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Abstract
Background  The cultivation of maize (Zea mays L.), one of the most important crops worldwide for food, feed, 
biofuels, and industrial applications, faces significant constraints due to Fusarium verticillioides, a fungus responsible 
for severe diseases including seedling blights, stalk rot, and ear rot. Its impact is worsened by the fact that chemical 
and agronomic measures used to control the infection are often inefficient. Hence, genetic resistance is considered 
the most reliable resource to reduce the damage. This study aims to elucidate the genetic basis of F. verticillioides 
resistance in maize.

Results  Young seedlings of eight divergent maize lines, founders of the MAGIC population, were artificially 
inoculated with a F. verticillioides strain. Phenotypic analysis and transcriptome sequencing of both control and 
treated samples identified several hundred differentially expressed genes enriched in metabolic processes associated 
with terpene synthesis. A WGCNA further refined the pool of genes with potential implications in disease response 
and found a limited set of hub genes, encoding bZIP and MYB transcription factors, or involved in carbohydrate 
metabolism, solute transport processes, calcium signaling, and lipid pathways. Finally, additional gene resources were 
provided by combining transcriptomic data with previous QTL mapping, thereby shedding light on the molecular 
mechanisms in the maize-F. verticillioides interaction.

Conclusions  The transcriptome profiling of eight divergent MAGIC maize founder lines with contrasting levels of 
Fusarium verticillioides resistance combined with phenotypic analysis, clarifies the molecular mechanisms underlying 
the maize-F. verticillioides interaction.
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Background
Maize (Zea mays L.) is among the most important crops 
worldwide for food, feed, biofuels, and industrial applica-
tions. With more than one billion tons harvested every 
year, it ranks second globally for total production [1]. 
Across all its cultivation range, maize faces significant 
constraints due to the presence of pathogens affecting the 
quality and quantity of its production. Fungal diseases 
may have a devastating impact on maize cultivation, 
depending on many factors, including environmental 
conditions, susceptibility of maize varieties, and agro-
nomic practices [2].

Fusarium verticillioides (Sacc.) Nirenberg is considered 
the most widespread fungal pathogen of maize world-
wide [3]; its infection may cause considerable yield losses 
and a drastic reduction of grain quality. The fungus can 
colonize several maize tissues at different environmen-
tal stages causing manifold diseases, including Fusarium 
seedling rot (FSR), Fusarium ear rot (FER) and Fusar-
ium stalk rot (FStR) [4, 5]. Moreover, the pathogen may 
impact human and animal health by feeding on contami-
nated maize, since the fungus synthesizes a wide range of 
mycotoxins, primarily fumonisins, that are cancerogenic 
[6, 7]. Current chemical and agronomic measures to con-
trol Fusarium verticillioides infection are largely ineffi-
cient [7] and call for the development of durable genetic 
resistance.

The genetic basis of maize resistance to F. verticillioi-
des is not yet fully elucidated, and most research has been 
centered on the host resistance to FER. The phenotypic 
evaluation of this disease entails field trials employing 
different inoculation techniques [8, 9]. However, field 
assessments are time-consuming and must be repeated 
across several environments for different years [8, 10–
13]. Moreover, disease evaluation is profitable only when 
environmental conditions are suitable for fungal growth 
and spread. In contrast, at the seedling stage, the estima-
tion of genetic resistance to FSR may profit from labora-
tory assays by which seed infection with F. verticillioides 
occurs under controlled inoculation conditions and spore 
concentrations [14–17]. Even though FER and FSR repre-
sent two distinct diseases and concern different growth 
stages of the plant, germplasm screening for resistance at 
seedling stage may constitute a decisive strategy to hin-
der fungal disease and fumonisin contamination. In this 
regard, previous works used different maize panels and 
populations to study FSR by combining Genome-Wide 
Association Studies (GWAS) and transcriptional analy-
ses [14–17]. RNA sequencing (RNA-seq) approach is a 
powerful method to identify transcriptional clues report-
ing molecular pathways underpinning phenotypes. For 
this reason, transcriptional studies have been applied to 
study expression patterns in response to fungal attacks 
in maize, reporting complex networks of genes that 

may enhance resistance [9, 18]. Using a combination of 
these methods, candidate genes and genomic loci with 
a potential role in disease resistance, albeit partial, were 
described. For instance, by incorporating GWAS and 
QTL mapping, it was possible to identify eight QTL and 
43 genes associated with FSR resistance [14]. In the study 
by Septiani et al. [15] eight candidate genes within the 
three identified FSR QTL were pointed out using a Multi-
parent Advanced Generation Inter Crosses (MAGIC) 
population that offers great potential for improving 
breeding populations as well as for high-resolution trait 
mapping [15, 19]. A complete understanding of the 
molecular mechanisms underlying the infection process 
and the corresponding resistance pathways is crucial for 
developing innovative breeding programs incorporating 
disease resistance to cultivated maize.

Weighted gene co-expression network analysis 
(WGCNA) is a popular systems biology tool used for 
studying gene correlations, identifying modules highly 
associated with phenotypes and detecting hub genes 
within these modules [20, 21]. Based on the co-expres-
sion relationships, genes with similar expression are 
grouped into the same module, thus suggesting that these 
genes may have similar functions or possibly have com-
mon biological regulatory roles. This method has been 
successfully applied in various genomic studies that have 
been used to identify hub genes, and to find the rela-
tionships between gene expression data and relevant 
plant phenotypes, including resistance to fungal diseases 
[22–26].

