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Abstract
The hypertrophic cardiomyopathy phenotype encompasses a heterogeneous spectrum of genetic and acquired diseases 
characterized by the presence of left ventricular hypertrophy in the absence of abnormal cardiac loading conditions. This 
“umbrella diagnosis” includes the “classic” hypertrophic cardiomyopathy (HCM), due to sarcomere protein gene mutations, 
and its phenocopies caused by intra‐ or extracellular deposits, such as Fabry disease (FD) and cardiac amyloidosis (CA). All 
these conditions share a wide phenotypic variability which results from the combination of genetic and environmental factors 
and whose pathogenic mediators are poorly understood so far. Accumulating evidence suggests that inflammation plays a 
critical role in a broad spectrum of cardiovascular conditions, including cardiomyopathies. Indeed, inflammation can trigger 
molecular pathways which contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation, 
and microvascular dysfunction. Growing evidence suggests that systemic inflammation is a possible key pathophysiologic 
process potentially involved in the pathogenesis of cardiac disease progression, influencing the severity of the phenotype  
and clinical outcome, including heart failure. In this review, we summarize current knowledge regarding the prevalence, 
clinical significance, and potential therapeutic implications of inflammation in HCM and two of its most important pheno-
copies, FD and CA.
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Introduction

The spectrum of cardiomyopathies with hypertrophic phe-
notype encompasses heterogeneous diseases, including clas-
sic hypertrophic cardiomyopathy (HCM), due to sarcomere 
protein gene mutations and several diseases mimicking 
HCM, the so-called phenocopies [1]. These conditions are 

characterized by different etiology, heterogeneity in pen-
etrance, and a broad phenotypic variability, even among 
patients with the same pathogenetic mutation [2–4]. Thus, 
the final morpho-functional and clinical profiles result from 
a complex interaction between genotype, cellular signaling 
pathways, and environmental stressors (Fig. 1).

In this scenario, systemic inflammation recently gained 
attention as a possible key pathophysiologic process poten-
tially involved in the pathogenesis of disease progression, 
ultimately influencing the severity of the cardiac pheno-
type and clinical outcome, including heart failure (HF) [5]. 
Inflammation-induced oxidative stress, mitochondrial dys-
function, impaired calcium handling, and lipotoxicity are all 
mechanisms that can contribute to cardiomyocyte hypertro-
phy and dysfunction, extracellular matrix accumulation, and 
microvascular dysfunction [6]. Cardiac hypertrophy due to 
sarcomere HCM, Fabry disease, and amyloidosis are all very 
different processes with fundamentally different molecular 
causes. Cardiac hypertrophy “per se” is not associated to 
inflammation, but current evidence suggests that it may 
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contribute to define the phenotypic and clinical profile of 
HCM and phenocopies [5–9] even if currently it is not clear 
how these are connected in terms of inflammation. Yet, this 
aspect has been little appreciated in clinical practice despite 
potential therapeutic implications. The aim of this review is 
to summarize current knowledge regarding the prevalence, 
clinical relevance, and potential therapeutic implications of 
inflammation in HCM and two of its most relevant pheno-
copies, Fabry disease (FD) and cardiac amyloidosis (CA).

Hypertrophic cardiomyopathy

Pathophysiology: potential role of inflammation

HCM is the most common genetic cardiac disease, with 
a prevalence of 1:500 [10]. It is caused by mutations 
in sarcomere genes, coding for proteins involved in the 
cardiomyocyte contractile apparatus [2]. To date, the 
mechanisms by which sarcomere gene mutations cause 
myocardial hypertrophy are not fully understood, but 

knowledge about this topic grew during the last decades 
and some hypotheses have been proposed [11]. An exten-
sive body of literature strongly supports a direct impact 
of sarcomere gene variants on cardiac contractility as the 
central cause of HCM; mutations can be associated with 
enhanced late sodium current activation, cellular calcium 
overload, and increased calcium sensitivity of the myo-
filaments, causing increased contractility and affecting 
myocardial relaxation and diastolic function [11–15]. 
Excessive energy consumption, in turn, causes structural 
and functional impairments of the mitochondria, leading 
to increased production of reactive oxygen species (ROS) 
and resulting in glutathione acylation of muscle filaments 
[16–20]. Moreover, impaired autophagy [18] and accumu-
lation of metabolic end-products [20] may exert a toxic 
effect on the myocardial contractile apparatus and the car-
diomyocyte in general. The link between sarcomere gene 
mutation and inflammation is not fully explained yet, but 
some authors [5] have supposed that cardiomyocyte disar-
ray, sarcomere injury, mitochondrial oxidative stress, and 
microvascular disease may all trigger early inflammation 

