea according to the quantity of host 

DNA by using a host DNA correction factor for each grape sample. Valsesia et al. 

(2005) developed the infection coefficient (IC), which is based on the ratio between 

Cq values of the pathogen and host generated by the qPCR assay. The IC 

approach was also used to determine the pathogen coefficient (PC) of B. cinerea 

in grape berries and receptacles (Hill et al. 2014; Saito et al. 2013). In a preliminary 

analysis, we found that the PC values based on the current data increased as the 

number of B. cinerea conidia or quantity of mycelium added to bunch trash 

increased. However, in the inoculation experiments, the PC values did not increase 

linearly as the level of colonization increased from 0 to 100% (data not shown). 

These preliminary results generally agree with those of Saito et al. (2013) and Hill 

et al. (2014), who found that the accuracy of PC decreased as the severity of BBR 

increased. For this reason, we used the CC rather than the PC in the current study.  

The results of the qPCR assay were comparable to those obtained with the 

traditional methods used to estimate B. cinerea colonization of and sporulation on 

bunch trash. Therefore, the qPCR assay described in this work is a valuable 

alternative to the traditional methods. Traditional methods and qPCR require 

expertise in mycology and molecular biology, respectively. The traditional methods 

are time-consuming while the qPCR assay takes 3 to 4 hours. They also have 

limitations that potentially reduce their accuracy. Plating of trash pieces on agar 

can lead to the growth of other fast-growing fungal species that may result in lower 

estimates of the number of B. cinerea colonies; while the accurate enumeration of 

spores from incubated trash in humid chambers is dependent on the operator’s 

expertise to correctly identify conidia. The qPCR, on the contrary, provides 

sensitive and specific results.  
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The validity of the qPCR assay was confirmed in the field using bunch trash 

naturally colonized with B. cinerea that had been treated or not treated with 

fungicides during flowering. In the field, the CC values were consistent with the 

reduction of the sporulation potential caused by fungicide treatment and revealed 

differences between fungicide-treated plants and non-treated plants under 

different environmental conditions, even in situations where the incidence of 

colonization of bunch trash by B. cinerea was very low. The CC values of bunch 

trash were also consistent with the reduction in the incidence of latent infection of 

berries caused by fungicide application at flowering. Although the latter result 

requires confirmation, it suggests that when the colonization of bunch trash is low, 

the incidence of latent infection is also low due to unfavorable conditions for 

reproduction of B. cinerea during flowering.   

In conclusion, the qPCR methodology described here is a sensitive, specific 

and reliable tool for quantifying B. cinerea in bunch trash in vineyards. The qPCR 

assay can be used as an alternative to traditional methods for the quantification of 

B. cinerea during the early-season period (as an indicator of inoculum potential) 

and thus BBR severity at harvest; it can also be used as a tool in other 

epidemiological studies, and to determine the effect of disease management 

methods on the reduction of inoculum of B. cinerea. 
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          Chapter 5 

Reduction of Botrytis cinerea colonization of and sporulation 

on bunch trash1 

 

 

Abstract  

Botrytis bunch rot (BBR) of grapevine, caused by Botrytis cinerea, is commonly 

managed by fungicide sprays at flowering (A), pre-bunch closure (B), veraison (C), 

and before harvest (D). Applications at A, B, and C are recommended to reduce 

B. cinerea colonization of bunch trash and the production of conidia during berry 

ripening. The effects of these applications were previously evaluated as reductions 

in BBR severity at harvest rather than as reductions in bunch trash colonization 

and sporulation by B. cinerea. The current study investigated the effects of 

fungicides (FUN, a commercial mixture of fludioxonil and cyprodonil), biological 

control agents (BCA, Aureobasidium pullulans and Trichoderma atroviride), and 

botanicals (BOT, a commercial mixture of eugenol, geraniol, and thymol) applied 

at different timings (A, B, C, or ABC) compared to a non-treated control (NT) on B. 

cinerea bunch trash colonization and sporulation in vineyards. The ability of B. 

cinerea to colonize the bunch trash (as indicated by B. cinerea DNA content) and 

to sporulate (as indicated by the number of conidia produced under optimal 

laboratory conditions) was highly variable, and this variability was higher between 

years (2015 to 2018) than among the three vineyards and three sampling times 

(i.e., 1 week after applications at A, B, and C). Botrytis cinerea sporulation on 

bunch trash was significantly lower in plots treated with FUN than in NT in only 3 

of 18 cases (3 vineyards × 2 years × 3 sampling times). FUN applications, 

however, significantly reduced B. cinerea colonization of bunch trash compared to 

NT; for colonization, BCA efficacy was similar to that of FUN, but BOT efficacy was 

variable. For all products, colonization reduction was the same with application at 

A vs. ABC, meaning that the effect of an early season application lasted from 

flowering to 1 week after veraison. These results indicate that the early season 

control of B. cinerea is important to reduce the saprophytic colonization of bunch 

trash, especially when the risk of BBR is high.  

                                                 
1 Fedele G, González-Domínguez E, Si Ammour M, Languasco L, Rossi V, 2020. Plant Disease, DOI: 

10.1094/PDIS-08-19-1593-RE 
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Introduction 

Botrytis cinerea Pers. Fr. (teleomorph Botryotinia fuckeliana (de Bary) Whetzel) 

attacks many economically important crops including grapevine (Vitis vinifera L.), 

causing Botrytis bunch rot (BBR) (Elmer and Michailides 2007). Botrytis cinerea 

develops and grows as a plant pathogen, and as a saprophyte on various organs 

of host plants (Jarvis 1977; van Kan 2006). The fungus can produce a large 

number of conidia on grape bunch, bunch and leaf trash, and rotted berries under 

a wide range of environmental conditions (Ciliberti et al. 2016; Mundy et al. 2012; 

Nair et al. 1995). The fungus has multiple infection pathways (Elmer and 

Michailides 2007), with infection mainly occurring from flowering to young cluster, 

and after veraison. In the first period, conidia germinate and infect the flower style 

and ovules (pathway I), the stamens or petals (pathway IIa), or the fruit pedicel 

(pathway IIb) (Elmer and Michailides 2007). Infections can cause blossom blight 

and latent infection of berries; under suitable environmental conditions, latent 

infections result in rotted berries after veraison (Holz et al. 2007; Keller et al. 2003; 

McClellan and Hewitt 1973). Grape inflorescences are more susceptible at 

flowering, fruit swelling, or “berry groat-size” than at earlier growth stages (Ciliberti 

et al. 2015). During flowering, the pathogen saprophytically colonizes the bunch 

trash (the dead stamens, aborted flowers, aborted berries, calyptras, and tendrils) 

retained within the developing bunches, then occurring conidial germination and 

extensive colonization of floral debris in grape bunches (pathway III, Elmer and 

Michailides 2007). Under favorable conditions, the colonized bunch trash produces 

conidia that can infect the ripening berries as part of pathway IV with conidial 

accumulation within the developing bunch (Elmer and Michailides 2007). Ripening 

berries can also be infected by airborne conidia (pathway Va), and through contact 

with the aerial mycelium produced on adjacent moldy berries (pathway Vb, berry-

to-berry infection) (González-Domínguez et al. 2015).  

BBR control is currently based on the application of fungicides at four grape 

growth stages (GS): A, end of flowering (GS69; Lorenz et al. 1995); B, pre-bunch 

closure (GS77); C, veraison (GS83); and D, before harvest (before GS89) (Broome 

et al. 1995; Bulit et al. 1970). The early season applications (A and B) are aimed 

at i) reducing conidial germination and infection of flowers, ii) preventing latent 

infections of berries, and iii) disinfesting the bunch trash. The later-season 

applications (i.e., the applications from veraison until harvest; C and D) are aimed 

not only at preventing berry infection during ripening but also at disinfesting bunch 

trash in order to reduce the inoculum load (Baldacci et al. 1962; Calvo-Garrido et 

al. 2014a). Bunch trash colonized by B. cinerea is therefore considered an 
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important source of inoculum for infection from flowering until ripening (Calvo-

Garrido et al. 2014a; Holz et al. 2003; Nair et al. 1995; Viret et al. 2004), and the 

incidence of B. cinerea in bunch trash is associated with the severity of BBR at 

harvest (McClellan and Hewitt 1973; Keller et al. 2003; Seyb et al. 2000).  

The Directive 128/2009/EC on the Sustainable Use of Pesticides makes it 

mandatory for the EU Member States to use pest control strategies based on low 

pesticide input. The interest in sustainable BBR control is a direct consequence of 

the negative public perception regarding the effects of chemicals on human health 

and the environment (Alavanja et al. 2004; Epstein 2014), and of the development 

of B. cinerea populations with resistance to chemical fungicides (Fernández-

Ortuño et al. 2016; Leroux 2007). Thus, biological control agents and botanicals 

are considered alternatives or complementary to chemical fungicides for the 

control of BBR in vineyards (Calvo-Garrido et al. 2019; Calvo-Garrido et al. 2014b; 

O’Neill et al. 1996; Pertot et al. 2017; Rotolo et al. 2018; Ştefan et al. 2015; Walter 

et al. 2001). Both biological control agents and botanicals have been mainly 

studied for their efficacy in reducing BBR on ripening bunches (Calvo-Garrido et 

al. 2019; O’Neill et al. 1996; Pertot et al. 2017; Rotolo et al. 2018; Ştefan et al. 

2015; Walter et al. 2001), but their ability to reduce the colonization of bunch trash 

and the subsequent production of conidia by B. cinerea has seldom been studied. 

In a 2-year field experiment, Calvo-Garrido et al. (2014b) observed that the early 

season application of Candida sake, Ulocladium oudemansii, or chitosan reduced 

the mycelial growth and sporulation of B. cinerea on bunch trash. No information 

exists, however, on the effect of biological control agents or botanicals in the late 

season on B. cinerea colonization and sporulation on bunch trash.  

The general aim of this research was to investigate the use of fungicides, 

biological control agents, and botanicals for bunch trash disinfestation in vineyards. 

Two experiments were conducted with the following objectives: i) evaluate the 

effect of different timings of fungicide applications (A, B, C, or ABC) in reducing the 

sporulation of B. cinerea on bunch trash under different levels of disease pressure; 

and ii) compare the effectiveness of BBR control products (FUN, BCA, and BOT) 

applied at different timings (A, B, C, or ABC) in reducing the saprophytic 

colonization of bunch trash by B. cinerea. 
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Materials and methods 

Sporulation of B. cinerea on bunch trash as affected by the timing of 

fungicide application 

Vineyards and treatments. Experiment 1 was conducted in 2015 and 2016 in 

three experimental vineyards in Northern Italy. The CA vineyard is located at 

Castell’Arquato (44°51′26.1′′N 9°51′20.7′′E, 400 m a.s.l.) in the Emilia-Romagna 

region; the MA vineyard is located at Mandriole (44°41′57′′N 12°19′66′′E, 0 m 

a.s.l.), also in the Emilia-Romagna region; and the CO vineyard is located at 

Cormons (45°57′05′′N 13°27′19′′E, 1 m a.s.l.) in the Friuli-Venezia Giulia region. 

The CA and CO vineyards were planted with cv. Merlot, and the MA vineyard was 

planted with cv. Trebbiano Romagnolo; both Merlot and Trebbiano Romagnolo are 

highly susceptible to B. cinerea (Bisiach et al. 1996; Corvi and Tullio 1980). The 

vines in the CA vineyard were 8 years old in 2015 and were trained using a Guyot 

system; the within- and between-row spacing were 1.0 and 2.3 m, respectively. 

The vines in the MA vineyard were 11 years old in 2015 and were trained using 

the Casarsa system; the within- and between-row spacing were 1.0 m and 3.0 m, 

respectively. The vines in the CO vineyard were 6 years old in 2015 and were 

trained using the Guyot system; the within- and between-row spacing were 0.8 m 

and 2.4 m, respectively. Powdery and downy mildews were controlled according 

to an integrated pest management (IPM) program (Rossi et al. 2012) in the CA and 

MA vineyards but by a conventional disease management program in the CO 

vineyard. In all three vineyards, the fungicides applied were ineffective against B. 

cinerea. In each vineyard, hourly data of temperature, relative humidity, wetness 

duration, and rainfall were recorded by an automated weather station (iMeteos, 

Pessl Instruments GmbH, Weiz, Austria) located < 1 km from the experimental 

plot. Growth stages of vines (GS) were assessed weekly in the vineyards 

according to the scale of Lorenz et al. (1995). 

Assessment of sporulation potential of B. cinerea. In all vineyards, four timings 

of fungicide (FUN) application were compared: A (full flowering; GS65 of Lorenz 

et al. 1995), B (pre-bunch closure; GS77), C (veraison, GS83), or ABC. A non-

treated control (NT) was also included. The four applications and control were 

arranged in a completely randomized design, with four replicates and seven plants 

per plot. A commercial mixture of fludioxonil (25%) and cyprodonil (37.5%) (Switch; 

Syngenta Italia S.p.A., Milano, Italy) at the label dose (800 g/ha) was applied until 

run-off using a 15-L Elettroplus knapsack sprayer (Davide e Luigi Volpi S.p.A., 

Casalromano, Italy). Dates of application are indicated in Figure 5.1. Seven days 

after each application, bunch trash samples were collected from five randomly 

selected bunches in each replicate plot. This was done by gently shaking the five 

bunches inside one paper bag. Bunch trash samples were immediately transported 
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to the laboratory and dried at 35-40°C for 72 h before the dry weight was 

determined. The total bunch trash of each replicate was then packed in 

polyethylene bags containing three pieces of wet filter paper to maintain 100% 

relative humidity, and were incubated at 20°C for 5 days in darkness. The bunch 

trash was subsequently suspended in 15 ml of sterile water in a 50-ml centrifuge 

tube and was mixed with a vortex apparatus for 1 min. Finally, B. cinerea conidia 

were counted with the aid of a hemocytometer (Bürker, HBG) using a dissecting 

microscope and expressed as the number of conidia per g of dry weight. 
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Figure 5.1. Weather conditions in the Castell’Arquato (CA), Mandriole (MA), and Cormons 

(CO) vineyards in 2015 and 2016 (experiment 1). Daily values of temperature (T; red line; 
in degrees Celsius), RH (green line; in percentage), rain (blue bars; in millimeters), and 
wetness duration (WD; light blue area; in hours) between the grape growth stage 
inflorescences clearly visible and veraison (GS53 and GS83 of Lorenz et al. 1995, 
respectively). The yellow triangles indicate the timing of application of a fungicide for 
controlling Botrytis cinerea: A (full flowering; GS65), B (prebunch closure; GS77), and C 

(veraison; GS83). 
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Colonization of bunch trash by B. cinerea as affected by product and timing 

of application 

Vineyards and treatments. Experiment 2 was carried out in 2017 and 2018 in the 

CA vineyard. Three products and four timings were arranged in a split-plot design, 

with four replicate plots (six plants per plot) for each combination of timing (main 

plot)  product. Timings were the same as in experiment 1 (A, B, C, or ABC); a 

non-treated control (NT) was also included. The following products were 

compared: i) FUN, a commercial mixture of fludioxonil (25%) and cyprodonil 

(37.5%) (Switch; Syngenta Italia S.p.A., Milano, Italy) at the label dose (800 g/ha); 

ii) BOT, a commercial mixture of eugenol (3.2%), geraniol (6.4%), and thymol 

(6.4%) (3LOGY; Sipcam Italia S.p.A., Pero, Italy) at the label dose (4000 ml/ha); 

iii) BCA, Aureobasidium pullulans (Botector; Manica S.p.A., Rovereto, Italy) only 

at A and C, and Trichoderma atroviride (Vintec; Belchim Crop Protection Italia 

S.p.A., Rozzano, Italy) only at B (Pertot et al. 2017); the BCA products were 

sprayed at the label dose (400 and 1000 g/ha, respectively). All products were 

applied until run-off using a 15-L Elettroplus knapsack sprayer (Davide e Luigi 

Volpi S.p.A., Casalromano, Italy). Dates of application are indicated in Figure 5.2. 

Seven days after each application, bunch trash samples were collected by gently 

shaking five randomly collected bunches per plot inside paper bags. Bunch trash 

samples were immediately transported to the laboratory, dried at 35-40°C for 72 

h, and weighed. The dry samples were then assessed for B. cinerea colonization 

rate as described by Si Ammour et al. (2019, see Chapter 4), and as summarized 

below. 

DNA extraction. Genomic DNA was extracted from 100-mg (dry weight) samples 

of bunch trash (four replicate samples for each combination of product and timing). 

Each bunch trash sample was placed in a 2-ml microcentrifuge tube containing 

100 mg of glass sand (425-600 µm diameter), two glass beads (5 mm diameter), 

and 500 µl of cetyl trimethylammonium bromide (CTAB) extraction buffer (2% 

CTAB, 100 mM Tris-HCl pH 8.0, 20 mM ethylenediaminetetraacetic acid [EDTA], 

1.4 M NaCl, and 1% polyvinylpyrrolidone [PVP]). The tubes were placed in a Mixer 

Mill MM200 (Retsch GmbH, 93 Haan, Germany) for 1 min at 30 cycles/s. The 

mixture was then vigorously mixed with a vortex apparatus and heated for 15 min 

at 65°C. A 500-µl volume of chloroform-isoamyl alcohol (24:1, v:v) was added. 

After further vigorous mixing, the tubes were centrifuged at 12000 rpm for 10 min, 

and the supernatant was transferred to a new microcentrifuge tube. The 

chloroform-isoamyl alcohol purification were repeated. The supernatant was 

transferred to a new microcentrifuge tube, and a 65°C solution of 10% CTAB with 

0.7 M NaCl was added at a rate of 1:10 (v/v). A third chloroform-isoamyl alcohol 

purification and centrifugation was performed, and the resulting supernatant was 
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transferred to a new microcentrifuge tube, to which was added an equal volume of 

cold (approximately 0°C) isopropanol and a 10% volume of 3 M sodium acetate; 

this was followed by centrifugation at 12000 rpm for 5 min at 4°C. The pellet was 

washed with 70% (v/v) ethanol, air dried, and resuspended in 100 µl of sterile-

distilled water. The yield and purity of the extracted DNA were determined using a 

NanoDrop™2000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, 

MA). The extracts were adjusted to 20 ng/µl of DNA. 

Real-time PCR. A duplex qPCR assay was used to assess the colonization of 

bunch trash by B. cinerea as described by Si Ammour et al. (2019, see Chapter 

4). The primers/hydrolysis probe set Bc3 was used to amplify the intergenic spacer 

region (IGS) of the nuclear ribosomal DNA of B. cinerea (Suarez et al. 2005). To 

normalize the quantification of B. cinerea DNA in the bunch trash, the 

primers/hydrolysis probe set Res was used to amplify the V. vinifera resveratrol 

synthase gene I (Valsesia et al. 2005). The duplex reaction mixtures contained 1x 

QuantiTect Multiplex PCR Kit, 150 nM of the V. vinifera probe ResP, 150 nM of the 

B. cinerea probe Bc3P, 100 nM of each V. vinifera primer (Res F/R), 500 nM of 

each B. cinerea primer (Bc3F/R), and 2 µl of DNA template in a final volume of 10 

µl. The assay was performed using an Applied Biosystems 7300 Real-Time PCR 

System (Thermo Fisher Scientific Inc., Waltham, MA) with an initial incubation at 

95°C for 15 min, followed by 40 cycles of 95°C for 15 s and 60°C for 45 s. Two 

technical replicates of each template DNA were sequentially quantified by the 

duplex qPCR assay. A water control was included in each assay. DNA amounts 

(in ng/µl) were obtained by transforming the quantification cycles (Cq) of both 

targets (B. cinerea and V. vinifera) according to the standard curves obtained from 

the serial dilution assays performed by Si Ammour et al. (2019, see Chapter 4). 

The quantity of B. cinerea DNA in a sample was expressed as a colonization 

coefficient (CC), which was the ratio of B. cinerea DNA concentration to V. vinifera 

DNA concentration (Gusberti et al. 2012). 
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Figure 5.2. Weather conditions in the vineyard of Castell’Arquato in 2017 and 2018 

(experiment 2). Daily values of temperature (red line, T in °C), relative humidity (green line, 
RH in %), rain (blue bars, in mm), and wetness duration (light blue area, WD in hours) 
between the grape growth stage “inflorescences clearly visible” and “veraison” (GS53 and 
GS83 of Lorenz et al. 1995, respectively). The yellow triangles indicate the timing of 
application of products for controlling Botrytis cinerea: A (full flowering; GS65), B (pre-bunch 

closure; GS77), or C (veraison; GS83). 

 

Data analyses 

Data were analyzed with R software (v 3.6.0; R core team, 2019). The dataset 

analyzed for experiment 1 consisted of the number of B. cinerea conidia/g of bunch 

trash assessed in three vineyards (CA, MA, and CO), in two years (2015 and 

2016), in plots treated with FUN and NT, at three sampling times (1 week after 

fungicide application at A, B, and C). The dataset analyzed for experiment 2 

consisted of the colonization coefficient (CC) of B. cinerea in bunch trash assessed 

in the CA vineyard, in two years (2107 and 2018), and in plots treated with different 

products (FUN, BOT, BCA, or NT) and at different timings (A, B, C, or ABC), on 

the 7th day after veraison (i.e., 1 week after application at C). 

In a preliminary analysis conducted with the non-parametric Kruskal-Wallis 

test (by using the function kruskal.test), the numbers of conidia (experiment 1) and 

the CC (experiment 2) in the non-treated bunch trash strongly and significantly 

(P<0.001) differed between the 2 years of each experiment. Therefore, the data 

were analyzed separately for the two years. Generalized linear models (GLMs) 

were fit to the data by using the function glm of the ‘lme4’ package (Bates et al. 

2011). In the first dataset, timings of applications were considered as fixed factors, 

alone (models 1, 3, 5, 7, 9, and 11 in Table 5.1) or in an interaction with vineyard 

(models 2, 4, 6, 8, 10, and 12 in Table 5.1). In these models, the log link function 

(transformation) was used for the number of B. cinerea conidia/g of bunch trash, 

and the quasi-Poisson distribution of errors was selected to compensate for over-
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dispersion (Crawley 2013) due to a residual deviance (D) that was higher than the 

degrees of freedom (df). The best model was selected by comparing the models 

with an F test with the function anova (e.g., between models 1 and 2) (Crawley 

2013). In the second dataset, products were considered as fixed factors, either 

alone (models 1 and 4 in Table 5.2), with the inclusion of timing of applications 

(models 2 and 5 in Table 5.2), or as an interaction with timing of applications 

(models 3 and 6 in Table 5.2). In these models, the Binomial distribution and the 

logit link function were used. The best model was selected based on the reduction 

of Akaike's Information Criterion (AIC), considering that a reduction >2 indicates 

better model performance (Burnham and Anderson 2002). The effect of each 

factor in the selected model was tested by a chi.test with the function anova. For 

all selected models, the assumptions of normality and homogeneity of variance 

(homoscedasticity) were confirmed based on the visual examination of the 

standardized deviance residuals against the theoretical quantiles and against the 

predicted values (Crawley 2013; Madden et al. 2000).  

