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Cristian Gherghina

Received: 30 April 2024

Revised: 18 June 2024

Accepted: 24 June 2024

Published: 27 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

economies

Article

A Self-Adaptive Centrality Measure for Asset
Correlation Networks
Paolo Bartesaghi 1 , Gian Paolo Clemente 2 and Rosanna Grassi 1,*

1 Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Via Bicocca degli
Arcimboldi 8, 20126 Milan, Italy; paolo.bartesaghi@unimib.it

2 Department of Mathematics for Economic, Financial and Actuarial Sciences, Università Cattolica del Sacro
Cuore, Largo Gemelli 1, 20123 Milan, Italy; gianpaolo.clemente@unicatt.it

* Correspondence: rosanna.grassi@unimib.it

Abstract: We propose a new centrality measure based on a self-adaptive epidemic model charac-
terized by an endogenous reinforcement mechanism in the transmission of information between
nodes. We provide a strategy to assign to nodes a centrality score that depends, in an eigenvector
centrality scheme, on that of all the elements of the network, nodes and edges, connected to it. We
parameterize this score as a function of a reinforcement factor, which for the first time implements
the intensity of the interaction between the network of nodes and that of the edges. In this proposal,
a local centrality measure representing the steady state of a diffusion process incorporates the global
information encoded in the whole network. This measure proves effective in identifying the most
influential nodes in the propagation of rumors/shocks/behaviors in a social network. In the context
of financial networks, it allows us to highlight strategic assets on correlation networks. The depen-
dence on a coupling factor between graph and line graph also enables the different asset responses
in terms of ranking, especially on scale-free networks obtained as minimum spanning trees from
correlation networks.

Keywords: epidemic models; centrality measures; eigenvector centrality; nonlinear eigenproblem
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1. Introduction

Firms, companies, and economic institutions are nowadays highly interconnected in
networks of different kinds. The role or the ranking of a firm within such networks can be
evaluated in several ways.

There is a variety of indicators that allow us to assess the ranking, exposure and relia-
bility of a company in the national and international context (see, e.g., Tosyali et al. 2021).
Among them, centrality measures have assumed a prominent role in the analysis of local
properties of a network (see, e.g., the following most up-to-date papers Bloch et al. 2023;
Bowater and Stefanakis 2023; Cao et al. 2024; Chebotarev 2023; Raj and Bhattacharya 2023).
The importance of these measures in the economic and financial network analysis is also
widely supported by the most recent literature. For example, Alkan et al. (2023) compare
different centrality scores for the economic policy uncertainty indices of 21 countries and
Strielkowski et al. (2023) studied the role of regional innovation systems (RISs) in shaping
up the national innovation systems (NISs), uncovering emerging trends, most influential
agents, and domains of intensive research activity. A local perspective in financial network
analysis is also adopted by Alamsyah et al. (2022), who studied the effect of shifts in the
network triadic motifs on the propagation of shocks in a transaction network. Our paper
fits into this research framework.

In network theory, many classical centrality measures have been introduced and used
to rank institutions (see, e.g., Belik 2022; Borgatti 2005; Freeman 1978; Rajeh et al. 2021;
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Scott 1991; Wasserman and Faust 1994). Regardless of the nature of the ties and links that
characterize the network, among the most used we mention the degree centrality, which
quantifies the number or weight of these ties, the betweenness, which evaluates the key
role of a company as a bridge between two or more groups of companies, the closeness (see,
e.g., Bavelas 1950; Sabidussi 1966), which quantifies the proximity to other institutions and
the promptness with which it is possible to reach them from the node under examination.
A remarkable role is played by the well-known eigenvector centrality (Bonacich 1972),
particularly in contexts where the authority of an institution or its governing bodies is to
be determined. In this case, in fact, the score assigned to an institution is not defined by
the internal parameters of the institution itself; rather, it is inherited from the scores of
its immediate neighbors. In a sense, we can say that its reliability is established on the
basis of the level of reliability of the institutions with which it cooperates. It is clear that
this centrality measure, more than others, strongly weights the overall contribution of the
network in which the institution is nested and from which it cannot be considered separate.
Lastly, there is a broad class of centrality measures that emerge as the asymptotic result
of diffusive processes internal to the network. These measures assign rankings to nodes
that are updated at each step of an iterative process until it converges, under appropriate
conditions, to stable final values. This is the case of PageRank (see, e.g., Brin and Page
1998; Page et al. 1999), used to define the ranking of web pages in Google, which can be
considered as the stationary state of a linear conservative diffusion process. Another case is
DebtRank (Battiston et al. 2012), which assesses the additional stress that each institution’s
default can generate in a linear shock propagation framework, on directed networks of
financial interdependence through interbank lending.

The centrality measure proposed in this paper combines two of the aspects described
above. It quantifies the importance of an institution by assigning it a score resulting
from nonlinear feedback between its own score and that of all the elements immediately
connected to it, nodes and links. Furthermore, it emerges as the asymptotic non null steady
state of an iterative process that involves two suitably coupled contagion mechanisms. In
this way, we fill a gap in the literature on centrality measures, since the scheme behind the
definition of eigenvector centrality has never been extended to all elements connected to a
node and has never been interpreted as the steady state of an appropriate diffusive process
involving both nodes and links.