Fig. 1   Inflammation as potential modulator of cardiac phenotype in hypertrophic cardiomyopathy, Fabry disease, and cardiac amyloidosis (cre-
ated with BioRender)
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in HCM, and some molecular mediators have been iden-
tified. Specifically, oxidative stress and inflammation 
modulate signaling pathways that are crucial for cardiac 
function, namely, AKT, ERK1/2, c-Jun, and NO-sGC-
cGMP pathways. ROS induce endothelial dysfunction by 
attenuation of NO-sGC-cGMP signaling and contribute 
to an increased titin-based myocardial stiffness. Further-
more, ROS modulate post-translational modifications of 
other proteins involved in excitation–contraction coupling 
such as troponin I, cardiac myosin, and myosin-binding 
protein C, representing important contributors of the 
impaired mechanical properties observed in HCM [21]. 
Among molecular mediators, TNF-α cardiac overexpres-
sion is implied in LV hypertrophy (LVH), and, in turn, it 
induces the expression of pro-inflammatory molecules 
and interleukins such as IL-6 [22]. The latter is a molecu-
lar mediator of LV hypertrophy, myocardial fibrosis, and 
LV dysfunction in response to pressure overload. Moreo-
ver, a potential pathogenetic role of neutrophil extracel-
lular traps (NETs) has been proposed [23]. In response to 
pro-inflammatory agents and ROS, neutrophils release 
their nuclear material, forming a web-like extracellular 
network. These webs, formed by DNA, histones, and 
neutrophil granule constituents, are named NETs. NETs 
represent part of a continuum of sterile inflammation 
and thrombosis, and they may trigger microvascular dys-
function and thrombosis, contributing to tissue injury 
and perpetuating cycles of ischemia and reperfusion 
[24], inflammation, fibrosis, and ventricular remodeling 
[25]. However, microvascular ischemia is multifacto-
rial in HCM, and all stages of the ischemic process have 
been described at post-mortem [26]. Recurrent ischemic 
events themselves are likely contributors to ROS genera-
tion, myocardial inflammation, and edema, suggesting 
a “vicious circle” between inflammation and coronary 
microvascular dysfunction (CMD).

Evidence of low‑grade chronic inflammation

Several studies provided evidence of a “chronic low-grade” 
inflammatory state in HCM, characterized by increased lev-
els of inflammatory cytokines, such as the aforementioned 
TNF-α, high-sensitivity C-reactive protein (hs-CRP), and 
inflammatory interleukins (i.e., IL-1β, IL-1RA, IL-6, IL-10, 
circulating monocyte chemoattractant protein 1) [7]. Histo-
logical studies support the presence of mild chronic inflam-
matory cell infiltration [27, 28], found in up to 48% of myo-
cardial samples from patients undergoing septal myectomy 
[27]. Recently, Yuichi J. Shimada et al. [29] performed a 
large-scale investigation with comprehensive proteomics 
profiling in HCM, showing that Ras-MAPK (mitogen-
activated protein kinase) pathway and TGF (transforming 

growth factor)-β, along with their upstream and downstream 
pathways, are selectively upregulated in HCM compared to 
hypertensive controls with secondary LVH.

Emerging role of inflammation in phenotypic 
expression, severity, and prognosis

In HCM, systemic inflammation is associated with degree of 
hypertrophy, myocardial fibrosis, and LV diastolic dysfunc-
tion, suggesting that inflammatory markers may be introduced 
to assess disease severity [30] (Fig. 2). Specifically, plasma 
proteomics suggests that the left ventricular outflow tract 
obstruction is associated with a different proteomic profile 
involving inflammation mediators and that surgical myectomy 
results in a reduction of circulating plasma proteins associated 
with a proinflammatory state in obstructive patients [31].