In the first dataset, differences between each timing of FUN application and 

the NT control were tested by a contrast analysis; these pairwise combinations 

were tested by using the glht function of the ‘multcomp’ package (Hothorn et al. 

2008). In the second dataset, the difference between FUN and NT was used as 

the intercept of the model, and its probability was calculated. Afterwards, 

differences between BOT and FUN, and between BCA and FUN were tested 

based on the GLM estimates; differences between ABC and each timing of 

application (i.e., A, B, and C) were also tested.  

For both datasets, data are shown as estimated efficacy and the 95% 

confidence interval (calculated by using the inverse of the link function). Efficacy 

(E) was calculated as E=(NT-T)/NT, where NT is the value of the non-treated 

control and T is the value in any specific application (e.g., the number of B. cinerea 

conidia in plots treated with FUN at timing A, in vineyard CO, in 2016). In a further 

analysis, the outcome of FUN application in experiment 1 was considered as 0 

(i.e., no significant reduction of sporulation compared to NT) or 1 (i.e., significant 

reduction). The relationship between this outcome and the number of conidia/g in 

the NT was assessed by running a binary logistic function, using the glm function 

(with binomial distribution and logit link function), in the form Y = 1/(1 + exp (a – 

bX)), in which a and b are intercept and slope parameters. To evaluate the effect 

of the sporulation level on the significant reduction following a FUN application, a 

chi.test of this model was conducted by using the function anova. 
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Table 5.1. General linear models (GLMs) used to study the effect of timing of application of a 

fungicide (FUN) in different vineyards on the sporulation potential of Botrytis cinerea on bunch 
trash (experiment 1). 
Year Sampling timea Modelb Factorc df Fd P 

2015 A 1 Timinge 70   
  2 Timing× Vineyardf 66 27.00 <0.001 
 B 3 Timing 140   
  4 Timing× Vineyard 132 15.91 <0.001 
 C 5 Timing 166   
  6 Timing× Vineyard 156 24.83 <0.001 

2016 A 7 Timing 70   
  8 Timing× Vineyard 66 5.23 <0.001 
 B 9 Timing 137   
  10 Timing× Vineyard 129 13.80 <0.001 
 C 11 Timing 175   
  12 Timing× Vineyard 165 16.82 <0.001 

a 1 week after application at A (full flowering; GS65 of Lorenz et al. 1995), B (pre-bunch closure; GS77), or C 
(veraison; GS83). 
b Different GLMs were fit for each year, all with quasi-poisson distribution and a log link function. 
c Timing of application was considered a fixed factor, alone, or as interaction with vineyard.  
d F test and the associated probability (P) when comparing models with the same dataset.  
e Timings of FUN applications were A (full flowering; GS65 of Lorenz et al. 1995), B (pre-bunch closure; 
GS77), C (veraison; GS83), or ABC; timing was considered a fixed factor, alone or as interaction with vineyard. 
FUN was a commercial mixture of fludioxonil (25%) and cyprodonil (37.5%) (Switch; Syngenta Italia S.p.A., 
Milano, Italy) at the label dose (800 g/ha). 
f Vineyards were CA (Castell’Arquato), MA (Mandriole), and CO (Cormons). 
 

Table 5.2. Summary of the generalized linear models (GLMs) fitted to the data to investigate 

the efficacy of different products and timings of applications in reducing bunch trash colonization 
by Botrytis cinerea at the end of the season (experiment 2).  

Year Modela Factorsb Residual  
deviancee dff 

Null  
deviance 

df AICg 

2017 
1 Productc 66.53 76 84.65 78 94.65 
2 Product+ Timingd 61.32 73 84.65 78 91.52 
3 Product× Timing 55.09 67 84.65 78 99.40 

2018 
4 Product 44.57 77 46.62 79 98.69 
5 Product+ Timing 42.39 74 46.62 79 101.58 
6 Product× Timing 40.90 68 46.62 79 113.07 

a Different GLMs were run for each year, all with Binomial distribution and a logit link function. 
b Product was considered a fixed factor, alone, with timing of application, or as interaction of both factors. 
c Products were: i) FUN, a commercial mixture of fludioxonil (25%) and cyprodonil (37.5%) (Switch; Syngenta 
Italia S.p.A., Milano, Italy) at the label dose (800 g/ha); ii) BOT, a commercial mixture of eugenol (3.2%), 
geraniol (6.4%), and thymol (6.4%) (3LOGY; Sipcam Italia S.p.A., Pero, Italy) at the label dose (4000 ml/ha); 
and iii) BCA, A. pullulans (Botector; Manica S.p.A., Rovereto, Italy) at A and C, and T. atroviride (Vintec; 
Belchim Crop Protection Italia S.p.A., Rozzano, Italy) at B (Pertot et al. 2017). Both BCA products were 
sprayed at the label dose (400 g/ha and 1000 g/ha, respectively). 
d Timings of applications were A (full flowering; GS65 of Lorenz et al. 1995), B (pre-bunch closure; GS77), 
and C (veraison; GS83). 
e Residual deviance: –2 times the likelihood for the fitted model minus the likelihood for the saturated model 
(in which the fitted values equal the observation).  
f Residual degrees of freedom. 
g AIC: Akaike’s information criterion.  
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Results 

Sporulation of B. cinerea on bunch trash as affected by the timing of 

fungicide application 

Weather conditions at the three vineyards and in the two years were different (Fig. 

5.1). At CA, the period between “inflorescences clearly visible” and “veraison”, 

GS53 and GS83, respectively, was 102 and 109 days long in 2015 and 2016, 

respectively. The weather was rainy and moist between the GS53 and full 

flowering (GS65) in both years (100 mm of rain and 200 h of wetness in 2015, 200 

mm and 108 h in 2016); in the following period, both rain and hours of wetness 

were lower (Fig. 5.1I). At MA, the experimental period was 80 days in 2015 and 

113 in 2016. In both years, more than 200 mm of rain and more than 400 h of 

wetness were registered between inflorescence development (GS53) and pre-

bunch closure (GS77); the later period was drier until GS83 (Fig.5.1II). At CO, 89 

and 120 days passed between GS53 and GS83 in 2015 and 2016, respectively. 

In the period between GS53 and GS77, abundant rain fell (more than 300 mm in 

both years), and 355 h of wetness and > 700 h of wetness were registered in 2015 

and 2016, respectively. Differences were found between years in the period from 

GS77 to GS83, with only 37.9 mm of rain and 70 h of wetness in 2015 and 74.0 

mm of rain and 145 h of wetness in 2016 (Fig. 5.1III).  

The average number of B. cinerea conidia/g in the NT bunch trash was 

significantly higher in 2015 than in 2016 (4.34±0.94×105 vs. 9.67±1.51×102) 

(P<0.001), indicating a higher level of sporulation potential in 2015 than in 2016. 

Differences were also observed among vineyards in the same year and among 

sampling times in the same vineyard (Table 5.3). In vineyard CO in 2015 and 2016, 

for example, the sporulation potential increased over time. In vineyard CA in 2015, 

sporulation was high at GS65, very low at GS77, and very high at GS83; in other 

vineyards, sporulation was higher at GS77 than at GS65 or GS83 (Table 5.3).  

In each year, the number of B. cinerea conidia produced on bunch trash 

collected 1 week after flowering, pre-bunch closure, or veraison was affected by 

the interaction between vineyard and timing of fungicide application (P<0.001). 

Models considering the interaction between timing and vineyard were selected 

based on their significance when compared with those that considered only the 

timing of fungicide applications (models 2, 4, 6, 8, 10, and 12, Table 5.1); the 

assumptions of independence of errors, normality, and homoscedasticity of the 

residuals were confirmed (not shown). Based on these models, the sporulation of 

B. cinerea on bunch trash was significantly lower for plots treated with FUN at 

different timings than for NT plots for only the following three cases among the 18 

combinations of sampling times, vineyard, and year. The first case refers to the 

sporulation of bunch trash samples collected 1 week after flowering in vineyard 
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MA, in 2015 (Table 5.3), which was reduced by FUN applied at A compared to NT 

(P=0.030), with an estimated efficacy ranging from 0.53 to 0.68 (Fig. 5.3I). The 

second case refers to the sporulation of bunch trash samples collected 1 week 

after veraison in vineyard CA, in 2015 (Table 5.3), which was reduced by FUN 

application either at A, B, C or ABC (P<0.001), with estimated efficacy ranging 

from 0.78 to 0.94 (Fig. 5.3II). The third case refers to the sporulation of bunch trash 

samples collected 1 week after veraison in vineyard CO, in 2016 (Table 5.3), which 

was reduced by FUN application either at A, C, or ABC (P<0.001), but not at B 

(P=0.515), with estimated efficacy ranging between 0.55 and 0.70 (Fig. 5.3III). 

Sporulation on the NT bunch trash was very low for the third case, intermediate for 

the first case, and high for the second case (Table 5.3).  

When all of the sporulation data in Table 5.3 were combined with the 

outcomes of FUN applications (considered as: 0 = no significant reduction of 

sporulation; or 1 = significant reduction) in a binary logistic function (with P=0.051), 

the probability to obtain a reduction in the sporulation following a FUN application 

increased as the sporulation potential of bunch trash increased. The estimated 

parameters of the logistic equations were -2.294 (±0.852) for the intercept (a) and 

2.201 (±1.994)×10-6 for the explanatory variable (i.e., conidia/g of bunch trash; b); 

therefore, probability=0.5 when the sporulation potential is 10.423×105 conidia/g. 

This means that when the sporulation potential of B. cinerea on bunch trash was 

lower than this value, the probability that a fungicide application was effective was 

< 0.5. 



Chapter 5 

 

110 
 

Table 5.3. Number of Botrytis cinerea conidia produced per g of bunch trash collected 

from plots that were not treated with fungicide (NT) in three vineyards in 2015 and 2016 
(experiment 1). 

Year Vineyarda 

Sampling time:1 week after 

Flowering (GS65) 
Pre-bunch closure 
(GS77) 

Veraison (GS83) 

2015 
CA 6.03 (4.84-7.51) b×105 0.40 (0.13-1.26)×105 25.84 (20.55-32.45)×105 

MA 2.72 (1.96-3.77)×105 3.37 (2.27-5.01)×105 0.69 (0.20-2.31)×105 
CO 1.03 (0.60-1.75)×105 1.25 (0.66-2.40)×105 3.12 (1.76-5.51)×105 

2016 
CA 0.54 (0.39-0.75)×103 2.12 (1.44-3.12)×103 0.26 (0.15-0.44)×103 
MA 0.42 (0.29-0.60)×103 2.82 (2.02-3.94)×103 0.21 (0.12-0.38)×103 
CO 0.12 (0.06-0.24)×103 0.72 (0.37-1.40)×103 1.54 (1.24-1.92)×103 

a CA, Castell’Arquato; MA, Mandriole; CO, Cormons. 
b Values and confidence intervals (95%) of the numbers of conidia produced by Botrytis cinerea on 
bunch trash after incubation at 20°C, 100% RH, for 5 days, estimated by transforming the parameters 
of the generalized linear models (GLMs) on their response scale (see Table 5.2 for the GLMs fit). 

 
 

 
Figure 5.3. Efficacy of a fungicide applied at different timings in the growing season in 

reducing the sporulation potential of Botrytis cinerea on bunch trash (experiment 1). Bunch 
trash samples were collected 1 week after flowering in vineyard MA 2015 (I) and 1 week 
after veraison in vineyards CA in 2015 (II) and CO in 2016 (III). The fungicides was applied 

at A (full flowering; GS65 of Lorenz et al. 1995), B (pre-bunch closure; GS77), C (veraison; 
GS83), or ABC. The fungicide was a commercial mixture of fludioxonil (25%) and cyprodonil 
(37.5%) at 800 g/ha. Bars indicate the 95% confidence interval. 

 
  



Reduction of B. cinerea in bunch trash 

 

111 

 

Colonization of bunch trash by B. cinerea as affected by product and timing 

of application  

Weather conditions differed between the two years of experiment 2 (Fig. 5.2). The 

experimental period (i.e., between “inflorescences clearly visible” and “veraison”; 

GS53 and GS83, respectively) was 111 days long in 2017 and 87 in 2018 (Fig. 

5.2). From GS53 to GS65, the average temperature was higher in 2018 than in 

2017 (Fig. 5.2). In both years, the rain fell mostly between GS53 and GS77 (147.6 

mm in 2017 and 204.4 in 2018), but the number of hours of wetness was higher in 

2018 (608 h) than in 2017 (343 h; Fig. 5.2). In the last period, between GS77 and 

GS83, few rains were registered in either year (24.0 and 32.2 mm); however, the 

hours of wetness were consistently higher in 2018 (199 h of wetness) than 2017 

(93 h of wetness) (Fig.5.2).  

The average CC value for the NT bunch trash was 180 times higher in 2018 

(9.22±3.72 CC) than in 2017 (0.05±0.01 CC), i.e., bunch trash colonization by B. 

cinerea was substantially higher in 2018 than in 2017 (P<0.001).  

In 2017, the AIC of the three GLMs was lower for model 2 than for model 1 

or 3 (Table 5.2). The selected model 2 showed no over-dispersion (D/df=0.84), 

and the assumptions of independence of errors, normality, and homoscedasticity 

of the residuals were confirmed (not shown). Model 2, in which both factors were 

considered (but not their interaction), indicated that the ranking of the products did 

not change over the different timings, but that their efficacy was influenced by 

timing. FUN significantly reduced bunch trash colonization compared to NT 

(P=0.011); BCA efficacy was not significantly different from that of FUN (P=0.573), 

while BOT efficacy was significantly lower than that of FUN or BCA (P<0.001) (Fig. 

5.4I). The application at A had the same efficacy as applications at ABC (P=0.468), 

while efficacy was lower for applications at B and C than at ABC (P=0.075 and 

P=0.057, respectively) (Fig. 5.4I). Efficacy was highest with FUN and BCA applied 

at ABC, with confidence intervals of 0.60 to 0.95 and 0.46 to 0.94, respectively. 

Interestingly, the confidence intervals were shorter for FUN than for BCA, meaning 

that the variability among replicates was lower for FUN. The estimated efficacy for 

BOT applied at ABC was lower than for FUN and showed higher variability, ranging 

from 0.13 to 0.61 (Fig. 5.4I).  

In 2018, models 4 and 5 had the lowest AIC values (Table 5.2); no over-

dispersion was detected for either model (D/df=0.58 and 0.57, respectively), and 

assumptions of independence of errors, normality, and homoscedasticity of the 

residuals were confirmed (not shown). Model 5 was selected instead of model 4 to 

account for both product and timing. Unlike model 2 for 2017, model 5 for 2018 

indicated that treatment efficacy was not influenced by product or timing. 

Specifically, FUN, BOT, and BCA all significantly reduced bunch trash colonization 
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by B. cinerea compared to NT (with P=0.065 for the null hypothesis that the 

efficacy of FUN is different from zero; P=0.197 and P=0.982 for BOT and BCA, 

respectively, for the null hypothesis that the efficacy of BOT or BCA is different 

from that of FUN), and were not significantly different from each other (P=0.358). 

Similarly, all of the timings of applications were similar to ABC (P=0.447 for A, 

P=0.509 for B, and P=0.712 for C). The overall efficacy values ranged from 0.25 

to 0.96 (Fig. 5.4II). 

 

 
Figure 5.4. Efficacy of different products applied at different timings in reducing bunch 
trash colonization by Botrytis cinerea (experiment 2). Bunch trash samples were 
collected 1 week after veraison in vineyard CA in 2017 (I) and 2018 (II). Products were 

applied at A (full flowering; GS65 of Lorenz et al. 1995), B (pre-bunch closure; GS77), C 
(veraison; GS83), or ABC. The products were FUN, a commercial mixture of fludioxonil 
(25%) and cyprodonil (37.5%) at 800 g/ha; BOT, a commercial mixture of eugenol 
(3.2%), geraniol (6.4%), and thymol (6.4%) at 4000 ml/ha; and BCA, A. pullulans and T. 
atroviride at 400 g/ha and 1000 g/ha, respectively. Bars indicate the 95% confidence 
interval.  
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Discussion 

Botrytis cinerea has a complex life cycle and attacks grapevines via multiple 

infection pathways; some of the pathways occur early in the season, i.e., from 

flowering to young cluster development (Elmer and Michailides 2007). One early 

season pathway involves the saprophytic colonization of bunch trash; this 

colonization has been traditionally considered a major source of inoculum within 

developing bunches (Nair and Hill 1992; Nair and Parker 1985), and correlations 

between bunch trash colonization by B. cinerea and BBR incidence at harvest 

have been reported (Seyb et al. 2000). As a consequence, B. cinerea chemical 

control in the early season, and especially at pre-bunch closure, has been 

recommended (Corvi and Tullio 1980; Pérez-Marín et al. 1998). However, the 

effects of these control interventions on bunch trash colonization by B. cinerea 

have seldom been studied for fungicides and have not been studied for biological 

agents or botanicals. 

The current research used field experiments and laboratory assessments to 

determine how early season applications of fungicides (FUN), biological control 

agents (BCA), and botanicals (BOT) affect B. cinerea colonization of and 

sporulation on bunch trash. The results indicated that the ability of B. cinerea to 

colonize and sporulate on bunch trash was highly variable; this variability was 

higher between years than among vineyards and sampling times during the 

season. That the sporulation potential of B. cinerea on bunch trash changes over 

time has been previously observed (Balasubramaniam et al. 1998; Jaspers et al. 

2012; 2016). This variability can be explained by the complex interactions between 

weather conditions and inoculum load, spore germination, and fungal growth on 

bunch trash (Ciliberti et al. 2015; 2016), and explaining the variability was not the 

objective of the current research. Instead, the current research used this variability 

to assess the effects of FUN, BCA, and BOT under very different conditions. 

Concerning the effect of B. cinerea control on the bunch trash-related 

infection pathways, Calvo-Garrido et al. (2014b) quantified the incidence of B. 

cinerea colonization and sporulation potential in bunch trash at veraison to 

determine the effect of biological control agents applied at three times: 1-5% 

flowering, 80% flowering, and pre-bunch closure. Using laboratory incubations with 

optimal conditions for colonization and sporulation, the authors found that the 

biological control agents reduced the colonization of the bunch trash but not the 

sporulation potential on the bunch trash. Experiment 2 in the current study also 

revealed that application of BCA or FUN or BOT reduced the colonization of bunch 

trash by B. cinerea, based on the content of B. cinerea DNA in the trash and 

presented as a colonization coefficient (CC), in both years (which differed greatly 

in control CC values) and for all timings of applications (A, B, C, and ABC). This 
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effect was long-lasting because the bunch trash sprayed at A showed a reduction 

in CC 1 week after flowering and also after veraison. A previous study (Si Ammour 

et al. 2019, see Chapter 4) documented a positive relationship between CC and 

sporulation potential. Results from experiment 1 showed that FUN applications 

reduced the sporulation potential in only 3 of 18 cases, and that the probability of 

the applications being effective increased when the sporulation potential on the 

non-treated bunch trash increased, i.e., when the bunch trash colonization 

increased. 

As was true for control of B. cinerea colonization of bunch trash, control of 

B. cinerea sporulation on bunch trash with an application at A was still effective 1 

week after veraison, and this effect was greater than the application at B when the 

sporulation potential was high. Application at C also reduces B. cinerea 

colonization of bunch trash and the production of conidia during berry ripening and 

this confirms the important role of this application (González-Domínguez et al. 

2019a, see Chapter 2). Application at A, i.e., early in the season, has previously 

been demonstrated to be important for reducing BBR severity at harvest in field 

experiments (Calvo-Garrido et al. 2014a); the importance of early season 

application was also documented in a meta-analysis of 116 studies (González-

Domínguez et al. 2019a; 2019b, see Chapters 2 and 3). Fedele et al. (2018) 

showed that the efficacy of early season applications is related to a reduction in 

the incidence of latent infections (i.e., pathways I, IIa, and IIb of Elmer and 

Michailides 2007). The results of the current study indicate that the efficacy of 

application at A is also due to a reduction in bunch trash colonization and in 

subsequent sporulation (i.e., pathways III and IV; Elmer and Michailides 2007). 

In this work, the effect of applications in reducing both the colonization and 

especially the sporulation potential of B. cinerea was highly variable. For the latter, 

the GLMs showed high overdispersion in the dataset, indicating that factors not 

accounted for by the experiment had an important effect on the results. These 

factors could include: i) the variability in B. cinerea colonization incidence among 

trash pieces in a bunch and among bunches; ii) the composition of bunch trash, 

because differences in the sporulation potential exist between bunch trash types, 

with tendrils and petioles supporting less sporulation than rachides (Jaspers et al. 

2012); iii) the colonization severity (i.e., the amount of fungus) in the affected bunch 

trash pieces, which would be influenced by the inoculum load and weather 

conditions; and iv) the degree of depletion of nutritional resources in the bunch 

trash over time. All of these factors warrant further investigation and could account 

for that FUN applications significantly reduced B. cinerea sporulation in only 3 out 

of 18 cases. The results of experiment 2 showed that BCA had the same effect as 

FUN in reducing the colonization level and then the sporulation potential of bunch 
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trash, even though the efficacy was more variable with BCA than with FUN. The 

BCA application strategy used in this work was based on the mechanism of action 

(MoA) of the biological control agents: Aureobasidium pullulans, which was applied 

at A and C, is a good competitor for nutrients and can prevent germination of B. 

cinerea conidia; Trichoderma atroviride, which was applied at B, is a good 

colonizer of dead plant tissues and a competitor of B. cinerea for space and 

nutrients. This MoA-based application strategy controlled BBR at harvest in 

previous experiments with applications at B, C, and D (Pertot et al. 2017); the 

present work showed that this approach can be adopted for application at A. 

Results of experiment 2 showed that efficacy of BOT was inconsistent and showed 

variability in reducing bunch trash colonization. Even with repeated applications of 

the same BOT product as used in the current study, Rotolo et al. (2018) did not 

obtain satisfactory BBR control on table grapes at harvest. Nevertheless, 

botanicals are thought to have potential for controlling B. cinerea (Nguyen et al. 

