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1. Introduction 

Vine phenology and harvest dates are strongly related to climate. The effects of 

climate change are already visible in many viticultural regions (Schultz 2000; Soar et al. 

2008; Battaglini et al. 2008; Fraga et al. 2012; Fraga et al. 2013). Vines are generally sensitive 

to climate variability and temperature influences berry composition and grape quality 

(Coombe 1987); therefore climate change has the potential to bring changes in wine styles 

and affect the sustainability of the wine industry (Jones et al. 2005, Hannah et al. 2013). 

Higher temperatures may inhibit the formation of anthocyanin (Mori et al. 2007, Mira de 

Orduña 2010, Sadras and Moran 2012), amino acids (Schultz 2000, Camps and Ramos 

2012), sugars (Bergqvist et al. 2001; Sadras et al. 2013) and influence the organic acid 

concentration (Sweetman et al. 2014).  

Managing source to sink balance is an essential aspect of vineyard management, 

aimed to achieve a high quality of berry grapes. Nowadays vine growers and winemakers 

are becoming more conscious about the changing climatic traits and are adapting cultural 

practices (Gaal et al. 2012, Galbreath 2012, Ruml et al. 2012, Camps and Ramos 2012). 

Canopy management practices, such as pruning, thinning, training systems, trellis system, 

leaf removal, irrigation, crop load influence grape growth and quality (Jogaiah et al. 2013). 
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2. Literature review 

2.1. Climate change impact on vine development and berry quality 

The timing of phenological stages in grapevine is fundamentally temperature 

driven, therefore grape production and quality depends greatly on climate. In the last 

years, the study of effects of climate change became important, and working groups were 

created in order to try to limit climate change and build a sustainable future. According to 

IPCC (IPCC 2014), since 1950 changes in extreme weather and climate events have been 

observed, and some of these changes are linked to human influences. According to all 

scenarios recerched by IPCC, it is very likely that temperatures will continue to increase, 

and higher temperature will last longer, as well as extreme precipitation will become more 

intense and frequent in many regions. It was also stated that more than 90% of energy 

accumulation in the climate system between 1971 and 2010 has accumulated in the ocean, 

according to IPCC (2014), land temperatures remain at historic hights, while ocean 

temperatures continue to increase (Figure 1).  

 

Figure 1. Annually and global averaged combined land and ocean surface 

temperature anomalies relative to the average over the period 1986 to 2005. Colours 

indicate different data sets (IPCC, 2014) 
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Temperatures in most vinegrowing areas began to increase after 1950, which can be 

resulted in tresspasing the optimum temperature for berry ripening, especially for the 

european varieties (Jones et al. 2005). The increase in temperatures has caused  an 

accelerated vine phenology. Several researches have predicted that an advancement of 

harvest date occur in several countries (Duchêne and Schneider 2005, Keller 2010, Jones 

and Alves 2012). High temperature will advance bud break, shoot growth and 

development of leaf area (Ferguson et al. 2011). A high temperature during flowering will 

inhibit véraison, and higher temperatures near véraison will slow the cell expansion and 

sugar accumulation (Greer and Weston 2010). An increase of 1 °C in temperature, will 

result in an advance of 5 to 10 days in vegetative development of grapevine (Schultz and 

Jones 2010, Jones and Alves 2012). Another important factor in grape berry development is 

the effect of high temperatures on berry quality. During the accumulation of sugars, the 

optimal temperature is from 8 to 33 °C (Coombe 1987). Consequently a higher temperature 

near grape berries will inhibit sugar accumulation (Kliewer 1977, Greer and Weston 2010). 

The optimum net assimilation rate by photosynthesis of grapevines is between 18°C and 

33°C, above or beyond this values, the efficiency is decreasing significantly (Kliewer 1973, 

Iland et al. 2011). Moreover, color accumulation in grape berries is temperature and light 

dependent, in that case low or high temperature are associated with less colour, the 

optimum temperature for anthocyanin synthesis is from 17°C to 26°C (Coombe 1987). 