The aim of this work was to investigate early differ-
ences in transcriptional regulation after F. verticillioides 
inoculation using eight diverging maize lines that are 
the founders of a MAGIC population [19]. The eight 
founder lines encompass most of the genetic and geo-
graphic diversity of the essential public lines historically 
and currently used in maize breeding, representing the 
major maize breeding groups/subgroups, thus holding 
high agronomic importance [27]. Leveraging the diver-
sity existing in the dataset, we produced a transcriptomic 
dataset aimed at addressing three biological questions 
associated with FSR in maize: (1) which transcriptional 
perturbations are induced by the F. verticillioides inocu-
lation in different maize lines; (2) which transcriptional 
perturbations are induced by F. verticillioides inocula-
tion in maize as a whole; (3) which genes are specifically 
responsible for the resistance to F. verticillioides in maize. 
To answer these questions, we used a combination of: dif-
ferential expression analysis, WGCNA, and gene ontol-
ogy. Since resistance to pathogens is a complex polygenic 
trait, we hypothesize that the disease response activates 
specific pathways rather than just a few genes. In fact, 
we found several hundred differentially expressed genes 
strongly enriched in metabolic processes associated with 
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terpene synthesis. WGCNA further refined the pool of 
genes with potential implications in disease response and 
identified a limited set of hub genes such as those encod-
ing bZIP and MYB transcription factors, or involved in 
carbohydrate metabolism, solute transport processes, 
calcium signaling and lipid pathways. Finally, combining 
transcriptomic data with previous QTL mapping, addi-
tional gene resources that could be used to develop F. ver-
ticillioides resistant genotypes were provided.

Methods
Plant material and inoculation bioassay
The eight genetically diverse maize inbred lines (A632, 
B73, B96, F7, H99, HP301, Mo17 and W153R), found-
ers of the MAGIC maize population [19] and used in this 
study, were obtained from Scuola Superiore Sant’Anna, 
Pisa, Italy, and maintained by sibling at the Department 
of Sustainable Crop Production, Università Cattolica del 
Sacro Cuore, Piacenza, Italy.

Mature kernels of each inbred line were artificially 
inoculated using the Rolled Towel Assay (RTA) pheno-
typing method [15]. One RTA is considered a biological 
replicate. One hundred and twenty seeds with similar 
size and without visible damage were chosen for each 
MAGIC Maize (MM) founder line, sixty to be used for 
F. verticillioides inoculation treatment (20 seeds each 
replicate, 3 biological replicates), and sixty for the con-
trol condition (20 seeds each replicate, 3 biological rep-
licates). Before running the experiment, seeds were 
sterilized as previously described [15, 17, 28]. For each 
RTA, twenty seeds were placed on two moistened tow-
els of germinating paper (Anchor paper, Saint Paul, MN, 
USA), inoculated with 100 µl of 1 × 106 conidial suspen-
sion of F. verticillioides ITEM10027 (MPVP 294) and 
covered with a third towel. The strain was isolated from 
maize in South Tuscany, Italy, by the Department of Sus-
tainable Crop Production, Università Cattolica del Sacro 
Cuore, Piacenza Italy, and stored in their fungal collec-
tion, and also in the Institute of Sciences and Food pro-
duction, National Research Council of Bari, Italy ​(​​​h​t​​t​p​:​​/​
/​s​e​​r​v​​e​r​.​i​s​p​a​.​c​n​r​.​i​t​/​I​T​E​M​/​C​o​l​l​e​c​t​i​o​n​​​​​)​. In control, RTAs 
seeds were not inoculated with the conidial suspension 
of F. verticillioides. For both conditions, the towels were 
then rolled-up, placed vertically in a bucket, and put in 
transparent plastic bags to keep treated and control RTAs 
separated to avoid cross-contamination. In total, six 
RTAs, three biological replicates for treatment and three 
biological replicates for control conditions, were carried 
out for each MM founder line, for a total of 48 RTAs.

To quantify the plant response to the disease and 
detect the levels of F. verticillioides, by real-time reverse 
transcription-quantitative PCR (RT-qPCR), RTAs of lines 
H99 and Mo17  were incubated at 25  °C in the dark for 
48, 72, 120 and 168 hpi after the inoculation step. Based 

on the expression trend of fungal and maize genes dur-
ing the seven-day time-course in the two lines, only the 
72 hpi time-point was selected for RNA-seq analysis 
across all MM founder lines. At the end of the incubation 
period, the phenotypic evaluation of FSR was performed 
using a scale from 1 to 5, as previously reported [15, 17, 
28].

Maize scutella tissues were dissected from maize seed-
ling samples of each parental line, immediately frozen in 
liquid nitrogen and stored at -80 °C until both RT-qPCR 
and RNA-Seq analysis were carried out.

RNA isolation
The twenty seeds from each RTA were pooled and con-
sidered as one single biological replicate. Total RNA 
extraction and purification were carried out according 
to Lanubile et al. [29]. RNA sample concentration was 
assessed by fluorometric assay (Qubit, Thermo Fisher 
Scientific Inc. Waltham, MA, USA), and quality was 
checked through A260/280 and A260/230 ratios obtained 
with a Nanophotometer NP80 (IMPLEN, München, Ger-
many) and by agarose gel electrophoresis.

Real-time RT-qPCR expression analysis of β-tubulin and 
pathogenesis-related maize 3 genes
As mentioned above, real-time reverse transcription-
quantitative PCR experiments were performed on scu-
tella tissues collected at 48, 72, 96, 120 and 168 hpi for 
the lines H99 and Mo17 using the FluoCycleTM II SYBR 
Green master mix (EuroClone S.p.a., Milan, Italy) and the 
CFX-96 device (Bio-Rad, Hercules, CA, USA). Scutella 
tissues were examined instead of the entire seed given 
their strategic role in mediating biotic stress protection 
as rich sources of nutrients and defense chemicals [30]. 
Moreover, previous research by Septiani et al. [15] dem-
onstrated that the founder lines H99 and Mo17 exhibited 
highly resistant and highly susceptible phenotypes to F. 
verticillioides, respectively.