2013; Ribera et al. 2008), and further studies are needed to determine whether 

applications of BOT at A can reduce latent infections (i.e., pathway I, IIa, and IIb 

of Elmer and Michailides 2007). 

Overall, spraying with FUN, BCA, or BOT at grape flowering may reduce the 

saprophytic colonization of bunch trash to different degrees and with some 

variability. For all products, colonization reduction was the same with application 

at A vs. ABC, meaning that the effect of an early season application lasted from 

flowering to 1 week after veraison. These results indicate that the early season 

control of B. cinerea is important to reduce the saprophytic colonization of bunch 

trash and the potential sporulation especially when the risk of BBR is high. So, an 

estimation of the risk of colonization during the early season would help growers 

decide whether an early spray application would reduce the sporulation potential 

later in the season. A mechanistic model that predicts the risk of B. cinerea 

development has recently been developed (González-Domínguez et al. 2015). 

This model, which is currently integrated in a Decision Support System (DSS) 

(Caffi et al. 2017; Rossi et al. 2012), predicts the relative infection risk during the 

two main grape-growing periods relevant for B. cinerea infection: (i) between 

‘inflorescences clearly visible’ and ‘berries groat-sized, bunches begin to hang’; 

and (ii) ripening berries. The model is then able to assess the risk of bunch trash 

colonization in the early season. A qPCR assay for the quantification of 

colonization of bunch trash by B. cinerea may also be useful (Si Ammour et al. 

2019, see Chapter 4). These tools (the model and the qPCR assay), combined 

with the findings of the current study, could improve BBR management in 

vineyards. 
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          Chapter 6 

Consideration of latent infections improves the prediction of 

Botrytis bunch rot severity in vineyards1 

 

 

Abstract 

The current study validated the mechanistic model for Botrytis cinerea on 

grapevine developed by González-Domínguez et al. (2015) with data from 23 

independent Botrytis bunch rot (BBR) epidemics (combinations of vineyards × 

year) that occurred between 1997 and 2018 in Italy, France, and Spain. The model 

was operated for each vineyard by using weather data and vine growth stages to 

anticipate, at any day of the vine-growing season, the disease severity (DS) at 

harvest (severe, DS ≥15%; intermediate, 5< DS <15%; and mild, DS ≤5%). To 

determine the ability of the model to account for latent infections, post-harvest 

incubation assays were also conducted using mature berries without symptoms or 

signs of BBR. The model correctly classified the severity of 15 of 23 epidemics 

(65% of epidemics) when the classification was based on field assessments of 

BBR severity; when the model was operated to include BBR severity after 

incubation assays, its ability to correctly predict BBR severity increased from 65% 

to >87%. This result showed that the model correctly accounts for latent infections, 

which is important because latent infections can substantially increase disease 

severity. The model was sensitive and specific, with the false positive and false 

negative proportion of model predictions equal to 0.24 and 0, respectively. 

Therefore, the model may be considered a reliable tool for decision-making for 

BBR control in vineyards.   

                                                 
1 Fedele G, González-Domínguez E, Delière L, Díez-Navajas AM, Rossi V, 2020. Plant Disease, DOI: 
10.1094/PDIS-11-19-2309-RE 
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Introduction 

Botrytis bunch rot (BBR), caused by the fungus Botrytis cinerea Pers. Fr. 

(teleomorph Botryotinia fuckeliana (de Bary) Whetzel), is a serious disease in 

vineyards (Elmer and Michailides 2007; Williamson et al. 2007). The fungus affects 

all vine organs and especially clusters, and thereby reduces both the quantity and 

quality of the harvested grapes. Crop losses results from damage to inflorescences 

before flowering, to flowers during flowering, to young berries at fruit set, and to 

berries during ripening; the latter damage is referred to as bunch rot. Quality is 

reduced because rotted berries have an altered chemical composition that causes 

undesirable flavors in wine (Steel et al. 2013).  

Botrytis cinerea develops and actively grows as a necrotrophic pathogen 

and as a saprophyte on different substrates (Elmer and Michailides 2007). The 

pathogen overwinters on herb debris, bunch and leaf trash, and rotted berries, and 

large numbers of conidia can be produced on these overwintering sites under a 

wide range of environmental conditions (Ciliberti et al. 2015a; 2016). The multiple 

infection pathways occur in two periods: between flowering to young cluster 

development, and after veraison (Elmer and Michailides 2007). During the first 

period, conidia infect inflorescences and young berries through three pathways: in 

pathway I, conidia infect the styles and ovules; in pathway IIa, conidia infect the 

stamens or petals; and in pathway IIb, conidia infect fruit via fruit pedicels (Elmer 

and Michailides 2007). These infections can cause either blossom blight or latent 

infections of berries. During the flowering stage, in pathway III, conidia infect and  

saprophytically colonize bunch trash (the dead stamens, aborted flowers, aborted 

berries, calyptras, and tendrils) retained within the developing bunches (Elmer and 

Michailides 2007). In the early season, infection severity increases with hours of 

wetness at temperatures near 20°C (Ciliberti et al. 2015a; 2015b; 2016; Latorre 

and Rioja 2002; Nair and Allen 1993). During the second period, latent infections 

may become visible as rotted berries and may contribute to final disease severity, 

but the contribution of latent infections to final disease remains unclear (Keller et 

al. 2003; McClellan and Hewitt 1973). In addition, the mycelium colonizing the 

bunch trash can produce conidia under favorable conditions, and in pathway IV, 

the conidial accumulation within the developing bunch results in a source of 

inoculum for new infections of the ripening berries (Elmer and Michailides 2007). 

In pathway Va, wind-dispersed conidia infect ripening berries (Elmer and 

Michailides 2007) and in pathway Vb, the aerial mycelium produced on adjacent 

infected berries infects ripening berries through berry-to-berry contact (González-

Domínguez et al. 2015). From veraison to ripening, the risk of infection is highest 

at temperatures between 15 and 25°C and also increases with hours of wetness 

or high relative humidity (Broome et al. 1995; Ciliberti et al. 2015b; Latorre and 
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Rioja 2002; Nair et al. 1988; Nair and Allen 1993). The appearance of symptoms 

is also promoted by the increasing susceptibility of berries approaching maturity 

(Deytieux-Belleau et al. 2009; Hills et al. 1981; Kretschmer et al. 2007; Mundy and 

Beresford 2007).  

In spite of the complexity of the life cycle of the pathogen, the management 

of the disease is commonly based on a routine calendar application of fungicides 

at four specific grape growth stages (GS): A, end of flowering (GS69; Lorenz et al. 

1995); B, pre-bunch closure (GS77); C, veraison (GS83); and D, before harvest 

(before GS89). This schedule may result in unnecessary sprays because the 

applications are preventive and do not take into account the real risk of BBR 

infections (González-Domínguez et al. 2019a, see Chapter 2). To predict the 

disease risk and help growers in deciding whether a fungicide application is 

needed, González-Domínguez et al. (2015) developed a mechanistic model 

according to the principles of “systems analysis” (Leffelaar and Ferrari 1989). The 

model was previously evaluated with data collected from 21 vineyards in Italy and 

France and between 2009 and 2014; according to a discriminant function analysis 

(DFA), the model correctly classified 81% of the epidemics (González-Domínguez 

et al. 2015). 

The validation conducted by González-Domínguez et al. (2015), however, 

used the same dataset that was used to develop the model. It follows that 

additional validation is needed using an independent dataset (Rossi et al. 2010). 

Moreover, the model developed by González-Domínguez et al. (2015) indirectly 

estimates latent infections considering the risk of infections in the early-season but  

the previous validation was conducted by using only BBR severities at cluster 

maturity in vineyard and, the ability of the model to account for those infections 

that are still latent at harvest was not assessed. In the present study, the model 

was further validated with data from 23 independent BBR epidemics that occurred 

between 1997 and 2018 in Italy, France, and Spain. Latent infections of mature 

berries were also assessed to determine the ability of the model to account for 

latent infections  

 

Materials and methods 

Vineyards 

Data were collected between 1997 and 2018 from plots not treated for BBR in eight 

experimental vineyards: three in Italy, three in France, and two in Spain. A total of 

23 epidemics (combinations of vineyard  year) were considered (Table 6.1). 

Vineyards were cropped with grape varieties susceptible to B. cinerea (Table 6.1) 

and were managed as usual for the viticultural area, with the exception that no 

fungicides were used to control B. cinerea. Weather data were collected using 
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standard electronic weather stations placed along the vineyard borders (with 

sensors at 1.5 m above the ground). Temperature (ºC), relative humidity (%), 

wetness duration (hours), and rainfall (mm) were measured hourly.  

 

Field assessments 

Growth stages (GS) of vines were assessed twice each week, from inflorescences 

clearly visible (GS53) until harvest (GS>89) according to Lorenz et al. (1995). At 

full ripening (GS89), BBR incidence (DI) and severity (DS) were visually assessed 

on a minimum of 100 random bunches per plot (on at least 20 vines per plot), in at 

least four replicate plots per vineyard. DI was calculated as the percentage of 

bunches with BBR, and DS was calculated as the percentage of the bunch surface 

affected by BBR (Hill et al. 2010).  

 

Incubation assays  

In 10 of the 23 epidemics that did not show any BBR symptoms in the field (Table 

6.2), incubation assays were conducted to assess the presence of latent infections 

in ripening berries. In each epidemic, 100 berries (with their pedicel) that did not 

show any symptoms or sign of rot were randomly collected just before harvest 

(GS89). Berries were transported to the laboratory in a cooler, and were rinsed 

under tap water for 3 min, disinfested with 2/3 of distilled water and 1/3 of 5% 

sodium hypochlorite to remove epiphytic microflora, and finally rinsed again with 

sterile water. Berries were placed in a metallic box (20 × 15 cm, with a wet filter 

paper on the bottom) over a metallic grid net so that berries did not touch each 

other or the filter paper. Each of four replicate boxes contained 25 berries. The 

boxes were sealed in plastic bags to maintain a saturated atmosphere and were 

incubated at 25°C with a 12-h photoperiod for 7 days. DI was then assessed as 

the percentage of berries showing typical rotting and B. cinerea sporulation; the 

percentage of the surface of each berry affected by BBR was also evaluated. The 

average severity was then calculated as sum of disease severity in single 

(affected) berries divided by the total number of berries (healthy + affected), and a 

value of DS after incubation assays was tassigned based on the standard area 

diagram of Hill et al. (2010). 

 

Model structure and running 

The model was described by González-Domínguez et al. (2015). In brief, the 

model begins to operate when grape inflorescences are clearly visible (GS53) and 

ends at harvest (GS90), with a time step of 1 day. The model assumes that 

inoculum sources are present in the vineyard and estimates the relative 

abundance of conidia produced on inoculum sources on any day of the grape-
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growing season as a function of the rate at which the mycelium grows and 

saprophytically colonizes the source tissue and produces conidia. The model then 

assumes that, on any day, mature conidia may disperse and settle on host plant 

surfaces. The model considers two main infection periods. In the first infection 

period (between GS53 “inflorescences clearly visible” and GS73 “berries groat-

sized, bunches begin to hang”), the model calculates a daily infection risk (RIS1) 

for infections by conidia on inflorescences and young clusters (pathways I and II 

of Elmer and Michailides 2007). In the second infection period (between GS79 

“majority of berries touching” and GS89 “berries are ripe for harvest”), the model 

calculates the daily infection risk on ripening clusters for infections caused by 

conidia (pathway Va of Elmer and Michailides 2007; RIS2) and for berry-to-berry 

infection by aerial mycelium (pathway Vb of González-Domínguez et al. 2015; 

RIS3). Daily values of infection risk are accumulated over the time of the 

corresponding infection period, and accumulated values produce new variables 

(SEV1, SEV2, and SEV3), which contribute to the total risk of infection. The model 

finally uses SEV1, SEV2, and SEV3 as independent variables in a discriminant 

function analysis (DFA) to classify the epidemics in three groups based on disease 

severity (DS) at harvest: severe, (DS ≥15%), intermediate (5< DS <15%), or mild 

(DS ≤5%).  

For each vineyard, the model was operated using the vineyard’s weather 

data and vine growth stages to predict, on any day of the vine-growing season, the 

epidemic group (severe, intermediate, or mild) at harvest (González-Domínguez 

et al. 2015).  

 

Data analysis  

Observed BBR epidemics were classified into three groups based on disease 

severity (DS) at harvest in field and after incubation assays as follows: severe, DS 

≥15%; intermediate, 5≤ DS <15%; mild, DS <5% (Table 6.2). These observed BBR 

severities (O) were compared with those predicted by the model (P). A 2×2 

contingency table was then built, in which P and O were categorized as either DS 

<5% or DS ≥5%, by using three different datasets: i) the 23 epidemics classified 

based on the DS in field and predicted by the model (dataset 1); ii) the 10 

epidemics classified based on the DS after incubation assays and predicted by the 

model (dataset 2); and iii) the 23 epidemics classified based on the DS after 

incubation assays or in field and predicted by the model (dataset 3) (Table 6.2).  

Predictions were classified as follows: i) true positive, when the epidemics 

predicted by the model and observed (in the field or in the incubation assay) were 

both classified as intermediate or severe, i.e., DS ≥5% (P+,O+); ii) true negative, 

when the predicted and observed epidemics were both mild, i.e., DS <5% (P−,O−); 
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iii) false positive, when the predicted epidemics were intermediate or severe, but 

the observed epidemics were mild (P+,O−); and iv) false negative, when the 

predicted epidemics were mild, but the observed epidemics were intermediate or 

severe (P−,O+). The true positive proportion (TPP or sensitivity), the true negative 

proportion (TNP or specificity), the false positive proportion (FPP), and the false 

negative proportion (FNP) were then calculated (Madden 2006). The overall 

accuracy of the predictions was calculated as the ratio between correct and total 

predictions. Bayesian analyses were run to calculate the following posterior 

probabilities (Yuen and Hughes 2002; Madden 2006): (i) the probability that the 

observed epidemic was intermediate or severe when predicted to be intermediate 

or severe, P(P+|O+); (ii) the probability that the observed epidemic was mild when 

predicted to be mild, P(P−|O−); (iii) the probability that the observed epidemic was 

mild when predicted to be intermediate or severe (i.e., the model provided 

unjustified alarms), P(P+|O−); and (iv) the probability that the observed epidemic 

was intermediate or severe when predicted to be mild (i.e., the model does not 

predict real infections), P(P−|O+). These posterior probabilities were compared 

with the prior probabilities. Prior probabilities were calculated as the proportion of 

intermediate or severe epidemics P(O+) or mild epidemics P(O−) relative to the 

total number of epidemics observed in field.  

 

Results 

BBR severity observed in the field at maturity ranged from DS=0% to 52.4% (Table 

6.2). Of the 23 BBR epidemics, 16 were mild (with average DS=1.1±0.5), 1 was 

intermediate (with DS=11.6), and 6 were severe (with average DS=39.7±3. 6) 

(Table 6.2). During the first infection period (i.e., from GS53 “inflorescences clearly 

visible” to GS73 “berries groat-sized, bunches begin to hang”), the average 

temperature ranged from 15.8 to 19.9ºC (Table 6.1), rain ranged from 22.4 to 275.5 

mm, and wetness duration ranged from 58 to 614 (Table 6.1). In the second 

infection period (i.e., from GS79 “majority of berries touching” to GS89 “berries are 

ripe for harvest”), average temperatures were higher (from 18.2 to 26.2°C) than in 

the first infection period, rain ranged from 35.8 and 223.6 mm, with wetness 

duration ranged from 35 to 940 h (Table 6.1).  

The daily model outputs for the 23 BBR epidemics are presented in Figure 

6.1 in terms of severity categories (mild, intermediate, or severe). Eight of these 

epidemics (CA-16, CA-15, CA-17, MA-17, LG-16, PA-10, LA-03, and PA-11) were 

predicted to be mild all season long (Fig. 6.1). The other epidemics were predicted 

to be intermediate starting from the second week of May (CA-18, CO-16, CO-17, 

MA-16, MA-15, PA-07, PA-15, LA-02, PA-08, and PA-14) to mid-June (ZA-17 and 

PA-13), which was between 27 and 2 days before GS69 (i.e., end of flowering; Fig. 
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6.1). Seven epidemics were then predicted to be severe (CA-18, PA-07, ZA-16, 

PA-15, LA-02, and PA-13, PA-14) after GS83 (i.e., veraison), between 15 and 44 

days before GS89 (i.e., berries ripe for harvest) (Fig. 6.1). In epidemics CO-16 and 

ZA-17, the change from intermediate to severe occurred at GS69, between 112 

and 96 days before GS89; in CO-15 and LS-97, the classification jumped from mild 

to severe (Fig. 6.1). 

When the classification of BBR epidemics based on field assessments and 

model outputs were compared (dataset 1), 15 of the 23 epidemics were correctly 

classified, so that overall accuracy was 0.65 (Table 6.3). In the 8 misclassifications, 

observed epidemics were mild, but the model classified them as intermediate (3 

cases) or severe (5 cases) (Table 6.2), so that FPP was 0.50 (Table 6.3). The 

model correctly classified mild or severe epidemics in 8 of 16 cases, so that TNP 

was 0.50, and all of the observed epidemics were mild, so that TPP was 1 and 

FPP was 0 (Table 6.3). Based on the Bayesian analysis, the posterior probability 

that the model correctly predicted an intermediate or severe epidemic, P(P+|O+), 

was 0.47; the posterior probability that the model correctly predicted a mild 

epidemic, P(P−|O−), was 1.00 (Table 6.3).  

For the 10 epidemics with no BBR at harvest but which included incubation 

assays, BBR severity without consideration of incubation assays was nil in the field 

(as indicated earlier) and was therefore classified as mild; based on the model, 

these epidemics were predicted to be mild in 4 cases and intermediate or severe 

in 6 cases (Table 6.2), so that overall accuracy was 0.40. If data from the 

incubation assays were included (dataset 2), DS ranged 1 to 15%, and the 

epidemics were classified as mild in 5 cases and intermediate or severe in 5 cases 

(Table 6.2), so that 9 of these epidemics were correctly classified by the model, 

and the overall accuracy of the model increased to 0.90 (Table 6.3). The only 

misclassified epidemic was predicted to be severe but was observed to be mild 

(DS=1.1%), i.e., the FPP = 0.20 (Table 6.3). In the Bayesian analysis of dataset 2, 

the posterior probability of correctly predicting mild epidemics, P(P−|O−), was 1.00, 

and of correctly predicting intermediate or severe epidemic, P(P+|O+), was 0.83.  

When all 23 observed epidemics were classified based on DS (these 

classifications included incubation assays for 10 epidemics and field assessment 

at harvest for 13 epidemics) and compared with model output (dataset 3), 20 of 23 

epidemics were correctly classified, i.e., overall accuracy was 0.87 (Table 6.3). 

The three epidemics that were incorrectly classified were mild in the field (with 

DS=0%) but were classified as severe by the model; two of these epidemics (PA-

07 and ZA-16) were only assessed in the field, and only one included an incubation 

assay (CA-18) (Table 6.2). The posterior probability of correctly predicting 

intermediate or severe epidemics, P(P+|O+), was 0.80, and was higher for dataset 
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3 than for dataset 1 (which only included field assessment) (P(P+|O+)=0.47), while 

the posterior probability of correctly classifying mild epidemics remained 

P(P+|O−)=1.00 (Table 6.3), indicating that the consideration of latent infections in 

the assessment of BBR severity greatly improved the predictive ability of the 

model. 
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Table 6.1. Characteristics of the vineyards and summary of the weather data recorded in the first and second infection 

periods of Botrytis cinerea considered by the model of González-Domínguez et al. (2015) for Botrytis bunch rot (BBR).  

Epidemic Location (country)a Year Cultivar 

1st infection periodb 2nd infection periodc 

Temperature 
(°C)d 

Rain 
(mm)e 

Wetness 
duration 
(h)f 

Temperature 
(°C) 

Rain 
(mm) 

Wetness 
duration 
(h) 

LS-97 La Sauve (FR) 1997 Sauvignon 17.2 147.0 334 22.4 130.5 415 
LA-02 Latresne (FR) 2002 Sauvignon 17.2 135.2 535 19.4 139.8 343 
LA-03 Latresne (FR) 2003 Sauvignon 17.8 118.6 363 24.7 65.8 175 
PA-07 Pauillac (FR) 2007 Merlot 17.1 163.4 393 19.8 128.6 347 
PA-08 Pauillac (FR) 2008 Merlot 16.9 222.2 376 20.1 152.6 374 
PA-10 Pauillac (FR) 2010 Merlot 16.2 251.4 336 19.6 152.8 273 
PA-11 Pauillac (FR) 2011 Merlot 17.4 22.4 92 20.2 154.7 199 
PA-13 Pauillac (FR) 2013 Merlot 15.8 162.5 532 18.6 101.5 663 
PA-14 Pauillac (FR) 2014 Merlot 15.9 159.7 540 20.0 72.5 625 
CA-15 Castell’Arquato (IT) 2015 Merlot 18.8 103.4 206 26.2 66.0 85 
CO-15 Cormons (IT) 2015 Merlot 18.9 178.2 255 25.5 223.6 213 
MA-15 Mandriole (IT) 2015 Trebbiano Romagnolo 19.9 109.7 338 24.7 50.9 295 
PA-15 Pauillac (FR) 2015 Merlot 16.7 114.4 461 20.3 195.8 450 
CA-16 Castell’Arquato (IT) 2016 Merlot 16.8 273.0 178 24.4 97.4 60 
CO-16 Cormons (IT) 2016 Merlot 16.5 275.5 614 24.2 108.2 181 
MA-16 Mandriole (IT) 2016 Trebbiano Romagnolo 17.1 184.2 446 23.5 53.3 475 
LG-16 La guardia (SP) 2016 Tempranillo 17.7 30.4 58 18.9 35.8 35 
ZA-16 Zalla (SP) 2016 Hondarrabi Zuri 16.2 105.0 392 19.1 158.4 791 
CA-17 Castell’Arquato (IT) 2017 Merlot 17.4 120.2 300 25.8 43.2 87 
CO-17 Cormons (IT) 2017 Merlot 16.9 155.5 430 25.0 108.8 410 
MA-17 Mandriole (IT) 2017 Trebbiano Romagnolo 17.9 81.4 115 24.1 70.0 170 
ZA-17 Zalla (SP) 2017 Hondarrabi Zuri 15.4 192.6 813 18.2 177.8 940 
CA-18 Castell’Arquato (IT) 2018 Merlot 18.7 153.8 485 24.9 77.8 412 

a Country code: IT= Italy, FR= France, SP= Spain. 
b The first infection period extends from GS53 “inflorescences clearly visible” to GS73 “berries groat-sized, bunches begin to hang”. 
c The second infection period extends from GS79 “majority of berries touching” to GS89 “berries are ripe for harvest”. 
d Average of daily temperatures (°C).  
e Total mm of rain (mm).  
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Table 6.2. Incidence and severity of Botrytis bunch rot (BBR) in the field and after the 

incubation assay, and the classifications of the observed and the predicted epidemics for 
three datasetsa. 