High temperatures reduce the anthocyanin content and accumulation in grape berries 

(Kliewer and Ough 1970, Mori et al. 2007, Sadras et al. 2012). Also a higher global 

temperature will cause a decrease in berry acidity and inequality in aromatic compounds 

(Jones et al. 2005). 

As nowadays, the issues of climate change on world viticulture and wine 

production are known, a series of actions can be done in order to adapt to new climate. 

Different studies have presented an increase in alcohol content of wines, because of the 

excessive sugar accumulation (Duchêne and Schneider 2005, Keller 2010, Santos et al. 

2012). Specifically, the wine consumption shows a downward trend, because of change in 

lifestyle and tastes, anti-alcohol drinking campaigns and health concerns (Figure 2). In the 

European Union, there is a limit in alcohol content concentration of wines (8.5 and 15 % 
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vol.), and with higher temperatures, it will be difficult to maintain this limit without 

affecting other wine components, such as color, astringency, acidity and aroma. 

 

Figure 2. World wine consumption (OIV 2014) 

2.2. Manipulation of ripening 

There are some techniques effective in modulating the maturation and in particular 

the accumulation of sugars in the grapes, whose level contributes frequently to determine 

the time of harvesting. Winter late pruning in Merlot berries from New Zealand delayed 

grape maturity after a delay in vine phenology, according to Friend and Trought (2007). 

Traditionally, techniques based on the change in the source : sink balance can be able to 

delay grape maturity. A low leaf area to yield ratio (less than 0.8 m2/Kg) can produce less 

sugar in grape berries (Kliewer and Dokoozlian 2005). There are a series of cultural 

techniques that change the leaf area to yield ratio.  

Shoot trimming can be successful at delaying berry ripening, although its 

postponing effects depend upon timing and severity (Stoll et al. 2010). According to 

(Palliotti et al. 2014) other techniques that can elicit a delayed berry maturation are:  

- late irrigation combined with shoot trimming which can promote the outburst of 

lateral shoots;  

- using of shading nets that will limit photosynthetic assimilation (Kliewer et al. 1967, 

Smart et al. 1985, Morrison and Noble 1990);  
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- using of anti-transpirant sprays to limit photosynthesis (Palliotti et al. 2013); use of 

growth regulators which will change the reproductive cycle of vine (Jeong et al. 

2004, Böttcher et al. 2011).  

One of the most used techniques in vine management to achieve high fruit quality 

is leaf removal. Depending on the timing and severity of leaf removal, this operation can 

also delay ripening.  

2.3. Source and sink 

 Vine leaves (source) directly affect the changes in the cluster microclimate, and 

canopy photosynthesis is responsible for the synthesis of carbohydrates and their export to 

the clusters (sinks); therefore, the balance between leaves and clusters is crucial for grape 

quality. During grapevine development, an organ can be a source or a sink (Iland et al. 

2011). 

 Source : sink relationship is the capacity of vine to undergo photosynthesis, by 

fixing CO2 in the source organs, and to transport the fixed carbon to various sink tissues, 

and also the ability of sink organs to assimilate the fixed CO2, which depends on genotype, 

environment and viticultural management practices. Source tissues are those organs that 

are capable of exporting solutes, and where these solutes are produced or stored. Sink 

organs is where the solutes are sent and used for growth and metabolic processes (like 

sugar accumulation, anthocyanin synthesis) (Iland et al. 2011). According to Ollat and 

Gaudillere (1998), during their first stage of berry growth, berries can be considered as 

utilization sinks, but after véraison an higher carbon import makes the berry a storage 

sink. During photosynthesis, the carbohydrates that are produced are used in metabolism 

and growth or are stored as reserves in the woody structures of the vine. 