To illustrate the main idea behind our proposal, consider the following example.
Suppose we have a network of firms in which the ties are due to having a common director
on the respective boards (see, e.g., Giglio and Lux 2021; Takes and Heemskerk 2016). This
is a typical framework for analyzing corporate networks as projections of the bipartite
network of companies and directors. Suppose that such a network during a period of
market turbulence is the site of dissemination of important business information that may
lead directors to make appropriate choices or not. Of course, we may consider two different
propagation processes on the network of corporate boards (nodes) and on the network of
directors (edges) and the reciprocal effect each process in one network has on the other. The
processes are coupled and mutually reinforcing. The higher the likelihood that directors in
common between two companies have at their disposal a given piece of information, the
greater the likelihood that it will affect business choices and may determine the behavior
of other companies in the network. We design a unified dynamic process that converges,
under appropriate conditions, to asymptotic steady states of both firms and directors.
These states are then interpreted as their centrality scores and are the result of a complex
reciprocal action between nodes and edges. In this way, we can view the ranking of a node
not as the consequence of mere and static local properties, but of its complex interactions
arising from its deep embedding in the network.

Another example can be provided referring to a correlation network (see, e.g., Kukreti
et al. 2020; Onnela et al. 2003; Mantegna 1999; Masuda et al. 2023; Gkatzoglou et al. 2024)
obtained from the returns of a basket of securities in a given portfolio. Linear correlation
coefficients can be interpreted as the result of a series of complex interactions and exchanges
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of information that have occurred in the past between these securities and that have led to
their behavior being more or less correlated. As such, they can change over time and be
subject to a shock that propagates from other correlations perturbations, i.e., from other
neighboring links, which in turn will influence the future behavior of stock returns.

The previous examples suggest not separating the propagation of a shock on the
network of actual nodes from that on the network of their edges. The idea of a reciprocal
action in which node and edge attributes are mutually dependent has recently been used
to propose a static nonlinear eigenvector centrality for nodes and edges in Tudisco and
Higham (2021) in the wider context of hypergraphs.

The novelty of our approach is that we implement a similar idea through a specific non-
conservative diffusion model on both the networks of nodes and edges and let them interact
by means of a coupling coefficient, which we call the reinforcement factor. The actual
dynamical system will be described by an SIS-like epidemiological model. In particular,
to obtain the new centrality measure we adopt the self-adaptive model introduced in
Bartesaghi et al. (2024). The node incidence, which is the instantaneous increase or decrease
of the individual score, is determined by that associated with all its neighboring elements
(connected edges and neighbor nodes); similarly, the edge incidence is determined by that
of all its neighboring elements (adjacency edges and end nodes).

Since the edge weight generally conveys how effective that edge is in transmitting
information, we are assuming that this weight is not independent of the information content
of its end nodes. In other words, we assume that these weights can be updated to account
for the changing information content of the nodes, just as this content depends on the
edge weights themselves in any diffusion process on networks. Therefore we consider a
secondary, or dual process, in which the shock propagates among edges through the nodes,
that is, a process that occurs in the so-called line graph Gross et al. (2013) in which the role
of nodes and edges are reversed. The two processes evolve simultaneously over time using
one of the scores yielded by the other. The asymptotic non null steady state of the two
coupled processes is interpreted as the new self-adaptive eigenvector centrality.

Numerical analyses have been developed to test the proposed approach on the net-
works built using the returns constituent of the SP100 index at the end of 2003. Specifically,
we analyzed returns’ correlation spanning from the inception of 2000 to the end of 2023 and
we divided the whole period in different windows. In each interval, we have compared
nodes’ rankings based on traditional unweighted and weighted centrality measures with
the ones obtained by the proposed approach. We noticed that the performance of non-linear
centralities remains robust in identifying highly correlated assets within networks, even
in periods of heightened volatility and turbulence. Consequently, these measures present
themselves as promising alternatives for identifying central or diversifiable assets in opti-
mal portfolio allocation strategies (see, e.g., Clemente et al. 2021; Olmo 2021; and Peralta
and Zareei 2016). The financial and economic implications of this proposal are signifi-
cant. By identifying and quantifying central nodes within financial networks, stakeholders
can better understand the propagation of defaults, thereby enhancing risk management
strategies. This approach provides a more nuanced view of asset interdependencies, lead-
ing to more informed investment decisions and regulatory measures. Additionally, the
ability to assess the interaction intensity between nodes and edges offers insights into
the systemic risk posed by highly interconnected assets, facilitating more robust financial
stability assessments. Ultimately, this method can contribute to more resilient financial
systems by enabling the early detection of potential vulnerabilities and the implementation
of preemptive measures to mitigate systemic risks. This proposal is in line with the current
literature. Recent studies (see, e.g., Raddant and Di Matteo 2023) showed that central nodes
in financial networks are pivotal in understanding market dynamics and systemic risks.
By leveraging these findings, we show how our analysis aligns with established research
indicating that central assets can significantly influence market behavior. Additionally,
Bardoscia et al. (2016) highlights the benefits of using advanced centrality measures in
portfolio management. Their findings suggest that portfolios constructed with an under-
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standing of network centrality are better diversified and exhibit lower risk. This supports
our claim that identifying central assets helps in precise diversification and risk reduction.