One µg of total RNA was taken for cDNA synthesis 
using the High-Capacity cDNA Reverse Transcription 
Kit (Thermo Fisher Scientific). Twenty ng of single strand 
cDNA determined by fluorometric assay (Qubit, Thermo 
Fisher Scientific) were used for RT-qPCR.

The real-time qPCR assay was used to quantify the 
growth of F. verticillioides, detecting the copy number of 
the fungal house-keeping gene β-tubulin transcripts with 
the following primer pairs: 5′-ACA TCC AGA CAG CCC 
TTT GTG-3′ (forward) and 5′-AGT TTC CGA TGA 
AGG TCG AAG A-3′ (reverse), and with the follow-
ing thermal cycling conditions: one initial step at 95 °C 
for 3 min followed by 35 amplification cycles (95 °C for 
40 s, 56.7 °C for 40 s and 72 °C for 40 s), and finally 72 °C 
for 10  min, as previously reported [31]. The number of 
β-tubulin copies is related to the quantity in nanograms 
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of cDNA obtained from maize scutella tissues and deter-
mined based on a linear regression equation according to 
the technical manual (Bio-Rad). To determine the fungal 
cDNA copy number, each sample of kernel cDNA (20 
ng) was compared to a dilution standard curve obtained 
by serially diluting [1:1, 1:5, 1:52, 1:53, 1:54, 1:55] 20 ng of 
fungal cDNA from F. verticillioides isolate ITEM10027 in 
sterile water.

To quantify the plant response to the disease, the rela-
tive expression of the gene pathogenesis-related maize 
3 (PRm3) was performed, and the primer pairs 5′-GGC 
TCT ACG CCT ACG TCA AC-3′ (forward) and 5′-GAT 
GGA GAG GAG CAC CTT GA-3′ (reverse) were used, 
as previously reported [32]. Relative RT-qPCR was per-
formed under the following conditions: 95  °C for 3 min 
and 40 cycles at 95  °C 15  s, 57  °C for 30  s, followed by 
a melting curve analysis [32]. Three technical replicates 
(within each biological replicate) were employed for 
each tested sample and template‐free negative controls. 
Relative quantification was normalized to the reference 
housekeeping gene β‐actin using the following primer 
pairs: 5′- ATG GTC AAG GCC GGT TTC G-3′ (for-
ward) and 5′-TCA GGA TGC CTC TCT TGG CC-3′ 
(reverse) [32]. Fold changes (FC) values in gene expres-
sion were calculated using the 2−ΔΔCt method [33] and 
calibrated on the control kernels.

Library preparation and transcriptome sequencing
As disclosed above, for RNAseq analysis, only the time-
point 72 hpi was considered for all MM founder lines. A 
total of cDNA 48 libraries (eight genotypes x two condi-
tions x three biological replicates) were constructed fol-
lowing the manufacturer’s instructions of the Illumina 
TruSeq Stranded mRNA kit (Illumina, San Diego, CA), 
and then paired-end sequenced (2 × 150  bp) with the 
NovaSeq6000 platform (Illumina, San Diego, CA) at 
IGA-Tech (Udine, Italy).

Differential gene expression analysis
Raw reads were demultiplexed, processed for adapter 
removal and trimmed for quality by Cutadapt v1.11 [34] 
based on a Phred quality score (bases retained if Phred 
score is greater than 30). The quality of trimmed reads 
was assessed by FastQC v0.11.5 (Andrews, 2010). High-
quality reads were mapped against the Zea mays ref-
erence genome assembly B73 (v4.44) with STAR read 
aligner V.2.7.3a [35] using the dual-mode approach. Raw 
gene counts were quantified with the parameter quant-
Mode GeneCounts within the alignment step by STAR 
read aligner. An empirical Bayes model implemented 
in the R package edgeR [36] was used to moderate the 
degree of overdispersion (mean-variance relation-
ship) across genes, obtaining the Counts Per Million 
(CPM) normalization. The dispersion of each gene was 

estimated through the function estimateDisp() in edgeR. 
The formula model.matrix() was run to construct the 
design matrix to be used in the generalized linear model 
(GLM) approach. Among the many equivalent ways 
to define the design matrix, a coefficient for expression 
level was chosen for each group, where a group cor-
responds to the combination of line plus treatment: for 
example, for line A632, we defined a group level for the 
control (A632.control) and a group level for the treated 
condition (A632.treated). The intercept column was not 
included in the design matrix. Once dispersion estima-
tions were obtained and negative bimodal GLM were fit-
ted, a gene-wise quasi-likelihood (QL) F-tests (an exact 
test analogous to Fisher’s exact test adapted for overdis-
persed data), was used to assess the differential expres-
sion analysis (glmQLFit() function, edgeR package). We 
performed the analysis multiple times to find groups of 
differentially expressed genes able to answer the follow-
ing biological questions: (1) effect of Fusarium verticilli-
oides infection in Zea mays (inoculation vs. control across 
inbred lines); (2) effect of F. verticillioides infection within 
each line (inoculation vs. control within each line sepa-
rately); (3) effect of F. verticillioides infection in resistant 
vs. susceptible lines. The contrasts applied in the glmQL-
Fit() function are shown in the Methods S1. For the pur-
poses of this work, we considered a gene as differentially 
expressed, if the adjusted p-value (Benjamini–Hochberg 
method) is below 0.05, regardless the fold-change.

Weighted gene co-expression network analysis
Weighted gene co-expression network analysis 
(WGCNA) was performed using the R package WGCNA 
v1.63 [21, 37]. A signed network was constructed sepa-
rately for control samples (Control-Network) and for 
treated samples (Treated-Network) following the step-
by-step tutorial suggested from Langfelder and Horvath 
[21]. The adjacency matrix was calculated with a soft 
threshold power of 8 for both datasets, and modules were 
forced to contain at least 25 genes. Modules with correla-
tion > 0.8 were merged. The correlation of a gene with all 
other genes in the network (i.e. Gene Connectivity), was 
obtained through the function intramodularConnectiv-
ity() from the adjacency matrix. Module preservation sta-
tistics was computed with the WGCNA package formula 
modulePreservation() setting the Control-Network as ref-
erence and the Treated-Network as test.