 Farrar and Jones (2000) established that carbon allocation to various sink is 

controlled both by sink demand (activity and size) and by source control of photosynthate 

production. It was demonstrated that carbohydrate levels affect gene regulation and offer 

a mechanism for control of resource distribution among various sources and sinks (Koch 

1996, Sheen et al. 1999). The carbohydrate consumption up-regulates genes responsible for 

photosynthesis, mobilization and export, while abundance of carbohydrate, up-regulates 
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genes responsible for the storage and use (Figure 3). Eventually through modification in 

gene expression, source and sink activities can be altered in order to adjust growth 

patterns in response to carbon availability and acquisition (Koch 1996, Farrar and Jones 

2000). 

 

Figure 2. Processes in source and sink tissues that are under carbohydrate control in 

plants. A downward arrow indicates gene down regulation in response to high or low 

sugar abundance, while an upward arrow indicates up regulation in response to high or 

low sugar abundance (Andersen 2003). 
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2.4. Vine balance 

Grapevine balance is important for production of quality grape berries.  Vine 

balance can be defined as the balance between vegetative  and reproductive growth which 

will achieve desired fruit quality and production, while preserving vine health  (Skinkis 

and Vance 2013). One of the many approaches for calculating vine balance is the 

equilibrium between vegetative growth and crop load. Howell (2001) has reported that 

this balance must range from 0.7 to 1.4 m2 leaf area per kg of fruit. Moreover, Kliewer and 

Dokoozlian (2005) stated that a value of 0.8 to 1.2 m2 leaf area per kg fruit is required for a 

good maturation of grape berries. Bellow this values, vines are considered out of balance 

with under ripe berries or large canopies. However there are other indices that are used, 

like the Ravaz index of Smart and Robinson (1991), which is calculated using fruit yields at 

harvest and dormant vine pruning weights during winter following harvest. A Ravaz 

index of 5 to 10 is optimum for vine balance in warm climates, whereas a value of 3 to 6 

may be good for cool climates (Kliewer and Dokoozlian 2005).  

2.5. Grapevine source : sink modifications 

The maximization of the quality of the grapes is achieved by balancing the 

vegetative and reproductive growth, achieved by optimizing vine training system. There 

are some vineyard management practices which can be used to achieve vine balance, but 

there are variations linked with locations (climate and soil) and vine variety, and can be 

more or less efficient like: rootstock, training system, irrigation, pruning system, and shoot 

thinning, cluster thinning, hedging, leaf removal, cover cropping (Kliewer and Dokoozlian 

2005). 

2.5.1. Leaf removal 

Leaf removal is traditionally used to increase bunch exposure to sunlight and 

airflow, thus leading to improved berry composition and disease control (Smart et al. 1990, 

Jackson and Lombard 1993). This canopy management method is a must in cool and wet 

climates, where the incidence of Botrytis is higher (English et al. 1989). 
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However, over the last years it has been reported that not only leaf removal can 

modify cluster microclimate but also change yield, fruit composition, cluster morphology, 

whole vine photosynthesis capacity, and vine/root carbohydrate reserves (Staff et al. 1997, 

Poni et al. 2006, Intrieri et al. 2008). Leaf removal can be done at different stages of vine 

growth: pre-bloom, post-bloom, berry set, pre-véraison, véraison, depending on the 

needed result; manually or mechanically, apical or basal. 

2.5.1.1. Early leaf removal 

The most studied leaf removal treatment is the one done at early stages, mainly in 

cool and humid areas for improving air circulation, spray penetration, bud fruitfulness 

and fruit health and composition (Zoecklein et al. 1992). This practice is based on the 

functional relationship between yield and availability of carbohydrates at pre-bloom stage 

(Caspari et al. 1998). Leaves are the main carbohydrate source for the inflorescence 

development during flowering (Lebon et al. 2008), and the removal of leaves before 

flowering will affect the source-sink balance significantly. Some recent research has shown 

that early defoliation lead to smaller cluster with fewer and smaller berries, that will 

control the incidence of Botrytis (Poni et al. 2006, Diago et al. 2010, Tardaguila et al. 2010, 

Palliotti et al. 2011), the regulation of grape yield and improvement of grape and wine 

composition (Intrieri et al. 2008, Poni et al. 2009, Tardaguila et al. 2012). 

