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Abstract: Tumor heterogeneity refers to the diversity observed among tumor cells: both between
different tumors (inter-tumor heterogeneity) and within a single tumor (intra-tumor heterogeneity).
These cells can display distinct morphological and phenotypic characteristics, including variations
in cellular morphology, metastatic potential and variability treatment responses among patients.
Therefore, a comprehensive understanding of such heterogeneity is necessary for deciphering tumor-
specific mechanisms that may be diagnostically and therapeutically valuable. Innovative and multidis-
ciplinary approaches are needed to understand this complex feature. In this context, proteogenomics
has been emerging as a significant resource for integrating omics fields such as genomics and pro-
teomics. By combining data obtained from both Next-Generation Sequencing (NGS) technologies
and mass spectrometry (MS) analyses, proteogenomics aims to provide a comprehensive view of
tumor heterogeneity. This approach reveals molecular alterations and phenotypic features related to
tumor subtypes, potentially identifying therapeutic biomarkers. Many achievements have been made;
however, despite continuous advances in proteogenomics-based methodologies, several challenges
remain: in particular the limitations in sensitivity and specificity and the lack of optimal study models.
This review highlights the impact of proteogenomics on characterizing tumor phenotypes, focusing
on the critical challenges and current limitations of its use in different clinical and preclinical models
for tumor phenotypic characterization.

Keywords: cancer; personalized medicine; proteomics; proteogenomics

1. Introduction

Tumor heterogeneity (TH) is a general term that refers to the differences in the molecu-
lar and phenotypic characteristics of tumoral cells within the same tumor or among different
tumors, which are often related to its aggressive nature. It includes molecular, cellular,
and architectural variability [1]. According to the National Cancer Institute’s dictionary,
a tumor is an abnormal mass of tissue that forms when cells grow and divide more than
they should or do not die when they should [2]. The tissue mass is primarily characterized
by intra-tumor heterogeneity (ITH) from the outset, which is also the by-product of tumor
progression [3]. However, the development of different tumor cell clones characterized by
different architecture, metastatic properties, and drug resistance is regulated not only by
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the accumulation of somatic genetic mutations (also defined tumoral mutational burden—
TMB) [4,5] but also by a portrait of epigenetic and phenotypic changes due to the intra- and
peritumorous tumor microenvironment (TME) and immunopharmacological therapy [6,7].

All facets of ITH, including the genetics and protein features and TME, result in
various patient responses to therapy and possible relapses. Therefore, different tumor
phenotypes are crucial for treatment response [8–10], and gaining a full understanding of
tumoral heterogeneity and its phenotypic features may significantly impact both diagnosis
and therapy. Single genomic analyses by Next-Generation Sequencing (NGS) technologies
have made it possible to profile a large number of cancer-related mutations [11–13].

However, understanding the actual expression of TMB and the effects of certain
mutations remains challenging due to the difficulties in translating genomic information
into protein-level functions [14], which are crucial for determining phenotype. As Aeber-
sold’s studies show, the variants of HeLa cell lines exhibit significant biological variability,
highlighting the challenge in understanding genotype–phenotype correlations in cancer
cells [15]. Genetic variability has an intricate and non-linear impact on transcription profiles,
proteome and protein turnover [15]. Moreover, protein dynamicity, including isoforms
and Post-Translational Modifications (PTMs), increases the complexity to the proteome,
accurately reflecting the essential changes in tumor phenotypes [16,17]. These variations
cannot be fully explained through genomic and transcriptomic sequencing analyses [18].
Advances in proteomics, particularly with high-resolution mass spectrometry (HRMS),
have led to a new molecular integrative approach called proteogenomics, which has been
instrumental in characterizing the molecular complexity of tumor phenotypes in greater
depth [19].

This innovative approach has been rapidly developing in cancer research, highlighting
a new horizon in precision oncology, where a better understanding of tumor phenotypes
can lead to better patient stratification and specific target therapies. Proteogenomics is
optimal in this regard, as it allows the investigation of tumor heterogeneity in a more ad-
vanced manner by integrating proteomics with genomic and transcriptomic data obtained
from NGS technologies and HRMS to define functional correlations between genes and
proteins [20,21].

However, the complete knowledge of heterogeneous tumor phenotypes has often
been hampered by the sensitivity of the molecular analyses used and the lack of an optimal
model to represent a highly dynamic ITH.

Thus, given the complex nature of tumor heterogeneity and certain limitations of the
molecular technologies used in proteogenomic analyses, overcoming these issues could
lead to better phenotyping of tumor heterogeneity.

This review focuses on the value of proteogenomic approaches in characterizing the
complex molecular differences of various tumor phenotypes, primarily considering the
literature from the past five years. In particular, critical challenges and current limitations
of its use will be discussed, focusing on different clinical and preclinical models used for
tumor phenotypic characterization.

2. Proteogenomics

Proteogenomics is an innovative and evolving approach which integrates data from
genomics and transcriptomics, such as DNA mutations, epigenetic regulation, and RNA
expression along with proteomic data including proteins, their expressions, and PTMs [22] to
gain a comprehensive understanding of complex biological phenotypes like tumors [21,23].
Large-scale genomic studies and new NGS technologies are instrumental in identifying
the origin of cancers and suggesting “driver genes” within analyzed tumors [12,13]. This
aspect has revolutionized cancer drugs development. Patients with specific molecular
profiles are included in clinical trials based on their tumor signature (umbrella trials) or
without such reliance (basket trials), depending on the likelihood that genomic biomarkers
will predict response to targeted therapies. Examples of successful targeted therapeutics
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include those for BRAF-mutated melanoma [24] and NTRK-altered (neurotrophic receptor
tyrosine kinase) tumors [25].

However, the outcomes of targeted therapies are not always predicted by the mere
presence of a specific mutation [26]. Resistance mutations and tumor heterogeneity indicate
that gene sequence analyses alone are insufficient [18]. Different phenotypes are often
revealed through the study of proteins, PTMs, and proteoforms [16,17]. Therefore, under-
standing the expression, function, and interactions of proteins is crucial for elucidating the
molecular mechanisms biological processes.

Affinity ligands-based proteomic technologies, such as Reverse Phase Protein Array
(RPPA), Protein Expression Array (PEA) and SOMAscan (slow off-rate modified aptamers),
have been developed to identify and target several proteins, facilitating the detection of
potential therapeutic targets [27–29]. However, these techniques show some limitations,
particularly in detecting PTMs due to variability in the affinity versus avidity of antibodies
or aptamers used in the assays.

Conversely, MS-based proteomic analysis, which can detect the dynamic and complex
proteome—including its PTMs—enables a more detailed study of tumor phenotypes. This
includes the investigation of phosphoproteomes, glycoproteomes, acetylproteomes, and
ubiquitinomes, which are fundamental for understanding various biological processes
related to tumor survival, death, and signaling [16].

In this context, proteogenomic approaches have emerged as a crucial bridge between
both genetic and phenotypic variability, allowing the deciphering of biological mechanisms
in cancers, leading to the identification of clinically applicable biomarkers and new thera-
peutic targets [21,23]. The proteogenomic workflow integrates genomic, transcriptomic,
and proteomic data obtained from the same biological samples such as tissue biopsies,
liquid biopsies, and cell cultures, as described in Figure 1.
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Whole Genome Sequencing (WGS), Whole Exome Sequencing (WES), and RNA se-
quencing by NGS are primarily to identify genomic and somatic mutations, including
single nucleotide variant (SNV), insertion and deletions (Indels), Copy Number Alterations
(CNAs), and transcriptomic data [30]. Additionally, public databases such as NCBI Ref-
erence Sequence (RefSeq) and Ensembl [31,32] provide valuable resources for gathering
genomic and transcriptomic information.