Epidemic 

Observed   Predicted 

Field  Incubation assay 
Groupd 
Dataset 3 

 
Groupe 

 DIb  
(%) 

DSc 
(%) 

Groupd 

Dataset 1  
 DIb  

(%) 
DSc 

(%) 
Groupd 
Dataset 2 

 

LS-97 82.9 36.8 S     S  S 
LA-02 87.3 37.1 S     S  S 
LA-03 30.8 4.7 M     M  M 
PA-07 16.2 1.4 M     M  S 
PA-08 96.1 45.9 S     S  S 
PA-10 46.9 2.6 M     M  M 
PA-11 30.4 4.9 M     M  M 
PA-13 90.3 39.2 S     S  S 
PA-14 94.8 52.4 S     S  S 
CA-15 0.0 0.0 M  35.5 3.0 M M  M 
CO-15 0.0 0.0 M  77.5 9.0 I I  S 
MA-15 0.0 0.0 M  50.0 10.0 I I  I 
PA-15 81.6 26.8 S     S  S 
CA-16 0.0 0.0 M  14.0 3.0 M M  M 
CO-16 0.0 0.0 M  56.0 15.0 S S  S 
MA-16 0.0 0.0 M  7.0 5.0 I I  I 
LG-16 2.4 0.1 M     M  M 
ZA-16 55.6 4.1 M     M  S 
CA-17 0.0 0.0 M  14.0 1.0 M M  M 
CO-17 0.0 0.0 M  63.0 9.0 I I  I 
MA-17 0.0 0.0 M  36.0 2.0 M M  M 
ZA-17 82.5 11.6 I     I  S 
CA-18 0.0 0.0 M  59.0 1.1 M M  S 

a Dataset 1 considers the 23 epidemics that were classified based on DS assessed only in the field, 
i.e., without data on disease that developed in the incubation assay; dataset 2 considers the 10 
epidemics that were classified based on the DS assessed in the incubation assay (these epidemics 
has no bunch rot in the field); and dataset 3 considers all 23 epidemics, which were classified based 
on the DS assessed only in the field (for 13 epidemics) or in the field and also in the incubation assay 
(for 10 epidemics).  
b Disease incidence assessed as the percentage of bunches or berries affected by Botrytis bunch rot 
in the field and in the incubation assay, respectively; the incubation assay was conducted only for 10 
epidemics.  
c Disease severity assessed as the percentage of the bunch surface affected by Botrytis bunch rot in 
the field or in the incubation assay. 
d Epidemic groups are: S=severe (DS ≥15%), I=intermediate (5%≤ DS <15%), M=mild (DS <5%).  
e Epidemic group predicted by the DFA described in González-Domínguez et al. (2015).  
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Figure 6.1. Classification of 23 BBR epidemics of Table 2 as mild (green horizontal bars), 

intermediate (orange bars), or severe (red bars) based on the model of González-
Domínguez et al. (2015), which was operated daily “inflorescences clearly visible” (GS53 of 
Lorenz et al. 1995) and “berries ripe for harvest” (GS89). The code of the epidemics (e.g., 
LS-97) on the left of each horizontal bar is also colored based on the observed BBR severity 
assessed in the vineyard at harvest, being green, orange, or red when DS <5%, 5≤ DS 
<15%, and DS ≥15%, respectively. Numbers inside bars indicate the critical growth stages 
for fungicide applications: 69 = end of flowering; 77 = pre-bunch closure; and 83 = veraison.



Chapter 6 

 

 

 

1
3
4

 

Table 6.3. Bayesian statistics of the classification of the 23 Botrytis bunch rot epidemics of Table 6.1 as mild or intermediate/severe 

based on field assessments of disease severity in the field and/or in the incubation assay (observed) and on the model developed by 
González-Domínguez et al. (2015) (predicted). 

Dataseta Observedb 
Predictedc  

Accuracyd 
Likelihood ratio 
(LR) 

Prior probability 
(P)e 

Posterior probability 
(P)f Yes (P+) No (P–)  

1 Yes (O+) 7 (1.00)g 0 (0.00)h  0.65 LR(O+) 2.00 P(O+) 0.30 P(P+|O+) 0.47 P(P–|O+) 0.00 
 No (O–) 8 (0.50)i 8 (0.50)l   LR(O–) 0.00 P(O–) 0.70 P(P+|O–) 0.53 P(P–|O–) 1.00 

2 Yes (O+) 5 (1.00) 0 (0.00)  0.90 LR(O+) 5.00 P(O+) 0.50 P(P+|O+) 0.83 P(P–|O+) 0.00 
 No (O–) 1 (0.20) 4 (0.80)   LR(O–) 0.00 P(O–) 0.50 P(P+|O–) 0.17 P(P–|O–) 1.00 

3 Yes (O+) 12 (1.00) 0 (0.00)  0.87 LR(O+) 3.67 P(O+) 0.52 P(P+|O+) 0.80 P(P–|O+) 0.00 
 No (O–) 3 (0.27) 8 (0.73)   LR(O–) 0.00 P(O–) 0.48 P(P+|O–) 0.20 P(P–|O–) 1.00 

a Dataset 1 considers the 23 epidemics that were classified based on DS assessed only in the field, i.e., without data on disease that developed in the incubation assay; 
dataset 2 considers the 10 epidemics that were classified based on the DS assessed in the incubation assay (these epidemics has no bunch rot in the field); and dataset 
3 considers all 23 epidemics, which were classified based on the DS assessed only in the field (for 13 epidemics) or in the field and also in the incubation assay (for 10 
epidemics).  
b Observed membership is based on disease severity of BBR assessed in the field at maturity. “No” are mild epidemics with disease severity (DS) <5%; “Yes” are 
intermediate or severe epidemics with disease severity (DS) ≥5%. 
c Membership predicted by the model developed by González-Domínguez et al. (2015). “No” are mild epidemics; “Yes” are intermediate or severe epidemics.  
d Proportion of correct predictions calculated as (P+,O+ ⁄ P–,O–) ⁄ total cases.  
e Prior probabilities for intermediate or severe (O+) and mild (O−) epidemics. 
f Posterior probabilities: (i) the probability that the observed epidemic was intermediate or severe when predicted to be intermediate or severe, P(P+|O+); (ii) the probability 
that the observed epidemic was mild when predicted to be mild, P(P−|O−); (iii) the probability that the observed epidemic was mild when predicted to be intermediate or 
severe (i.e., the model provides unjustified alarms), P(P+|O−); (iv) the probability that the observed epidemic was intermediate or severe when predicted to be mild (i.e., 
the model does not predict real infections), P(P−|O+). 
g Number of cases; in brackets the true positive proportion (TPP, or sensitivity), when the predicted and observed epidemics were both classified as intermediate or severe 
(P+,O+).  
h Number of cases; in brackets the false negative proportion (FNP), when the predicted epidemics were mild, but the observed epidemics were intermediate or severe 
(P–,O+). 
i Number of cases; in brackets the false positive proportion (FPP), when the predicted epidemics were intermediate or severe, but the observed epidemics were mild 
(P+,O–). 
l Number of cases; in brackets the true negative proportion (TNP, or specificity), when both the predicted and observed epidemics were mild (P–,O–).
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Discussion 
As noted in the Introduction, González-Domínguez et al. (2015) developed a 

mechanistic model that predicts B. cinerea development in grapevines and 

predicts the severity of BBR at harvest as mild (DS <5%), intermediate (5≤ DS 

<15%), or severe (DS ≥15%). As part of the same study, González-Domínguez et 

al. (2015) cross-validated the model using a dataset composed of 21 epidemics. 

Although the cross-validation indicated an overall model accuracy of >80%, the 

cross-validation used the same data set that was used to develop the model. In 

the current study, the model was further validated by using an independent dataset 

based on 23 epidemics (combinations of vineyard  year) in Italy, France, and 

Spain. The model’s ability to predict BBR epidemics as mild, intermediate, or 

severe was lower when based on the independent dataset rather than on the 

dataset used by González-Domínguez et al. (2015), i.e., only 65% of the epidemics 

were correctly classified. Specifically, the model (without consideration of latent 

infections as determined by incubation assays) misclassified 50% of the mild 

epidemics (i.e., the epidemics with DS <5%); most of these observed epidemics 

lacked BBR symptoms at harvest but were predicted to be intermediate or severe 

by the model. This misclassification refers to false positive predictions (Madden 

2006), which may result in unjustified alarms and therefore in unjustified fungicide 

sprays (Shtienberg 2007). Unjustified sprays should be avoided in order to reduce 

fungicide costs and fungicide effects on the environment (Epstein 2014) and public 

health (Alavanja et al. 2004; Verger and Boobis 2013), and in order to reduce the 

risk that resistance to fungicides develops in B. cinerea populations (Fernández-

Ortuño et al. 2016; Fillinger and Walker 2016; Leroux 2007). 

When the model considered BBR severity based both on data obtained at 

harvest and after incubation assays, its ability to correctly predict the epidemics as 

mild, intermediate, or severe increased from 65% to >87%. In our incubation 

assays, grape berries without visible symptoms or signs of B. cinerea at harvest 

were kept at a favorable temperature and humidity so that latent infections could 

become visible; in other words, the consideration of BBR severity after incubation 

assays for model validation meant the consideration of those latent infections that 

did not result in BBR symptoms at harvest under field conditions. That latent 

infections are important in B. cinerea epidemiology has been clearly demonstrated 

(Keller et al. 2003; McClellan and Hewitt 1973; Nair et al. 1995; Pezet and Pont 

1984). McClellan and Hewitt (1973) and Pezet and Pont (1984) were the first 

reporting that berries develop latent infections as early as at flowering, and that 

these infections remain latent (not visible) until berries ripen, and in some cases 

are still latent at harvest. Keller et al. (2003) and Nair et al. (1995) found that the 

majority of rotted berries at harvest had become infected during flowering. The 
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conditions that cause latent infections to result in the visible rotting of berries are 

not completely understood; several factors may be important, such as 

meteorological conditions and especially intense rainfall, vineyard and cultivar 

characteristics, or the presence of wounds or cracks on the berry skin (Elmer and 

Michailides 2007; Mundy and Beresford 2007; Nair et al. 1988; Nelson 1951; Jarvis 

1977).  

The improvement of the overall accuracy of the model-based prediction of 

BBR epidemics from 65% (based on field data only) to >87% (based on field data 

and incubation assays) showed that the model is able to account for latent 

infections and to therefore correctly represent the complexity of B. cinerea 

epidemiology in vineyards. Specifically, the model correctly predicted 20 of 23 

epidemics, with three epidemics being classified as mild based on observed data 

but as severe based on the model. In two of these epidemics (PA-07 and ZA-16), 

DS was assessed in the field only (as 1.4 and 4.1%, respectively), and it is possible 

that incubation assays, had they been conducted, may have increased the total 

BBR severity to >5% (which would account for the severity in field plus the severity 

after incubation assays). Therefore, the false positive proportion of model 

predictions was very low, and the false negative proportion was nil. Based on that, 

the model can be considered sensitive and specific (Madden 2006), and may be 

considered a reliable tool for supporting decision making for BBR control in 

vineyards.  

One might argue that a model is not very useful if it advises the need for 

disease control based on the risk of latent infections even though these infections 

may remain latent through ripening and harvest (as was the case in 10 epidemics 

in this research). The control of latent infections, however, is always useful for 

three reasons. First, latent infections that establish between flowering and fruit set 

represent an important source of inoculum inside the cluster during ripening, when 

they initiate the rotting of berries (pathway I, IIa, and IIb of Elmer and Michailides 

2007) (Calvo‐Garrido et al. 2014); because the reason(s) why latent infections 

initiate the rotting of berries during ripening in some cases but not in others are 

unknown, controlling latent infections is warranted. Second, the advantages of 

early-season control of B. cinerea have been clearly demonstrated (González-

Domínguez et al. 2019a; 2019b, see Chapters 2 and 3) and affect other infection 

pathways such as pathways III (saprophytic colonization of bunch trash) and IV 

(spore production on bunch trash) of Elmer and Michailides (2007) (Calvo-Garrido 

et al. 2014; Fedele et al. 2019, see Chapter 5), in addition to the latent infection 

pathways I, IIa, and IIb (Elmer and Michailides 2007). Third, latent infections can 

alter the chemical properties of berry juices (Steel et al. 2013); in particular, they 

can increase the contents of glycerol and gluconic acid, which are used as 
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indicators of the negative effects of BBR on grape juice and wines (Nigro and 

Versari 2008).  

In conclusion, the current study validated a mechanistic BBR model recently 

developed by González-Domínguez et al. (2015). Use of this model could improve 

BBR management in vineyards by helping farmers schedule fungicides based on 

the predicted risk of disease. During the season, the model could advise farmers 

as to whether the current weather conditions are favorable for B. cinerea infection 

and will lead to a final BBR severity >5%, which is considered a threshold for bunch 

damage (González-Domínguez et al. 2015). By using the model, farmers would 

apply fungicides only when the predicted final BBR severity exceeds the threshold; 

this would prevent the needless application of fungicides. The model is currently 

available for growers in vite.net, which is a decision support system for the 

sustainable management of vineyards (Caffi et al. 2017; Rossi et al. 2012). 
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          Chapter 7 

Influence of environment on the biocontrol of Botrytis cinerea: 

a systematic literature review 1 

 

 
Abstract 

The biocontrol of grey mould, caused by the fungus Botrytis cinerea, has been 

intensively studied in the last decades, and biological control agents (BCAs) have 

been developed as active ingredients of several currently available products. 

However, the biocontrol of grey mould remains challenging, and farmer reliance 

on BCAs remains marginal. One likely reason is the inconsistent efficacy of BCAs 

under field conditions, which may be related to several factors, including the 

variability of the environmental conditions affecting both BCA fitness and B. 

cinerea development. A systematic literature review was conducted to retrieve and 

analyze the metadata on the influence of environmental conditions on BCA fitness 

and efficacy against B. cinerea. The review considered 54 papers (selected from 

a total of 347 papers) and 27 genera of BCAs. The review showed that only limited 

information is available about the effects of temperature, humidity, and pH on BCA 

fitness and efficacy. Metadata were used to define environmental niches for B. 

cinerea and for two BCAs, Trichoderma and Candida, which were used as case 

studies. The environmental niches, in turn, were used to study the temperature 

and humidity conditions under which the BCA prevails over B. cinerea, and to 

define the extent of environmental niche sharing between the BCA and the target 

pathogen. Possible uses of environmental niches for improving BCA efficacy are 

discussed.  

  

                                                 
1 Fedele G, González-Domínguez E, Rossi V, 2019. Submitted as book chapter to Springer Netherlands 

ed. by A De Cal, P Melgarejo, N Magan, In Strategies to develop successful Biocontrol Agents;. 
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Introduction 

Grey mould, caused by Botrytis cinerea Pers. Fr. (teleomorph Botryotinia 

fuckeliana (de Bary) Whetzel), is a serious disease of many economically 

important crops including fruits, vegetables, and flowers. This pathogen causes 

considerable yield and quality losses in field production and storage worldwide 

(Jarvis 1977; Williamson et al. 2007). Control of the disease is difficult because B. 

cinerea has high genetic variability, a short life cycle, a high reproductive rate (Elad 

et al. 2007), and multiple infection pathways (Elmer and Michailides 2007). The 

pathogen is able to survive and sporulate as a saprophyte on necrotic tissue (Elad 

et al. 2007). For these reasons, farmers strongly rely on fungicides for the control 

of B. cinerea. Strict dependence on fungicides, however, is not sustainable for two 

main reasons. First, the public is increasingly concerned about the effects of 

chemicals on human health and the environment (Alavanja et al. 2004; Epstein 

2014). Second, B. cinerea populations frequently develop resistance to fungicides 

(Leroux 2007), which is difficult to avoid with the current resistance-management 

strategies; these strategies are based mainly on the alternating or mixing of 

fungicides with different modes of action (Fernández-Ortuño et al. 2015; 2016).  

In recent years, researchers have been increasingly exploring alternatives to 

chemical control, including the use of microorganisms like yeasts, fungi, and 

bacteria that may suppress B. cinerea via competition, antibiosis, and/or parasitism 

(Elmer and Reglinski 2006; Elad and Stewart 2007; Haidar et al. 2016). These 

microorganisms are termed biological control agents (BCAs) and have the 

potential to complement and replace chemicals both before and after crop harvest. 

The substantial interest in BCAs against B. cinerea is demonstrated by the more 

than 2000 relevant papers listed in the Web of Sciences1.  

Most of these papers focused on the evaluation of the in vitro interaction between 

the BCA and B. cinerea in artificial media and under specific, usually constant 

environmental conditions (e.g., constant temperature regimes). For several BCAs, 

efficacy is substantially lower in the field than under the controlled conditions of the 

laboratory (Elmer and Reglinski 2006). A possible reason for poor efficacy in the 

field is that BCAs are often used in a similar manner as fungicides. In viticulture, 

for instance, BCAs are used at the four specific grape growth stages when 

fungicides are commonly applied: A, end of flowering (BBCH69 of Lorenz et al. 

1995); B, pre-bunch closure (BBCH77); C, veraison (BBCH81); and D, pre-harvest 

                                                 
1
 A search in the Web of Science of “TS=((Botrytis) AND(biocontrol OR "biological control" OR BCA* 

OR "biological control agent*" OR (microbial AND antag*) OR biofungicide* OR "biological activity" OR 
micro-organism*))” yielded 2064 results from 1986 to 2019. 
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(BBCH<89) (González-Domínguez et al. 2019, see Chapter 2). This approach 

does not consider that BCAs are living organisms that dynamically interact with the 

target pathogen, the host plant, and the microbial communities on the host 

surfaces in a changing physical environment. Indeed, BCA establishment, growth 

on the host surfaces, and efficacy are strongly influenced by weather conditions, 

including temperature, relative humidity, wetness duration, and solar radiation 

(Elad and Freeman 2002; Kredics et al. 2003). The same is true for infection by B. 

cinerea (Holz et al. 2007). A successful integration of BCAs in a disease 

management strategy therefore requires an understanding of their ecological 

requirements so that they are used when environmental conditions are favorable. 

Over the past 15 years, the use of BCAs to control B. cinerea has been reviewed 

by Abbey et al. (2018), Elad and Stewart (2007), Elmer and Reglinski (2006), 

Sharma et al. (2009), Jacometti et al. (2010), and Haidar et al. (2016). These 

reviews mainly focus on biocontrol mechanisms and the commercial 

implementation of BCAs, but they provide little information on how the environment 

affects BCA behavior and efficacy in the field, in greenhouses, or in storage 

facilities. 

In this work, a systematic review was conducted with the aims of i) reviewing the 

information about how environmental conditions affect the fitness and efficacy of 

microorganisms for biocontrol of B. cinerea; ii) proposing the “environmental niche” 

approach for studying BCA-pathogen relationships; and iii) proposing future 

research directions for better use of BCAs in practical crop protection.  

 

The systematic literature review 

A literature search strategy was developed according to the principles of 

systematic literature review. A systematic review is a way to locate and assemble 

what is known from the literature, and to synthesize the research findings into an 

accessible format (Mulrow 1994). The use of a systematic approach reduces 

errors, limits researcher bias, and improves the communication of the information 

(Candel 2014). Systematic methods require the use of clear inclusion and 

exclusion criteria to select eligible literature in order to answer a specific research 

question. 

The data collection process used in this review is schematically described in Figure 

7.1. This systematic review was conducted in February 2019 with the digital 

bibliographical databases Scopus, Web of Science, and Google Scholar. Given 

the topic of the review (i.e., the influence of environmental conditions on the 

biocontrol of B. cinerea by microorganisms), the published papers to be considered 
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must have tested the BCA against B. cinerea in any crop and must have 

determined the effect of different environmental conditions on the fitness of the 

BCA and/or its efficacy against the target pathogen. To be included in the review, 

papers had to satisfy the following criteria: (i) the papers were written in English; 

(ii) the term Botrytis appeared in the title, abstract, and/or authors’ keywords (in 

order to exclude papers in which BCAs were tested against a different pathogen 

or in which B. cinerea was only mentioned in the manuscript); (iii) different 

environmental conditions were considered (e.g., different temperature regimes); 

and (iv) effects on BCA fitness and/or efficacy were reported. Based on these 

criteria, specific queries were formulated to search academic articles, reviews, 

articles in press, and conference papers in the three digital bibliographical 

databases (Scopus, Web of Science, and Google Scholar). The search was 

restricted to titles, abstracts, and keywords in Scopus and Web of Science, and to 

titles in Google Scholar. The specific queries were: 

i. Scopus, performed on 14 February 2019 and resulting in 253 publications: 

(TITLE-ABS-KEY((Botrytis) AND(biocontrol OR "biological control" OR 

BCA* OR "biological control agent*" OR "microbial AND antag*" OR 

biofungicide* OR "biological activity" OR micro-organism*) 

AND(temperature* OR "water availability" OR "relative humidity" OR pH 

OR "metal ion*" OR "water potential" OR "water activity" OR 

environment*))).  

ii. Web of Science, performed on 13 February 2019 and resulting in 257 

publications: (TS=((Botrytis) AND (biocontrol OR "biological control" OR 

BCA* OR "biological control agent*" OR (microbial AND antag*) OR 

biofungicide* OR "biological activity" OR micro-organism*) 

AND(temperature* OR "water availability" OR "relative humidity" OR pH 

OR "metal ion*" OR "water potential" OR "water activity" OR 

environment*))).  

iii. Google Scholar, performed on 1 February 2019 and resulting in 373 

publications: (allintitle: Botrytis "biological control" OR environment). 

The papers obtained from the first search were merged and duplicates excluded, 

leading to 347 documents (Fig. 7.1). All of the abstracts in these documents were 

loaded into RefWorks (ProQuest, MI, USA) and read. Based on the inclusion 

criteria, the papers were included in the final list if their abstract included one or 

more of the following kinds of information: (i) the microorganism was considered 

as a BCA; (ii) BCA fitness and/or efficacy was investigated; and (iii) changing 

environmental conditions were considered. At the end of this step, 126 papers 
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were selected, the full papers were read, and the papers were selected again by 

using the same inclusion and exclusion criteria used for abstracts. This led to a 

selection of 51 papers. Finally, the references of these 51 papers were checked, 

and 3 additional papers were included based on the previously listed criteria, 

leading to a final database of 54 academic papers (Fig 7.1).  