In summary, the contributions of the present paper to the literature in this area can be
identified in three different aspects. First, in having provided a strategy to assign to nodes a
centrality score that depends, in an eigenvector centrality scheme, on that of all the elements
of the network connected to it, nodes and edges, thus incorporating the importance of
edges. Second, by parameterizing this score as a function of a reinforcement factor, which
for the first time implements the intensity of the interaction between the network of nodes
and that of the edges. Third, showing how this new indicator, when applied to the minimal
spanning tree of a correlations network between assets, allows highlighting more central
and therefore riskier assets from a financial default propagation perspective.

The paper is organized as follows. In Section 2, we recall some basic notions about
centrality measures and establish the notation. In Section 3, we give a brief overview
of the self-adaptive model introduced in Bartesaghi et al. (2024), from which the new
centrality measure originates. In Section 4, we define the self-adaptive centrality measure.
In Section 5, we apply this measure to a financial dataset, we describe the data and the
procedure used to construct the networks and, finally, we compare the results obtained
with other centrality measures. We conclude with some further remarks in Section 6.

2. Networks and Centrality Measures

The mathematical structures behind networks are graphs. We briefly recall here the
basic graph definitions, as well as the most known vertex centrality measures. For more
details the reader can refer to Brandes and Erlebach (2005); Harary (1969). From now on,
we will use the words “networks” and “graphs” interchangeably.

Let G = (V, E) be a graph, where V is the set of n vertices, or nodes, and E is the set of
m edges, or links. For undirected graphs, if (i, j) ∈ E then (j, i) ∈ E. In this case, i and j are
adjacent. The degree ki of the vertex i is the number of its adjacent nodes, and we denote by
k = [k1, . . . , kn]T the whole degree vector. A (i, j)-path is a sequence of distinct vertices and
edges between i and j. If a (i, j)-path exists, then i and j are connected. G is connected if
every pair of vertices is connected. The shortest (i, j)-path is said (i, j)-geodesic. We define
the distance d(i, j) between nodes i and j as the number of edges of the (i, j)-geodesic.

The adjacency relations between nodes are represented by a n-square binary matrix
A = [aij], called adjacency matrix, whose entries aij = 1 if (i, j) ∈ E, 0 otherwise. As
the network G = (V, E) is undirected, A is symmetric and its eigenvalues are real. Let
λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A, xj the eigenvector associated with λj and
(λj, xj), j = 1, . . . , n an eigenpair of A. Graphs considered in this work are without loops
and multiple links. A network is weighted if a weight wij > 0 is assigned to the link (i, j).
In the case of a weighted network, we denote the weighted adjacency matrix by W = [wij].
The line graph of a graph G is a graph GD whose nodes are the edges of G and in which
two nodes are connected if the corresponding edges in G have a common vertex.

Centrality is one of the key issues in network analysis. In general, any element
(i.e., nodes, edges or groups of nodes) of the network can be important in terms of the
overall structure, but the most studied aspect is the assignment of a centrality score to the
vertices of the network, indicating their relevance and influence in terms of connections.
Among the different centrality measures existing in the literature, we focus on the most
well-known and used in the weighted version.

The most intuitive centrality measure is the degree centrality of a node i, which counts
the number of nodes adjacent to i, and it is formally represented by the degree ki. For a
weighted graph, we can consider weights defining the strength si = ∑n

j=1 wij, and collecting
the strength values in a vector, s = [s1, . . . , sn]T .

As degree and strength centralities, the eigenvector centrality (Bonacich 1972) is based
on the adjacency relations, but with a more refined interpretation. A node i is central if
connected to nodes that are central themselves. In other words, the node i’s centrality xi is
proportional to the sum of the centralities of its neighbors, that is:
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xi =
1
λ

n

∑
j=1

aijxj, (1)

where λ is a constant.
Using the vector of centralities x ∈ Rn, this expression can be rewritten in matrix

form as λx = Ax, so that x is an eigenvector of the adjacency matrix A with eigenvalue
λ. As the centralities have to be nonnegative, by the Perron–Frobenius theorem (Horn
and Johnson 1985), λ must be the largest eigenvalue of A and the centrality vector is the
corresponding principal eigenvector x, whose components are all positive. The normalized
(with Euclidean norm) eigenvector score is xi

∥x∥ . Also, in this case, it is easy to generalize to
weighted networks defining the vector of weighted eigenvector centralities as the vector x
s.t. x = 1

λ Wx, being W the weighted adjacency matrix.
Two measures related to paths are betweenness and closeness (Freeman 1977; Sabidussi