Statistical overrepresentation test analysis of the 
WGCNA modules was conducted through the Pro-
tein ANalysis THrough Evolutionary Relationships 
(PANTHER) Classification System [38, 39]. Only terms 
with FDR < 0.05 (Fisher exact test) were considered 
significative.
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Gene Ontology analysis
Gene Ontology (GO) and pathway enrichment of differ-
entially expressed genes (DEG) were analyzed employing 
the online database PANTHER v17.0 (www.pantherdb.
org) [38, 40, 41]. PANTHER is a publicly available, user-
focused knowledgebase providing many functional anno-
tation tools for investigators to understand the biological 
importance behind a long list of genes. The P value for 
the significance of the gene-enrichment term listed by 
PANTHER was obtained through over-representation 
analysis by Fisher’s exact test and the results were cor-
rected for the FDR using the Benjamini–Hochberg 
method [38, 40, 41].

Source of candidate genes
Transcriptomic data generated on the founder lines 
was used to guide the identification of candidate genes 
within QTL previously identified by Septiani et al. [15]. 
The 2-LOD confidence limit of the QTL for FSR resis-
tance was considered for the search of candidate genes. 
The physical coordinates of the interval limits were deter-
mined on the Zea mays genome assembly B73 (v4.44). 
Genomic positions of the QTL were compared with the 
list of differentially expressed genes deriving from the 
three contrasts considered in this study.

Results and discussion
Highest molecular response to inoculation of F. 
verticillioides occurs at 72 h post inoculation
To identify genes associated with the resistance to F. 
verticillioides, we performed a transcriptome analysis 
of the eight founder lines of the MAGIC Maize (MM) 
population [19] along with the investigation of pheno-
typic variation induced by the inoculation. To select the 
relevant time-point to perform RNA-Seq analysis, we 
conducted an explorative time-course experiment of five 
time-points (from 48 to 168 h post-inoculation, hpi) on 
seedlings of the highly resistant and of the highly sus-
ceptible lines (H99 and Mo17, respectively) [15]. The 
Rolled Towel Assay (RTA) showed a different pattern 
of Fusarium Seedling Rot development in the two lines 
(Fig. S1A). In the highly resistant line H99, disease sever-
ity increased gradually, reaching the maximum value of 
2.2 (minimum level = 1,  maximum level = 5) at 168 hpi, 
indicating a reduced presence of F. verticillioides. Quite 
the opposite, in the highly susceptible line Mo17, the FSR 
value increased significantly after 72 hpi, reaching the 
maximum level of 4.8 at 96 hpi, and continued to exhibit 
a high severity incidence up to 168 hpi (4.4; Fig. S1A). 
These results were in line with those obtained through 
the fungal growth assay by the absolute quantification 
of the F. verticillioides β-tubulin housekeeping gene (Fig. 
S1B). In seedlings of the highly susceptible line Mo17, 
β-tubulin copy number (Copy N°) could be appreciated 

already at 72 hpi (Copy N° = 196.8), whereas only at 96 
hpi in H99 (Copy N° = 384.3; Fig. S1B), confirming the 
delayed and slight fungal growth in the resistant line. 
Moreover, we quantified the expression of the maize 
PRm3 gene to have an indication of the molecular defense 
response of maize to the fungus (Fig. S1C). Pathogenesis-
related maize (PRm) proteins are products of defense 
genes and have been often considered as markers for 
the resistance to fungal pathogens. The contribution of 
PRms to kernel resistance was previously demonstrated 
in response to several mycotoxigenic fungi, including F. 
verticillioides [32, 42], F. graminearum [43] and Aspergil-
lus flavus [32, 42, 44, 45]. As expected, the highly resis-
tant line H99 showed a quicker response already at 48 
hpi with a FC of 2.7 compared to the highly susceptible 
line Mo17, where PRm3 reached the maximum level of 
expression at 72 hpi (FC = 6.3; Fig. S1C). In a previous 
work in 2016, Maschietto et al. [46] found higher expres-
sion of pathogenesis-related genes (including the same 
PRm3 gene) and antioxidant enzymatic activities in 
mock-inoculated kernels of two maize resistant lines; in 
contrast, the susceptible genotypes activated defensive 
genes at increased levels only at the late timepoint (72 
hpi) after F. verticillioides inoculation. This trend high-
lighted possible constitutive defense mechanisms pres-
ent in the resistant background such as to allow the more 
rapid reaction observed in the H99 genotype in the first 
48 hpi.

All together these results indicated that the main reac-
tions of maize to pathogen attack took place in the first 
72 hpi, and for this reason we considered 72 hpi as the 
most suitable time-point to investigate the transcrip-
tomic variability among the MM founder lines following 
F. verticillioides inoculation.

The Fusarium Seedling rot severity varies across the MAGIC 
maize parental lines
We conducted a phenotypic evaluation of FSR on all 
eight founder lines at 72 hpi using RTAs and scoring the 
response to F. verticillioides inoculation. We considered 
two conditions: control (mock inoculation) and treated 
(inoculation with conidial suspension). The RTA screen-
ing showed a wide range of phenotypic variation for dis-
ease severity (Fig. 1), scored by visual evaluation from 1 
(null) to 5 (complete), as previously reported by Septiani 
et al. [15]. There was no occurrence of FSR in control 
samples in any of the tested lines, and kernels appeared 
healthy (Fig. 1A). Conversely, the characteristic pink fun-
gal mycelium of F. verticillioides was observed around 
the germinating seeds of susceptible lines after treat-
ment (Fig. 1A), with different intensity levels depending 
on the genetic background (Fig.  1B). For convention in 
this paper, lines with an FSR score below 2.5 are consid-
ered resistant. Least Significance Difference (LSD) test 
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(p < 0.05) confirmed the presence of two classes of pheno-
types: resistant (H99, A632, W153R, HP301) and suscep-
tible (B73, F7, B96, Mo17). FSR scores ranged from 1.8 
to 4.3, with a mean value of 2.1 for resistant lines and a 
mean of 3.7 for susceptible lines (Fig. 1B).