Simultaneously, bottom–up proteomic analyses are performed on the same samples
using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this process,
proteins are first isolated from biological samples and then digested into peptides, typ-
ically using trypsin or other enzymes. The resulting peptide mixture undergoes LC-
MS/MS analysis, and the related MS and MS/MS spectra are collected and analyzed with
curated databases.

A critical step in proteogenomics is the creation of a custom proteomic database that
integrates genomic and transcriptomic data. Nucleotide sequences obtained from public
repositories or sample sequencing, such as DNA, RNA, or Ribo-sequencing, are translated
into amino acid sequences to build this database [33]. Several translation methods such as
six-frame translation for DNA sequences and three-frame translation methods for RNA
sequences are employed [34].

This custom proteomic database significantly enhances protein identification by facil-
itating the discovery of proteins not represented in standard reference databases. These
include unannotated proteins resulting from alternative splicing, splice variants, and
neoantigens derived from Splicing Variants (SVs) or encoded by alternative Open-Reading
Frames (ORFs) [20].

2.1. From Single-Cell Analyses to Proteogenomics

Single-cell analysis has become crucial in medical and biological research, opening up
new perspectives in cell biology and medicine, particularly in cancer research [35]. It has
significantly contributed to the more precise identification of tumor heterogeneity [36].

For example, a single-cell RNA sequencing (scRNA-Seq) study of high-grade serous
tubal ovarian cancer revealed different cellular phenotypes associated with poorer prognos-
tic outcomes. This underscores the importance of distinguishing stromal components from
the bulk tumor for the classification of molecular subtypes [37]. Similarly, Xu’s scRNA-seq
study of high-grade serous ovarian cancer demonstrated significant differences in the
immune infiltrate composition, such as the presence and activation of tumor-associated
macrophages (TAMs) and T-cells, providing valuable information for defining optimal
therapeutic strategies [38]. Notably, the differential expressions of thirty-eight genes in
epithelial-to-mesenchymal transition (EMT) between normal and tumoral cells has been
revealed [38].

Although scRNA-Seq is currently being used in clinical trials to evaluate the safety
of novel drugs in tumors, as reviewed by Lei et al. in [35], several limitations need to
be considered.

While scRNA-seq provides valuable information regarding tumor cellular hetero-
geneity at the transcriptomic level, it cannot describe the epigenetic and proteomic status
of cells.

The lack of integration with epigenetic or methylome techniques impacts the appli-
cations of scRNA-seq in detecting epigenetic regulations such as histone modifications
and DNA methylation, as well as long non-coding RNAs [39], which are increasingly
recognized as relevant in this context [40].

Furthermore, mRNA transcripts levels are partially correlated with the protein abun-
dances [41,42]. The relationship between mRNA and protein levels is complex, and it
is influenced by various mechanisms such as post-transcriptional and post-translational
modification as well as the interaction between proteins [43–45]. Integrating “omics” data,
including epigenomic and proteomic data, is essential for obtaining a comprehensive
review of biological mechanisms and specific cellular phenotypes [46].



Int. J. Mol. Sci. 2024, 25, 8830 5 of 25

While single-cells genomics and transcriptomics technologies initially led advances
in the field, single-cell proteomics (SCPs) is now developing in the wake of scRNA-Seq to
identify and quantify proteins at cell levels [47].

Over the last few years, different SCP technologies have emerged such as Single-
Cell Barcode Chip (SCBC), single-cell Western blotting (scWB), Cytometry by Time-Of-
Flight (CyTOF), and Cellular Indexing of Transcriptomes and Epitopes by sequencing
(CITE-Seq) and single-cell proteomics by mass spectrometry (SCP-MS) as reviewed by Xie
and Ding in [48]. Most SCP applications are targeted proteomic analyses, where target
proteins are detected by antibodies, such as in CyTOF, or by aptamers or oligonucleotide-
labeled antibodies in CITE-seq and RNA Expression And Protein Sequencing (REAP-
Seq) analyses [48–50]. Unlike CyTOF, CITE-seq and REAP-seq allow the simultaneous
measurement of the transcriptome at a single-cell level but are restricted to the detection of
surface proteins only (Table 1).

Advancements in SCP-MS techniques have expanded the possibilities for untargeted
proteomic analysis at the single-cell level, allowing a broader exploration of the proteome
without being confined to specific protein targets.

SCP-MS technologies, such as nanodroplet Processing in One pot for Trace Samples
(nanoPOTS), for sample processing, and single-cell proteomics by MS (ScoPE MS) and
its evolution, ScoPE MS2, have raised interest in the development of the field of single-
cell ProteoGenomics (scPG) [51]. This approach could be helpful for deciphering ITH
within tumoral cells. Compared to bulk analyses on clinical models such as tissue biop-
sies, scPG could provide a more comprehensive view of individual cells, improving the
characterization of molecular changes during physiological and pathological processes [51].

For an overview of the advantages, limitations, and troubleshooting strategies of these
techniques, refer to Table 1.

Table 1. Advantages, limitations, and troubleshooting of single-cell techniques.

Techniques Advantages Limitations and Troubleshooting References

ScRNA-seq
Profile the transcriptomes of
individual cells, multiplexed

analyses, high throughput

RNA amplification bias, cell capture
processes, detecting of non-coding RNA;

improve the process and methods for
controlling batch effects

[35,52]

SCBC
Rapid, multiplexed analysis up to
42 proteins, detection of secreted

and intracellular proteins

Limited by antibody availability, high cost;
improve sample preparation techniques,

regular updates and validation of encoded
antibody libraries

[48,53]

scWB

High-resolution profiling cell of
surface and cytoplasmatic

proteins at the single-cell level,
rapid

Low throughput, detection of low
abundance proteins and small molecular
weight proteins, antibody specificity; use

high-quality antibodies, improve the
antibody incubation performance

[48,53]

CyTOF Measures multiple parameters
with high sensitivity

High-quality antibodies, is expensive, not
optimal for living cells, involves complex
data analysis; validate antibody quality,

optimize experimental conditions,
unsupervised and bioinformatic

approaches for data analysis

[48,49,53,54]

CITE-Seq and REAP-seq

Combines proteomic and
transcriptomic profiling at

single-cell level, detect 3′ RNA
ends

Limited by antibody availability, limited to
detection of surface proteins, complexity

of data analysis; employ high-quality
antibodies for detection of intracellular

protein, use advanced bioinformatics tools

[48,50]

SCP-MS Extensive proteome coverage
through multiplexing

Isolation, digestion, protein transfer
processes; improve sample preparation,
enhance ion accumulation techniques

[48,51,53,55,56]
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2.2. Clinical and Preclinical Study Models to Study Tumor Heterogeneity
2.2.1. Tissue from Biopsies and Resection Specimens

Fresh Frozen Tissue (FFT), Optimal Cutting Temperature (OCT), and Formalin-Fixed
Paraffin-Embedded tissue (FFPE) are the most widely used tissue biopsy samples for
clinical molecular analysis [57] and have been considered the “gold standard” for cancer
diagnosis and research for decades [58].

However, FFPE, FFT and OCT provide a static image of the analyzed tumor. These tech-
niques make it challenging to monitor molecular changes over time, such as the dynamic
pattern of mutations occurring during clonal evolution or the process of metastatization
and the dynamism of protein expression [58,59].

The Variant Allele Frequency (VAF) plays a valuable role in this context. It could be
used to speculate about dynamic changes between primary tumors and their relapses. VAF
is useful for evaluating the origin of mutations, and in the evaluation of mutation origin
in terms of germline or somatic origin, especially when a normal reference sample is not
available [60].