Leaf removal can also change grape berry composition. For example in some 

research it was found that early leaf removal increased soluble solids and total 

anthocyanin content (Poni et al. 2006, Intrieri et al. 2008, Tardaguila et al. 2010), decreased 

malic acid in Carignan and Graciano berries (Tardaguila et al. 2010); additionally it was 

seen an  increase in wine color, higher alcohol content and greater amount of 

hydroxycinnamic acids, flavonols and anthocyanins (Kemp et al. 2011, Diago et al. 2012); 

modification of wine aroma quality in Tempranillo wines was reported by Vilanova et al. 

2012. Leaf removal can modify anthocyanin content in grape berries. Lee and Skinkis 

(2013) and Sternad Lemut et al. (2011) found that early leaf removal, compared to no 

defoliated Pinot noir vines, produced higher anthocyanin accumulation. The same results 

on berry phenolics were found in Tempranillo grapes (Risco et al. 2014), in Merlot grapes 

(Spayd et al. 2002, Tarara et al. 2008, Di Profio et al. 2011), in Cabernet Sauvignon berries 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

17 

 

(Hunter et al. 1991, Di Profio et al. 2011), in Cabernet Franc berries (Di Profio et al. 2011), in 

Graciano and Carignan grape berries (Tardaguila et al. 2010). This is due, most likely, 

because of the increase in light and temperature in the fruit environment, that will affect 

the enzymes involved in the synthesis of phenolic compounds (Di Profio et al. 2011). 

The photosynthetic activity of a leaf gradually increases until it reaches its 

maximum size, significantly after 40 days. In contrast, some leaf removal studies have 

revealed increased photosynthetic activity in the remaining leaves, as an effect of 

compensation of source to sink ratio (Candolfi-Vasconcelos and Koblet 1990, Hunter and 

Visser 1990, Petrie et al. 2000a). A defoliation near flowering caused a great reduction in 

source, because of the removed basal leaves, which at this stage have high photosynthetic 

rates (Petrie et al. 2003, Poni et al. 2006). By removing the most active leaves, there is the 

possibility to cause various changes in vine physiology and berry quality. The age of 

leaves is very important, since they act as sinks until reaching 50 to 80% of final size 

(Vasconcelos and Castagnoli 2000). In the early stages of the vegetative cycle of vine 

growth, basal leaves are the main responsible for the photosynthetic activity of the plant, 

according to (Hunter and Visser 1990, Petrie et al. 2003). Moreover, it was demonstrated 

that after a loss in main leaf area, it is possible to have an increase in secondary shoots 

(Poni et al. 2006).  

2.5.1.2. Late leaf removal 

Stoll et al. (2010) showed that ripening in Riesling vines can be postponed. The 

same results were found in Cabernet Sauvignon and Merlot berries, leaf removal delayed 

berry maturity, with no changes in anthocyanin and total phenol concentrations, although 

this was not seen in Cabernet franc grapes (Spayd et al. 2002, Joscelyne et al. 2007, Di 

Profio et al. 2011). In Pinot Noir grapes, when cluster leaf removal is done after bloom, 

juice soluble solids were reduced, without changes on yield components (Vasconcelos and 

Castagnoli 2000). 

If defoliation treatment is done around véraison in the fruit zone this will increase 

cluster exposure to light (King et al. 2012), and as result it will enhance anthocyanin 

biosynthesis, but there is a point at which the temperature will have a negative impact, 
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and can decrease eventually the anthocyanin concentration. The temperature which cause 

lower pigmentation in red grapes is around 32°C (Price et al. 1995, Downey et al. 2006, 

Yamane et al. 2006, Mori et al. 2007). Therefore, excessive sunlight exposure can lead to 

berry color reduction (Haselgrove et al. 2000, Bergqvist et al. 2001) or even to berry 

sunburn (Bergqvist et al. 2001, Spayd et al. 2002), especially in warm climate regions. 