To support FSR scoring, fresh seedling length and 
weight phenotypes were measured (Fig. S2). Even if the 
MM founder lines could be divided in two distinct phe-
notypic groups (resistant and susceptible), the princi-
pal component analysis of the phenotypes showed the 
importance of genetic background (PC1 of 63.4%) over 
response to the pathogen  (PC2 of 29.8%; Fig. S2A). As 
expected, seedling weight and length were positively cor-
related (0.6); FSR was negatively correlated with the seed-
ling length (-0.5), but was poorly negatively correlated 
(-0.1) with the seedling weight (Fig. S2B). Significant 
negative correlations between these two traits and FSR 
were previously reported for seedlings of the MAGIC 
maize population [15], and of a maize diversity panel 
[17], highlighting the ability of F. verticillioides to influ-
ence seedling germination and growth at the early stages 
of inoculation.

Genetic background is the main source of transcription 
variation among MM founder lines
To obtain a comprehensive understanding of the global 
expression profile 72 h post- F. verticillioides inoculation 
in maize, the transcriptomes of control and treated sam-
ples were paired-end sequenced. We processed a total 
of 48 samples, including three biological replicates for 
each condition for each of the eight MM founder lines. 
In total, more than 2.3 billion reads were generated with 

an average of 48.6 million reads per sample (ranging from 
36.5 to 64.7 million reads), as shown in Table S1. After the 
quality filtering, raw reads were mapped to the Zea mays 
B73 reference genome v4 [47], with an average mapping 
rate of 95%, of which 88% mapped uniquely (Table S1.). 
Gene expression levels of the known annotated genes in 
the B73 reference transcriptome were quantified within 
the mapping step. To accurately compare gene expres-
sion among samples, we normalized the raw read counts 
(Table S2) for each individual transcript according to the 
edgeR R package, obtaining the CPM values. Since low-
expressed genes constitute noise for the statistics, they 
were filtered out for the downstream analysis, ending 
up with a total of 30,800 genes out of 39,389 from the 
gene annotation on B73 v4. The hierarchical clustering 
on normalized data identified two sample outliers that 
were removed (Fig. S3A, B). Without the outliers, the 
biological replicates within each line showed an accept-
able level of correlation (Fig. 2A). Multidimensional scal-
ing of distances of normalized expression levels was in 
concordance with the principal component analysis of 
the phenotypes (Fig. S2A): dissimilarity among samples 
did not show a specific pattern associated to the disease 
resistance/susceptibility phenotype (Fig. 2B), even if the 
highly resistant line H99 showed the strongest whole-
transcriptome similarity with the second highly resistant 
line A632, and the weakest similarity with the highly sus-
ceptible line Mo17 (Fig. S3C). As expected, the variability 
within each line was lower than the one between lines. 
Even if the genetic background of the MM founder lines 
drives the main differences measured among samples, 
overall, the positive correlations between MM founder 

Fig. 1  Fusarium Seedling Rot (FSR) evaluation in the eight MAGIC Maize (MM) founder lines at 72 hpi with Fusarium verticillioides. FSR disease severity in 
seedlings was evaluated assigning a score ranging from 1 to 5 as reported in Septiani et al. (2019), according to the level of infection: score 1 indicates 
minimum or no effects (resistant phenotype), while score 5 means that the seed is severely affected (susceptible phenotype). (A) Phenotypic variation in 
FSR severity among seedlings of the highly resistant H99 and the highly susceptible Mo17 founder lines. (B) FSR scores observed in the eight MM founder 
lines considering three biological replicates; letters on the box and whiskers plots are significantly different at p < 0.05 in the LSD test
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line transcriptomes, suggested the activation of a com-
mon pattern caused by the F. verticillioides inoculation 
(Fig. S3C).

Effects of F. verticillioides infection on the transcriptome of 
each parental line
We applied a generalized linear model (glm) to test for 
the differential expression of the non-normally distrib-
uted gene expression data comparing different groups of 
samples. To answer to the three biological questions pre-
viously described, we applied the glm statistical test with 
three different contrasts, obtaining: (i) the genes differen-
tially expressed at 72 hpi within each line; (ii) the genes 
differentially expressed at 72 hpi and shared between all 
lines; (iii) the genes significantly up- or down-regulated 
in the resistant lines (Table S3). For convention in this 
paragraph, a gene is considered differentially expressed 
based on a False Discovery Rate (FDR) threshold < 0.05 
and on a Log2 Fold Change (FC) > 1 or < -1.

Biological question 1 – Transcriptional pertur-
bations induced by F. verticillioides inoculation in 
different maize lines. A total of 10,965 genes were sig-
nificantly expressed in at least one line when compar-
ing the two conditions within each line. Only 45 genes 
were in common among all the MM founder lines, and, 
interestingly, all up-regulated (Fig.  3). The small num-
ber of shared genes is not surprising, considering the 
footprint of the different genetic backgrounds on the 
gene expression profile of the lines. The largest propor-
tion of these common genes was related to the disease 

resistance processes, which included nine DEGs involved 
in the secondary metabolism, namely terpene biosyn-
thesis, as three terpene synthases (Zm00001d041082, 
Zm00001d024208 and Zm00001d029648) and two 
cyclases (Zm00001d032858 and Zm00001d024210), ten 
resistance genes encoding proteinase inhibitors, thauma-
tin and pathogenesis-related proteins, seven cytochrome 
P450 oxidoreductases, three and two DEGs associated 
to lipid and cell wall metabolism, respectively, such as 
fatty acid desaturases, xyloglucan fucosyltransferase and 
glycoside hydrolase, and one WRKY transcription fac-
tor (Zm00001d009939) (Table S3). The discussion about 
most of these DEGs is postponed to the paragraphs 
below.