Consistent evidence exists of the pathogenetic role of 
inflammation in the phenotypic expression of myocardial 
fibrosis in HCM patients. Kuusisto et al. [7] histologically 
confirmed the presence of low-grade inflammation in the 
myocardium of HCM patients. Endomyocardial samples 
showed variable degrees of inflammatory cell infiltration 
and nuclear factor kappa B (NF-kB) activation. A significant 
association between the degree of myocardial inflammatory 
cell infiltration, hs-CRP, and fibrosis was found, both in his-
topathological samples and as myocardial late gadolinium 
enhancement (LGE) at cardiac magnetic resonance (CMR). 
The authors proposed that myocardial fibrosis in HCM 
is likely to be an active process, in which primary injury 
(caused by mechanical stress, disorganized sarcomeric and 
cellular architecture, microvascular ischemia, etc.) induces 
NF-kB upregulation in the myocardium. NF-kB, in turn, acti-
vates inflammatory cell invasion into the myocardium, the 
production of proinflammatory cytokines, and the fibroblast 
activation, leading to fibrosis. In a study by Pelliccia et al. 
[32], high levels of NF-kB at baseline proved predictive of 
worsening HF in asymptomatic/mildly symptomatic HCM 
during a 10-year follow-up, suggesting a role for NF-kB titra-
tion in risk stratification. Furthermore, it has been proposed 
that the Fas/Fas-ligand (Fas-L) system and proinflammatory 
cytokines may play a role in the progression to HCM end-
stage phase. Zen et al. [33] found that soluble Fas (sFAS), 
TNF-α, and IL-6 were significantly increased in end-stage 
HCM, although only IL-6 was significantly different when 
compared with non-dilated HCM. In this latter condition, 
TNF-α was negatively correlated with fractional shortening, 
while in the dilated phase, high sFAS levels were associ-
ated with higher incidence of worsening HF. Recent studies 
on HCM mutant mice demonstrated that the transition from 
HCM to a dilated phenotype involves proinflammatory and 
profibrotic signaling, suggesting that therapies directed at 
tissue-specific inflammation and NETs may be a novel and 
impactful strategy for HCM [34].
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Another study supporting the potential prognostic role of 
inflammation in HCM found an association between upregu-
lation of the Ras-MAPK and inflammation-related pathways 
and occurrence of cardiovascular events [29]. The prognos-
tic role of inflammation was confirmed by Ozyilmaz et al. 
[35], who demonstrated that neutrophil-to-lymphocyte ratio 
(NLR), a marker of oxidative stress damage, was signifi-
cantly higher in patients with HCM compared to a control 
group and that a high NLR was associated with increased 
5-year risk of sudden cardiac death in HCM patients.

Fabry disease

Pathophysiology: potential role of inflammation

Anderson-Fabry disease (FD) is a rare (OMIM #301500) 
X-linked lysosomal storage disorder characterized by 
intracellular accumulation of neutral glycosphingolipids 

(Gb3) as a result of genetic enzyme α-galactosidase A 
deficiency [36]. FD is a systemic disease, as Gb3 accu-
mulation affects all cell types and tissues throughout the 
body. The principal phenotypic expression of cardiac 
involvement is LVH [37], and the resulting cardiomyo-
pathy is one of the major determinants of prognosis [38]. 
Notably, FD is a “pan-cardiac disease,” since Gb3 accu-
mulates in cardiomyocytes as well as conduction system 
cells, valvular fibroblasts, endothelial cells, and vascular 
smooth muscle cells [39]. Intriguingly, other mechanisms 
contribute to the development of LVH, far beyond the 
mere accumulation of Gb3, as sphingolipids account only 
for 1 to 2% of the total cardiac mass [40, 41]. Thus, it has 
been postulated that Gb3 accumulation might physically 
disturb the cardiomyocyte architecture and cause dysfunc-
tion, ultimately triggering intracellular signaling pathways 
leading to hypertrophy, apoptosis, necrosis, and fibrosis 
[42]. In this scenario, growing evidence suggests that 
inflammation has a key role in the disease progression.