 

 

 

 

 
Figure 7.1. Flow of the systemic literature review (based on Candel 2014).  
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Main characteristics of the selected papers  
Papers were analyzed based on the publication year, BCA, environmental 

conditions, type of study, and host crop.  

Concerning the publication year, the number of papers addressing the general 

topic of B. cinerea biocontrol increased from the 1980s to the present time (data 

from Web of Science’s search indicated in footnote 1) and especially over the last 

10 years (orange line in Fig. 7.2). Papers relating these BCAs with the 

environmental conditions were published more frequently in the 1990s than in the 

following decades, i.e., only 1 or 2 papers were published per year in most years 

after 2003 (grey bars in Fig. 7.2).  

Concerning the microorganisms, the selected papers investigated 42 species 

belonging to 27 genera as potential BCAs (Fig 7.3). Most of the potential BCAs are 

eukaryotes (76% of the cases, in which a “case” is a study in which a BCA was 

investigated in the selected papers), with the phylum Ascomycota (62%) more 

represented than Basidiomycota (14%) or others (Fig 7.3). The domain of Bacteria 

accounted for 24% of the cases, with microorganisms belonging to the phylum 

Firmicutes (14%) and Proteobacteria (10%, Fig 7.3). The Ascomyceta Trichoderma 

was the most studied (in 15 cases), especially the species T. harzianum (8 cases), 

followed by the genera Candida (9 cases) and Clonostachys (9 cases). 

Rhodotorula was the most studied genus of Basidiomycota, especially the species 

R. glutinis (5 cases). Bacillus (7 cases) and Pseudomonas (3 cases) were the most 

considered Bacteria (Fig. 7.3). 

Concerning the type of study, 41% of the selected papers focused on the control 

of B. cinerea as a post-harvest pathogen, and all of these studies were conducted 

under laboratory conditions (Fig. 7.4). When the BCAs were used for the pre-

harvest control of the pathogen, 31% of the studies were conducted only in the 

laboratory, 11% in both the laboratory and greenhouse, 9% in both the laboratory 

and field, and 6% in the laboratory, greenhouse, and field. In one case, BCA 

efficacy was studied only in the greenhouse (Fig. 7.4).  

Regarding the host crop, because B. cinerea affects a wide range of crops (Jarvis 

1977), 16 crops were considered, including horticultural crops, fruit trees, and 

ornamentals (Fig. 7.5). Thirty-one papers (47.7% of the total) focused on B. cinerea 

affecting fruit tree crops. In apple, kiwi, pear, and cherry, the effect of BCAs was 

only assessed in post-harvest, because B. cinerea is most damaging during fruit 

storage for these crops (Droby and Lichter 2007). Horticultural crops were 

considered in 28 papers (43.1% of the total papers), with strawberry and tomato 

being the most important. Ornamental crops were considered in only 6 cases 

(9.2%), specifically for the B. cinerea hosts geranium, cyclamen, and rose (Fig. 

7.5). 
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Figure 7.2. Number of papers published per year that evaluated the biocontrol of Botrytis 
cinerea in general (orange line) and the effect of environmental conditions on the fitness 
and/or efficacy of BCAs against B. cinerea in particular (grey bars). Data for the orange line 

were obtained by searching the Web of Science with the query “TS=((Botrytis) AND 
(biocontrol OR "biological control" OR BCA* OR "biological control agent*" OR (microbial 
AND antag*) OR biofungicide* OR "biological activity" OR micro-organism*))”. Data for grey 
bars were obtained from the systematic literature review (final database of 54 papers, as 
indicated in Fig. 7.1).  
 
 

 
Figure 7.3. Number of papers that evaluated the influence of environmental conditions on 

the biocontrol of Botrytis cinerea per genus of BCA. The numbers of papers published for 
different species in each genus are indicated with different colors within the bars.  
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Figure 7.4. Percentages of the papers that evaluated the influence of environmental 
conditions on the biocontrol of Botrytis cinerea per type of assay.  

 

 

 

 

 

 
Figure 7.5. Number of papers that evaluated the influence of environmental conditions on 

the biocontrol of Botrytis cinerea per type of crop. 
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Effect of the environment on BCA fitness and efficacy  

The selected papers assessed the effect of the environment on BCA fitness and/or 

efficacy against B. cinerea (Tables 7.1 and S7.1). For some BCAs, the effect of 

environmental conditions was investigated for fitness only (Pantoea and Pichia) or 

efficacy only (e.g., Saccharomyces or Albifimbria) (Table 7.1). 

For fungal BCAs, fitness is considered to be the ability to grow in a given 

environment (Brasier 1999) as indicated by i) spore germination (germination rate 

and/or germ tube length); ii) mycelial growth (radial growth of colonies), and/or iii) 

population size (colony forming units, CFUs; or Optical Density, OD) (Table 7.1). 

For bacterial BCAs, fitness is considered to be the ability to replicate in a given 

environment (Wiser and Lenski 2015) and is studied by assessing population size 

(CFUs; most probable number, MPN; or OD). Efficacy of both fungal and bacterial 

BCAs is evaluated as the ability to reduce i) disease incidence and/or severity; ii) 

mycelial growth of B. cinerea on plant surfaces; iii) the germination of B. cinerea 

conidia; and/or iv) B. cinerea sporulation on the host surface. 

Fitness was investigated for 19 of the 27 genera of BCAs (Table 7.1) and mainly 

in terms of CFUs (Table 7.1). Efficacy of BCAs against B. cinerea was evaluated 

for 24 of the 27 genera and mainly as a reduction of disease incidence in treated 

vs. untreated plant material (Table 7.1). The great majority of papers evaluated the 

effect of different temperatures, and half of them also evaluated the effect of 

humidity (Table 7.1). In these papers, humidity was evaluated as water activity (aw), 

water potential (MPa), or relative humidity (RH); for our analysis, aw and MPa 

values were converted into RH values as described by Troller (1983) and Köhl 

(2004), respectively. Only a few papers considered the effect of pH (Table 7.1), 

even though pH directly influences the fitness of BCAs and, as a consequence, 

their efficacy against B. cinerea (Teixido et al. 1998).  

The next sections in this review consider the effects of environment on fitness 

and/or efficacy for the most studied BCA genera. BCAs are considered at the 

genus level and not as single species because little information exists at the 

species level. To increase the probability of obtaining consistent results, metadata 

were calculated only for those genera represented by at least 4 papers. The 

metadata summarize the available information for the effect of temperature (T), 

relative humidity (RH), and pH in terms of intervals investigated (e.g., 5°C intervals 

for temperature) and cardinal values, i.e., minimal, optimal, and maximal values 

for the dependent variable (e.g., spore germination or disease control). Cardinal 

values were estimated for fitness and efficacy as a whole, i.e., with no distinction 

among spore germination, mycelial growth, and population size for fitness, or 

among effects on disease incidence/severity, growth, germination, or sporulation 
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of B. cinerea on the host for efficacy. Cardinal values were also determined for B. 

cinerea.  

The above metadata were used to determine the environmental niches for 

Trichoderma and Candida BCAs, and to compare their environmental niches with 

that of B. cinerea. Environmental niches are the environmental conditions 

necessary for the presence of a species and for the maintenance of its population 

(Chesson et al. 2001). In this work, environmental niches were defined considering 

temperature and humidity intervals in which the growth was null (no growth), 

minimal (<=20% of maximum growth), marginal (>20-50%), considerable (>50-

80%), and maximal (>80%). A score was assigned to the above growth rates as 

follows: no growth=0; minimal=1; marginal=2; considerable=3; and maximal=4.  

A first analysis was conducted to determine the temperature and RH combinations 

at which the growth rate of the BCA (Trichoderma or Candida) was higher than, 

equal to, or lower than the growth rate of B. cinerea. In the first step, values 1, 0, 

and -1 were assigned to these three conditions (higher than, equal to, and lower 

than, respectively) for temperature and RH, separately. In the second step, a matrix 

was developed in which rows were the values (1, 0, or -1) for RH, and columns 

were the values (1, 0, or -1) for temperature; in this matrix, cells are the sum of the 

values in rows and columns. Cells can then take the following values: 2, the growth 

of BCA is much higher than that of B. cinerea (BCA>>Bc); 1, BCA>Bc; 0, BCA=Bc; 

-1, BCA<Bc; and -2 (BCA<< Bc). In the third step, a color map was created in 

which the cell values are represented by colors: 2, dark green; 1, green; 0, yellow; 

-1, orange; -2, red (Fig. 7.7D and 7.7E). 

A second analysis was conducted to determine the extent of environmental niche 

sharing by the BCA (Trichoderma or Candida) and the target organism (B. cinerea). 

In the first step of this analysis, the growth scores (from 0 to 4) of each BCA and 

of B. cinerea were multiplied. In the second step, a matrix was developed in which 

rows are the above products for RH, and columns are the products for T; in this 

matrix, cells are the products of the values in rows and columns. In the third step, 

a color map was created based on the matrix (Fig. 7.8A and 7.8B). The frequency 

of cells in which the product is >0 shows the extent of T and RH combinations in 

which the two microorganisms interact; the sum of the values in the cells provides 

information on the intensity of such an interaction. 

 

  



Systematic Literature Review 

 

155 
 

Table 7.1. Environmental variables considered in studies of the fitness and/or 

efficacy of several biological control agents (BCAs) against Botrytis cinerea. 
  Fitness  Efficacy (Reduction of) 

BCA  
S

p
o

re
 

g
e

rm
in

a
ti

o
n

 

M
y

c
e
li

a
l 

g
ro

w
th

 

P
o

p
u

la
ti

o
n

 

s
iz

e
 

 

D
is

e
a
s
e
 

S
u

rf
a
c
e
 

c
o

lo
n

iz
a
ti

o
n

 

G
e
rm

in
a

ti
o

n
 

S
p

o
ru

la
ti

o
n

 

Bacteria 

        

Bacillus  na1 na T, pH  T, RH pH T - 

Paenibacillus  na na T, pH  T - - - 

Pantoea  na na T  - - - - 

Pseudomonas  na na T, pH  T - - - 

Rahnella  na na T  T - T - 

Eukaryota         

Albifimbria  - - -  T, RH T, RH - - 

Alternaria  T, RH T -  T, RH T, RH - T, RH 

Aureobasidium  - - T  T, RH pH T, RH T, RH 

Bisifusarium  - - -  T, RH - - - 

Candida  - - T, RH, pH  T pH - - 

Clonostachys  T, RH T T  T, RH T, RH - T, RH 

Drechslera  - - -  T, RH T, RH - - 

Epiccocum  - - -  T, RH T, RH - T 

Metschnikowia  - - T  T T - - 

Meyerozyma  - - T  T, RH - T, RH - 

Paecilomyces  - T -  - - - - 

Penicillium  T - -  T - - - 

Pichia  - - T  - - - - 

Saccharomyces  - - -  T - - - 

Saturnispora  - - -  T - - - 

Trichoderma  T T T, RH  T, RH T, RH T, RH T, RH 

Wickerhamomyces  - - T, RH pH  - pH - - 

Naganishia  - - -  T, RH - T, RH T, RH 

Papiliotrema  - - T  T - - - 

Rhodotorula  - - T, RH, pH  T - - - 

Sporobolomyces  - - -  T - - - 

Tausonia  - - T   T - - - 

1 na: not applicable; T: temperature; RH: relative humidity; -: no information available in 
the meta-analysis  
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Fitness of BCAs  

Information was available for 19 genera of BCAs (Table 7.1); Fig. 7.6 summarizes 

the environmental requirements for B. cinerea and for the 8 BCAs that were 

assessed in at least 4 of the papers in the final database. Botrytis cinerea develops 

at temperatures between 0 and 35°C, at RH values between 54 and 100%, and at 

pH values between 1 and 10, with optima at 20-25°C, 100% RH, and pH 3-7 (Jarvis 

1977; Alam et al. 1996; Ciliberti et al. 2016).  

BCAs were mostly studied in the range of 0 to 37°C, except that information on the 

effects of temperatures >25°C on Trichoderma exists only for other pathogens 

(Sutton and Peng 1993; Hjeljord et al. 2000; 2001; Fig. 7.6). All BCAs grew when 

temperatures were >5°C and <33°C, with the exception of Bacillus and 

Clonostachys, which grew at 37°C, i.e., the maximum tested (Köhl et al. 1999; 

Guetsky et al. 2001; Cota et al. 2008; Calvo et al. 2017). The overall temperature 

range for optimal growth of the BCAs was 18 to 32°C, which partially overlaps with 

the optimum for B. cinerea (20-25°C) (Fig. 7.6). The optimal temperatures for 

growth were between 18 and 23°C for Trichoderma and Papiliotrema (Roberts 

1990; Elad and Kirshner 1993; O’Neill et al. 1996), between 20 and 25°C for 

Candida (Teixido et al. 1998), between 23 and 28°C for Aureobasidium (Lima et 

al. 1997), and between 25 and 30°C for Bacillus, Alternaria, Clonostachys, and 

Rhodotorula (Köhl et al. 1999; Zapata et al. 2001; Calvo et al. 2017; Fig. 7.6).  

The effect of RH has been studied for Alternaria, Trichoderma, Rhodotorula, and 

Candida (Fig. 7.6). In general, fitness of both B. cinerea and the BCA increased 

when RH increased. Rhodotorula was able to grow at RH values from 94 to 100%, 

but data are lacking for its growth when RH is <94% (Zapata et al. 2001). Candida 

and Trichoderma grew under low RH conditions (>90% and 60%, respectively; 

O’Neill et al. 1996; Teixido et al. 1998), while Alternaria growth required RH 

values >95% (Köhl 2004) (Fig. 7.6). A relationship was detected between 

temperature and minimal humidity requirements (Teixido et al. 1998).  

The effect of pH has been investigated for Bacillus, Candida, and Rhodotorula. 

Bacillus and Candida grew at pH 3 to 7, but they grew better at pH >5. Rhodotorula 

growth was not affected when pH ranged from 3 to 9. 

Figure 7.7 shows the environmental niches for B. cinerea (Fig. 7.7A) (Thomas et 

al. 1988; Broome 1995; Williamson et al. 1995; Eden et al. 1996; Latorre and Rioja 

2002; Lahlali et al. 2007; Ciliberti et al. 2016), Trichoderma (Fig. 7.7B) (Elad and 

Kirshner 1993; Pratella and Mari 1993; Sutton and Peng 1993; O’Neill et al. 1996; 

Hjeljord et al. 2000; 2001), and Candida (Fig. 7.7C) (Mercier and Wilson 1994; 

Mercier and Wilson 1995; Lima et al. 1997; Teixido et al. 1998; Nunes et al. 2002; 

Carbó et al. 2018a; 2018b). 
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Figures 7.7D and 7.7E indicate the combinations of temperature and RH 

conditions (environmental niches) at which the growth of the BCA (Trichoderma in 

Fig. 7.7D and Candida in Fig. 7.7E) is greater than, equal to, or less than that of 

B. cinerea. For instance, B. cinerea frequently prevails over Trichoderma when 

T<10°C regardless of RH and when T<26°C and RH<72% (Fig. 7.7D); under these 

conditions, B. cinerea is expected to be more competitive than Trichoderma. When 

T>10°C and RH>72%, the two microorganisms grow at similar rate or Trichoderma 

prevails over B. cinerea, especially when T>26°C and RH>72%; under the latter 

conditions, the BCA is expected to be more competitive in occupying the niches 

where it interacts with B. cinerea and to be more effective in disease control.  In 

the second case (Fig. 7.7E), B. cinerea mostly prevails over Candida under most 

temperature and RH conditions due to the strong limiting effect of RH on Candida 

growth. Teixido et al. (1998) reported that the minimum aw for the growth of 

Candida sake was 0.9 at the optimum temperatures of 20–25 °C, and that that the 

minimum aw was higher at lower or higher temperatures.  

B. cinerea shares a wider ecological niche with Trichoderma (Fig. 7.8A) than with 

Candida (Fig. 7.8B). The frequency of niche sharing is 59 and 18% for Trichoderma 

and Candida, respectively, and the intensity of interaction is 573 and 161 for the 

two BCAs, respectively. These results suggest that Trichoderma has the potential 

to compete with the target pathogen under a wider range of environmental 

conditions than Candida, and that Trichoderma might provide disease control 

under changing environmental conditions in the field.  

 

Efficacy of BCAs against B. cinerea  

Information on efficacy against B. cinerea is available for 24 genera (Table 7.1); 

Figure 7.9 summarizes the environmental conditions of the 8 BCAs that were 

assessed in at least 4 of the papers in the final database. The efficacy of Bacillus 

has been tested at temperatures ranging from 0 to 37°C; it was not effective at 

<5°C and was most effective at 20-25°C (Mari et al. 1996; Guetsky et al. 2001). 

Similar optimal temperatures have been reported for Alternaria, Aureobasidium, 

Clonostachys, and Trichoderma (Hannusch and Boland 1996; Dik et al. 1999). 

Information for Candida, Papiliotrema, and Rhodotorula is available for a narrower 

temperature range (Fig. 7.9). For instance, disease suppression by C. sake has 

been studied only at 0 to 10°C (Cook et al. 1999). The efficacy was highest at 5 to 

15°C for Papiliotrema and at 10°C for Rhodotorula (Roberts 1990; Helbig 2002). 

Information is not available for the effect of RH on the efficacy of Candida, 

Papiliotrema, or Rhodotorula. For the other BCAs, the optimal levels of RH are 

≥90% (Fig. 7.9). For Aureobasidium and Trichoderma, no efficacy was evident at 
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RH<90% and <60%, respectively (Dik et al. 1999), while the effect of RH<90% is 

not known for Clonostachys (Hannusch and Boland 1996).  

pH values between 4-6 did not influence the efficacy of Candida (Junior et al. 2016) 

or Aureobasidium (Parafati et al. 2015), while a pH of 6 was the optimum for 

Bacillus (Wang et al. 2013). 

 

 

 
Figure 7.6. Environmental requirements for the fitness of the main BCAs against Botrytis 
cinerea. Thin lines indicate the temperature range; thick lines indicate optimal temperatures; 
dashed lines indicate temperatures that are known not to support growth of the BCA; dotted 
lines indicate temperatures tested for the BCA without regard to B. cinerea. The vertical 
lines indicate the optimal temperature range for B. cinerea. The relative humidity (RH) 
conditions are shown as the range and optimal values (brackets); underlined values indicate 
values that do not support the growth of the BCA. 
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Figure 7.7. Environmental niches for Botrytis cinerea (A), Trichoderma (B), and Candida 
(C) (based on Magnuson et al. 1979). Environmental niches are shown as temperature and 

relative humidity ranges for no (0), minimal (1), marginal (2), considerable (3), and maximal 
(4) growth. D and E show the combinations of environmental conditions in which the growth 

of the BCA is higher than (in green and dark green), equal to (yellow), or lower than (orange 
and red) the growth of B. cinerea.  
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Figure 7.8. Extent of environmental niche sharing by Botrytis cinerea and the BCAs 
Trichoderma (A) or Candida (B). Each map is the product matrix of the environmental niches 

of the pathogen and BCA. Dark blue (1.0) indicates complete overlap of environmental 
niches; light blue (0.2) indicates weak overlap of environmental niches; and grey indicates 
environments that do not support the growth of the pathogen or the BCA. 
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Figure 7.9. Environmental requirements for the effectiveness of the main BCAs against 
Botrytis cinerea. Thin lines indicate the temperature range; thick lines indicate optimal 
temperatures; dashed lines indicate temperatures that are known not to support growth of 
the BCA. The relative humidity (RH) conditions are shown as the range and optimal values 
(brackets); underlined values indicate values that do not to support the growth of the BCA.  

 
 

Conclusions and future prospects 

The Directive 128/2009/EC on the Sustainable Use of Pesticides (SUD) makes low 

pesticide-input control strategies mandatory in the EU. The SUD promotes the use 

of non-chemical methods as alternatives to pesticides, whenever possible. Non-

chemical methods include BCAs, which have been intensively studied in recent 

decades and have been used as active ingredients in several currently available 

products (Haidar et al. 2016). Nevertheless, the biocontrol of plant diseases 

remains challenging, and the farmer reliance on BCAs as a valid alternative to 

chemical fungicides remains marginal (Tracy 2014). The failure of many farmers 

to adopt BCAs for disease control can be explained by the inconsistent efficacy of 

biocontrol, which in turn may be related to changing environmental conditions at 

the time when BCAs are applied in the field or in storage (Haidar et al. 2016). 

Therefore, insufficient knowledge about the environmental effects on the BCA 

fitness and efficacy may be a bottleneck for increasing BCA use by farmers.  

Hundreds of papers have been published on the biocontrol of B. cinerea, and the 

subject has also been reviewed several times (Elmer and Reglinski 2006; Elad and 

Stewart 2007; Sharma et al. 2009; Jacometti et al. 2010; Haidar et al. 2016; Abbey 

et al. 2018). None of these reviews, however, provides comprehensive information 

on how the environment affects BCA fitness and efficacy. In the present systematic 

literature review, only 54 papers (from an initial number of 347) were selected for 

analysis of the effect of environmental conditions on the fitness and efficacy of 



Chapter 7 

 

162 

 

BCAs for B. cinerea control. These papers consider 27 genera of fungi and 

bacteria, and only a few species of BCAs have been considered in multiple studies. 

For this reason, the BCAs were meta-analyzed at the genus level instead of at the 

species level. This may have introduced an error due to the intra-genus variability 

in environmental responses. However, consistency was observed among species 

belonging to the same genus (i.e., they have similar responses to different 

environmental conditions; data not shown). For example, Trichoderma viride 

(Sutton and Peng 1993), T. harzianum (Hjeljord et al. 2000), and T. atroviride 

(Hjeljord et al. 2001) have the same temperature range (i.e., 20-25°C) for optimal 

germination of conidia. Similarly, populations of Bacillus amyloliquefaciens (Calvo 

et al. 2017), B. subtilis (Pershakova et al. 2018), and B. mycoides (Guetsky et al. 

2001) all have an optimal temperature range from 25 to 30°C. 

The present literature review indicates that information about the effects of 

temperature, RH, and pH on the fitness and efficacy BCAs is quite limited. 