1966). The shortest-path betweenness centrality quantifies how often a node is located on a
shortest path between all other nodes. Formally, it is the percentage of geodesics between
pairs of vertices j, k ̸= i, passing through i:

b(i) = ∑
j<k

gjk(i)
gjk

, (2)

where gjk is the number of geodesics from node j to node k, and gjk(i) is the number of those
geodesics that pass through i. The measure is normalized by dividing the betweenness
value b(i) by its maximum value (n−1

2 ).
Closeness of a node i is defined as the reciprocal of the sum of the distance between i

and all other nodes:
c(i) =

1
∑j d(i, j)

. (3)

The normalized version is n−1
∑j d(i,j) and it allows us to compare networks of different

sizes.
Unlike degree and eigenvector centrality, which are based on the adjacency relation-

ships, the generalization to the weighted case is not immediate for the path-based measures.
A famous algorithm was proposed by Brandes (2001). It extends the betweenness centrality
to the weighted case by using the Dijkstra algorithm and reverting the edge weights. We
refer to this algorithm in computing the betweenness in Section 5.

3. Self-Adaptive SIS Model Overview

The self-adaptive centrality measure on which this paper focuses was introduced as a
direct consequence of the nonlinear dynamic process described in Bartesaghi et al. (2024)
and called the ASIS model. Here, we briefly recall the basic features of such a model and
then expand on the discussion of the centrality measure.

The ASIS model is based on the continuous interaction between a graph (primal
network) and its line graph (dual network). It is assumed that both the primal and dual
networks are home to a dynamic process that sees the attributes or scores of the nodes
evolve over time according to an iterative scheme based on an SIS-like (Susceptible–Infected–
Susceptible) compartmental framework. The model provides for a step-wise update of the
edge weights in one of the two networks based on the evolution of the dynamic process in
its counterpart. In particular, in a discrete setting, it proves that the weights attributed to
the edges in the primal network at time t are updated by the values of the scores associated
with the nodes of the dual network at time t− 1. These scores, originally conceived as the
probability of being infected or having adopted a certain behavior, are here interpreted as
the node score and take on real values in [0, 1].

The ASIS centrality measure is provided by the non null asymptotic state of the
probability distribution on the nodes in the two networks and is computed as the outcome
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of a nonlinear iterative process that allows the process to be modeled over discrete times.
The interaction between the primary network and the dual one can be appropriately
calibrated by a coupling factor, called the reinforcement factor, which defines the intensity
with which one process influences the other. In this way, it is possible to evaluate the effect
of the coupling between the processes on their asymptotic values, i.e., on the endemic
stationary states, and as a consequence on the centrality measures we are interested in.

The mathematical structure of the model is the following. Let us assume that the primary
network GP is represented by an undirected graph with adjacency matrix AP ∈ Rn×n and
incidence matrix E ∈ Rn×m and the dual network GD by an adjacency matrix AD ∈ Rm×m.
Suppose that both the nodes and the edges of the network GP are assigned numerical attributes
represented by vectors x = [x1, . . . , xn]T and y = [y1, . . . , ym]T, respectively. Variables x and
y evolve in time and their values are used to update the entries in the adjacency matrices
according to the rules 

AP(y) = E diag yET − diag kP

AD(x) = ETdiag xE− diag kD

(4)

where kP = Ey, kD = ETx and diag k is the diagonal matrix having diagonal entries given
by k.

The model is then entirely described by the following nonlinear system
ẋ(t) = β[In − diag x(t)]AP(t) x(t)− γx(t)

ẏ(t) = β[Im − diag y(t)]AD(t) y(t)− γy(t)
(5)

where β and γ are the infection and recovery rates, assumed common to both the primary
and dual networks, In is the n-square identity matrix, and where we used AP(t) = AP(y(t))
and AD(t) = AD(x(t)) to simplify the expression. The initial conditions of the problem
are set to x(0) = x0 = pun and y(0) = y0 = pum, where un = [1, 1, . . . , 1]T and p ∈ R,
p ∈ (0, 1] represents the initial probability of being infected, uniformly distributed across
nodes in network GP and nodes in network GD.

Let us observe that, by the rule in Equation (4), edges in the network GP are assigned
weights equal to the node probabilities in the network GD to produce an updated version
of the adjacency matrix AP(t) at time t. Similarly, for AD(t), by assigning GD to the edges
of the dual network, the probabilities of the corresponding nodes in GP at time t in a non
one-to-one correspondence.

The intensity of the coupling between the two processes can be modulated by an
appropriate convex combination between the fully updated adjacency matrix at time t and
the fixed adjacency matrix at time t = 0:

A(e)
P (t) = eAP(t) + (1− e)AP(0)

A(e)
D (t) = eAD(t) + (1− e)AD(0)

(6)

where e ∈ [0, 1]. In this way, we calibrate the weights of the adjacency matrices from the
initial probabilities p (e = 0) and the actual probabilities of the nodes and edges at time t
(e = 1). For e = 0, the model reduces to two disentangled standard SIS processes on the
primary and dual networks. For e = 1, it returns the fully self-adaptive SIS model. For any
0 < e < 1, we obtain the more general partially coupled model.