The MM founder line B96 displayed the highest num-
ber of differentially expressed genes (2,209), while F7 the 
lowest (579).

Biological question 2 – Transcriptional perturbations 
induced by F. verticillioides inoculation in Zea mays. The 
second biological question considers only the inocula-
tion effect, regardless the genetic makeup of the lines. In 
this analysis, a total of 921 genes were significantly up- or 
down-regulated in the treated samples.

Biological question 3  – Transcriptional perturba-
tions induced by F. verticillioides inoculation in resistant 
lines. When grouping resistant and susceptible lines and 
testing for DEGs between the two groups, we found 3,514 
genes significantly up- or down-regulated.

Fig. 2  Biological replicate analysis after outlier removal. (A) Heatmap correlation of Counts Per Million (CPM) normalized data among biological repli-
cates. (B) Multidimensional scaling of normalized expressed genes of each replicate. Colors are given according to the MM founder line. Circles indicate 
control samples, while triangles indicate treated samples
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Gene Ontology enrichment shows that terpene pathway is 
highly enriched
We performed a gene ontology (GO) enrichment analy-
sis comparing control and treated samples for each of 
the tested MM lines. Regardless of the basal transcrip-
tomic differences between lines, the analysis across all 
genotypes reported enrichment in categories with sug-
gestive function in relation to fungal infection. Meta-
bolic processes associated with terpene synthesis were 
found to be highly enriched in all genotypes (Fig. S4). 
A huge array of terpenoid phytoalexins, including 

diterpenoids (kauralexins and dolabralexins) and ses-
quiterpenoids (zealexins), are abundantly accumulated 
in maize in response to multiple fungal pathogens to 
inhibit their growth [48, 49]. Previous transcriptomic 
studies reported that terpene synthase genes were highly 
expressed in response to F. verticillioides [18, 31]. More-
over, an increased susceptibility to F. graminearum was 
detected in maize lines defective in kauralexins or zealex-
ins [50], whereas mutants silenced in terpene synthases 
were more susceptible to Ustilago maydis [51]. Further 
enriched categories were Oxidoreductase activity (all 

Fig. 3  Differentially expressed genes at 72 hpi within each MM founder line. The differentially expressed genes were obtained from contrast 1 comparing 
control and treated samples within each line. A gene is considered differentially expressed based on a False Discovery Rate (FDR) threshold < 0.05 and 
on a Log2 Fold Change (FC) > 1 or < -1. Green and red colors refer to the groups of the four resistant and the four susceptible founder lines, respectively
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MM lines), Defense response (in lines B96, HP301, and 
W153R), Defense response to fungus (F7 and Mo17), 
Chitin metabolic/catabolic process (B73, Mo17 and 
W153R), Lignin metabolic/catabolic process (B96, Mo17 
and W153R), and Lipid metabolic/biosynthetic process 
(HP301, Mo17 and W153R;  Fig.  S4).  Chitin is a well-
known elicitor of immune responses in plants, and it is 
generally assumed that chitin oligomers are released dur-
ing pathogen ingress and are recognized by plants [52]. 
Among the plants’ reactions to chitin are included: pro-
tein phosphorylation, chitinase and glucanase activa-
tion, generation of reactive oxygen species, biosynthesis 
of jasmonic acid and phytoalexins, lignification and cell 
wall thickness [53, 54]. Additionally, lipids play a key role 
at various stages of host–pathogen interactions in deter-
mining virulence and modulating plant defense [55].

Our findings indicated that all these processes were 
essential during F. verticillioides infection in the MM 
lines, as already observed in response to the same fungus 
in seedling [18] and ear [31] as well as in other pathosys-
tems [44, 56, 57]. It is notable that Response to auxin was 
a specific GO pathway enriched in the highly resistant 
line H99. Several genes related to auxin were strongly 
enriched in maize in response to U. maydis [58]. More-
over, in the soybean–Phytophthora sojae interaction, 
auxin accumulated to a greater extent in a relatively resis-
tant soybean cultivar [59].

Weighted gene co-expression network analysis identifies 
cluster of genes highly correlated with FSR severity
Once the differential expression gene analysis was used 
to identify lists of genes answering each of the three 
biological questions, a correlation approach was imple-
mented to identify clusters of highly correlated genes 
(modules) associated with the FSR severity. Since the 
main factor of transcriptional (dis)similarity was driven 
by the intrinsic genetic makeup of the MM founder lines 
and not by the resistance condition (Fig. 2), we needed to 
remove the background noise. For this reason, we used 
only the differentially expressed genes selected based on 
statistical significance, regardless of the magnitude of the 
difference. Therefore, we used the 20,166 differentially 
expressed genes coming from the sum of all the three 
contrasts described in the previous paragraph. Moreover, 
since the empirical Bayes procedure implemented in 
edgeR normalization shrinks the dispersion of the expres-
sion data towards a consensus value, we filtered out 
genes that had no variance, ending up with 20,042 genes. 
To identify important genes up- or down-regulated after 
F. verticillioides inoculation, we used a treatment-specific 
approach, building a network in both the control and 
treatment conditions separately. Each network contains 
23 samples (3 replicates per 8 MM founder lines, with-
out one outlier for each treatment) and 20,042 genes 

(putative network nodes). The network built with the 
control samples hereafter will be called Control-Network, 
while the network built only with treated samples will be 
called Treated-Network. All possible pairwise correla-
tions were calculated in parallel for the 20,042 genes in 
both conditions and converted into measures of connec-
tion strength by ranking their absolute value to a power 
(see Methods paragraph).