Fig. 2   Role of inflammation in hypertrophic cardiomyopathy (HCM). 
In HCM several intracellular signaling pathways involving also 
inflammatory mediators are upregulated and a “chronic low-grade” 
inflammatory state has been documented. Inflammation likely plays a 

role in the complex interplay between genotype and phenotype, influ-
encing disease severity (cardiac phenotype, degree of hypertrophy, 
myocardial fibrosis, diastolic dysfunction) and prognosis, including 
heart failure (created with BioRender)
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Gb3 deposits, acting as antigens themselves, can acti-
vate invariant natural killer T cells leading to chronic 
inflammation and autoimmunity [43–46]. Inflammatory 
pathways are upregulated in different tissues and may 
be associated with apoptosis, impaired autophagy, and 
increase in pro-oxidative molecules, contributing syner-
gistically to organ damage. Glycosphingolipids deposits 
may be recognized as antigens when presented to natural 
killer T (NKT) cells by CD1d-bearing antigen-presenting 
cells and may also behave as damage-associated molecular 
patterns (DAMPs) or cause DAMP production by injured 
cells. Therefore, Gb3 may be capable of activating Toll-
like receptor (TLR)-4, the first line of innate host defense. 
In turn, TLR-4 activation triggers Notch1 signaling and 
the NF-κB pathway, all resulting in the production of pro-
inflammatory cytokines [45–47].

Evidence of systemic inflammation in Fabry disease

A role of chronic inflammation in FD is confirmed by 
evidence of increased expression of adhesion molecules 
in leukocytes and endothelial cells, such as soluble inter-
cellular adhesion molecule-1, vascular cell adhesion mol-
ecule-1, P-selectin, plasminogen activator inhibitor [48], 
and CD31 in lymphocytes, monocytes, and granulocytes 
of Fabry patients as compared with healthy controls [49, 
50]. Moreover, freshly isolated peripheral blood mononu-
clear cells and dendritic cells from FD patients showed 
increased expression of the proinflammatory cytokines 
IL-1β and TNF-α as compared to controls as well as a 
tendency to respond with higher levels of these mol-
ecules, including IL-6, upon LPS stimulation [46]. One 
of the consequences of inflammation is the generation of 
ROS, as seen in endothelial cells exposed to Gb3 in vitro. 
Gb3 itself, in a dose-dependent manner, induces oxidative 
stress, consistent with altered glutathione metabolism and 
high lipid peroxidation levels documented in FD [49–53]. 
Rozenfeld et al. also described a state of “leukocyte pertur-
bation” characterized by a significantly higher percentage 
of lymphocytes and CD19 + cells and a reduced proportion 
of monocytes, CD8 + cells and myeloid dendritic cells in 
samples from Fabry patients compared with normal con-
trols [50]. However, conflicting reports exists regarding the 
proportion of specific immune cell subpopulation [54] and 
further studies are needed.

The presence of a systemic chronic inflammatory state in 
FD is confirmed by the evidence of inflammation in organs 
typically affected by the disease, such as the kidney. In Fabry 
nephropathy, a relation between the cytokine synthesis pro-
file and kidney fibrosis has been reported [55], as well as 
the role of TLR-4 and TGF-beta pathways triggered by Gb3. 
Moreover, although the mechanisms behind FD brain lesions 
is not completely understood, endothelial cell dysfunction 

and impaired vessel wall structure and function seem to be 
involved, and the role of inflammation in the latter phenom-
ena is well established [43].

Myocardial inflammation as a key feature of Fabry 
cardiomyopathy

Increased levels of lymphocytes and macrophage-related 
markers CD68, CD163, and CD45 in endomyocardial biopsy 
samples from FD patients have been documented [55], sup-
porting the novel concept of FD as an “inflammatory car-
diomyopathy” [56] (Fig. 3). In a study on 78 subjects [56], 
endomyocardial biopsy specimens from FD patients revealed 
myocarditis (defined by CD3 + T lymphocytes > 7/mm2 asso-
ciated with necrosis of glycolipid-laden myocardiocytes) in up 
to 56, and its presence was associated with angina, occurrence 
of arrhythmias, elevation of troponin I, and evidence of cell 
necrosis. Moreover, Yogasundaram et al. [8] demonstrated 
that inflammatory and cardiac remodeling biomarkers are 
elevated in FD and correlate with disease progression: the 
authors identify a “phenotype dominated by HFpEF with a 
key pathogenic role of systemic inflammation.” In this con-
text, recent imaging techniques have been key in our under-
standing of the role of storage, inflammation, and fibrosis in 
different phases of the disease. Nordin et al. [57] performed a 
study combining blood and imaging biomarkers, showing that 
LGE T2 was very high in FD compared to HCM and chronic 
myocardial infarction, and higher than normal in every FD 
case. Moreover, troponin elevation only occurred when there 
was LGE. The strongest predictor of troponin release was T2 
in the basal inferolateral wall, suggesting that LGE in that site 
was not a simple scar, but a focus of inflammation.