In this context, proteogenomics emerges as a promising approach, allowing for a
comprehensive understanding of the molecular alterations driving tumorigenesis and the
disease progression of several tumors, such as breast cancer [61].

However, the data generated by proteogenomic analyses using these models often
provide an incomplete understanding of the genomic/transcriptomic and proteomic het-
erogeneity of cells as they typically reflect an average of the molecular characteristics across
a cell population [62,63].

To address this issue, multiregional sampling and single-cell analyses have been
employed in several cancer studies to gain a better understanding of ITH and to reconstruct
the cancer evolutionary history in different malignancies, revealing the clonal heterogeneity
of different cell types [10,64].

Nevertheless, pre-analytical conditions also pose limitations. The transition of tu-
mor tissue samples from surgical resection to the molecular laboratory, along with the
modifications that tissue specimens undergo before analysis, can affect the results [65].

For instance, isolating and analyzing single cells from different sections and time
points of tumor biopsies can lead to cell loss or biases in gene expression [66]. In addition,
the interference of the OCT polymer can suppress ionization during MS/MS analyses,
resulting in reduced peptide identification [67]. FFPE samples can undergo modifications,
such as crosslinking due to formaldehyde, which can alter the DNA structure and protein
yield, potentially masking accessible sites for trypsin digestion [68,69].

Despite these challenges, improvements have been made in protocols for proteome
analysis on FFPE tissues, leading to a more efficient decrosslinking of proteins and increased
protein yield for digestion [57]. As a result, while tissue biopsies remain the most common
clinical model for tumor diagnosis, they still have limitations in accurately characterizing
the complex molecular dynamics of tumor phenotypes. This highlights the need for less
invasive models that can better capture the molecular dynamics of tumor heterogeneity.

2.2.2. Liquid Biopsies

In the last few years, liquid biopsies (LBs) have been proposed as a new approach
that overcomes several challenges related to solid biopsy analyses. LBs consist of the
evaluation of biological fluids with the final aim of analyzing tumor molecular profiles and
real-time changes, thanks to longitudinal sampling. Compared to solid tumor biopsies, an
LB ideally represents a simple and minimally invasive strategy [70,71]. The most common
sample type used in LB is blood, even if many other biological fluids can be used for
molecular biomarkers characterization, such as urine [72,73], cerebrospinal fluid [74–76],
pleural [77,78], and ascites [79] effusions. LB encompasses different molecular biomarkers
like circulating cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating cell-
free RNA (cfRNA), extracellular vesicles (EVs), proteins, circulating microRNA (miRNA),
and circulating tumor cells (CTCs). These biomarkers are broadly released into the blood
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or in other biofluids by tumor cells [80]. In clinical settings, cfDNA and ctDNA, which
represent the tumoral fraction of cfDNA, find wider application [81], while the use of the
other biomarkers still needs further implementations.

From a methodological point of view, LB approaches for genomic analyses can be
designed in tumor-driven or in tumor-agnostic manners. In fact, an LB can be used to
monitor cancer genomics evolution after a prior genotyping of tissue samples (e.g., by using
a targeted single-gene approach) or without a previous tumor analysis (e.g., with a more
comprehensive multigene panel) [82]. The main genomics methodologies available for
these purposes are the droplet digital polymerase chain reaction (ddPCR), Beads Emulsion
Amplification and Magnetics (BEAMing), Tagged-Amplicon deep Sequencing (TAm-Seq),
CAncer Personalized Profiling by deep Sequencing (CAPP-Seq), Whole Genome Bisulfite
Sequencing (WGBS-Seq), Whole Exome Sequencing (WES), and Whole Genome Sequenc-
ing (WGS) [83]. Both ddPCR and BEAMing are PCR-based detection techniques that
analyze specific target mutations with high specificity and sensitivity, making them ideal
for detecting few known molecular alterations [83–85] (Table 2). In contrast, NGS-based
CAPP-Seq and TAm-Seq offer broader mutation profiling that is suitable for monitoring
tumor evolution and resistance mutations [86,87].

Table 2. Summary of advantages, limitations and troubleshooting of LB techniques.

Techniques Advantages Limitations and Troubleshooting References

ddPCR
High sensitivity and specificity for target
mutation; low cost/reaction; no replicate

reactions and standard curve

High cost for instrumental implementation; single- or
low-plex analysis; need for PCR optimization strategies;

need for positive/negative controls
[83–85]

BEAMing High sensitivity and specificity for target
mutation; low cost/reaction

Single- or low-plex analysis; potential background
noise and false positive risk; need of bead based PCR

optimization strategies; need for stringent controls
[83–85]

CAPP-Seq

High sensitivity; higher multiplexing
analysis; detection of all the major

mutation types; hybrid capture-based
method not dependent on fragment size;

cost-effective

Potential inefficient capture of fusions; potential false
positive; need for large input [83,86]

WGBS-Seq Gold standard for methylome analysis
Expensive for large sample number; reduced sensitivity
due to DNA degradation; higher read depth needed to

improve sensitivity
[83]

TAm-Seq
High specificity and sensitivity; higher

multiplexing analysis; reduced time and
cost

Amplicon-based methods depend on fragment size; less
sensitive compared to individual loci assays; higher

read depth needed to improve sensitivity
[83,87]

WES Comprehensive analysis of coding region;
low cost; high yield

Low sensitivity; need of advanced bioinformatics tools
to manage and analyze output datasets; higher read

depth needed to improve sensitivity
[83,84]

WGS
Comprehensive analysis of tumor

mutations types; potential for detailed
mutational landscape

Time and cost consuming; variable sensitivity and
specificity; need of stringent quality assurance; ethical

issues; need of advanced bioinformatics tools to
manage and analyze output datasets

[83,84]

MS

Non-invasive and sensitive; complete
characterization of proteins and PTMs,

over a thousand proteins in blood,
thousands in urine

High dynamic range of blood protein content;
pre-analytical variations; require depletion protocols;

using robust MS approaches (DIA)
[57,88]

RPPA Robust in parallel large sample profiling,
sensitive, cost effective

Requires high-quality antibodies, complex
experimental workflow, prolonged process; validation

of antibodies, optimize signals and workflow
[27,88,89]

SOMAscan High-affinity protein-binding reagents,
expands targeted proteomics toolkit

Limited aptamers compared to antibodies, preliminary
exploration of PTM biomarkers; developing more
high-quality aptamers, advancing PTM-oriented

aptamer development

[28,88]

ddPCR: droplet digital polymerase chain reaction; BEAMing: Beads Emulsion Amplification and Magnetics; TAm-
Seq: Tagged-Amplicon deep Sequencing; CAPP-Seq: CAncer Personalized Profiling by deep Sequencing; WGBS-
Seq: Whole Genome Bisulfite Sequencing; WES: Whole Exome Sequencing; WGS: Whole Genome Sequencing;
MS: mass spectrometry; DIA: Data-Independent Acquisition; RPPA: Reverse Phase Protein Array; SOMAscan:
Slow Off-rate Modified Aptamer scan.
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However, the low concentration of ctDNA and the variability in ctDNA release can in-
troduce false positive results and reduce the sensitivity of CAPP-seq [86]. Additionally, the
effectiveness of TAm-Seq relies on pre-characterizing the genomic regions of interest [83].
This requirement limits its use to cases where specific mutations are already known, re-
ducing its flexibility for novel mutation discovery. WES and WGS provide comprehensive
genomic information and are mostly used in proteogenomics approaches, which is es-
sential for discovering novel mutations and understanding the full genomic landscape of
tumors [83].