Genes with similar patterns of connection strength 
were clustered together in a module of co-expressed 
genes. On this basis, we found 102 modules for the Con-
trol-Network, and 97 modules for the Treated-Network 
(Fig. 4, Table S4). The sum of the connection strength of 
a gene is called connectivity, and it is a key property that 
defines how frequently a gene interacts with the other 
genes. In a biological network, the sum of the connection 
strength of each gene (node) across the whole network 
represents how strongly the gene relates to all the oth-
ers. We based the network analysis on the hypothesis that 
the pathogen treatment would have disrupted the gene-
gene interaction observed in the Control-Network, thus 
changing the network properties. This step was impor-
tant because it highlights whether the relationships (con-
nectivity patterns) and correlation structures between 
expressed genes composing each module are preserved 
or interrupted when measured in a different dataset [60]. 
For this study, we set the Control-Network as the refer-
ence, while we considered the Treated-Network as the 
test. In general, 95 control modules out of 102 showed 
high level of preservation (Zsummary > 10), whereas 
seven modules showed moderate to low evidence of 
preservation (2 < Zsummary < 10) (Fig. 4B). The modules 
exhibit high medianRank reinforcing the fact that they 
were poorly preserved. The disrupted modules in the 
control reference network (Control-Network) contained 
667 genes, that had a significant enrichment in anion 
binding and small molecular binding. The modules con-
tained 19 hub genes, among which the top hub gene was 
one heat shock transcription factor (Zm00001d016255).

The following analysis was based on the gene co-
expression modularity property, with the assumption that 
genes highly interconnected within the network are usu-
ally involved in the same biological pathway. Under this 
assumption, modules coming from the Treated-Network, 
were correlated with the FSR severity score evaluated 
in the RTA samples at 72 hpi. The Pearson correlation 
showed that 19 out of 97 modules were significantly asso-
ciated with the severity phenotype (p < 0.01) (Fig.  4C). 
Since there were modules related to FSR, we hypothe-
sized that among them, modules related to the resistant 
phenotype were also included. To test our hypothe-
sis, we run a linear model on the Module Eigengene of 
each module, which can be considered representative of 
the expression profile of genes within the module. The 
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statistical test showed that three modules with high cor-
relation (cyan4, beige, hotpink) were also differentially 
expressed between resistant and susceptible phenotypes 
(Fig. 4D). The three modules all together contained 363 
genes.

To formally test whether differentially expressed genes 
are less likely to be hub nodes in the co-expression net-
works, we examine the connectivity distributions. 
According to the literature, genes with absolute module 
membership value over 0.9 (to the respective module) 
are defined as hub genes [21]. The Module Membership 

is defined as the correlation between an individual gene 
and the module eigengene. Since we have a lot of mod-
ules with a small number of genes, we will expect a high 
amount of hub genes. We found 200 hubs in the Con-
trol-Network and 201 hubs in the Treated–Network. To 
find genes with potential relevance to resistance against 
F. verticillioides, we decided to focus on the hub genes 
in the Treated–Network belonging to the 19 modules 
significantly associated with the severity phenotype 
with a correlation higher than 0.6. We obtained 91 hub 
genes and interestingly, some of them showed a close 

Fig. 4  Characteristics of the network construction. (A) Distribution of the module dimension. (B) The median rank and the Zsummary statistics in the 
module preservation analysis between Control-Network (reference) and Treated-Network (test). (C) Correlation Module Eigengene (ME) with traits in the 
Treated-Network. (D) Differentially expressed modules from Treated-Network between the resistant and the susceptible phenotypes
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relationship to disease resistance (Table S5). For example, 
Zm00001d029711 and Zm00001d030995 encode for the 
basic leucine zipper (bZIP)-transcription factors 78 and 
111, respectively. Zm00001d029711 was significantly 
down-regulated in the A639, H99, HP301, and B96 MM 
founder lines (biological question 1) and in response to 
F. verticillioides on the whole (biological question 2), 
whereas Zm00001d030995 was significantly upregulated 
only in the F7 line. Zm00001d022442 encodes for a fur-
ther bZIP-transcription factor (58), but this gene was 
not found to be differentially expressed. Several studies 
have described the role of transcription factors that con-
tain a bZIP domain [61], and various processes, such as 
abiotic stress response, seed maturation, flower develop-
ment and pathogen defense, are regulated by bZIP family 
members [62]. The modulation of distinct ZmbZIP genes 
was previously reported following four different fungal 
infections with U. maydis, Colletotrichum graminicola, F. 
moniliforme and Sphacelotheca reiliana [63]. Moreover, 
transgenic soybean plants overexpressing bZIP15 showed 
increased resistance against Sclerotinia sclerotiorum and 
P. sojae [64].

Zm00001d032240 encodes for the MYB-transcription 
factor 146 and was observed significantly upregulated 
in the A632, B73, B96, and Mo17 founder lines and in 
response to F. verticillioides on the whole  (biological 
question 2). Interestingly, the same gene was specifically 
induced in the CO354 susceptible genotype in response 
to FER [31].

Two glycoside hydrolases (Zm00001d029154 and 
Zm00001d029164) were differentially modulated in A639 
and B73 MM lines, and found among the genes specifi-
cally responsible for the maize resistance to F. verticillioi-
des (biological question 3). These enzymes are involved in 
the metabolism of various carbohydrates, which in plant 
pathogenic fungi was directly associated with the degra-
dation of plant cell wall [65]. It was previously reported 
that when F. verticillioides attacks maize plants, carbohy-
drate metabolism is one of the main metabolic processes 
to be affected [18, 66]. This suggests that the pathogen 
could force the plant to produce specific carbohydrates as 
food sources.