Inflammation and vascular involvement in Fabry 
cardiomyopathy

Vascular involvement and endothelial dysfunction have 
been largely described in FD [58]. Storage of Gb3 within 
the media layer of the arteries promotes cell proliferation 
and fibrotic remodeling of the arterial wall, leading to 
increased stiffness and consequent shear stress. This may 
increase the expression of angiotensin 1 and 2 receptors in 
endothelial cells, ROS production, NF-κB, β-integrin, and 
cyclooxygenase 1 and 2 activity and decrease nitric oxide 
synthesis [59]. These mechanisms contribute to CMD, 
an important feature of Fabry cardiomyopathy. CMD has 
been described irrespectively of LVH and gender and 
may also represent the only sign of cardiac involvement 
[60], especially in females. The pathophysiological role of 
inflammation in CMD has been investigated in different 
clinical scenarios [61, 62], while the relation between the 
inflammatory profile and the presence and extent of CMD 
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in Fabry cardiomyopathy has not been investigated so far. 
However, intriguingly, Knott et al. [63] demonstrated that 
at CMR with perfusion mapping areas of elevated T2 sig-
nal, i.e., areas of local inflammation, were the same of 
reduced myocardial blood flow, supporting the hypothesis 
of a “vicious circle” connecting inflammation, CMD, and 
myocardial injury.

Impact of enzyme replacement therapy 
on inflammation

Unlike HCM, specific treatments are available for FD, 
including enzyme replacement therapy (ERT) and oral chap-
eron therapy for amenable mutations. ERT can slow disease 
progression and improve life expectancy, when started in a 
timely fashion [64]. However, whether it also modulates the 
immune system to limit inflammation is unresolved. Cur-
rently available studies on this topic are still conflicting, 
and comparisons between the effect of the two types of ERT 
(agalsidase alfa and beta) are limited by important methodo-
logical biases, including the heterogeneity of the enrolled 
populations [51–53].

Proteomic studies in animal models and humans aimed 
to assess the immunomodulatory effects of ERT: agalsi-
dase beta normalizes the expression of genes associated 
with inflammation and vascular and renal function in Fabry 
mouse models [65]. Similarly, in humans, urinary proteome 
studies revealed a reduction in proinflammatory proteins, 
such as uromodulin and prostaglandins, in patients who 
treated with agalsidase beta [66]. However, in another gene 

expression study, immune and inflammatory pathways 
were found to be upregulated after agalsidase beta infusion 
[67]. Regarding the effect of ERT on the expression of pro-
inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, 
De Francesco et al. [46] observed no significant difference 
in treated vs untreated FD patients, whereas other authors 
have reported a significant reduction in serum levels of pro-
inflammatory cytokines and oxidative stress markers follow-
ing agalsidase alfa therapy [68]. In addition, no difference 
in leukocyte populations has been demonstrated between 
FD-untreated patients and those who received agalsidase 
alfa [50]. Thus, further studies are warranted to explore the 
impact of ERT on the immune system and inflammatory 
processes in FD. To date, the effects of chaperone therapy 
on inflammation are completely unknown.