At present, LBs have emerged as a groundbreaking tool mainly in the early diagnosis of
low-shedding cancer and in the subsequent monitoring of Minimal Residual Disease (MRD)
and acquired resistance mutations, especially in cases of tissue biopsies unavailability [90,91].
In the context of clonal evolution and tumor heterogeneity monitoring, LBs are capable
of characterizing the molecular and phenotypic dynamism of the tumor, making them an
ideal molecular approach for ITH evaluations. The evolutionary pressure, mainly related
to therapy administration, represents the molecular driver of sub-clonal transformation
with the coexistence of novel molecular signatures within the same tumoral tissue or in
metastasis sites [92]. In this context, solid biopsy can under-represent the overall molec-
ular characteristics of the ITH, limiting the rate of detection of biological and clinically
relevant mutations.

Several successful examples of ITH analyses using LBs are available in the literature in
different clinical contexts as gastrointestinal [93], non-small cell lung cancer (NSCLC) [94],
bladder [95], breast [96,97], colorectal [98], and melanoma [99] tumors. A typical example
is the monitoring of acquired resistance in NSCLC using cfDNA after epidermal growth
factor receptor tyrosine kinase inhibitors (EGFR-TKIs) target therapy, such as the C797S,
T790M, L858R, and Del19 EGFR variants [100]. Another significant application of cfDNA
analysis is the monitoring of breast cancer evolution. In fact, breast cancer is considered
one of the tumors with the highest molecular heterogeneity, which is the main cause of
resistance to therapies [101]. In Hormone-Receptor-positive (HR+) breast cancer, represent-
ing approximately 70% of cases, acquired resistance can be monitored using LB targeted to
mutations occurring within the Ligand-Binding Domain (LBD) of the Estrogen Receptor-1
(ESR1) gene [102]. Moreover, ESR1 mutations are associated with inferior Progression-Free
Survival (PFS) and Overall Survival (OS) in comparison to non-mutant ESR1 patients
treated with exemestane plus everolimus [103].

Beyond ct/cfDNA, CTCs represent one of the first biomarkers analyzed in LB ap-
proaches. CTCs are cells shed by the tumor and ideally represent an easy sample type to
evaluate. However, their total amount in blood or in other fluids is usually low, requiring
advanced isolation methods [83,104]. At present, the only CTC-based LB assay approved
by the U.S. Food and Drug Administration (FDA) is the CellSearch, which is a platform
that uses EpCAM enrichment in patients with colorectal, breast, or prostate cancer [105].
Jordan et al. reported a successful example of CTCs use in patients with breast cancers.
The authors, by monitoring CTCs release, showed a shift from Human Epidermal Growth
Receptors 2 (HER2) positive to HER2 negative-CTCs status, which may suggest a clonal
shift toward resistance to chemotherapy [106].

In addition, circulating RNA and miRNA were investigated in several studies as non-
invasive LB markers. In particular, risk stratification strategies were proposed according to
RNA-expression panels in lung [107] and gastric [108] cancers.

Despite the advantages that LB have demonstrated in clinical practice, there are some
limitations related to technological and biological issues in the ITH descriptions. The main
actual limitations are the potential confounding effect of clonal hematopoietic mutations of
indeterminate potential (CHIP) and the lower sensitivity documented for some applications,
such as fusion detection at the RNA level [109]. Furthermore, in ITH analyses, it is relevant
to keep in mind that tumor-derived biomarkers shedding can differ across tumor sites,
affecting the choice of the best sample type and the overall comparison of the experimental
and clinical results.
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Finally, the alterations at DNA and RNA levels are not enough to reveal modifications
in proteins [88], which are the direct performers of most cell functions and the targets of
most current cancer therapies. Therefore, deep proteome profiling is more likely to provide
valuable and clinically relevant real-time information on cancer progression.

However, proteomic analyses using LB face several challenges.
Blood and plasma are not always optimal biofluid for MS proteomic analysis due to

the dynamic concentration range of proteins [57]. To address this issue, protein depletion
strategies have been developed to reduce the concentration of high-abundance proteins
(Table 2). Furthermore, untargeted proteomic approaches, such as the Data-Independent
Acquisition (DIA) and Swath-DIA (sequential window acquisition of all theoretical DIA)
approach, have shown promise in improving sensitivity and protein coverage [88]. De-
spite these advancements, most proteomic studies on liquid biopsies still rely on targeted
approaches, such as protein microarrays (RPPAs) or aptamer-based assays (e.g., SOMAs-
can) [89,110,111].

RPPA was applied in several proteogenomic studies, offering significant advantages
such as quantitative measurements of protein expression from small sample volumes and
the ability to analyze numerous samples simultaneously [27,88]. However, RPPA is limited
by the availability of specific antibodies, which constrains its coverage of the proteome.

On the other hand, SOMAscan utilizes aptamers—short single-stranded DNA or RNA
molecules that bind with high affinity to native target proteins [88].

Despite its strengths, SOMAscan also faces challenges, particularly in its inability to
cover the entire proteome and capture dynamic protein changes fully.

Consequently, while these targeted proteomic approaches have driven significant
advancements in translational research, they still encounter issues related to reproducibility,
sensitivity, and accuracy, which limits their ability to provide a comprehensive view of the
complex molecular and architectural changes associated with tumor heterogeneity [112].

For a comprehensive summary of the advantages, limitations, and troubleshooting
strategies of LB techniques, refer to Table 2.

2.2.3. Organoids

Fresh frozen organoids or 3D cell cultures in vitro are tissue-engineered models that
reflect several aspects of the complex structure and function of the corresponding in vivo
tissue [113]. They originate from progenitor stem cells or even from a fragment of tissue
biopsies. Organoids can spontaneously grow from Adult Stem Cells (ASCs) or derive from
Pluripotent Stem Cells (PSCs), which include Embryonal Stem Cells (ESC) or Induced
Pluripotent Stem Cells (IPSCs) [114], under specific cell culture conditions. Recently, this
model has been used more frequently in cancer research to study tumor heterogeneity
due to organoids’ ability to preserve the genetic, proteomic and morphological features of
tumors [115,116]. The possibility of creating tumor organoids from tissue specimens, such
as Patient-Derived Organoids (PDOs) and Patient-Derived Xenograft (PDX), offers inno-
vative models for studying dynamic multiple dimensional ITH as they reflect the genetic
and phenotypic characteristics of the original tumor in patients [117,118]. Since the first
organoid tumoral culture was established by Sato et al. in [119], multiple researchers have
reported the use of PDOs as a preclinical model to study the heterogeneity of various types
of cancers [120–122]. This has led to the creation of living biobanks of tumor organoids,
which are potentially useful not only for capturing TH but also for predicting drug re-
sponses of cancer patients [123], enabling a better screening and stratification of patients for
therapies. Among these, a living biobank of advanced colorectal cancer PDO demonstrated
a broad range of intrinsic PDO responses to chemotherapy, suggesting that PDO might
predict who responds to chemotherapy [124]. A recent study showed that high-grade
serous ovarian cancer (HGSOC) PDOs represent a valuable tool for understanding the
tumor biology, proposing a possible new ex vivo screening method to identify new drugs
to which HGSOC would be vulnerable [125]. Other recent studies on different tumoral
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phenotypes, such as in liver and lung cancers [126,127], have shown the potential of PDO
to predict the molecular, morphological and drug response properties of parental tumors.