Frequently, studies have considered only one measure of fitness or efficacy and 

only one environmental variable (Table 7.1). This is also true for studies of some 

popular BCA genera, such as Candida and Saccharomyces. Although more 

information exists for Trichoderma, most Trichoderma papers provide only one 

measure of fitness. This insufficient databased is surprising because knowledge of 

the environmental requirements for BCA establishment, colonization, and efficacy 

should be the foundation for the development of efficient disease control 

strategies.  

The absence of the term “Botrytis” in the title, summary, or keywords of the papers 

selected through the systematic literature review may have excluded some papers 

that assessed the effect of environmental conditions on the fitness of BCAs in 

general or on the control of pathogens other than B. cinerea. Although these 

papers might have been included in our meta-analysis, they were not included 

because when BCAs are used against a target pathogen other than B. cinerea, the 

context may be very different. For instance, Trichoderma, Pseudomonas, and 

Bacillus have been used for the biocontrol of various soilborne fungal diseases 

(Heydari and Pessarakli 2010). In this work, the possibility of failing to obtain useful 

information by excluding papers that do not directly deal with B. cinerea was 

partially addressed by checking the references of selected papers and by 

reviewing them, when appropriate. 

The concept of environmental niches proposed in the present chapter may help 

researchers identify those BCAs that occupy (or partially occupy) the same niche 

as the target pathogen (B. cinerea in this review); such BCA may therefore have 

an increased probability of growing under the same environmental conditions 

under which B. cinerea grows; this may lead to greater interaction (which can be 
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parasitism, competition or antagonism, depending on the BCAs’ characteristics) 

between the microorganisms and therefore to higher efficacy of the BCA. The 

environmental niches for B. cinerea, Trichoderma, and Candida were described by 

using the metadata obtained in the systematic literature review, and they could 

probably be improved by consideration of additional literature or by conducting 

additional research. The intention here is not to propose definitive niches for these 

microorganisms, but to show how the environmental niche approach works and to 

discuss its possible uses. 

Environmental niches can be useful for screening new BCAs based on their ability 

to occupy the same environmental niche as the target pathogen. Environmental 

niches can also help in the selection of the BCAs to be used in the field. For 

instance, if the pathogen niche is not completely covered by one BCA, a second 

BCA could be combined to extend the environmental niche occupied by both 

BCAs. Furthermore, when different BCAs are available to control a pathogen, the 

selection of the BCA to be used in a specific field application should include 

consideration of the weather conditions at application and those forecast in the 

days following application so as to increase the probability that the selected BCA 

will occupy the target’s environmental niche.  

Environmental niches could also be a starting point for the development of 

dynamic, weather-driven models for the prediction of BCA effectiveness. Although 

mathematical models of the BCA-pathogen-host plant interactions have been 

developed (Jeger et al. 2009; Cunniffe and Gilligan 2011; Xu et al. 2011), the 

models focus on the mechanisms of biocontrol without regard for the environment. 

A number of weather-driven models are available for pathogens, including B. 

cinerea (Xu et al. 2000; González-Domínguez et al. 2015), and BCAs could be 

incorporated into these models. At present, no weather-driven models are 

available for BCAs of B.cinerea. 

New models addressing the effect of environment on BCA-plant pathogen systems 

are needed. Development of these models will require a deeper knowledge of the 

biology and epidemiology of the BCAs and of how the environment affects their 

fitness and efficacy against B. cinerea. Because obtaining the needed information 

could be challenging, priority should be given to the most-studied species of BCAs 

and for those included in commercial products. Once new information becomes 

available, models accounting for both biocontrol mechanisms and environmental 

conditions could be developed, which may help enhance the biocontrol B. cinerea. 
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Supplementary material  
Table S7.1. Environmental variables considered in the referenced studies in relation to the fitness and/or efficacy of several biological 
control agents (BCAs) against Botrytis cinerea. 
  Fitness  Efficacy (Reduction of) 

BCA  Spore germination Mycelial growth Population size  Disease Surface colonization Germination Sporulation 

Bacteria         

Bacillus 
amyloliquefaciens 

na1 na Calvo 2017T, pH  Mari 1996T - - - 

B. dendroides na na -  Wood 1951T - - - 
B. coagulans na na -  - Wang 2013pH - - 

B. mycoides na na Guetsky 2001T  Guetsky 
2001T, RH 

- 
Guetsky 
2001T 

- 

B. subtilis na na 
Pershakova 

2018T 
 Xu 2010T - - - 

Paenibacillus 
polymyxa 

na na Gu 2013T, pH  Helbig 
2001T 

- - - 

Pantoea 
agglomerans 

na na Nunes 2002T  - - - - 

Pseudomonas 
fluorescens 

na na Bisutti 2015T, pH  Wood 1951T - - - 

P. syringae na na -  Janisiewicz 
1992T 

- - - 

Rahnella aquatilis na na Calvo 2007T  Calvo 2007T - Calvo 2007T - 
Eukaryota         

Albifimbria 
verrucaria 

- - -  Hannusch 
1996T, RH 

Hannusch 1996T, RH - - 

Alternaria atra 
Köhl 1999T 

 Köhl 2004T, RH 
Köhl 1999T  

Kessel 2005T 
-  

Köhl 1999T,  
Köhl 

2004T,RH,  
Nicot 2002T, 

RH 

- - 
Schoene 
2002T,RH 

A. alternata -  -  Hannusch 
1996T, RH 

Hannusch 1996T, RH - - 

1
7
1
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  Fitness  Efficacy (Reduction of) 

BCA  Spore germination Mycelial growth Population size  Disease Surface colonization Germination Sporulation 
Aureobasidium 
pullulans 

- - 
Lima 1997T 
Vero 2009T 

 Dik 1999T, 

RH 
Parafati 2015pH Dik 1999T, RH Dik 1999T, RH 

Bisifusarium 
dimerum 

- Kessel 2005T -  Nicot 2002T, 

RH 
- - - 

Candida sake - - 

Teixido 1998T, 

RH, pH  
Carbò 2018aT, 

RH Carbò 
2018bT, RH, pH 
Nunes 2002T 

 Cook 1999T - - - 

C. zemplinina - - -  - Junior 2016pH - - 

C. oleophila - - 
Lima 1997T 

Mercier 1994T 
Mercier 1995RH 

 - - - - 

Clonostachys 
rosea 

Köhl 1999T 
 Sutton 1993T 
Yu 1998T, RH 

Köhl 1999T 
Pratella 1993T 

Cota 2008T 
Morandi 2001T  

Köhl 1999T 
Sutton 
1993T  

Yu 1998T, RH 
Hannusch 
1996T, RH 

Hannusch 1996T, RH - 
Szandala 
2001T, RH 

Yu 1998T, RH 

Drechslera spp. - - -  Hannusch 
1996T, RH 

Hannusch 1996T, RH - - 

Epiccocum 
purpurascens 

- - -  Hannusch 
1996T, RH 

Hannusch 1996T, RH - - 

E. nigrum - - -  - - - 
Szandala 

2001T 
Metschnikowia 
pulcherrima 

- - Piano 1997T  Cook 1999T Parafati 2015T - - 

Meyerozyma 
guilliermondii 

- - Guetsky 2001T  Guetsky 
2001T, RH 

- 
Guetsky 
2001T, RH 

- 

Paecilomyces 
variotii 

- Pratella 1993T -  - - - - 
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  Fitness  Efficacy (Reduction of) 

BCA  Spore germination Mycelial growth Population size  Disease Surface colonization Germination Sporulation 

Penicillium spp. Sutton 1993T - -  
Sutton 
1993T 

Wood 1951T 
- - - 

Pichia 
membranefaciens 

- - Qin 2004T  - - - - 

Saccharomyces 
cerevisiae 

- - -  Filonow 
1998T 

- - - 

Saturnispora 
diversa 

- - -  Li 2016T - - - 

Trichoderma spp. - - -  Eden 1996T - - - 
T. atroviride Hjeljord 2001T - -  Xu 2010T - - - 

T. harzianum Hjeljord 2000T Pratella 1993T 
Elad 1993T, RH 

O'Neill 1996T, RH 
 

O'Neill 
1996T, RH 
Xu 2010T 
Dik 1999T, 

RH 

Elad 1993T, 

RH 

- 
Dik 1999T, RH 

Hjeljord 
2001T 

Szandala 
2001T, RH  

Dik 1999T, RH 
Hjeljord 
2001T 

T. viride Sutton 1993T Pratella 1993T -  

Sutton 
1993T 

Wood 1951T 
Hannusch 
1996T, RH 

Hannusch 1996T, RH - - 

Wickerhamomyces 
anomalus 

- - -  - Parafati 2015pH - - 

W. onychis - - 
Zapata 2011T, 

RH, pH 
 - - - - 

Naganishia albida - - -  

Helbig 
2002T 

Dik 1999T, 

RH 

- Dik 1999T, RH Dik 1999T,RH 

1
7
3
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  Fitness  Efficacy (Reduction of) 

BCA  Spore germination Mycelial growth Population size  Disease Surface colonization Germination Sporulation 

Papiliotrema 
laurentii 

- - 
Roberts 1990T 

Lima 1998T 
Qin 2004T 

 

Filonow 
1998T 

Roberts 
1990T 

- - - 

Rhodotorula 
glutinis 

- - 

Lima 1998T 
Qin 2004T 

Zhang 2008T 
Zapata 2011T, 

RH, pH 

 Helbig 
2001T 

- - - 

R. mucilaginosa - - Li 2011T  - - - - 
Sporobolomyces 
roseus 

- - -  Filonow 
1998T 

- - - 

Tausonia pullulans - - Qin 2004T  Qin 2004T - - - 

Epiphytic bacteria - - -  Sobiczewski 
1999T 

- - - 

Epiphytic yeasts - - -  - - 
Vargas 
2012T 

- 

1 na: not applicable; T: temperature; RH: relative humidity; -: no information available in the meta-analysis  
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          Chapter 8 

A generic model accounting for the interactions among 

pathogens, host plants, biocontrol agents, and the 

environment, with parametrization for Botrytis cinerea on 

grapevines1 

 

 
Abstract 

Although the use of biocontrol agents (BCAs) to manage plant pathogens has 

emerged as a sustainable means for disease control, the global reliance on their 

use remains relatively insignificant and the factors influencing their efficacy remain 

unclear. 

In this work, we further developed an existing generic model for biocontrol of foliar 

diseases, and we parametrized the model for the Botrytis cinerea–grapevine 

pathosystem. The model was operated under three climate types to study the 

combined effects on BCA efficacy of four factors: i) BCA mechanism of action; ii) 

timing of BCA application with respect to timing of pathogen infection (preventative 

vs. curative); iii) temperature and moisture requirements for BCA growth; and iv) 

BCA survival capability. 

All four factors affected biocontrol efficacy, but factors iii and iv accounted for >90% 

of the variation in model simulations. In other words, the most important factors 

affecting BCA efficacy were those related to environmental conditions. 

These findings indicate that the environmental responses of BCAs should be 

considered during their selection, BCA survival capability should be considered 

during both selection and formulation, and weather conditions and forecasts 

should be considered at the time of BCA application in the field. 

  

                                                 
1Fedele G, Bove F, González-Domínguez E, Rossi V, 2020. Agronomy, Special Issue Mathematical 

Modelling Applications in Crop Ecology and Disease Epidemiology, Accepted. 

. 
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Introduction 

Biocontrol of plant pathogens has emerged as a sustainable method of disease 

management and as a viable way to reduce the application of chemicals in 

agriculture (Elad and Freeman 2002; Elmer et al. 2005; Harman 2000; Tracy 

2014). The reasons for increasing restrictions on the use of chemicals and for 

increasing interest in biocontrol include the negative effects of chemicals on human 

health and the environment (Alavanja et al. 2004; Epstein 2014), pathogen-

acquired resistance to commonly applied chemicals, and the lack of replacement 

products (Hahn 2014). Biocontrol involves the use of fungi, bacteria, yeasts, or 

viruses (together referred to as biocontrol agents or BCAs) that may suppress plant 

pathogens via competition for nutrients or space, antibiosis, parasitism, and 

induced host plant resistance (Elad and Freeman 2002). 

Despite the extensive research on biocontrol and the potential of using 

BCAs as alternatives to chemicals, the global reliance on BCA use remains 

relatively insignificant (Tracy 2014). Many BCAs have been reported to suppress 

plant pathogens under controlled conditions in laboratories and greenhouses, but 

only a few have performed consistently in the field (Guetsky et al. 2001; Paulitz 

and Belanger 2001). A possible reason for the lack of success of BCAs in the field 

is that they are often used in a similar manner as fungicides, even though the 

processes influencing the efficacy of BCAs are complex (Rosenheim et al. 1995). 

The complexity is not surprising because BCAs are living organisms that 

dynamically interact with the target pathogen, the host plant, the microbial 

communities in the phyllosphere, and the physical environment (Fedele et al. 

2019a, see Chapter 7). Fluctuating environmental conditions in the field influence 

BCA survival, establishment, growth, and activity (Elad and Freeman 2002; 

Kredics et al. 2003; Xu et al. 2010). Although temperature and humidity have been 

evaluated as key factors affecting BCA efficacy in some studies (Dik and Elad 

1999; Elad et al. 1993; Fedele et al. 2019a, see Chapter 7; Hannusch and Boland 

1996; Jackson et al. 1991; Mitchell et al. 1987; Kredics et al. 2003), the complex 

relationships between BCAs and the environment remain difficult to predict and 

manage (Deacon and Berry 1993; Whipps 1997).  

Mathematical models have been used to study disease epidemics in relation 

to BCA dynamics. Some models focus on the relationship between BCA dose 

and pathogen infection (Cabrefiga and Montesinos 2005; Johnson 1994; 

Montesinos and Bonaterra 1996; Smith et al. 1997), while others consider more 

complex interactions (Cunniffe and Gilligan 2011; Knudsen and Hudler 1987; 

Kessel et al. 2005). Jeger et al. (2009) developed a mean-field deterministic model 

that is able to predict the likelihood of successful control of foliar diseases by a 

single BCA in relation to the biocontrol mechanisms involved. The latter model is 
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a standard susceptible-infected-removed (SIR) model, in which host–pathogen 

dynamics are coupled with pathogen–BCA dynamics through four biocontrol 

mechanisms: mycoparasitism, competition, antibiosis, and induced plant host 

resistance. Improved versions of this model were subsequently proposed to 

compare the effects of using a single BCA with two biocontrol mechanisms (Xu et 

al. 2010) vs. the combined use of two BCAs, each with an individual mechanism 

(Xu et al. 2011), or the effects of constant vs. fluctuating temperatures on 

biocontrol efficacy (Xu and Jeger 2013). The latter study revealed that the 

dynamics of biocontrol differed greatly under constant vs. fluctuating temperatures 

and stressed the importance of characterizing biocontrol activity in relation to 

environmental conditions and disease development. 

In the current research, we enlarged the model proposed by Jeger et al. 

(2009) by including i) the effect of environmental conditions on the interactions 

between the pathogen and BCA and ii) the dynamics of host growth and 

senescence. The proposed model structure is generic and could be applied to 

various pathosystems and several pathogen–BCA interactions. We also 

parametrized the model for the Botrytis cinerea–grapevine pathosystem. Botrytis 

cinerea is the causal agent of Botrytis bunch rot (BBR), a serious disease that 

damages all grapevine organs and especially bunches, resulting in substantial 

losses of quantity and quality (Elad et al. 2016; Jarvis 1977; Williamson et al. 

2007). We then operated the model under three climate types to determine 

whether the use of a specific BCA is more likely to result in effective biocontrol of 

B. cinerea depending on its adaptation to fluctuating conditions of temperature and 

relative humidity. In the following sections, we describe the model, its 

parametrization for the BBR case-study (i.e., Botrytis bunch rot in grapes, caused 

by Botrytis cinerea), and iii) model simulations for different BCAs under different 

climate types. 

 

Model description 

The model is based on the generic model developed by Jeger et al. (2009) and 

further revised by Xu et al. (2010). In this model, a classic susceptible-infected-

removed (SIR) model for host–pathogen dynamics (Hethcote 1989) is combined 

with a model for pathogen–BCA dynamics. The modified model was developed by 

using a system dynamics approach (Leffelaar and Ferrari 1989) in which the 

system (consisting of the plant, the pathogen, the BCA, and the environment) is 

described by state variables, which represent plant tissue categories in relation to 

the pathogen–BCA interaction. The system moves from one state variable to 

another by mean of fluxes, which are regulated by rate variables (or rates). Rates 

depend on the characteristics of the pathogen, host plant, and BCA, and may also 
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be influenced by the weather conditions that affect the processes underlying the 

dynamics of both the pathogen (i.e., infection and infectiousness) and the BCA 

(i.e., growth and survival capability). The effect of external variables on processes 

is accounted for by driving functions (i.e., temperature, relative humidity, and 

moisture duration).  

The model is generic and can be operated for fungal pathogens of aerial 

plant parts (e.g., leaves and fruits) and for BCAs with different mechanisms of 

action (MOA) including competition with the pathogen for space and nutrients, 

direct activity on the pathogen through antibiosis or mycoparasitism, and induced 

resistance in the plant. These are the main MOA of the currently used BCAs (Elad 

and Freeman 2002). The model works with a time step of 1 day.  

The model was developed by using the software STELLA® (abbreviation of 

Systems Thinking, Experimental Learning Laboratory with Animation; 1.6.1. 

version; 2018), a visual programming language for system dynamics modelling. 

The model was diagrammed (Fig. 8.1) by using the graphic representation of 

Forrester (1961), which combines state variables (rectangles), flows (solid arrows), 

rates (valves), parameters and coefficients (circles), and numerical relationships 

(dashed arrows). Acronyms for state variables, rates, driving variables, and 

parameters are explained in Table 8.1.  

 

Table 8.1. List of state variables, rates, driving variables, and parameters used in the model. 
Symbol Meaning of symbol Dimension 

K Total surface area in the system 1 

HS Healthy-susceptible tissue N 

I Affected by pathogen and infectious tissue N 

R Affected by pathogen and removed tissue N 

Hr Healthy and resistant tissue N 

Hb Healthy and BCA colonized tissue N 

Ib Infectious and BCA colonized tissue N 

Rb Removed and BCA colonized tissue  N 

BSUM Total of BCA colonized tissue N 

RG Rate of growth N.T-1 

RS Rate of senescence N.T-1 

STARTP Initial inflow of the pathogen into the system N.T-1 

RI Rate of infection N.T-1 

RR Rate of removal N.T-1 
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STARTB Initial inflow of the BCA into the system N.T-1 

RPIN Rate of daily pathogen inflow  N.T-1 

RBIN Rate of daily BCA inflow N.T-1 

RRES Rate of induction of resistance by BCA  N.T-1 

RSUS Rate of change from Hr to HS tissue N.T-1 

RCOLHr Rate of BCA colonization for Hr N.T-1 

RCOLH Rate of BCA colonization for HS N.T-1 

RCOLI Rate of BCA colonization for I tissue N.T-1 

RCOLR Rate of BCA colonization for R tissue N.T-1 

GRO Rate of BCA growth under fluctuating temperature and moisture N.T-1 

BMORH Rate of BCA mortality for the Hb tissue N.T-1 

BMORI Rate of BCA mortality for the Ib tissue N.T-1 

BMORR Rate of BCA mortality for the Rb tissue N.T-1 

RAUDPC Rate of AUDPC calculation N.T-1 

RRG Relative rate of growth N.N-1.T-1 

RRS Relative rate of senescence N.N-1.T-1 

b Relative rate of infection N.N-1.T-1 

h Relative rate of change from I to R tissue N.N-1.T-1 

c0 Relative rate of change from HS to Hr tissue N.N-1.T-1 

e Relative rate of change from Hr to HS tissue N.N-1.T-1 

c1 Relative rate of change from HS to Hb tissue N.N-1.T-1 

c2 Relative rate of change from I to Ib and from R to Rb tissue N.N-1.T-1 

f Relative rate of BCA mortality N.N-1.T-1 

COFR Correction factor for occupied tissue 1 

COFRHr Correction factor for Hr tissue 1 

COFRI Correction factor for I tissue 1 

COFRR Correction factor for R tissue 1 

PDUR Duration of mobilization of pathogen inoculum T 

PIN Day of the first seasonal infection T 

BDUR Duration of mobilization of BCA inoculum BDUR T 

BIN Day of the BCA application T 

T Driving function for daily temperature 1 
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MD Driving function for daily moisture duration 1 

RH Driving function for daily relative humidity 1 

AUDPC Area under disease progress curve [1] 

POCC Total K units occupied by the pathogen [N] 

EFF Overall BCA efficacy [1] 

C Relative contribution of competition [1] 

A Relative contribution of antibiosis [1] 

IR Relative contribution of induced resistance [1] 

P Relative contribution of mycoparasitism [1] 
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Figure 8.1. Model flowchart in which the state variables are host tissue categories that 

change according to the interactions among the pathogen, BCA, and the environment. The 
diagram uses the symbols developed by Forrester (1961). The core of the model is based 
on a classic susceptible-infected-removed (SIR) model, with tissue evolving from healthy-
susceptible (HS) to infectious (I), and removed (R). The rate of infection of tissue (RI) 
depends on primary (STARTP) and secondary infections (I). The rate of resistance induction 
by a BCA (RRES) depends on BCA application (STARTB) and the total amount of healthy-
susceptible tissue (HS). The rates of BCA colonization (RCOLH, RCOLI, RCOLR, and 
RCOLHr) depend on BCA application (STARTB) and the total amount of colonized tissue 
(BSUM). The structure incorporates host growth (RG) and physiological senescence (RS). 
Symbols for state variables, rates, and parameters are explained in Table 8.1.  

 
 

State variables and connecting flows  

The site of the system consists of K units of plant tissue that can be potentially 

occupied (i.e., affected) by the pathogen during the epidemic. The K units 

represent the state variables of the model, and belong to one of the following non-

overlapping categories of tissue: i) healthy and susceptible to infection (HS); ii) 

affected by the pathogen and infectious, i.e., can generate new, secondary 

infections (I); iii) affected by the pathogen and removed, i.e., no longer infectious 

(R); iv) healthy and colonized by the BCA, i.e., resistant to infection by the 

pathogen (Hr); v) healthy and colonized by the BCA, i.e., which is protected from 
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the pathogen (Hb); vi) infectious and colonized by the BCA, i.e., unable to generate 

new infections (Ib); and vii) removed and colonized by the BCA (Rb). The seven 

state variables are mutually exclusive so that: 

K = HS + I + R + Hr + Hb + Ib + Rb   (1) 

The model considers that, during the epidemic and as a consequence of BCA 

application, the K units move from one state variable to another by means of rates. 