Cardiac amyloidosis

The amyloidoses are a group of diseases caused by mis-
folded proteins resistant to the body’s catabolic processes, 
which deposit extracellularly in different tissues leading 
to organ dysfunction [4]. More than 30 proteins that can 
form amyloid have been identified in humans. Amyloidosis 
may be caused by deposition of an intrinsically abnormal 
protein (e.g., hereditary transthyretin [hATTR] amyloi-
dosis and acquired systemic immunoglobulin light-chain 
[AL] amyloidosis), prolonged exposure to excess of a nor-
mal protein (e.g., reactive systemic [AA] amyloidosis and 
β2-microglobulin dialysis-related amyloidosis), or by the 

Fig. 3   Role of inflammation 
in Anderson Fabry disease 
(FD). In FD Gb3 deposits act 
as antigens triggering a chronic 
inflammation state and autoim-
munity in different tissues. In 
the heart, increased levels of 
inflammatory markers have 
been documented as well as 
sign of myocardial inflammation 
at cardiac magnetic resonance 
and foci of myocarditis in biop-
sies. Inflammation is involved in 
endothelial dysfunction and may 
trigger coronary microvascular 
dysfunction, a typical feature of 
Fabry cardiomyopathy (created 
with BioRender)
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ageing process (e.g., wild-type transthyretin amyloidosis 
[ATTRwt]). The most frequent type is AL amyloidosis, 
although recent studies suggest that ATTR may be more 
prevalent than previously thought in elderly people [69]. 
In AA amyloidosis [70], deposits are composed mainly of 
the serum amyloid A (SAA) protein, an apolipoprotein that 
serves as a dynamic acute phase reactant. It is synthesized 
by hepatocytes in response to various proinflammatory 
cytokines, such as TNF-α, IL-1 and IL-6. In this setting, 
inflammation is the main pathogenic mechanism but restric-
tive cardiomyopathy is extremely uncommon [71], probably 
due to the peculiar organ tropism of the protein. Conversely, 
heart involvement is the leading cause of morbidity and mor-
tality in AL and TTR amyloidoses [72]. Cardiac amyloidosis 
typically presents as hypertrophic-restrictive cardiomyopa-
thy leading to HF [4].

AL amyloidosis

In AL amyloidosis, HF symptoms are often more severe 
than in TTR amyloidosis, despite lesser degrees of LVH 
[69]. This is likely be due to a stronger cardiotoxic effect of 
circulating free light chains, promoting a myocarditis-like 
process, while TTR-related amyloidosis is more akin to a 
true cardiomyopathy, with longer and less aggressive clini-
cal course despite more impressive phenotypes [73]. In vitro 
studies showed that light-chain fibrillar aggregates can be 
cytotoxic and arrest the growth of an immortalized human 
cardiomyocyte cell line, called human RFP-AC16 cardiomy-
ocytes [74]. Fibrils cause a “priming” immune response in 
adipose-derived mesenchymal stromal cells associated with 
interferon related genes, as shown by transcriptome analysis 
which have revealed an upregulation of innate immune-asso-
ciated transcripts (chemokines, cytokines, and complement).

TTR amyloidosis

Several studies support the hypothesis that TTR deposits 
trigger production of proinflammatory cytokines in hATTR 
patients (TNF-α, IL-1β, IL-8, IL-33, IFN-β, and IL-10) 
[75]. Moreover, studies on cardiac fibroblasts showed that 
TTR deposited in tissue extracellular matrix may affect the 
structure, function, and gene expression of these cells [76]. 
Fibroblasts cultured on deposited TTR showed disorganized 
cytoskeletal and nuclear structure as well as increased rates 
of proliferation and migration, while transcriptional sequenc-
ing and cytokine proteomic analysis revealed an upregula-
tion of inflammatory genes, enhancing subsequent fibrosis. 
Azevedo et al. [75] found that asymptomatic patients with 
familial amyloid polyneuropathy (FAP) present high levels 
of IL-33, IL-1β, and IL-10, suggesting that inflammation has 
a role in the early stages of the disease. Suenaga et al. [77] 
confirmed the presence of a pro-inflammatory state in FAP 

hATTR patients and asymptomatic carriers as compared to 
healthy controls, with the former showing higher IL-6 levels. 
In addition, they also determined whether TTR deposits trig-
ger production of pro-inflammatory cytokines ex vivo. They 
found that control-derived CD14 + monocytes and induced 
pluripotent stem cell–derived myeloid lineage cells from 
controls and FAP patients, dose-dependently produced IL-6 
under mutated and aggregated TTR conditions. However, 
data on IL-6 are contradictory, as in another study its levels 
were comparable in hATTR FAP patients and asymptomatic 
gene carriers compared to healthy controls [75]. Further-
more, in a cohort of patients with overt cardiomyopathy, Hein 
et al. [78] found elevated IL-6 levels in ATTRwt patients, but 
not in hATTR carriers or hATTR cardiomyopathy patients. 
The authors speculated that in patients with preferential car-
diac involvement of TTR amyloidosis, IL-6 seems to be a 
marker of HF rather than have a causative role. In the same 
study, IL-6 levels were associated with cardiac outcome at 
univariate analysis but did not retain an independent value at 
multivariable analysis over established risk predictors.