However, the generation of PDOs presents significant challenges. Slight differences
in responsiveness to therapies could be based on the origin of PDOs, as they are formed
from different areas of the sample. Additionally, the technology required to create the PDO
model involves some practical difficulties. Unlike PDX models, PDOs lack components of
TME, such as fibroblast and Cancer-Associated Fibroblast (CAFs) as well as endothelial
and immune cells [118]. TME and immune cells have a key role on heterogeneity and on
the success of both chemotherapy and immuno-target therapy. The TME and immune cells
play a key role in heterogeneity and in the success of both chemotherapy and immuno-
target therapies. Thus, new advances in organoid culture have been made, including
microfluidic 3D culture, air–liquid interface culture, and submerged Matrigel culture, in
order to capture TME and immune cells [128]. Although several studies have shown
improvements in organoid culture with the addition of CAFs and immune cells [129,130],
current PDOs remain small due to the lack of vascular elements necessary for nutrient
supply [131]. The most innovative clinical application of organoids is the identification of
neoepitopes for personalized immunotherapy. Since preclinical models lacked neoantigen-
directed therapy [132], a recent multiomic approach by Wang et al. characterized the
HLA-class-I neoantigen landscape in hepatobiliary tumors, providing a reliable strategy
using tumor organoids to evaluate the immunogenicity of tumor-specific peptides [132].
Another study by Demmers et al. used tumor organoids to analyze the variability in
the presentation of HLA class I peptides between different clonal cells from the same
colorectal cancer patient, suggesting that a multi-peptide vaccine approach against highly
conserved tumor suppressors might be viable in patients with a low mutational burden of
cancer [133]. Despite innovative applications in predicting drug responses and in the field
of immunotherapy, PDOs have several shortcomings. These include complex protocols,
associated costs with the technology, limited data regarding the effect of baseline culture
conditions, the addition of extracellular matrix (ECM) and immune cells on growth and
response in these heterogeneous organoid culture [134].

Nevertheless, considerable improvements have been made in the field of PDOs to
better describe tumor phenotypes. Owing to their intrinsic versatility, ability to model
in vivo situations, and rapidly evolving applications, it is expected that organoid technology
will have a substantial future impact on basic research and clinical cancer therapy [135].

2.3. Applications

Proteogenomics has a broad spectrum of applications. Initially, genome annotation
was the primary aim of proteomics and genomics integration studies [136]. Early examples
include studies conducted by Yates et al. in 1995 and Choudhary et al. in 2001 [137,138].

In 2004, Jaffe et al. introduced the concept of a “complementary proteogenomic map”
for gene annotation [139], where the genome of Mycoplasma pneumoniae was translated
into a six-frame database, and peptides detected by LC-MS/MS were identified against
this custom database. This approach not only improved the validation of known or
predicted protein-coding genes but also facilitated the identification of novel open reading
frames often overlooked by traditional genomic methods. Over the years, proteogenomic
applications have expanded in biomedical research parallel to advancements in NGS,
HRMS technologies, advanced bioinformatics tools and repository databases.

In cancer research, The Cancer Genome Atlas (TCGA), the International Cancer
Genome Consortium (ICGC), and the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) were pioneers of this influential approach [140,141].

The TCGA studies provided significant cancer genomic and transcriptomic classifica-
tions through the integration of DNA and RNA sequencing, array-based DNA methylation
technologies, and RPPA techniques with multidimensional analyses, as reported by Tom-
czak et al. in [140]. However, these sequencing-centric studies solely focused on validating
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known or annotated protein-coding genes, relying on the availability of antibodies, which
limited the possibility of capturing the full extent of protein and PTMs expression [142].

With the integration of MS analyses, new proteogenomic studies conducted by CPTAC
have shown not only the imbalance in protein–mRNA correlation but also the associations
between specific genomic alterations and functional protein changes, identifying PTMs
and pathways related to clinical outcomes [18,21,143,144].

To establish these proteogenomic relationships from multiomic data, pathways and
correlation analyses are needed. These analyses allow researchers to evaluate the impact of
CNAs on mRNA and protein abundance, as well as the interplay between microRNAs and
DNA methylation, and clinical data, using machine learning tools and predictive modelling
techniques, such as linear and regression models [145].

Recent proteogenomic approaches in lung adenocarcinoma (LUAD) studies by Soltis
et al. [146] and non-small cell lung cancer (NSCLC) by Lethio et al. [147] have revealed
correlations between RNA, proteins and tumor immune cell composition, providing crucial
information for predicting disease progression and therapeutic responsiveness (Table 3).
Notably, in NSCLC, Lethio et al. identified six different subtypes of proteomes with
distinct immune profiles, in addition to tumor mutational burden (TMB) and tumoral
neoantigen burden (TNB), suggesting insights into the predictive potential of different
types of checkpoint inhibitors [147]. Furthermore, by comparing genomic, transcriptomic,
and proteomic data, valuable information can be obtained on the genetic diversity and
evolutionary trajectories of tumors and metastases. This was highlighted in Ma et al.’s
proteogenomic study on colorectal cancer (CRC), which used paired normal CRC, primary
CRC, and liver metastatic tissues from samples collected from a clinical trial currently
in the recruitment phase, which is associated with ID NCT02917707. This trial aimed to
achieve a 5-year overall survival as the primary outcome and a 5-year disease-free survival
as the secondary outcome. Ma et al. analyzed the data to identify specific signatures or
protein mutations related to CRC and metastasis. By combining molecular alterations
from WES and CRC cBioPortal, a customized protein database of CRC mutations was
created to predict the prognostic potential of single amino acid variants (SAAVs) in CRC
liver metastases [148]. As described in the following examples and summarized in Table 3,
applications of proteogenomics in cancer research potentially allow the identification of
tumor phenotypes, understanding of tumoral heterogeneity, and detection of patient-
specific proteoforms as well as pathways and mechanisms responsible for cancer therapy
success or resistance related to genomic and transcriptomic alterations [18].

Table 3. Summary of several proteogenomics approaches on cancer. This table provides an overview
of several proteogenomic approaches used to investigate tumor heterogeneity in different cancer
types, including colorectal cancer (CRC), high-grade serous ovarian cancer (HGSOC), non-small cell
lung cancer (NSCLC), lung adenocarcinoma (LUAD) and pancreatic ductal adenocarcinoma (PDAC).

Model Study Proteogenomic Techniques Applications Aims References

tissue biopsies (OCT)

(WGS), (RNA-Seq) and global
proteomic and

phosphoproteomic analyses
(TMT LC-MS/MS) and RRPA.

LUAD

(-) to identify protein and RNA
signatures predicting survival

of patients.
(-) to identify potential

therapeutic vulnerabilities
(proteogenomic signatures)

among subtypes by proteomics
and phosphoproteomics

networks.

[146]
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Table 3. Cont.

Model Study Proteogenomic Techniques Applications Aims References

tissue biopsies (FFT)

Panel sequencing, DNA
methylation analysis, proteomic
analyses (TMT LC-MS/MS and

DDA/DIA LC-MS/MS) and
synthetic peptide analysis.

NSCLC

(-) to detect molecular
phenotypes and cancer-related
proteins for the identification of

specific cancer dependencies and
immune-evasion mechanisms.

[147]

tissue biopsies (FFT)

(WES), (RNA-Seq), single
nucleotide polymorphism array

and proteomic analyses
(LC-MS/MS).

CRC

(-) to characterize molecular
heterogeneity of colorectal cancer

and liver metastasis.
(-) to predict functional

correlation with genomic
abnormalities for potential

prognostic value.

[148]

tissue biopsies (FFT and
FFPE) and PDX

(WGS), (RNA-Seq),
MSK-IMPACT data, proteomic,

phosphoproteomic and targeted
proteomic analyses (TMT

LC-MS/MS and MRM-MS).

HGSOC

(-) to identify distinct
proteogenomic signatures that

predicts chemotherapy-refractory
cancers and implicates potential

therapeutic vulnerabilities.

[149]

tissue biopsies (FFT and
FFPE)

(WGS), (RNA-Seq),
MSK-IMPACT targeted cancer

gene sequencing and proteomic
analysis (LC-MS/MS).