2.6. Grape berry development 

Grape berries are non-climateric fruits that have a double sigmoid pattern of 

development, with two distinct phases of growth (Figure 4). The two phases are separated 

by a lag phase, which leads to véraison, when the onset of ripening take place (Coombe 

1992, Ollat et al. 2002, Conde et al. 2007). The growth of berries in this stage firstly occurs 

by cell division when the volume and weight are increased, and afterward by cell 

expansion. In the first phase the berry is firm and with high titratable acidity, because of 

the accumulation of tartaric and malic acid. At the same time, a high development of 

shoots take place in the vine. The first stage usually persists for 35 to 40 days (Mullins et al. 

1992).  

The lag phase begins with the decreasing of berry growth, the highest concentration 

of organic acids and reducing of chlorophyll concentration that lead to translucent color of 

berry. In this stage, the berry reduces photosynthesis and respiration. This phase generally 

last for 4 to 30 days (Fregoni 1998). 

The second developmental phase begins with rapid berry growth and fruit 

ripening, namely véraison. During this stage, berries soften and lose chlorophyll, and the 

changing of color takes place. Berry volume, sugar, aroma components, polyphenols and 

anthocyanins begin to accumulate, whereas the concentration of organic acids declines 

(Mullins et al. 1992, Dokoozlian 2000). This phase last for 35 to 55 days on average. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

19 

 

 

Figure 4. Timing and pattern of grape berry development from fruit set to harvest 

from Kennedy, (2002). 

2.7. Berry ripening 

Ripening in grape berries consist of fruit softening, the accumulation of sugars and 

synthesis of anthocyanins, metabolism of organic acids, accumulation of flavor 

compounds and the continuation of berry growth. During ripening, a series of 

physiological and biochemical changes simultaneously occur in the grape berry (Coombe 

1992). However, many factors impact this developmental stage and harvest date, like 

grape variety, climate and crop level (Dokoozlian 2000). The leaf area to yield ratio can 

influence berry development and composition (Jackson and Lombard 1993), because a 

value of 1.5 m2/kg of fruit is the optimum for berry maturation (Kliewer and Dokoozlian 

2005). Vine phenology and harvest dates are strongly related to climate and the effects of 
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climate change are already visible in many viticultural regions (Schultz 2000; Soar et al. 

2008; Battaglini et al. 2008; Fraga et al. 2012; Fraga et al. 2013).  

2.8. Berry composition 

Grape berry quality is very important for winemaking, which depends mostly of 

berry composition, which changes during berry development. The berry has three 

important parts: pulp, skin and seeds.  

2.8.1. Sugars 

Sugar, which is imported in berry (sink organ) from the leaves (source organs), is 

important for ripening and fruit growth. During berry development, sugar concentration 

in berries, in the first phase is very low,  behaving like chlorophyll organs with high 

photosynthesis (Conde et al. 2007). Then after véraison a massive accumulation of glucose 

and fructose occurs, as a consequence of leaf photosynthesis. In small amounts, there are 

other sugars present in berries. Sugars are the basis for many compounds, such as organic 

and amino acids, anthocyanins, and very important for trunk and roots growth (Rolland et 

al. 2006). 

2.8.2. Organic acids 

Organic acids are accumulated in grape berries from the beginning, and have an 

important role in berry quality. There are more than twenty organic acids in berries, with 

highest concentration of tartaric acid in the first phase of berry development and the 

highest concentration of malic acids at lag phase (Kliewer 1966). After véraison, organic 

acids are consumed during berry respiration, or are transformed in sugars (malic acid) and 

tartaric acid decreases by dilution, linked with berry growth (Lakso and Kliewer 1975, 

Conde et al. 2007). Kliewer and Weaver (1971) showed that temperature is very important 

for tartrate and malate concentration in grape berries, but relatively independent for light 

intensity. The optimum temperature for acids synthesis is between 20 and 25 °C, higher 

temperatures decrease synthesis of malic acid (Kliewer 1966). 
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2.8.3. Phenolic compounds 

Phenolic compounds in grapes are important secondary metabolites. The most 

important phenolic in berries are phenolic acids, flavonols, flavanols and anthocyanins. 