At the beginning of a simulation, all of the plant tissue is in the state variable 

HS. The size of HS is dynamic and increases over time as a consequence of plant 

growth (in such a way that HS = 1 at the time of maximum plant size), or decreases 

as a consequence of senescence (which is relevant for those diseases in which 

the senescent plant tissue is no longer susceptible to infection). Inflow (rate of 

growth, RG) and outflow (rate of senescence, RS) of host tissue with respect to 

HS is calculated as follows: 

RGt = HSt-1  RRGt    (2) 

 

RSt = HSt-1  RRSt    (3) 

in which t is the current day; t-1 is the day before; and RRGt and RRSt are relative 

rates of host growth and senescence on day t, respectively.   

The host tissue in the state variable HS moves to state variable I as a 

consequence of infection by the pathogen; this flow is regulated by RI, the rate of 

infection, which is calculated as follows: 

RIt = STARTPt + bt  It-1  COFRt   (4) 

in which STARTP is the initial inflow of the pathogen into the system; b is the 

relative rate of infection; I is as previously defined; and COFR is the correction 

factor for occupied tissue. 

In equation (4), STARTP is calculated by assuming that the pathogen enters 

the system starting on day PIN (the day of the first seasonal infection) and 

continues to enter at a constant rate RPIN for a period of PDUR days; PIN, RPIN, 

and PDUR are all model parameters that are defined for each situation. 

In equation (4), COFR is calculated as follows: 

COFRt = (1 - ((Kt - HSt) / Kt)   (5) 

in which K and HS are as previously defined. 

The host tissue in the state variable I moves to state variable R when the 

infectious period (i.e., the period during which the pathogen continues producing 
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inoculum on affected tissue) is over; this outflow is regulated by RR, the rate of 

removal, which is calculated as follows: 

RRt = ht  It-1     (6) 

in which h is the relative rate of removal, and I is as previously defined.  

The model considers that, at any time during the simulation period, a BCA 

enters the system because of human intervention (i.e., a treatment with the BCA); 

this can be before, at the same time as, or after the pathogen. The BCA inflow is 

regulated by STARTB, which is calculated for a period of BDUR days (i.e., the 

period during which the BCA is applied), starting from day BIN (i.e., the day on 

which the BCA is applied) at a constant rate equal to RBIN; BIN, RBIN, and BDUR 

are all model parameters that are defined for each situation.  

The introduction of the BCA generates outflows from HS, so that the healthy 

tissue cannot be infected by the pathogen and, therefore, cannot move to I. The 

model considers that this outflow can be caused by BCAs that induce resistance 

in the host tissue and/or that prevent infection due to competition and/or antibiosis. 

For BCAs that induce resistance, the outflow from HS (named RRES) is 

calculated as follows: 

RRESt = c0 t  Hr t-1  COFRHr t-1   (7) 

in which c0 is the relative rate of change from HS to Hr, and COFRHr is the 

correction factor for plant resistant tissue and is calculated as follows: 

COFRHr t = (1 - ((K t - Hr t) / K t))   (8) 

in which K and Hr are as previously described. 

For BCAs that prevent infection by the pathogen, the outflow from Hr (named 

RCOLHr) is calculated as follows: 

RCOLHr t = STARTBt + c1 t  BSUMt-1  COFRHr t-1 (9) 

in which c1 is the relative rate of change from Hr to Hb; BSUM is the total of the 

tissue colonized by the BCA (i.e., BSUM= Hb + Ib + Rb); and STARTB and COFRHr 

are as previously defined.  

Because induction of resistance in the host tissue is transitory, the model 

considers that the Hr tissue can go back to HS and become susceptible to infection. 

The flow from Hr to HS is calculated as follows: 

RSUSt = et  Hr t-1     (10) 

in which e is the relative rate of change from Hr to HS, and Hr is as previously 

described. 
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The introduction of a BCA that prevents infection by the pathogen also 

generates an outflow from HS (named RCOLH), which is calculated as follows: 

RCOLHt = STARTBt + c1 t  BSUMt-1  COFRt-1  (11) 

in which c1 is the relative rate of change from HS to Hb, and BSUM, STARTB, and 

COFR are as previously defined. 

The introduction of a BCA also generates an outflow from I. This occurs for 

those BCAs able to inhibit or reduce the sporulation on affected and infectious 

plant tissue (i.e., I) because of mycoparasitism and/or antibiosis, so that the 

infectious tissue reduces its ability to generate new infections. The outflow from I 

(named RCOLI) is calculated as follows: 

RCOLIt = STARTBt + c2 t  BSUMt-1  COFRIt-1  (12) 

in which c2 is the relative rate of change from I to Ib; BSUM and STARTB are as 

previously defined; and COFRI is the correction factor for infectious tissue and is 

calculated as follows: 

COFRIt = (1 - ((Kt - It) / Kt))    (13) 

in which K and I are as previously described. 

The introduction of a BCA also generates an outflow from R, even though 

this does not directly affect the epidemic. This outflow (termed RCOLR) is 

calculated as follows: 

RCOLRt = STARTBt + c2 t  BSUMt-1  COFRRt-1 (14) 

in which c2 is the relative rate of change from R to Rb; BSUM and STARTB are as 

previously defined; and COFRR is the correction factor for removed tissue and is 

calculated as follows:  

COFRRt= (1 - ((Kt - Rt) / K t))    (15) 

in which K and R are as previously described. 

The model considers that as the plant tissue becomes colonized by the BCA 

(which is accounted for by equations (9), (11), (12), and (14)), the plant tissue can 

revert to BCA-free tissue because of BCA mortality. The flows from Hb, Ib, and Rb 

to HS, I, and R, respectively, are calculated through a rate of BCA mortality, BMOR 

(BMORH, BMORI, and BMORR, respectively), as follows: 

BMORt = f t  (Hb or Ib or Rb)t-1   (16) 

in which f  is the relative rate of mortality (i.e., the relative rate of change from Hb, 

Ib, or Rb to HS, I, or R, respectively). 
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Driving variables for the pathogen 

Driving variables are those functions that determine the relative rate of change of 

the system as influenced by external variables (Rabbinge and de Wit 1989). 

For pathogen infections that are influenced by temperature and relative 

humidity, the relative rate of infection (b) is calculated by equation (17a): 

𝑏𝑡 = (𝛾 𝑇𝑒𝑞𝑡
𝜁 (1 𝑇𝑒𝑞𝑡))ν (1 + 𝑒𝑥𝑝(𝜚−𝜓

𝑅𝐻𝑡
100

))⁄   (17a) 

in which γ, ζ, and ν are the equation parameters accounting for the effect of 

temperature; ϱ and ψ are the equation parameters accounting for the effect of 

humidity; Teq are temperature equivalents calculated as (Tt-Tmin)/(Tmax-Tmin), 

in which Tt is the average temperature (in °C) of day t; Tmin and Tmax are minimal 

and maximal temperatures at which the pathogen can cause infection, 

respectively; and RH is the average relative humidity (%) of day t.  

For pathogen infections that are influenced by temperature and the duration 

of a moist period, the relative rate of infection (b) is calculated by equation (17b): 

𝑏𝑡 = (α  𝑇𝑒𝑞𝑡
𝛽  (1 𝑇𝑒𝑞𝑡))θ  𝑒𝑥𝑝 −ϑ  𝑒𝑥𝑝 (−ς  𝑀𝐷𝑡)

 (17b) 

in which , , and  are the equation parameters accounting for the effect of 

temperature; ϑ and  are the equation parameters accounting for the effect of 

moisture; Teq is as previously described; MD is moisture duration (number of wet 

hours per day or number of hours with high RH, depending on the pathogen). 

Equation (17a) is a logistic equation, and equation (17b) is a Gompertz 

equation, and both describe the S-shaped increase in infection as “moisture” (RH 

or MD, respectively) increases (Campbell and Madden 1990) up to an asymptote 

that is defined by temperature by means of a bell-shaped beta equation of Analytis 

(Analytis 1977). In the beta equation, parameters 𝛾 and  define the top of the 

curve, 𝜁 and  its symmetry, and ν and  its size. 

The relative rate of change from I to R (h) is calculated as follows: 

h = 1 / {𝜙 × [(
𝑇𝑡−𝑇𝑚𝑖𝑛

𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
) × (

𝑇𝑚𝑎𝑥−𝑇𝑡

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)

(
𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡

𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
)

]}  (18) 

in which 𝜙 is the duration of the infectious period (in days) at the optimum 

temperature (Topt, °C), and Tt, Tmin, and Tmax are as previously described. 

In equation (18), the temperature response curve is derived from Reed et 

al. (1976) and Wadia and Butler (1994). 

 

Driving variables for the BCA 
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The model considers four main biocontrol mechanisms: mycoparasitism, 

competition, antibiosis, and induced resistance. As in Jeger et al. (2009), a single 

BCA can have one or more biocontrol mechanisms, and these may operate 

additively. The biocontrol mechanisms characterizing an individual BCA are 

included in the model as the BCA profile (PROF): 

PROF = P + C + A + IR    (19) 

in which P, C, A, and IR are the relative contribution of mycoparasitism, 

competition, antibiosis, and induced resistance, respectively, to the overall BCA 

activity, considering that P + C + A + IR = 1. 

The relative rates of change from HS to Hr (c0), HS and Hr to Hb (c1), and I 

to Ib and R to Rb (c2) are calculated as follows: 

c0 = GRO  IR  EFF0    (20) 

 

c1 = GRO  (C +A)  EFF1    (21) 

 

c2 = GRO  (A +P)  EFF2    (22) 

in which GRO is the BCA growth rate under fluctuating temperature and moisture; 

EFF0, EFF1, and EFF2 are overall BCA efficacies in preventing the infection of the 

HS and Hr tissue by induced resistance (EFF0), antibiosis, and mycoparasitism 

(EFF1), and in reducing the sporulation of the I tissue (EFF2). 

In equations (20), (21), and (22), GRO is calculated by using equation (17b), 

in which , , and  are replaced by , , and  (the equation parameters 

accounting for the effect of temperature); ϑ and  are replaced by  and  (the 

equation parameters accounting for the effect of moisture); and Teq and MD are 

as previously defined. 

The relative rate of change from Hb to HS, Ib to I, and to Rb to R (f) is 

calculated as follows: 

𝑓𝑡 =  {1 − [(
𝑇𝑡−𝑇𝑚𝑖𝑛

𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
) × (

𝑇𝑚𝑎𝑥−𝑇𝑡

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)

(
𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡

𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
)

]}  ×  {1 −

[(
𝑅𝐻𝑡−𝑅𝐻𝑚𝑖𝑛

𝑅𝐻𝑜𝑝𝑡−𝑅𝐻𝑚𝑖𝑛
) × (

𝑅𝐻𝑚𝑎𝑥−𝑅𝐻𝑡

𝑅𝐻𝑚𝑎𝑥−𝑅𝐻𝑜𝑝𝑡
)

(
𝑅𝐻𝑚𝑎𝑥−𝑅𝐻𝑜𝑝𝑡

𝑅𝐻𝑜𝑝𝑡−𝑅𝐻𝑚𝑖𝑛
)

]}   (23) 

in which Tt and RHt are as previously defined, and Tmin, Topt, Tmax, RHmin, 

RHopt, and RHmax are the minimal, optimal and maximal temperatures and RHs 

for BCA survival, respectively. The temperature and RH response curve in 
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polynomial equation (23), in which T and RH are the independent variables, is 

derived from equation (18). 

The relative rate of change from Hr to HS (e) is constant and depends on 

the duration of the induced resistance in the plant tissue, which depends on the 

combination of BCA and pathogen. 

 

Model output 

The model output is represented by changes over time of the state variables in the 

system. An example of model output is shown in Figure 8.2A for three categories 

of host tissue: i) healthy and susceptible (HS, green line); ii) healthy and occupied 

by the BCA (Hb, purple line); and iii) occupied by the pathogen and infectious (I, 

red line). The simulation describes the changes in the proportion of the three 

categories of host tissue following the application of a preventative BCA on day 1 

for a 40-d period during which the host tissue does not change because of plant 

growth and/or senescence. In Figure 8.2A, the proportion of HS tissue declines on 

day 1 because of the introduction of the BCA, which colonizes 60% of the tissue, 

and declines again at day 4 because of infection by the pathogen. Following 

infection, the tissue colonized by the BCA remains relatively constant until day 25; 

during this period, the BCA is effective in controlling the pathogen, which does not 

colonize additional tissue. After day 25, the tissue colonized by the BCA rapidly 

decreases, and the tissue occupied by the pathogen increases. Weather 

conditions (Fig. 8.2B) are important drivers for these dynamics, with a decrease in 

air temperature and wetness duration favoring the pathogen more than the BCA.  

An additional state variable, the area under the disease progress curve 

(AUDPC) (Campbell and Madden 1990), was calculated to evaluate the overall 

effects of BCA characteristics and usage and of environmental conditions on the 

disease development. The AUDPC was calculated at a daily rate (RAUDPC) as 

the sum of the total K units of plant tissue occupied by the pathogen (POCC) as 

follows: 

AUDPC = I + R + Ib + Rb     (24) 
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Figure 8.2. A representative simulation of the model, which predicts the control of a foliar 
pathogen following application of a biocontrol agent. (A) Example of one simulation that 

shows the dynamics for three categories of host tissue: healthy-susceptible tissue (HS, 
green line), infectious tissue (I, red line), and BCA colonized tissue (Hb, violet line). The 
simulation refers to the application of a BCA as a preventative treatment for a simulation 
period of 40 days. (B) Weather conditions used as input in this simulation: temperature (T, 

°C, red line); moisture duration (MD, h, light-blue area); and relative humidity (RH, %, green 
line). 
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Model parametrization  

The model was parametrized for the biocontrol of BBR in grapevine clusters during 

ripening, which is between “veraison” (growth stage GS83; Lorenz et al. 2015) and 

“berries ripe for harvest” (GS89). The simulation period was set at 40 days, with 

northern Italy as the reference environment (Fedele et al. 2018). K units are single 

berries, which can dynamically belong to one of the seven categories (state 

variables) of the model. Because the number of berries is already defined at the 

beginning of the simulation period (K = 1) and does not change because of plant 

growth from GS83 to GS89, RRG was set to 0 for the entire simulation. Because 

we assumed that no berries become resistant to B. cinerea infection because of 

senescence during that growth stage, RRS was set to 0 for the entire simulation. 

During ripening, BBR can develop under favorable weather conditions 

through three main pathways: i) latent infections become visible as rotted berries; 

ii) air-borne conidia germinate on and infect berries; and iii) aerial mycelium 

produced on rotted berries infects adjacent healthy berries (berry-to-berry 

infection) (Elmer and Michailides 2007; González-Domínguez et al. 2015). In the 

current study, we considered that latent infections and resulting berry-to-berry 

infections are more common than conidial infections (McClellan and Hewitt 1973; 

Nair et al. 1995; Pezet et al. 2003; Keller et al. 2003; González-Domínguez et al. 

2015). We then assumed that the BBR epidemic starts with the onset of rotted 

berries that have been latently infected in early growth stages, which constitutes 

the initial inflow of the pathogen into the system (STARTP). This inflow is assumed 

to occur on the 4th day of the simulation (i.e., PIN = 4), and to continue for a period 

of PDUR=1 day, at a rate RPIN=0.2 (meaning that 20% of the berries are affected 

by latent infections). 

During the simulation, new berries become affected (i.e., rotted) through the 

berry-to-berry pathway at the relative rate b, which is calculated by using equation 

(17a) following Ciliberti et al. (2015b). We assumed that as berries become 

affected, they begin producing conidia and enter in the I category. Afterwards, the 

affected berries continue producing conidia until harvest (Elmer and Michailides 

2007); therefore, there is no outflow from I to R, and h = 0. 

Two BCAs with different multiple MOA (i.e., having different PROFs) were 

entered in the system (i.e., BCAs are applied to clusters) in different simulation 

runs. Specifically, the MOA profile of the first BCA is PROF = P (0.0) + C (0.8) + A 

(0.2) + IR (0.0). This profile can represent, for example, Aureobasidium pullulans, 

which is effective against B. cinerea by competing for nutrients at the infection site, 

which is its main MOA, and also by releasing hydrolytic enzymes that inhibit the 

pathogen (Castoria et al. 2001; Di Francesco et al. 2015) The MOA profile of the 

second BCA is PROF = P (0.8) + C (0.2) + A (0.0) + IR (0.0). This MOA profile can 
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represent, for example, to Pythium oligandrum, which is mainly a mycoparasite but 

which also competes for nutrients with pathogens (Lewis et al. 1989). 

In the model, the overall BCA efficacies (EFF0, EFF1, and EFF2) in 

preventing the infection are considered at their maximal (i.e., EFF0, EFF1, EFF2=1), 

meaning that tissue colonized by the BCA totally prevent or reduce B. cinerea 

development. 

Both BCAs are applied to clusters as a preventative treatment on the 1st day 

of simulation (BIN = 1) or as a curative treatment on the 7th day (BIN = 7). These 

applications constitute the initial inflow of the BCA into the system (STARTB), 

which has BDUR=1 day (i.e., the day of BCA application) at a rate RBIN=0.6 

(meaning that the BCA covers 60% of the K units at the time of application). 

Parameters of driving functions for calculating b, GRO, and f were derived 

from the literature and are indicated in Table 8.2. Rate b is calculated by using 

equation (17a) as in Ciliberti et al. (2015b). GRO is calculated by using equation 

(17b) and by using different parameter values that describe the different responses 

to temperature and moisture of nine BCA strains (named S1 to S9, see Table 8.2). 

Finally, rate f is calculated using equation (23) with different settings of 

parameter values referring to three temperature and humidity conditions under 

which the BCA survives (Table 8.2); these settings simulate different BCA 

manufacturing processes and/or formulations that result in different survival 

capabilities under stressful vineyard conditions (Carbò et al. 2017; Fu and Chen 

2011). 

  



Modeling Biocontrol Agents 

 

199 

 

Table 8.2. Parameter estimates of the equations fitting the following relationships: the 

effects of temperature and relative humidity on b (the relative rate of Botrytis cinerea 
infection); the effects of temperature and moisture duration on GRO (the relative rate of 
growth of the BCA); and the effects of temperature and relative humidity on f (the relative 
rate of BCA mortality). 

Relative rate  Parameter 

b a   γ ζ ν ϱ ψ Tmin Tmax 

 

Botrytis  
cinerea 7.750 2.140 0.469 35.360 40.260 0 30 

         

GRO b 

BCA  
strain      Tmin Tmax 

 S1 6.416 1.292 0.469 2.300 0.048 0 35 

 S2 12.000 4.000 0.469 2.300 0.048 5 37 

 S3 4.000 0.600 0.469 2.300 0.048 0 30 

 S4 6.416 1.292 0.469 4.000 0.500 0 35 

 S5 12.000 4.000 0.469 4.000 0.500 5 37 

 S6 4.000 0.600 0.469 4.000 0.500 0 30 

 S7 6.416 1.292 0.469 2.300 0.010 0 35 

 S8 12.000 4.000 0.469 2.300 0.010 5 37 

 S9 4.000 0.600 0.469 2.300 0.010 0 30 

         

f c 

Survival  
capability Tmin Tmax Topt RHmin RHmax RHopt  

 low 0 35 10 0 100 30  

 medium 5 35 15 0 100 40  

  high 5 40 20 0 100 50   
a b = (γ  Teqζ  (1  Teq))ν  ⁄ (1+ exp (ϱ-ψ  RH/100)); b is the relative infectious rate; Teq is the equivalent 
of temperature calculated as (Tt-Tmin)/(Tmax-Tmin), in which T is the average temperature (in °C), and 
RH is the average relative humidity (%). 
b GRO = (  Teq  (1  Teq))   exp   exp (  MD)); GRO is the BCA growth rate under Teq as 
previously described; MD is moisture duration. 
c f = {1-[((T  Tmin) / (Topt  Tmin)) × ((Tmax  T) / (Tmax  Topt))((Tmax  Topt) / (Topt  Tmin))]} × {1  [((RH  

RHmin) / (RHopt  RHmin)) × ((RHmax  RH) / (RHmax  RHopt))((RHmax  RHopt) / (RHopt  RHmin))]}; T and RH 
are as previously defined; Tmin, Topt, Tmax, RHmin, RHopt, and RHmax are minimal, optimal, and 
maximal temperatures and relative humidity, respectively, for BCA survival. 
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Model running 

The model was used to study the effect of the following sources of variation on 

BBR development: i) MOA of the BCA (2 levels: mainly competition and mainly 

mycoparasitism); ii) BCA application time (2 levels: preventative and curative); iii) 

BCA strain (9 levels: 3 ranges of temperatures combined with 3 moisture 

requirements for BCA growth); and iv) BCA survival capability (3 levels: low, 

medium, and high). These sources of variation generate 108 combinations (2 

MOAs x 2 application times x 9 strains x 3 survival capabilities). In addition, a 

situation with no BCA application was considered as the untreated control (NT). 

To study the effect of environmental conditions, each combination was run under 

nine scenarios that reflect three climate types with three scenarios per type: i) 

warm and dry; ii) mild and semi-arid; and iii) cold and wet. Scenarios are 

represented by fluctuating conditions of temperature, relative humidity, and 

wetness duration (see Table 8.3). Therefore, 981 model runs were generated: (1 

NT + 108 BCA combinations) x 9 climate scenarios. 

An example of the effect of the previously mentioned sources of variation on 

the disease dynamics in the three climate types is provided in Figure 8.3. Each 

graph shows the simulated proportion of the host tissue occupied by the pathogen 

(POCC) over the entire simulation period for each climate type (blue lines, cold 

and wet; green lines, mild and semi-arid; and yellow lines, warm and dry; Fig. 8.3). 

Simulations of Figure 8.3 refer to a competitive BCA (Fig. 8.3A and 8.3B) or to a 

mycoparasitic BCA (Fig. 8.3C and 8.3D) applied as a preventative treatment (Fig. 

8.3A and 8.3C) or as a curative treatment (Fig. 8.3B and 8.3D), with the 

temperature and moisture requirements of S8, and with low survival capability 

(Table 8.2). In the cold and wet climate type, BCA application reduced the final 

(i.e., at day 40) value of POCC by 11 to 16%. In the mild and semi-arid climate 

type, BCA application reduced the final value of POCC by 53 to 68%, irrespective 

of application time or MOA. In the warm and dry climate type, BCA application 

reduced the final value of POCC by 40 to 45%. 