Finally, by introducing the variable z(t) := [x(t), y(t)]T ∈ Rn+m, the model can be
given the compact form ż = H(z)z, where

H(z) := β[In+m − diag z]G(z)− γIn+m. (7)
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and

G(z(t)) :=

[
A(e)

P (t) 0n×m

0m×n A(e)
D (t)

]
. (8)

4. Self-Adaptive Eigenvector Centrality

The above model can lead to an evolution of the process towards extinction or towards
endemic non-zero steady states, depending on the values of the parameters involved. In
particular, when non-zero steady states exist, they can be obtained as solutions to the
following system of nonlinear eigenproblems:

x⋆ = R[In − diag x⋆]AP(y⋆) x⋆

y⋆ = R[Im − diag y⋆]AD(x⋆) y⋆
(9)

whereR = β/γ is the effective infection rate. The eigenvectors x⋆ and y⋆ of the problem
(9) are identified with the steady state solution of the diffusion model, when they exist.
An iterative procedure to obtain the eigenvectors x⋆ and y⋆ can be summarized in the
following Algorithm 1.

Algorithm 1: SELF-ADAPTIVE EIGENVECTOR CENTRALITY

Input: Incidence matrix E; initial scores x0 and y0; stopping tolerance ε
Output: Steady state scores x⋆ and y⋆

1 x0 = pun and y0 = pum
2 repeat
3 AP(yk)← E diag(yk)ET − diag(Eyk)

4 AD(xk)← ET diag(xk)E− diag(ETxk)
5 xk+1 ← R[In − diag xk]AP(yk) xk
6 yk+1 ← R[Im − diag yk]AD(xk) yk
7 until ||xk+1 − xk||/||xk||+ ||yk+1 − yk||/||yk|| < ε;
8 return x⋆, y⋆

We stress that this algorithm, when it converges to non-null vectors, returns the
final asymptotic values of the diffusive process described in Equation (5), but that the
intermediate values at step k do not coincide with the time evolution of the processes x(t)
and y(t).

We call the component x⋆i of asymptotic value x⋆ Self-adaptive nonlinear eigenvector
centrality of node i in the network GP. Specifically, we compute the Perron eigenvectors x⋆

and y⋆ of the diagonally perturbed adjacency matrices of the graph [In − diag x⋆]AP(y⋆)
and of the line graph [Im − diag y⋆]AD(x⋆) and interpret their positive components as
eigenvector scores for the nodes and the edges, respectively.

There are two key aspects that set apart Equation (9) from a typical equation defining
eigenvector centrality. Firstly, it is a nonlinear eigenproblem as it involves matrices that de-
pend on the eigenvectors themselves. Secondly, there is a trade-off between the centralities
of the nodes and the centralities of the edges. Essentially, this equation suggests that the
centrality of a node is determined by both the centrality of the edges it belongs to and the
centrality of its neighbors, and conversely, the centrality of an edge is influenced by the
centrality of its extreme nodes and the centrality of its adjacent edges.

Let us note that in Tudisco and Higham (2021), the authors define a node and edge
score such that the importance yj of an edge is a nonnegative number proportional only to
the importance of the nodes in the same edge, and the importance xi of a node is a nonnega-
tive number proportional only to the importance of the edges in which it participates. They
neglect the influence of neighbors’ scores on the centrality of a node and the influence of
edges adjacent to the centrality of an edge. In a sense, our centrality measure more evenly
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encompasses the characteristics of an ordinary eigenvector centrality and the characteristics
of the measure introduced in Tudisco and Higham (2021). In fact, focusing, for instance, on
the node i in the network GP, its score is proportional to ∑j AP(y)ijxj, that is the sum of the
products between the score of its neighboring nodes and the score of the corresponding
edges connecting them to the node i. Hence, in our model, the importance of a node does
not depend on the importance of neighboring nodes alone or adjacent edges individually,
but on the combined impact of these factors.

5. Numerical Analysis
5.1. Data Description and Preliminary Analyses

To evaluate our methodology, we implemented a numerical analysis using the returns
of assets constituents of the SP100 index as of the conclusion of 2023 (see Table A1 in the
Appendix A for list of stocks). Specifically, we analyzed returns spanning from the incep-
tion of 2000 to the end of 2023. This extensive time-frame was segmented into 48 windows
(i.e., w = 1, . . . , 48), each spanning six months. Within each interval, we computed the
sample correlation matrix1 among the returns of the assets. Figure 1 illustrates the temporal
distribution of correlation coefficients. Notably, heightened interdependence is evident
during periods of crisis. For example, we observed significant spikes in average correlation
exceeding 50% in 2008, 2011, and 2020, attributed to diminished diversification stemming
from the Lehman Brothers, sovereign debt, and COVID pandemic crises, respectively. The
Lehman Brothers collapse triggered widespread financial instability and market panic,
leading to a surge in correlation among asset returns as investors sought safe havens amid
the turmoil. Similarly, the sovereign debt crises, notably in Europe, induced a contagion
effect across financial markets, eroding diversification benefits as correlations spiked amidst
concerns over sovereign default risks. The COVID-19 pandemic, with its unprecedented
scale and economic disruption, further exacerbated correlations as markets grappled with
uncertainty, supply chain disruptions, and government interventions. These crises un-
derscored the importance of diversification strategies and highlighted the challenges of
maintaining portfolio resilience in turbulent market conditions.