Anthocyanins are red pigments present in berry skin and sometimes in berry pulp as well 

as in the flesh of some varieties (He et al. 2010). In addition anthocyanins are important for 

winemaking, because of their color and astringency (Kennedy et al. 2006). The common 

anthocyanins found in grape are: delphinidin, cyanindin, petunidin, peonidin and 

malvidin -3-O-glucosides, 3-/6-acetyl) glucosides and 3-(6-p-coumaroyl)-glucosides. 

Usually malvidin-3-O-glucoside is the most abundant anthocyanin present in berries. 

Anthocyanin synthesis is parallel with carbohydrate metabolism (Pirie and Mullins 1977), 

therefore the accumulation of anthocyanins is enhanced by increased sugar content 

(Cormier et al. 1997). There is a variation of anthocyanin  composition among varieties 

according to Mattivi et al. (2006). Years of research have shown that vineyard location, 

climate, cultivar, rootstock, cultural practices, growing season, training system, vine 

spacing and root reserves are all factors that will influence grape anthocyanin 

accumulation (Hunter et al. 1991, Mazza et al. 1999, Petrie et al. 2000b, Joscelyne et al. 2007, 

Poni et al. 2008, 2009, Guidoni et al. 2008, Intrieri et al. 2008, Chorti et al. 2010, Tardaguila 

et al. 2010, Lohitnavy et al. 2010, Di Profio et al. 2011, Kemp et al. 2011, Sternad Lemut et 

al. 2011, Kotseridis et al. 2012).  

2.8.4. Nitrogen compounds 

Nitrogen compounds are important for must fermentation, because they are the 

metabolic factor that decides the rate of fermentation. Amino acids account for 50 to 90% 

of the total nitrogenous compounds in grape berries (Kliewer 1968, Ough and Stashak 

1974). The most important free amino acids found in grape berries are proline and 

arginine, followed by alanine, aspartic acid and glutamic acid (Kliewer 1968, Kliewer and 

Ough 1970). Responsible for the type and concentration of amino acids in grape berries are 

berry maturity (Kliewer 1968, Kliewer and Ough 1970, Stines et al. 1999) and cultivar 

(Kliewer 1968, Stines et al. 2000, Lee and Schreiner 2010). At the beginning of berry 

growth, amino acids have a low concentration in berries, after véraison, the synthesis of 

amino acids begin to increase (Dokoozlian 2000). 
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3. Aim of study 

The literature review shows that many authors studied the modifications of source to 

fruit ratio on berry composition and vine photosynthesis. However, most of the studies 

have sought the improvement of berry microclimate, and the increase in berry color and 

sugar content. In view of the global warming, higher temperatures in the vine regions lead 

to high level of sugar in grape berries, eventually with excess in wine alcohol, low acidity 

and unbalanced phenolic ripening in red varieties. Therefore, the major problem in the 

wine producing countries is the delaying of ripening in grape berries without changing 

the wine quality and finding the ideal balance between leaf area and fruit growth. 

The aim of this study was to evaluate the effects of limiting the carbohydrate 

availability by manipulating the leaf-to-fruit ratio on two cultivars, aimed at delaying 

ripening. Analysis of berry composition and whole-vine net photosynthesis during 

ripening provided further insights into the complex relationship between source (leaves) 

and sink (fruit).  

In the first year of research, we evaluated in Sangiovese the possibility that ripening 

might get delayed by an apical to cluster leaf removal done at pre-véraison and post-

véraison, compared to a non-defoliated treatment. Readings of the whole canopy net CO2 

exchange rate and single leaf gas exchange were compared to see how they are modified 

during vine development.  