The final values of AUDPC simulated for each of the 981 runs of the model 

were used to calculate the efficacy (E) of each BCA combination (T) in relation to 

the untreated control (NT) as follows: E = (NT – T) / NT. A factorial analysis of 

variance (ANOVA) was carried out for each climate type to determine whether the 

efficacy of each BCA combination was signicantly affected by the main sources of 

variation (MOA, application time, strain, survival capability) or their interactions. 

The three scenarios per climate type were used as replicates. The ANOVA was 

conducted by using the function anova of R software (v 3.6.0; R core team, 2019). 

Figure 8.4 summarizes the efficacy of the BCA in controlling BBR for the 

different simulation runs. Under the cold and wet climate (Fig. 8.4A), in which BBR 
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developed rapidly and occupied all of the host tissue in < 20 days (Fig. 8.3), BCA 

efficacy ranged from 0 to 99% and was significantly influenced by all of the main 

sources of variation (P<0.001) and by the following interactions: MOA × application 

time, application time × strain, application × survival capability, and strain × survival 

capability (Table 8.4). MOA and application time (preventative or curative) 

accounted for 2.6% and 1.7% of total variance, respectively, and all of the 

interactions accounted for <1.7% of the total variance (Table 8.4). Those factors 

that are greatly affected by environmental conditions (the BCA strain and its 

survival capability) together accounted for 91% of the total variance (Table 8.4). 

The average efficacy was higher for BCAs with medium or high survival capability 

(Fig. 8.5A) than for BCAs with low survival capability. The average efficacy in the 

cold and wet climate was higher for S2 and S8 than for S6 (Fig. 8.6). 

Under the mild and semi-arid climate (Fig. 8.4B), in which BBR developed 

gradually and did not completely occupy the host tissue until the end of the 

simulation period (Fig. 8.3), BCA efficacy ranged from 1 to 71% and was 

significantly influenced by the MOA of the BCA (P = 0.017), which accounted for 

0.8% of total variance (Table 8.4), and by the growth requirement of the BCA (as 

indicated by the strain, P = 0.002), which accounted for 0.4% of total variance 

(Table 8.4). BCA efficacy was significantly affected (P<0.001) by the survival 

capability of the BCA, which accounted for 97.9% of the total variance (Table 8.4); 

BCA efficacy increased with the survival capability of the BCA (Fig. 8.5B). 

Under the warm and dry climate (Fig. 8.4C), in which BBR developed slowly 

and occupied only 50% of the host tissue at the end of the simulation period (Fig. 

8.3), BCA efficacy ranged from 0 to 40% and was significantly influenced by the 

survival capability of the BCA (P<0.001) and by the interaction between application 

time and survival capability (P=0.007), which accounted for 97.3 and 2.2% of total 

variance, respectively (Table 8.4). The average efficacy was higher for BCAs with 

a high survival capability than for BCAs with a low or medium survival capability 

(Fig. 8.5C). MOA, strain, and application time did not significantly affect BCA 

efficacy (Table 8.4). 
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Table 8.3. Summary of the weather data for the nine climate scenarios.  

Climate type Scenario 
Average temperature 
(°C) a 

Average relative 
humidity (%) b 

Total wetness 
duration (h) c 

Warm and dry 1 25.74 68.80 56 

 2 25.40 74.85 70 

 3 25.88 69.75 61 

Mild and 
semi-arid 

1 19.15 79.27 81 
 

2 20.08 79.35 91 

  3 18.74 80.97 112 

Cold and wet 1 17.08 87.32 588 

 2 15.37 87.55 287 

 3 16.16 88.30 446 

a Average of daily temperatures (°C).  
b Average of daily relative humidity (%). 
c Total number of hours with wetness (h). 
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Figure 8.3. Examples of the total tissue occupied by the pathogen (POCC) as affected by 
MOA, application time, and climate type. A) A mainly competitive BCA applied as a 
preventative treatment; B) A mainly competitive BCA applied as a curative treatment; C) A 
mainly mycoparasitic BCA applied as a preventative treatment; D) a mainly mycoparasitic 

BCA applied as a curative treatment. Dashed lines indicate POCC dynamics when no BCA 
application is applied (NT), and solid lines indicate POCC dynamics when a BCA is applied. 
Blue, green, and yellow lines indicate the simulation in a cold and wet, mild and semi-arid, 
and warm and dry climate type, respectively. Each line corresponds to the POCC dynamics 
averaged across the three scenarios used as replicates for each climate type. 
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Figure 8.4. BCA efficacy against Botrytis bunch rot in ripening grapevine clusters as 

affected by MOA (mainly competitor or mainly mycoparasite, as indicated at the top of the 
figure), responses of 9 BCA strains to temperature (S1 to S9; X axis, see Table 8.2 for 
details), BCA survival capability (low, medium, and high, as indicated on the right side of 
each plot), and climate(A: cold and wet; B: mild and semi-arid; C: warm and dry). Each point 

represents the average, and the bars represent the standard errors of three scenarios per 
each climate type. Red and blue colors indicate that the BCA is applied as a preventative 
or a curative, respectively, i.e., before or after Botrytis cinerea infection. 
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Table 8.4. Analysis of variance statistics for the influence of MOA, application time, BCA strain, and survival capability on BCA 

efficacy.  

    Warm and dry a   Mild and semi-arid   Cold and wet 

Source of variation df b Variance c P(>F)  Variance P(>F)  Variance P(>F) 

MOA 1 0.05 0.724  0.763 0.017  2.59 <0.001 

Application time 1 0.03 0.791  0.155 0.279  1.66 <0.001 

Strain 8 0.03 1.000  0.412 0.002  4.96 <0.001 

Survival capability 2 97.34 <0.001  97.884 < 0.001  86.02 <0.001 

MOA × Application time  1 0.14 0.562  0.009 0.788  1.31 0.001 

MOA × Strain  8 0.02 1.000  0.015 0.998  0.10 0.553 

MOA × Survival capability   2 0.05 0.879  0.264 0.137  0.06 0.626 

Application time × Strain 8 0.03 1.000  0.011 1.000  1.04 <0.001 

Application time × Survival capability  2 2.15 0.007  0.311 0.097  1.68 <0.001 

Strain × Survival capability 16 0.01 1.000  0.137 0.417  0.25 0.010 

MOA × Application time × Strain 8 0.02 1.000  0.002 1.000  0.10 0.547 

MOA × Strain × Survival capability 16 0.01 1.000  0.017 1.000  0.04 0.991 

MOA × Application time × Survival capability  2 0.08 0.823  0.008 0.949  0.03 0.799 

Application time × Strain × Survival capability 16 0.01 1.000  0.012 1.000  0.12 0.446 

MOA × Application time × Strain × Survival capability  16 0.01 1.000  0.000 1.000  0.03 0.999 
a To study the effect of environmental conditions, each combination was run under nine contrasting scenarios, i.e., under three scenarios for each of three 
climate types. 
b Degrees of freedom. 
c Percentage of the variance accounted for by each source of variation. 
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Figure 8.5. BCA efficacy against Botrytis bunch rot in ripening grapevine clusters averaged across nine BCA strains and as affected by 
BCA survival capability (low, medium, and high; see Table 8.2) and climate type (A: cold and wet; B: mild and semi-arid; C: warm and 

dry). The thick line in the boxes is the median; the lowest value in each box represents the 1st quartile (25th percentile); the highest 
value of each box represents the 3rd quartile (75th percentile); red points in the boxes are the means; black points in the graph are 
outliers. 
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Figure 8.6. BCA efficacy against Botrytis bunch rot in ripening grapevine clusters of nine 

BCA strains (see Table 8.2) in the cold and wet climate. The thick line in the boxes is the 
median; the lowest value in each box represents the 1st quartile (25th percentile); the 
highest value of each box represents the 3rd quartile (75th percentile); red points in the 
boxes are the means; black points in the graph are outliers. 

 

 

Discussion and conclusion 

The model that was developed by Jeger et al. (2009) and that was improved by Xu 

et al. (2010), Xu et al. (2011), and Xu and Jeger (2013) accounts for the biocontrol 

mechanisms involved and is able to predict the dynamics of pathogen and 

biocontrol agent (BCA) populations. In Xu and Jeger (2013), the significant effects 

of varying BCA–temperature relationships and application times on BCA efficacy 

suggested the importance of considering environmental conditions under which 

the BCA and target pathogen interact. In the present research, the model of Jeger 

et al. (2009) was enlarged to include crop growth and senescence, and the 

environmental effects on the pathogen and on BCA growth and survival. Like the 

model of Jeger et al. (2009), the enlarged model has a generic structure and can 

be applied to any pathosystem involving fungal pathogens of aerial plant organs 

as well as different pathogen–BCA interactions involving different BCA 

mechanisms of action.  

We parametrized the enlarged model for B. cinerea causing Botrytis bunch 

rot (BBR) on grapevines. The model parametrization was derived from the 

epidemiological studies performed by Ciliberti and colleagues (Ciliberti et al. 

2015a; 2015b; 2016). Those epidemiological relationships were incorporated in a 

mechanistic model for B. cinerea-grapevine developed by González-Domínguez 

et al. (2015), but the latter model did not include a BCA component. The use of 

BCAs for BBR control has been extensively studied (Abbey et al. 2018; Elad and 
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Stewart 2007; Elmer and Reglinski 2006; Sharma et al. 2009; Jacometti et al. 2010; 

Haidar et al. 2016), with emphasis on biocontrol mechanisms and field efficacy; 

less research has been conducted to understand how environmental conditions 

affect BCA fitness and efficacy (Fedele et al. 2019a, see Chapter 7). In the current 

study, the model parametrization for BCAs used different parameter values 

represented by nine BCA strains, which differed in their growth and survival in 

response to temperature and moisture conditions. 

The model was run under three climate types to study the combined effects 

of the following factors: (i) mechanism of action of the BCA; (ii) timing of BCA 

application with respect to the pathogen (preventative vs. curative); (iii) 

temperature and moisture requirements for BCA growth; and iv) BCA survival 

capability. All of these factors affected, although to different degrees, biocontrol 

efficacy. Environmental conditions were the most important factors, accounting for 

>90% of the variance in simulated biocontrol efficacy; other factors, even though 

significant under some climate types, accounted for only a minor percentage of the 

variance. This finding may help explain why the application of BCAs often results 

in inconsistent control of the target pathogen in the field (Haidar et al. 2016). In 

other words, our results suggest that the inconsistent BCA efficacy in repeated 

experiments (Guetsky et al. 2001; Hannusch and Boland 1996; Shtienberg and 

Elad 1997) and in the practical biocontrol of diseases (Elmer and Reglinski 2006; 

Fravel 1999; Huang et al. 2000; Stewart 2001) can be caused, at least to some 

extent, by differences in environmental conditions between experiments or by 

fluctuations in environmental conditions in the same experiment (Elad and 

Freeman 2002; Kredics et al. 2003; Xu et al. 2010). This finding also stresses the 

importance of considering the environmental response of the BCA during its 

selection, BCA survival capability during both selection and formulation, and 

weather conditions and forecasts at the time of BCA application in the field. 

Concerning the environmental response of the BCA during its selection, 

BCAs that are able to grow under a wide range of environmental conditions (i.e., 

strains S2 and S8 in this study) and that share the temperature and moisture 

requirements of the target pathogen may be more effective than BCAs with a more 

limited ability to grow under a range of environmental conditions. BCA response to 

temperature and moisture can be evaluated by means of environmentally 

controlled experiments (Fedele et al. 2019b), and the effects of temperature and 

moisture on the pathogen–BCA relationship can be evaluated by using 

environmental niches (Fedele et al. 2019a, see Chapter 7). It is essential that the 

effects of environment be included when screening BCAs for market development 

(Calvo-Garrido et al. 2018; Köhl et al. 2011). 
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Concerning the BCA survival capability during both selection and 

formulations, our model simulations indicate that BCAs may be more effective in 

controlling the target pathogen for long periods and under a range of weather 

conditions if they have a high rather than a low survival capability. This result 

confirms previous findings  (Magan 2006; Calvo-Garrido et al. 2014a; Longa et al. 

2008) and also the importance of protective effects provided by additives or 

adjuvants used in the formulation of the commercial product (Calvo-Garrido et al. 

2014b; Carbó et al. 2017; Lahlali and Jijakli 2009). This result also confirms that 

survival capability should be a key property used to screen microorganisms for 

biocontrol (Köhl et al. 2011). 

Finally, weather conditions and forecasts at the time of BCA application in 

the field should be considered so as to maximize the probability that the BCA will 

grow and control the pathogen. Although the current model could be useful in this 

respect, its utility should be verified with field experiments (Gent et al. 2013). On 

the other hand, developers of BCAs could use the current model to predict the 

efficacy of candidate organisms under different scenarios of weather conditions 

and application timings. 
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CONCLUSIONS 

This Thesis covered a wide study on the epidemiology and management of Botrytis 

cinerea affecting grapevines, causing Botrytis bunch rot (BBR). A previous work 

(Ciliberti 2014) increased our knowledge about the biology and epidemiology of B. 

cinerea and developed a mechanistic, weather driven model to predict the severity 

of BBR at harvest. Results of this work questioned the current management 

strategy of BBR, which is based on empiric application of fungicides at four vine 

growth stages: flowering (A), pre-bunch closure (B), veraison (C), and pre-harvest 

(D). In some viticultural areas, spraying at timing A has been considered much less 

effective than spraying in B (Corvi and Tullio 1979; Pérez-Marín 1998); as a 

consequence, spraying in B rather than in A is recommended. This Thesis goes 

through some aspects related to this strategy to propose a new approach in BBR 

management, based on robust scientific knowledge rather than on empiricism. 

In Chapter 2, a network meta-analysis was used to integrate the results of 

different strategies (based on combinations of 1, 2, 3, or 4 sprays applied in A, B, 

C, and/or D) for BBR control. This multi-treatment analysis can also use a large 

number of individual studies, because it does not require that all of the studies 

include all of the treatments to be compared; in this case, results from 116 studies 

conducted between 1963 and 2016 in nine countries were used. Practical 

recommendations for BBR control should be based on the findings of this study: i) 

spraying in A seems to be very useful for achieving efficient and flexible BBR 

control in vineyards; ii) spraying in B instead of A does not provide the same 

flexibility because, if the grower initially decides to adopt a 1-spray strategy and 

the season subsequently becomes highly favorable for B. cinerea, the grower 

would no longer be able to adopt strategy ABCD; iii) the BC or BCD strategies, 

which are still possible if a spray is not applied in A, provide the same control as 

AC or less control than ACD; strategy BD provides good average control, but 

comparison with AD was not possible because the latter strategy was not 

evaluated in this work; and iv) spraying in B is useful only if the grower decides to 

adopt the ABCD strategy; otherwise, AC or ACD provide satisfactory solutions for 

2- or 3-spray strategies, respectively.  

In Chapter 3, the interactions among fungicide treatments applied at 

different timings for the control of BBR in vineyards were evaluated, using the same 

dataset used in Chapter 2. The work focused on strategies in which early- (i.e., in 

A and B) and late- (i.e., in C and D) season applications are combined. Early-

season sprays showed non-additive interactions (i.e., the observed efficacy was 

significantly lower than expected in case of additive effect) while late-season 
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sprays did. No significant synergistic effects were observed among fungicide 

sprays. These results show that the subsequent application of fungicides 

controlling the same pathway is not fully beneficial in the early-season. These 

findings support the results obtained in Chapter 2, which outline that spraying in A 

is more convenient than in B, and performing both sprays is only recommended 

under conditions of high BBR pressure, in which the strategy ABCD is 

recommended. Otherwise, strategies CD or ACD are the most convenient, being 

able to exploit the additive effect of the interventions on repeated infection events 

(for CD) or different infection pathways of B. cinerea (for ACD).  

In Chapter 4, the effect of early-season fungicide treatments was 

investigated. For this purpose, a hydrolysis probe-based qPCR assay was 

optimized for the quantification of B. cinerea DNA in grape bunch trash and the 

calculation of a colonization coefficient (CC), as a tool for investigating the 

relationships between the quantity of B. cinerea DNA, the colonization of, and the 

sporulation potential on bunch trash. Results indicate that the qPCR assay and CC 

calculation provide a sensitive and reliable method for quantifying colonization by 

B. cinerea of the trash materials remaining in grape bunches after flowering. The 

qPCR assay provides consistent results with the traditional methods used to 

estimate B. cinerea colonization of and sporulation on bunch trash. The validity of 

the qPCR assay was confirmed in the field using bunch trash naturally colonized 

with B. cinerea that had been treated or not treated with fungicides during 

flowering. In the field, the CC values were consistent with the reduction of the 

sporulation potential caused by fungicide treatment and revealed differences 

between fungicide-treated and non-treated plants under different environmental 

conditions, even in situations where the incidence of colonization of bunch trash 

by B. cinerea was very low. The CC values of bunch trash were also consistent 

with the reduction in the incidence of latent infection of berries caused by fungicide 

application at flowering.  

In Chapter 5, the effects of fungicides (FUN, a commercial mixture of 

fludioxonil and cyprodonil), biological control agents (BCA, Aureobasidium 

pullulans and Trichoderma atroviride), and botanicals (BOT, a commercial mixture 

of eugenol, geraniol, and thymol) applied at different timings (A, B, C, or ABC) on 

B. cinerea bunch trash colonization and sporulation in vineyards were investigated. 

The ability of B. cinerea to colonize the bunch trash (as indicated by B. cinerea 

DNA content obtained using the qPCR assay optimized in Chapter 4) and to 

sporulate on bunch trash (as indicated by the number of conidia produced under 

optimal laboratory conditions) was highly variable, and this variability was higher 

between years (2015 to 2018) than among the vineyards and the sampling times 

(i.e., 1 week after applications at A, B, and C). Botrytis cinerea sporulation on 
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bunch trash was significantly lower in plots treated with FUN than in non-treated in 

only 3 of 18 cases (3 vineyards × 2 years × 3 sampling times). The probability of 

the applications being effective increased when the sporulation potential on the 

non-treated bunch trash increased (i.e., when the bunch trash colonization 

increased), supporting the positive relationship between sporulation potential and 

CC found in Chapter 4. FUN applications significantly reduced B. cinerea 

colonization of bunch trash compared to non-treated, BCA efficacy was similar to 

that of FUN, but BOT efficacy was variable. For all products, colonization reduction 

was the same with application at A vs. ABC, meaning that the effect of an early 

season application lasted from flowering to one week after veraison. These results 

confirm the important role of the early-season control of B. cinerea (Chapters 2 

and 3) in reducing the saprophytic colonization of bunch trash and the subsequent 

sporulation, especially when the risk of BBR is high.  

The estimation of the risk of colonization during the early-season would help 

growers decide whether an early spray application would reduce the sporulation 

potential later in the season. This decision, together with that of how many sprays 

are necessary to control BBR, can clearly be made easier by use of a mathematical 

model that is able to predict the risk of the disease development. A recently 

published mechanistic model for B. cinerea predicts (González-Domínguez et al. 

2015), on a daily basis, the relative infection severity during two infection windows 

corresponding to the two grape-growing periods relevant for B. cinerea infection: 

i) between “inflorescences clearly visible” and “berries groat-sized, bunches begin 

to hang”; and ii) ripening berries. The model, which is based on relative infection 

severity values, predicts the final BBR as mild, intermediate, or severe.  

In Chapter 6, the model developed by González-Domínguez et al. (2015) 

was further validated in 23 independent Botrytis bunch rot (BBR) epidemics 

(combinations of vineyards × year) occurred between 1997 and 2018 in Italy, 

France, and Spain. The ability of the model to account for latent infections was 

studied performing shelf-life assays with mature berries with no rot BBR signs. The 

model correctly classified the severity of 15 of 23 epidemics (65% of epidemics) 

when the classification was based on field assessments of BBR severity; when the 

model was operated by considering the BBR severity after shelf-life, its ability of 

correctly predict the epidemic severity increased from 65% to >87%. This result 

showed that the model correctly accounts for latent infections. This is an important 

aspect, considering the relevant role of latent infections occurring from grapevine 

flowering and onwards in the disease epidemiology. Therefore, the model may be 

considered a reliable tool for supporting decision making for BBR control in 

vineyards.  



Chapter 9 

 

222 

 

Once a disease control intervention is decided, a further decision is needed, 

concerning the use of fungicides, botanical or biocontrol agents. In Chapter 4, 

BCAs were successfully used for early-season applications.  

In Chapter 7, a systematic literature review was conducted to retrieve and 

analyze the metadata on the influence of environmental conditions on BCA fitness 

and efficacy against B. cinerea. The review considered 54 papers (selected from 

a total of 347 papers) and 27 genera of BCAs. The review showed that only limited 

information is available about the effects of temperature, humidity, and pH on BCA 

fitness and efficacy. Metadata were also used to define environmental niches for 

B. cinerea and for two BCAs, Trichoderma and Candida, which were used as case 

studies. The environmental niches, in turn, were used to study the temperature 

and humidity conditions under which the BCA prevails over B. cinerea, and to 

define the extent of environmental niche sharing between the BCA and the target 

pathogen. The concept of environmental niches proposed in Chapter 7 may help 

researchers identify those BCAs that occupy (or partially occupy) the same niche 

as the target pathogen; such BCA may therefore have an increased probability of 

growing under the same environmental conditions under which B. cinerea grows; 

this may lead to greater interaction (which can be parasitism, competition or 

antagonism, depending on the BCAs’ characteristics) between the 

microorganisms and therefore to higher efficacy of the BCA.  

In Chapter 8, these considerations were used for the development of a 

model addressing the effect of environment on BCA-plant pathogen systems for 

the prediction of BCA effectiveness. A model previously developed by Jeger et al. 

(2009), was integrated with new components to consider the effect of 

environmental conditions on the pathogen-BCA interactions and the dynamics of 

the host, including crop growth and senescence. The model was parametrized for 

B. cinerea causing BBR on grapevines. The effects of the following factors on the 

BBR development were studied under three climate types through the model: (i) 

mechanism of action of the BCA; (ii) timing of BCA application with respect to the 

pathogen; (iii) temperature and moisture requirements for the BCA to grow; and iv) 

BCA survival capability. All these factors affected the biocontrol efficacy. The two 

factors affected by environmental conditions (iii and iv) accounted for >90% of the 

experimental variance, resulting the most important influencing factors for BCA 

efficacy. These findings stress the importance of considering three main aspects 

for the selection of new BCAs and their practical use: i) the environmental 

response of the BCA during its selection; ii) the BCA survival capability during both 

selection and formulation; and iii) weather conditions and forecasts at the time of 

BCA application in the field. 
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Overall, the results provide new information and data for reasonable 

scheduling of fungicide applications and for an appropriate selection of control 

products to manage BBR in vineyards.  
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