Figure 1. Boxplots of the distributions of returns’ correlations in different windows.

Each correlation matrix was initially used to apply the methodology proposed in
Onnela et al. (2003). Specifically, correlation coefficients ρw

i,j, between assets i and j in

window w, were transformed using the distance metric dw
i,j =

√
2
(

1− ρw
i,j

)
. This transfor-

mation yielded a distance matrix Dw in each window, whose entries, defined in the interval
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[0, 2], are inversely proportional to the level of correlation between stocks, providing a
measure of their relationships. A representation of the density functions of the distances is
reported in Figure 2.

Figure 2. Density functions of distances in different windows

Subsequently, the distance matrix has been used as a weighted adjacency matrix
to construct, in each window, an undirected and weighted graph. At this point, the
methodology outlined in Mantegna (1999) has been employed to construct an asset tree.
Essentially, this involves identifying the minimum spanning tree (MST) of the distances,
denoted Tw. The minimum spanning tree is a graph that is connected and acyclic (e.g.,
without cycles), linking all nw nodes (stocks) present in the window w with nw − 1 edges,
such that the sum of all edge weights, ∑(i,j) dw

ij , is minimized. We denote the minimum
spanning tree at time t as Tt = (Vw, Ew), where Vw represents a set of vertices and Ew
is a set of unordered pairs of vertices, or edges. The set of edges Ew is time-dependent,
reflecting the expected evolution of edge weights in the distance matrix Dw.

In Figure 2 we observe how the volatility of these weights changes according to the
fluctuating levels of volatility and dependence during periods of financial turmoil and
calm. The obtained trees, displayed in Figure 3 for specific windows, form a series through
time that can be studied and they can be interpreted as the evolutionary steps of dynamic
asset tree (see, e.g., Onnela et al. 2003).
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Figure 3. Minimum spanning tree in four different windows. The thickness of the edges’ weights is
proportional to the inverse of the distance

The MST extracted the essential structural framework and the core connectivity pat-
terns that capture the most significant connections among the nodes, thereby highlighting
the essential relationships and pathways within the network. Indeed, it typically represents
the main pathways or prominent features of the network to emphasize the most important
edges or connections while reducing complexity.

In the realm of MST, the relationship between node strength and degree serves as a
crucial indicator of network structure and connectivity. To this end, we study the compari-
son between the degree and the strength distribution. Figure 4a displays the comparison
for the first window, related to the first semester of 2000. Generally, a strong overlap
between strength and degree within an MST suggests a consistent alignment between the
intensity of interactions (strength) and the number of direct connections (degree) that a
node possesses. This coherence implies that highly connected nodes also tend to exhibit
stronger interactions, reinforcing their central role in the network. However, over time,
fluctuations in market dynamics or shifts in underlying factors can introduce variations in
this relationship. The fundamental correlation between strength and degree persists, as
Figure 4b displays for both Pearson and Rank correlation. However, it is noteworthy that
some temporal changes manifest as divergences or deviations between the two measures.
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Such differences may stem from evolving patterns of market behavior, the emergence
of new influential nodes, or alterations in the significance of existing connections. Thus,
while the overarching relationship remains robust, the dynamic nature of the financial
landscape introduces nuances that underscore the importance of analyzing the behavior of
both weighted and unweighted measures.

(a) (b)

Figure 4. (a) Comparison between distributions based on degree and strength in the first window
(first semester 2000) and (b) correlation and rank correlation between degree and strength over time.

For clarity, we have summarized the research methodology described above in the
workflow diagram shown in Figure 5.

Daily returns of assets constituents
of the SP100 index, 2000-2023 Formulation of the ASIS model

Distance matrices based on
assets’ correlations over disjoint windows

ASIS centrality for
undirected weighted networks

Network construction

Minimal spanning tree

Comparison with
other centrality measures

Dependence on
the reinforcement factor

Case e = 0 Case e = 1

Figure 5. The analytical framework of this study.
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5.2. Main Results and Discussion

We computed the non-linear eigenvector centrality x⋆ and y⋆ in Equation (9) using
both the classical SIS model and the ASIS version, with e equal to 0 and 1, respectively, as
in Equation (6). Subsequently, we ranked the centralities of nodes in descending order. To
compare the results, we employed both traditional unweighted and weighted centrality
measures. Specifically, we applied degree and closeness to the unweighted graph, while
strength, betweenness, and eigenvector centrality were computed on the weighted graph.
Again, we ranked these scores in descending order.