In the second year, a study on low carbon availability (3 leaves per shoot) compared 

to sufficient carbon availability (12 leaves per shoot) on fruiting cuttings of Cabernet 

Sauvignon, in Bordeaux was instigated. The purpose of this research was aimed to 

understand the effects of the leaf removal on berry composition during ripening, and the 

connection between sugar accumulation and anthocyanin synthesis. 

The third year, a replicate of the second year treatment was further evaluated on 

Sangiovese vines. The latter research provided a clearer answer on how vine 

photosynthesis and carbohydrate availability is related to berry composition, mainly sugar 

accumulation, anthocyanin accumulation and aminoacid composition during ripening.  
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This three year research was designated to verify if the source to sink modifications 

done on two red cultivars (Sangiovese and Cabernet Sauvignon), in two regions (Piacenza, 

Italy and Bordeaux, France) could possible delay grape berry maturation, in order to make 

good quality and healthy grapes for high quality wines in the new climate. 

This thesis is based upon two self-standing manuscripts published or submitted in 

academic journals: 

Poni S., Gatti M., Bernizzoni F., Civardi S., Bobeica N., Magnanini E., Palliotti A. 

(2013). Late leaf removal aimed at delaying ripening in cv. Sangiovese: physiological 

assessment and vine performance. Australian Journal of Grape and Wine Research 19, 378-

387. 

Bobeica N., Poni S., Hilbert G., Renaud C., Gomès E., Delrot S., Dai Z. (2015). 

Differential responses of sugar, organic acids and anthocyanins to source-sink modulation 

in Cabernet Sauvignon and Sangiovese grapevines. (submitted on 14.03.2015 to Frontiers 

of Plant Science). 

A third paper is in preparation for Frontiers of Plant Science: 

Bobeica N., Poni S., Hilbert G., Renaud C., Gomès E., Delrot S., Dai Z. (2015). 

Changes in amino acid composition of Cabernet Sauvignon and Sangiovese grape berries 

after source-sink modulation. 
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4. Late leaf removal aimed at delaying ripening in cv. Sangiovese: 

physiological assessment and vine performance 

 
 

S. Poni1, M. Gatti1, F. Bernizzoni1, S. Civardi1, N. Bobeica1, E. Magnanini1 And A. Palliotti2 

1 Istituto di Frutti-Viticoltura, Facoltà di Agraria, Università Cattolica del Sacro Cuore, Via Emilia 

Parmense 84, 29100 Piacenza, Italy 
2 Dipartimento di Scienze Agrarie ed Ambientali, University of Perugia, Borgo XX Giugno 74, 

06128 Perugia, Italy 

Corresponding author: Professor Stefano Poni, email stefano.poni@unicatt.it 

Abstract 

Background and Aims: Global warming is inducing a general earliness in the onset 

of grapevine phenological stages including ripening, a phenomenon that occurs often in 

the hottest seasons and which leads to unbalanced wines. Our aim was to assess the 

physiological basis of late leaf removal applied above the bunch area as a tool for delaying 

ripening. 

Methods and Results: Potted cv. Sangiovese grapevines were subjected to leaf 

removal treatments applied pre-veraison (DEF-I) and post-veraison (DEF-II) by pulling 

out six to seven primary leaves and laterals, if any, above the bunch zone; untouched vines 

served as the control. Whole-canopy net CO2 gas exchange was monitored seasonally from 

9 days before DEF-I to 35 days after DEF-II. Concurrently, single-leaf gas exchange was 

assessed, and at harvest yield components, grape composition and the leaf-to-fruit ratio 

were determined. The seasonal carbon/yield ratio did not differ between treatments 

because of the high capacity for photosynthetic compensation shown by the DEF 

treatments and quantified as about a 35% higher net CO2 gas exchange per unit of leaf area 

per day. While ripening was temporarily retarded in both DEF treatments, with sugar 

content being lower and titratable acidity higher, a week later both treatments had fully or 

partially recovered; phenolic ripening was unaffected at either harvest date. 
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Conclusions: Defoliation above the bunch zone applied at lag-phase and post-

veraison (average 12°Brix) was effective in temporarily delaying technological ripeness 

without affecting colour and phenolics. This result depended upon the high compensation 

capacity for photosynthesis shown by vines in both treatments. 