Zm00001d048327 and Zm00001d048329 both encode 
adenosine triphosphate (ATP)-binding cassette (ABC) 
transporters and were induced in W153R and Mo17. 
Additionally, Zm00001d048327 was also upregulated in 
H99, B73, B96 and in response to F. verticillioides. ABC 
transporters guide the exchange of chemically diverse 
substances across cellular membranes using ATP as an 
energy source [67], and mediate the detoxification pro-
cesses of both internal and external xenobiotics, confin-
ing them internally in vacuoles or in apoplastic regions 
[68]. An ABC transporter was previously identified as 
differentially expressed in response to Gibberella ear rot 

in maize kernels of resistant and susceptible inbreds [69]. 
Moreover, the same transporter was demonstrated to 
confer resistance to multiple fungal pathogens in wheat 
[70].

Zm00001d007181 encodes for a calcium-binding pro-
tein and was differentially modulated in W153R and B96 
MM founders, and in resistant lines (biological question 
3). He and co-workers [71] detected a hub gene encoding 
for a similar protein responding to maize gray leaf spot 
caused by Cercospora zeina. Furthermore, mutations in 
the calcium-binding protein in wheat determined resis-
tance to Fusarium head blight [72].

The hub gene for a fatty acid hydroxylase 
(Zm00001d011765) was significantly upregulated in 
resistant lines (biological question 3). The hydroxy-fatty 
acid production is mainly the result of enzymatic reac-
tions catalyzed by cytochrome P450-dependent fatty 
acid hydroxylases [73]. These compounds are among the 
most studied oxylipins for their strong antifungal activ-
ity against a large number of fungi [74]. Additionally, they 
were connected to further biological functions, such as 
signaling, virulence, and response mechanisms towards 
stress factors [74].

In summary, the predicted functions of hub genes 
established that transcription factors, carbohydrate 
metabolism, solute transport processes, calcium signal-
ing, and lipid pathways played a central function in FSR 
resistance.

Integration of QTL mapping and differentially expressed 
genes reveals further candidates for FSR resistance
In previous QTL mapping, three FSR-resistance QTL 
(qFSR4.1, qFSR4.2 and qFSR5.1) were identified in 
chromosomes 4 and 5 [15]. Using the physical location 
of QTL, we screened for the presence of differentially 
expressed genes within the three QTL regions and we 
found 7 and 14 genes in the QTL qFSR4.1 and qFSR5.1, 
respectively (Table S6). No differentially expressed genes 
were detected in the QTL qFSR4.2. Among genes associ-
ated with these intervals of interest, 7 were analyzed in 
more detail based on their known defensive role: a gly-
coside hydroxylase (Zm00001d048669), a pectin lyase 
(Zm00001d048696), a laccase (Zm00001d048658), a 
APETALA 2/ethylene responsive element binding pro-
tein (AP2/ERF) transcription factor (Zm00001d016616), 
two negative regulators of plant-type hypersensitive 
response (Zm00001d016584 and Zm00001d016585) and 
a heat shock protein (HSP; Zm00001d016674).

In the region containing the qFSR4.1 QTL, we observed 
the upregulation of two genes (Zm00001d048669 and 
Zm00001d048696) related to carbohydrate metabolism 
and degradation of cell walls, highlighting once again the 
central role of this pathway. In the same genomic region, 
the gene laccase was differentially modulated in the B73 
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founder line and in resistant lines (contrast 3). In plants, 
laccase catalyzes monolignols oxidation and participates 
in lignin polymer formation [75]. It has been broadly 
reported that phenylpropanoid pathway is involved in the 
plant defense response against abiotic and biotic stresses, 
mainly through activating the biosynthesis of second-
ary metabolic compounds, such as flavonoids, lignin, 
hydroxycinnamic acid, and terpenoids [76]. These path-
ways were strongly represented and induced in a maize 
resistant genotype in response to FER [31].

In the genomic region containing the qFSR5.1 QTL, 
the AP2/ERF transcription factor was induced in the 
B96 and W153R MM lines. The same two lines showed 
a downregulation of HSP (Zm00001d016674) along with 
H99 and HP301. Moreover, HSP was down-regulated in 
the contrast analyzed in biological question 3. This agrees 
with previous results reported by Maschietto and co-
workers [8] that also found several HSPs and AP2/ERF 
transcription factors in two overlapping QTL for resis-
tance to FER and fumonisin contamination.

Two additional interesting genes encoding for nega-
tive regulators of plant-type hypersensitive response 
(Zm00001d016584 and Zm00001d016585) were found 
in qFSR5.1 QTL and significantly induced in B73 and 
H99, respectively. Plant hypersensitive defense response 
is a rapid localized cell death that limits pathogen spread 
and is associated with other responses, including ion 
fluxes, an oxidative burst, lipid peroxidation and cell 
wall fortification [77]. These two genes would therefore 
be interesting candidates for further study in relation to 
the response to infection by F. verticillioides and other 
pathogens.

Conclusions
The current study characterized the plant response 
to Fusarium seedling rot disease in maize using gene 
expression profiling of eight divergent maize MAGIC 
founder lines with contrasting levels of resistance. RNA 
sequencing approach identified several hundred differ-
entially expressed genes, whose functions were explored 
through Gene Ontology analysis that highlighted a strong 
enrichment in metabolic processes associated with ter-
pene synthesis. A WGCNA further refined the pool of 
genes with potential implications in disease response and 
found a limited set of hub genes such as those encod-
ing bZIP and MYB transcription factors, or involved in 
carbohydrate metabolism, solute transport processes, 
calcium signaling and lipid pathways. Finally, combining 
transcriptomic data with previous QTL mapping, addi-
tional gene resources were provided that could be studied 
to evaluate their usefulness in marker assisted selection. 
The characterization of mutants generated in our labora-
tory editing and overexpressing candidate genes derived 
from this, and our previous research is already ongoing 

to claim the important role of favorable genetic variants 
in the breeding of maize for F. verticillioides resistance.
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