This process was repeated for each time window, and we now present the results for
the initial period (first semester 2000). In particular, in Figure 6 we depict the MST structure
in the first window and we compare node rankings based on alternative centrality measures.
Notably, regarding classical measures, degree and betweenness centrality metrics appear to
identify the main hub node of the tree, as well as all nodes located at the center of sub-trees.
Conversely, eigenvector and closeness centrality metrics seem to be more inclined towards
identifying specific sub-trees or the entire central portion of the whole tree itself. Regarding
the non-linear centrality measures, pendant nodes are relegated to low rankings, while a
high score is observed for nodes that act as the main hub in the tree or in the most relevant
sub-trees.

Figure 6. Cont.
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Figure 6. MSTs derived from returns during the period of January–June 2000. Each plot showcases
nodes whose size and color are determined by their ranking according to a specific centrality metric.
Nodes with higher centrality scores are depicted as larger in size and tend toward a lighter color
(from red to white). The depicted centrality metrics are degree, closeness, betweenness, eigenvector,
as well as non-linear SIS and ASIS centralities. The edge color is proportional to the weight.

To comprehensively explore the characteristics of the alternative measures, we computed
rank correlations between centrality scores and we introduced an additional ranking based
on the average sample correlation between a node and all other nodes in the original graph.
As depicted in Figure 7, we observe a strong correlation between betweenness and strength
metrics with the ranking based on the average correlation. Also, the non-linear centrality
metric shows a significant correlation with this ranking, with values exceeding 90%.

Figure 7. Correlations among rankings based on alternative centrality measures or the average
correlation of a node with other nodes in the network.
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The analysis extends across multiple windows, and Figure 8 showcases the correla-
tion between rankings based on centrality metrics and those based on sample correlation.
Notably, the non-linear centralities exhibit robust performance in identifying highly cor-
related assets within networks, even during periods of heightened volatility and turmoil.
Consequently, these measures emerge as promising alternatives for pinpointing central or
diversifiable assets in optimal portfolio allocation strategies.

Figure 8. Correlations over time among rankings based on alternative centrality measures or the
average correlation of a node with other nodes in the network.

Numerous studies have underscored the significance of asset centrality in portfolio
construction. For example, papers such as Clemente et al. (2021), Olmo (2021), and Peralta
and Zareei (2016) highlight the pivotal role of asset centrality in asset selection. Figure 9
illustrates the temporal evolution of node rankings based on ASIS non-linear centrality.
These findings can inform the selection of assets characterized by low centrality within
the network, offering insights into portfolio diversification strategies. The relevance of
centrality in risk management strategies and its financial implications cannot be overstated.
Top centrality assets, due to their interconnectedness, pose a significant systemic risk as
they can propagate financial distress more broadly throughout the network. Conversely,
low-centrality assets are less likely to be impacted by such cascading failures, making them
attractive candidates for portfolio diversification. By incorporating centrality measures into
portfolio construction, investors can better manage risk and enhance portfolio resilience.
From a financial perspective, this approach could facilitate the identification of stable
investment opportunities, potentially leading to improved portfolio performance and
reduced volatility.

The implications for financial regulation are equally significant. Regulators can use
centrality-based analyses to monitor systemic risks within financial markets, identifying key
nodes whose failure could trigger widespread disruptions. This can inform more targeted
regulatory interventions aimed at enhancing market stability. In summary, the integration of
centrality measures into financial analysis not only advances the theoretical understanding
of financial networks but also provides practical tools for optimizing portfolio allocation,
managing risk, and ensuring financial stability. This research underscores the critical
importance of network-based approaches in modern finance and sets the stage for future
advancements in the field.
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Figure 9. Ranking of nodes based on ASIS non-linear centrality only for nodes that belong at least
five times to the top 10.

6. Conclusions and Future Perspectives

Centrality measures hold a pivotal role in the literature of network theory, offering
crucial insights into the structure, dynamics, and functionality of complex systems. By
quantifying the relative importance or influence of nodes within a network, centrality mea-
sures provide a fundamental framework for understanding various real-world phenomena.
Through centrality analysis, researchers can identify key actors, pathways, and vulnerabili-
ties, facilitating targeted interventions, optimal resource allocation, and robust network
design. Classical centrality measures are specifically concentrated on only one structural
aspect of the network—i.e., nodes or links. In contrast, our proposal globally incorporates
all structural neighbor elements at once. Moreover, it emerges as the outcome of a dynamic
process taking place in the network. Indeed, the ASIS centrality measure proposed in this
paper integrates peculiar characteristics of traditional indicators, taking into account the
reciprocal interaction between nodes and edges in a dynamic setting. By employing a
non-conservative diffusion model and a reinforcement factor, we designed a self-adaptive
eigenvector centrality that reflects the complex interplay between network elements.