CRC

(-) to identify distinct
proteogenomic subtypes of

colorectal cancer characterize
primaries and liver metastases.
(-) to study tumor progression

and its heterogeneity.

[150]

three colorectal cancer
databases, cell lines
databases and PDO

Single-cell data, DNA
methylation, RNA, and copy
number alteration data along
with global TMT LC-MS/MS

proteomic data.

CRC

(-) to identify significant
prognostic biomarkers and

potential therapeutic targets.
(-) to characterize different CRC
subtypes associated with R-loop

binding proteins.

[151]

tissue biopsies (FFT)

(WES), (WGS), (RNA-Seq), DNA
methylation analyses, miRNA

sequencing, proteomic,
phosphoproteomic and

glycoproteomic analyses (TMT
LC-MS/MS and DIA

LC-MS/MS).

PDAC

(-) to delineate phenotypic effects
related to genomics and

epigenomics aberrations in PDAC
for identification of potential

novel therapeutic targets.
(-) to detect proteogenomic

features, clinical biomarker of
PDAC subtypes and specific to

neoplastic ductal epithelial cells.

[152]

tissue biopsies (FFPE), 2D
in vitro model

(WES), (RNA-Seq), proteomic
and phosphoproteomic analyses

(LC-MS/MS).
PDAC

(-) to decipher the impact of
genomic alterations in gene

expression, protein abundance,
and phosphorylation

modification for prognostic value.
(-) to monitor PDAC cancer

development and progression by
in vivo functional experiments.

[153]

FFT: Fresh Frozen Tissue; FFPE: Formalin-Fixed Paraffin-Embedded; OCT: Optimal Cutting Tissue; PDO: Patient-
Derived Organoid; PDX: Patient-Derived Xenograft; 2D in vitro model: Two-Dimensional cell-cultures model;
WGS: Whole Genome Sequencing; WES: Whole Exome Sequencing; RNA-seq: RNA sequencing; MSK-IMPACT:
Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets; miRNA: microRNA; TMT:
Tandem Mass Tag; LC-MS/MS: Liquid Chromatography Mass Spectrometry; DDA: Data-Dependent Acquisition;
DIA: Data-Independent Acquisition; MRM: Multiple Reaction Monitoring; MS: Mass Spectrometry.

1. High-Grade Serous Ovarian Cancer (HGSOC)

HGSOC is one of the most lethal gynecological cancers due to the inability to diagnose
the disease at an early stage and frequent recurrences [154]. It is characterized by significant
genomic and phenotypic heterogeneity. The substantial genomic instability and altered
DNA repair mechanisms of HGSOC, known as “Homologus Repair Deficiency” (HRD), are
related to different somatic and germinal mutations especially in “BReast Cancer gene 1/2”
(BRCA1/2) genes [155]. This has led to the identification of specific drug therapies, such as
poly (ADP-Ribose) polymerase inhibitors (PARPi), which exploit vulnerabilities in DNA
repair pathways to induce tumor cell death. However, due to high molecular heterogeneity,
30% of HGSOC patients become resistant to therapy and relapse, often leading to death
within five years of diagnosis [156,157].
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In a recent study on the application of proteogenomics to HGSOC, Shrabanti Chowd-
hury et al. integrated genetic predictors, such as BRCA1 inactivating mutations and loss of
heterozygosity of chromosome 17, transcriptomic data, proteomic biomarkers and clinical
features [149]. Genomic, transcriptomic, proteomic, and phosphoproteomic data were
collected from three pre-treatment HGSOC tissue patient cohorts, which were divided into
chemotherapy-refractory and sensitive to platinum/taxane therapy groups. Additionally,
four public data repositories were used. The aim was to identify distinct proteogenomic
signatures associated with chemo-refractory HGSOC.

By integrative analyses combining CNV, RNA, and global protein abundance data
with multiple linear regression models, the relationships between molecular alterations in
genes or proteins and platinum response were assessed.

Additionally, a predictive model of chemoresistance in HGSOC was developed using
multiple machine learning models trained on proteins obtained from the analysis, previ-
ously deposited data, and literature. These models enabled the identification of sixty-four
protein biomarkers related to chemo-refractory sensitivity, which could be useful for clin-
ical therapeutic monitoring. Furthermore, starting from 150 pathways, five proteomic
clusters were highlighted in both tissue biopsies and in vitro independent models [149].
Notably, a specific HGSOC subtype showed sensitivity to platinum-based therapy via
pharmacological inhibition or CRISPR knockout of Carnitine Palmitoyl Transferase 1A
(CPT1A), which is involved in a limiting step of fatty acid oxidation [149]. Therefore, for
these subtypes, it would be more beneficial to use alternative therapeutic strategies such as
metabolic inhibitors

2. Colorectal Cancer (CRC)

CRC is one of the most common and aggressive cancers affecting both in adult women
and men [158]. Frequent recurrences and metastases result in a persistently low survival
rate for patients due to high inter/intra-tumoral heterogeneity within CRC primary and
metastatic tumor. This heterogeneity arises from the accumulation of genetic mutations,
chromosomal aberrations, and environmental factors at the onset of disease and during
its progression [159]. The genomic profiling of CRC reveals significant genomic instability
characterized by CpG island methylator phenotype (CIMP), Chromosomal INstability (CIN)
and Micro-Satellite Instability (MSI). CIN, CIMP and MSI forms are expressed differently
based on tumor location—whether distal, rectal, or proximal—and these differences impact
clinical therapy outcomes [158].

A recent proteogenomic study on both primary and metastatic CRCs collected from
two cohorts of patients has significantly contributed to understanding metastatic pro-
gression [150]. They performed a discovery proteogenomic approach in the first cohort.
Similarly, they conducted genomic, transcriptomic and proteomic integration in the second
cohort, consisting of Fresh Frozen Tissue, including matched tumors at different stages
with MSI and “Micro-Satellite Stable” (MSS) status, and normal tissues.

The study revealed six proteogenomic subtypes derived from three distinct subtypes
in primary and metastatic CRC by using integrative unsupervised cluster analyses. These
subtypes are characterized by hypoxia, stemness, and immune signatures. By suggesting
specific mechanisms related to these pathways, this information may be useful for the
clinical management of CRC and its progression [150].

Another recent proteogenomic study, involving deposited proteomic, genomic, and
transcriptomic data from three CRC tissue and cell line databases, was conducted to char-
acterize CRC linked to R-loop-Binding Proteins (RLBPs) [151]. Data on 204 RLBPs related
to mRNA, CNA, or CpG promoter DNA methylation were analyzed using comprehensive
statistical and cluster analyses, including non-negative matrix factorization. This analysis
led to the identification of two distinct proteomic clusters with differential expressions of
RLBPs [151].

The correlation analysis of these clusters with cell line drug sensitivity data revealed
different RLBP profiles. One CRC cluster, characterized by the high expression of tumor-
related RLBPs, showed greater sensitivity to therapeutic drugs targeting EGFR and ge-
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nomic integrity compared to the second cluster, which exhibited low RLBP expression.
Additionally, 42 differentially expressed RLBPs were identified across the CRC databases,
highlighting their potential for further functional exploration in cancer progression and
therapeutic applications.

3. Pancreatic Ductal Adenocarcinoma (PDAC).

PDAC is one of the most lethal and aggressive carcinomas, and it is often diagnosed
at a locally advanced stage or after metastasis has occurred [160]. Surgical resection is
currently the primary treatment modality for PDAC; however, only 15–20% of patients
present with initially resectable tumors [161]. This low percentage is attributed to both
the location and molecular heterogeneity of the tumor and its stroma, which also can
complicate immunotherapy and chemotherapy treatments. The genomic profiling of PDAC
shows an extreme genetic heterogeneity reflected in mutations across several genes [162].
A proteogenomic study on PDAC was conducted on a cohort of treatment-naive pancreatic
tumor tissues, paired normal adjacent tissues, and normal pancreatic duct tissues from
seven countries collected by the CPTAC program [152].