AL and TTR amyloidoses: comparative studies

The first and only study investigating histological evidence 
of myocardial inflammation and its prognostic role in TTR 
and AL amyloidosis was performed by Siegismund et al. 
[9] who found a high prevalence (48%) of intramyocardial 
inflammation. Notably, a higher mortality rate was observed 
in patients with evidence of inflammation at endomyocardial 
biopsy and with AL-type amyloidosis. When AL and ATTR 
patients were stratified based on biopsy results, the presence 
of inflammation did not affect prognosis in TTR amyloido-
sis, while specifically the combination of inflammation and 
AL amyloid was associated with distinctively more severe 
outcomes. Thus, the authors hypothesized that an additional 
immunosuppressive therapy, aimed at controlling the inflam-
matory process before immune-mediated myocyte injury 
occurs, may have a beneficial effect in patients with cardiac 
AL amyloidosis. Another histological study [79] showed evi-
dence of cardiac inflammation in as much as 42% patients 
with amyloidosis, specifically in 27% of ATTR-amyloidosis, 
70% of AL-lambda, and 28% of AL-kappa amyloidosis. A 
significant infiltration of CD3 + T cells, CD68 + macrophages, 
and enhanced expression of MHCII and ERK1/2 were docu-
mented, with the latter likely playing a role in the onset of 
apoptotic cardiomyocytes and myocardial damage.

Koteca et al. [80] investigated the presence of myocar-
dial edema by means of CMR T2 mapping in patients with 
AL and TTR amyloidosis to determine its prognostic sig-
nificance in the two subtypes. They found that myocardial 
T2 was increased in amyloidosis, with the highest values 
observed in untreated AL patients. Intriguingly, myocar-
dial T2 was predictive of prognosis in AL amyloidosis even 



1072	 Heart Failure Reviews (2023) 28:1065–1075

1 3

when adjusted for extracellular volume and NTproBNP, but 
not in ATTR. As suggested by the authors, these findings 
support the concept of AL amyloidosis not being a disease 
due to pure infiltration, but one in which additional mecha-
nisms contribute to the high mortality rate.

Summary and future perspectives

Inflammation plays a pivotal role in a broad spectrum of 
conditions that injure the heart muscle, and accumulating 
evidence reveals that in cardiomyopathies with hypertrophic 
phenotype, inflammatory pathways are upregulated.

In HCM, inflammation likely plays a role in the complex 
interplay between genotype and phenotype, favoring the 
development of myocardial fibrosis and affecting disease 
progression and prognosis. Histological and CMR studies 
have proven myocardial inflammation as a common finding 
in Fabry cardiomyopathy, and within the heart, Gb3 is able 
to trigger inflammatory pathways involved in myocardial 
hypertrophy, fibrosis, and coronary endothelial and micro-
vascular dysfunction. In both TTR and AL amyloidoses, 
inflammatory pathways may be triggered by TTR deposits 
and cytotoxic light chain, and current evidence suggests that 
in the AL subtype, myocardial inflammation is a common 
feature, and it is an independent predictor of prognosis.

In conclusion, inflammation could be a “fil rouge” across 
the spectrum of hypertrophic cardiac phenotypes even if cur-
rently it is not clear if and how these different diseases can be 
connected in terms of inflammation. Given these premises, the 
deep knowledge of molecular and cellular mediators involved is 
of outmost importance. More studies looking at cardiomyopa-
thies through “immunologic lens” are to be encouraged, since 
they may provide clues for the identification of a high-risk sub-
set of patients as well as could be the substrate for target treat-
ments in a perspective of personalized medicine.
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