Numerical analyses, conducted on financial networks derived from the SP100 index
returns, validate the efficacy of our approach. The proposed non-linear centrality indicators
reliably identify highly correlated assets, offering valuable insights for portfolio allocation
strategies. Indeed, by integrating these advanced centrality measures into financial analy-
ses, investors and portfolio managers can enhance their decision-making processes. The
ability to pinpoint highly correlated and central assets enables more precise diversification,
potentially reducing portfolio risk and improving returns. Furthermore, regulators and
policymakers can leverage these insights to monitor systemic risks more effectively, en-
suring financial stability. The adaptability of our model to various market conditions also
suggests its utility in dynamic and volatile financial environments, providing a robust tool
for continuous risk assessment and strategic planning. In addition, our research could foster
a more resilient financial ecosystem by equipping stakeholders with a suitable method for
identifying riskier assets.

Ultimately, it is noteworthy that the centrality measure proposed in this paper is
limited to the study of the interplay between nodes and edges of the same network,
interpreted as two distinct graphs. However, it could be extended to general bipartite
networks, assuming that the two coupled processes described above run on the two
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different projections. In this way, it may prove useful in the analysis of economic and
financial networks of a broader nature, thus offering promising avenues for future research
in portfolio optimization and risk management.
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Appendix A

Table A1. Stock Information.

Ticker Company Name Sector

AAPL Apple Information Technology
ABBV AbbVie Health Care
ABT Abbott Laboratories Health Care
ACN Accenture Information Technology
ADBE Adobe Information Technology
AIG American International Group Financials

AMD AMD Information Technology
AMGN Amgen Health Care
AMT American Tower Real Estate

AMZN Amazon Consumer Discretionary
AVGO Broadcom Information Technology
AXP American Express Financials
BA Boeing Industrials

BAC Bank of America Financials
BK BNY Mellon Financials

BKNG Booking Holdings Consumer Discretionary
BLK BlackRock Financials
BMY Bristol Myers Squibb Health Care

BRK.B Berkshire Hathaway (Class B) Financials
C Citigroup Financials

CAT Caterpillar Industrials
CHTR Charter Communications Communication Services

CL Colgate-Palmolive Consumer Staples
CMCSA Comcast Communication Services
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Table A1. Cont.

Ticker Company Name Sector

COF Capital One Financials
COP ConocoPhillips Energy

COST Costco Consumer Staples
CRM Salesforce Information Technology
CSCO Cisco Information Technology
CVS CVS Health Health Care
CVX Chevron Energy
DE Deere & Company Industrials

DHR Danaher Health Care
DIS Disney Communication Services

DOW Dow Materials
DUK Duke Energy Utilities
EMR Emerson Industrials

F Ford Consumer Discretionary
FDX FedEx Industrials
GD General Dynamics Industrials
GE GE Aerospace Industrials

GILD Gilead Health Care
GM General Motors Consumer Discretionary

GOOG Alphabet (Class C) Communication Services
GOOGL Alphabet (Class A) Communication Services

GS Goldman Sachs Financials
HD Home Depot Consumer Discretionary

HON Honeywell Industrials
IBM IBM Information Technology

INTC Intel Information Technology
INTU Intuit Information Technology

JNJ Johnson & Johnson Health Care
JPM JPMorgan Chase Financials
KHC Kraft Heinz Consumer Staples
KO Coca-Cola Consumer Staples
LIN Linde Materials
LLY Lilly Health Care
LMT Lockheed Martin Industrials
LOW Lowe’s Consumer Discretionary
MA Mastercard Information Technology

MCD McDonald’s Consumer Discretionary
MDLZ Mondelēz International Consumer Staples
MDT Medtronic Health Care
MET MetLife Financials

META Meta Communication Services
MMM 3M Industrials

MO Altria Consumer Staples
MRK Merck Health Care
MS Morgan Stanley Financials

MSFT Microsoft Information Technology
NEE NextEra Energy Utilities

NFLX Netflix Communication Services
NKE Nike Consumer Discretionary

NVDA Nvidia Information Technology
ORCL Oracle Information Technology
PEP PepsiCo Consumer Staples
PFE Pfizer Health Care
PG Procter & Gamble Consumer Staples
PM Philip Morris International Consumer Staples

PYPL PayPal Information Technology
QCOM Qualcomm Information Technology

RTX RTX Corporation Industrials
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Table A1. Cont.

Ticker Company Name Sector

SBUX Starbucks Consumer Discretionary
SCHW Charles Schwab Financials

SO Southern Company Utilities
SPG Simon Property Group Real Estate

T AT&T Communication Services
TGT Target Consumer Discretionary
TMO Thermo Fisher Scientific Health Care

TMUS T-Mobile US Communication Services
TSLA Tesla Consumer Discretionary
TXN Texas Instruments Information Technology
UNH UnitedHealth Group Health Care
UNP Union Pacific Industrials
UPS United Parcel Service Industrials
USB U.S. Bank Financials

V Visa Information Technology
VZ Verizon Communication Services

WFC Wells Fargo Financials
WMT Walmart Consumer Staples
XOM ExxonM Energy

Note
1 While this paper does not primarily aim to offer alternative estimations of the correlation matrix, it is worth noting that alternative

approaches enhancing estimation for large samples have been proposed in the literature (for example, see Ledoit and Wolf 2003).
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