By combining genomic, transcriptomic, proteomic, and glycoproteomic data with
statistical analyses, the researchers aimed to characterize PDACs and explore how genomic
alterations impact transcript and protein abundances as well as PTMs. They identified dif-
ferentially expressed proteins and glycoproteins in PDACs, which could serve as candidates
for early detection.

In addition, another proteogenomic approach analyzed a cohort of 229 PDAC tumors
along with paired non-tumor adjacent tissues. The clinical information for this cohort
included age, TNM (tumor, nodes, metastasis) stage (I–III), various pathological conditions,
survival rate (in months), and KRAS mutation status.

Proteogenomic characterization was performed by comparing WES, proteomic, and
phosphoproteomic data with correlation analyses. This led to the identification of distinct
proteomic and phosphoproteomic patterns related to genomic alterations. Specifically, the
study revealed differential protein modifications related to KRAS mutations and the ampli-
fication of A Disintegrin and Metalloprotease 9 (ADAM9) [153]. Moreover, in an in vivo
model, it was demonstrated that a higher frequency of ADAM9 gene amplification could
drive PDAC metastasis by reducing adhesion junctions and increasing WNT signaling
pathway activity [153].

These studies, along with the others reported in Table 3, have shown proteogenomics
as a powerful tool in detecting phenotypic features and their clinical impact on tumors.

Application of Single-Cell Multiomics Approaches on Cancer Studies

The advancement of single-cell DNA and RNA sequencing, Spatial Transcriptomic (ST)
and the latest proteomic technologies has enabled the development of multiomics approaches
at the single-cell level allowing for a more detailed description of intra-tumor heterogeneity.

Since 2013, when single-cell RNA sequencing was named “Method of the Year”, numer-
ous studies have integrated this analysis, paving the way for new insights into molecular
heterogeneity [163]. In 2019, a new “wave” of multimodal measurements emerged, ex-
tending beyond transcriptomic analysis, also to include the analysis of the methylome,
chromatin modifications and surface proteins [164]. This trend continued with spatial
transcriptomics, which was named “Method of the Year 2020” for its ability to retain the
spatial information of individual cells, thus enhancing our understanding of the complex
architectural heterogeneity of tissues [165]. However, most of these single-cell multi-
modal approaches combine two or three omics disciplines: integration of genomics and
transcriptomics (mRNA–genome); transcriptomics and epigenomics (mRNA–chromatin
accessibility or mRNA–DNA methylation) and transcriptomics with targeted proteomics
(mRNA–protein data) [46,166].

For example, Bian et al. reported a single-cell triple omics sequencing approach in
colorectal cancer cells where genomics, transcriptomics, and epigenomics data were simul-
taneously detected in single cells. Multidimensional scaling and unsupervised hierarchical
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clustering analyses were used to explore the integrated single-cell omics data. This inte-
gration allowed for the reconstruction of genetic lineages and traced the epigenomic and
transcriptomic dynamics of primary and metastatic tumor cells [167].

This allowed for better awareness of the molecular alterations that occur during CRC
progression and metastasis.

In 2022, Miheecheva et al. conducted an in-depth analysis of the TME subpopulations
in clear cell renal cell carcinoma (ccRCC), incorporating genetic, proteomic, transcriptomic,
and spatial information [168].

The study employed various technologies to obtain genomic, transcriptomic and pro-
teomic data including CyTOF, Multiplex ImmunoFluorescence (MxIF), single-nucleus RNA
sequencing (snRNA-seq), and bulk-level analyses with WES, RNA-seq, and methylation
profiling. In addition, bioinformatic tools and machine learning algorithms were utilized
to analyze and integrate these omic data. This approach revealed distinct CD4+, CD8+,
and myeloid T-cell subpopulations as well as correlations between genetic alterations and
TME composition.

Integrating multiomics data, such as transcriptomics and proteomics, in single-cell
analyses could provide a clearer picture of the molecular alterations related to phenotypic
heterogeneity. Advanced bioinformatic platforms and statistical analyses are essential for
this purpose, as reported by Anjun Ma et al. in [169]. In this context, among these tools,
Seurat and MOFA are widely used. The Seurat3 algorithms can integrate various types of
data such as RNA expression with chromatin accessibility, other scRNA technologies, and
cell-surface protein expressions. This integration enables the identification of cell-specific
markers and provides a deeper understanding of the linkage between gene expression and
protein abundance [169,170].

Conversely, Multi-Omics Factor Analysis (MOFA) is a computational tool designed
to capture variations across multiple factors and multidimensional data. It helps to miti-
gate missing data and identify potential clinical markers and novel molecular drivers of
heterogeneity [171].

Thus, these integrative multiomic approaches, combined with statistical and compu-
tational methods, help in correlating gene mutation and expression with protein levels,
enhancing the understanding of tumor heterogeneity, and potentially leading to the devel-
opment of more effective therapies, particularly in the field of immunotherapy.

For example, a study on NSCLC showed that the integration of scRNA-seq and CITE-
seq analysis revealed a specific cellular module called the Lung Cancer Activation Module
(LCAM), which was linked with TMB, tumor testis antigens, and TP53 mutations [172].

The variability in LCAM levels among patients suggests that high LCAM may serve as a
useful biomarker for predicting and monitoring responses to immune-modulating therapies.

Similarly, Bai et al. reported on the integration of scRNA-seq and CITE-seq analysis
in CAR T-cells among pediatric patients with relapsed/refractory Acute Lymphoblastic
Leukemia (ALL) [173]. The study revealed intrinsic phenotypic heterogeneity in CAR
T-cell composition between long-term responders and relapsed ALL patients. This finding
indicates that combining proteomic data with genomics and transcriptomics analyses could
provide a comprehensive characterization of CAR T-cell populations, highlighting factors
that may predict responses to CAR T-cell immunotherapy.

Another study by Gubin et al. integrated CyTOF and scRNA-seq for protein cellu-
lar and transcriptomic analyses, respectively [174]. Distinct cellular phenotypes across
all hematopoietic cells of syngeneic mice tumors were identified during the administra-
tion of Immune Checkpoint Therapy (ICT). This integration provided new insights into
the transcriptional, molecular, and functional changes that occur within lymphoid and
myeloid immune cell populations, underscoring the importance of monitoring specific
monocyte/macrophage populations after cancer immunotherapy [174].

Despite the growth in single-cell multiomics studies, many existing approaches rely
on targeted methodologies, such as CyTOF and CITE-seq, where specific surface proteins
or biomarkers are pre-selected. However, untargeted single-cell proteomics technologies
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are now emerging. Recent advances in techniques such as ScoPE-MS and ScoPE-MS2 have
enabled the identification of a broader range of proteins and their regulatory interactions
with transcripts, supporting hypothesis-free approaches [175,176]. These developments
are paving the way for more comprehensive proteogenomic analyses at the single-cell
level, enhancing our understanding of gene–mRNA–protein relationships across various
tumor phenotypes.

3. Proteogenomics and Single-Cell Analyses: Criticisms and Challenges

Despite the significant advancements of proteogenomics in biomedical research, its
workflow presents several challenges. As outlined in Figure 1 and discussed in Section 2,
database construction is a critical component of the proteogenomics workflow [177].

Translating nucleotides into amino acid sequences for a customized protein database
involves various methods, depending on the genomics or transcriptomics data used [33].

These methods can impact the size of the database and, consequently, the sensitivity
of protein identification [178].

Protein identification by proteogenomics relies on an inference process, dependent
on Peptide Spectrum Matches (PSMs) and the False Discovery Rate (FDR) threshold. In-
creasing the size of the customized database can lead to false positive identifications (PSM
false) due to the higher number of potential spectral matches [178]. Conversely, using a
stringent FDR threshold may result in false-negative PSMs, leading to an underestimation
of protein abundance or loss of important information due to an incomplete database [178].
Therefore, different methodological strategies have been suggested to optimize analysis
results [179–181]. These strategies include an “individualized” database that combines NGS
and bottom–up proteomics analyses on the same samples. Furthermore, peptides validation
is required after protein identification. This involves comparing identified peptides against
major reference databases available for the organism of interest (e.g., RefSeq, UniProtKB,
Ensembl) and common sample contaminants. To improve reproducibility and standardiza-
tion, employing sophisticated dissection algorithms and automated software platforms is
recommended [179–181]. Tools such as SpliceDB and CustomProDB for database creation,
and ProGeo, Galaxy implementation PGtool, and Peppy for proteogenomics pipelines,
have been developed to address these needs [182,183].

Despite the growing application of multiomics approaches, several technical, biological
and computational limitations must be addressed in both single-cell analyses and LB
analyses (Tables 1 and 2).

Technical and biological variability pose significant challenges for both bulk and single-
cell analyses Unlike bulk RNA-seq analyses, which have been extensively studied, scRNA-
seq experiments are significantly impacted by technical factors such as RNA amplification
bias and cell capture processes [52].

Single-cell proteomics face additional difficulties compared to genomics and transcrip-
tomics because, unlike DNA and RNA, proteins cannot be amplified. Current single-cell
proteomics techniques involve trade-offs between sensitivity throughput [48,53]. For
instance, mass cytometry can measure up to 60 parameters simultaneously [54], and bar-
coding techniques like CITE-seq can process thousands of cells. However, these methods
are constrained by the availability of high-quality antibodies. Immunoassay-based single-
cell proteomic analyses, such as single-cell barcoding cytometry (SCBC) and single-cell
Western blotting (scWB), are limited to detecting only a few proteins at a time.

In contrast, emerging SCP-MS techniques, such as SCoPE and SCoPE MS2, allow
greater proteome coverage through multiplexing but still face challenges. Key issues
include the isolation, digestion, and transfer of proteins to the mass spectrometer as well as
maintaining high throughput without sacrificing coverage or incurring data loss [55,56].

Despite these challenges, ongoing improvements in sampling efficiency, ion accumula-
tion and automation technologies [53] are opening up the possibility for more comprehen-
sive and accurate single-cell proteogenomic analyses in the future [184].
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To complement the discussion in Section 2.2.2, the following table summarizes the
advantages, limitations, and troubleshooting strategies for various LB techniques.

4. Discussion and Conclusions

Tumor heterogeneity is a complex and pervasive characteristic that significantly influ-
ences tumor phenotypes.

Studies utilizing genomic and transcriptomic approaches—whether on solid tumor biopsies
or through liquid biopsies—have illuminated the biological features of tumor evolution.

Moreover, NGS technologies applied at both tissue and single-cell levels have ad-
vanced our ability to characterize genetic and transcriptomic heterogeneity. These technolo-
gies enable the detailed exploration of the diverse molecular landscapes within tumors,
providing insights into their evolution and behavior.

However, several mutations and transcriptomic alterations do not necessarily result
in functional changes at a phenotypic (protein) level [18]. Therefore, a critical integra-
tion of data is essential for a comprehensive interpretation. In fact, protein heterogeneity
is not solely a consequence of genetic or transcriptomic alterations. TME, immune sys-
tem interactions, and the effects of specific drugs can modulate proteins expression and
their modifications in ways that genomics or transcriptomics alone cannot always predict.
Moreover, the complexity of protein heterogeneity can be further increased by PTMs and
protein isoforms.

While NGS-based analyses such as those performed by the TCGA project have char-
acterized most tumor types, they showed limitations in detecting all proteomic changes.
Hence, to achieve a complete characterization of tumor heterogeneity, all phenotypic
features such as proteins, protein networks, and PTMs has to be evaluated.

Indeed, recent advances in proteogenomics, driven by studies from CPTAC and
improvements in computational methods for multiomic data integration, have moved
beyond a sequencing-centric approach. These advancements have illuminated key cancer
mechanisms [61,145,148,185].

For instance, in a study by Lethiö on NSCLC [147], while the tumor mutational burden
was determined at the DNA level, proteomic data identified aberrant proteins caused
by genomic aberrations in the tumor [186]. Therefore, proteogenomics can simultane-
ously enhance the understanding of cancer development pathways and immune evasion
mechanisms [186].

The integration of multidimensional data, including molecular and clinical informa-
tion, is facilitated by advanced statistical and bioinformatic tools, improving the biological
understanding for patient stratification and precision treatments [187].

Proteogenomics reveals cancer signaling pathways and drug responses, and it identifies
new therapeutic targets and biomarkers for diagnostic and therapeutic purposes [21,143,144].

For example, in an HGSOC study, proteogenomics revealed several subtypes sen-
sitive to specific therapies, suggesting potential for diverse metabolic therapeutic ap-
proaches [149].

In CRC, proteogenomics enabled the identification of metastasis subtypes with dif-
ferent proteomic signatures [151], aiding early detection and targeted therapies [150]. In
PDAC, known for its high molecular and phenotypic heterogeneity, proteogenomics identi-
fied key protein markers and mutations that may offer valuable biomarkers for targeted
therapies and early detection [152].

Thus, proteogenomics represents a powerful approach for obtaining a comprehen-
sive depiction of the molecular dynamics of intra-tumor heterogeneity with significant
implications for diagnostic and therapeutic purposes.

Despite the promising advancements in proteogenomics, several challenges need to be
addressed for clinical application. ITH remains a significant obstacle for molecular analyses
in both clinical and preclinical models.

Additionally, constructing comprehensive databases, achieving accurate protein identifica-
tion, and the lack of standardized protocols continue to challenge the proteogenomic workflow.
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Nevertheless, organizations like TCGA, CPTAC, and the International Cancer Pro-
teogenomic Consortium (ICPC) are actively collaborating to establish standardized pro-
teogenomic pipelines to enhance this approach for clinical use [185,188].

For instance, CPTAC has employed phosphoproteomics and targeted MS approaches
such as Multiple Reaction Monitoring [18,141]. Moreover, advancements in bioinformat-
ics tools and platforms, including CustomProDB, NetGestalt, LinkedOmic and iProFun,
have made integrative proteogenomic data analyses and sharing more accessible [142,145].
Finally, proteogenomic workflows are also advancing the context of organoids and sin-
gle cells analyses, increasing the potential of proteogenomics in clinical and biomedical
research [51,123,125,132,133]. The advancement of single-cell multiomics has significantly
deepened the understanding of tumor heterogeneity.

Although single-cell proteomic analyses have rapidly evolved, they are still in the
early stages, revealing only the “tip of the iceberg” [189].

Addressing both technical and biological challenges would be useful for further
applications of single-cell proteogenomic approaches to better decipher molecular and
phenotypic changes in cancer cells.

In conclusion, despite its current limitations, proteogenomics remains a fundamental
and innovative approach for tumor phenotyping. By identifying specific drivers mutation,
new genomic regions, protein signatures (such as neoepitopes and proteoforms), and
potential immuno-therapeutic targets, proteogenomics lays the groundwork for a more
profound characterization of tumor phenotypes and paves the way for more personalized
medicine strategies.
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