Significance of the Study: The data provide a preliminary yet robust physiological 

background for targeting better field application of the technique. 

Keywords: berry composition, gas exchange, summer pruning, yield 
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4.1. Introduction 

The effects of global warming are evident in viticulture everywhere. Indeed, 

observed changes in 27 premium wine regions across the globe have shown an average 

1.3°C warming of the growing season from 1950 to 2000, and the outlook over the next 50 

years projects a 2°C average warming (Jones 2012). The growing season temperature of 

Europe has increased by 1.7°C from 1950 to 2004 (Jones et al. 2005), thus inducing 

increased heat summations, reduced frost damage, altered ripening profiles, earlier 

phenology, altered pest outbreaks and severity, changes in soil fertility and erosion, as 

well as in water supply and irrigation demand. Duchêne and Schneider (2005) report a 

2.5° increase in the alcohol content of wines produced in Alsace over the 30-year time span 

from 1970 to 2000. While the earlier onset of grapevine phenological stages is likely to be 

the change most clearly perceived by growers, phenology relationships over several 

cultivars and locations show a 5–10 day advancement for 1°C of warming, effects that 

appear to be quite well documented in the literature (Schultz and Jones 2010, Jones 2012). 

For instance,  Ganichot (2002) highlighted that harvest date has been earlier by more than 

a month from 1945 to 2005 in the Châteauneuf du Pape region of France. For Germany’s 

Rheingau region, Stoll et al. (2010) report a 10–17 day earlier bud-break and fruitset in cv. 

Riesling over the last 30 years, with veraison occurring 14–21 days earlier. A recent climate 

simulation of cv. Chardonnay phenology in Italy’s Trentino region indicates that several 

mountain areas located at about 1000 m above sea level may become suitable for 

viticulture before the end of the century (Caffarra and Eccel 2011). 

While global warming is indeed implicated in causing earlier vintages, factors of a 

different nature cannot be ruled out. For instance, policy guidelines in Italy now strictly 

limit yield per hectare in appellation areas, and recent trends are towards cultivars 

featuring low-to-medium cropping. Additionally, vineyard efficiency relative to berry 

sugar-storage capacity has increased because of both environmental concerns, such as the 

progressive rise in atmospheric CO2 concentration that leads to a higher leaf assimilation 

rate, and vineyard management issues, such as better insight into physiology and cultural 

practices to upgrade overall canopy performance. These factors interact with climate and 

quite often result in a pending crop that at a notably early stage (i.e. mid-August) shows a 
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high potential alcohol content and low acidity, a fruit composition that would suggest 

immediate harvesting. At the same time, however, pH is usually unsuitably high, thereby 

favouring microbial instability of wines and constraining the expression of full grape 

aroma potential (Jackson 2008). According to Coombe and McCarthy (2000), a distinctive 

feature of berry ripening is that the increase in the concentration of free and glycosylated 

aroma compounds occurs in the advanced stages of ripening when sugar increase per 

berry has already slowed. Moreover, there is also a problem for phenolic ripeness and, 

especially, berry pigmentation in red cultivars because it is likewise well known that sugar 

storage commences in the soft, yet still uncoloured berries and that the initial signs of 

pigmentation follow several days later (Coombe 1992). This implies that berries might 

soon reach a high sugar concentration while full colour has not completely developed. 

Moreover, especially for white cultivars and sparkling wines, two more concerns are 

encountered. First, if the last stage of ripening occurs during the hottest part of the season, 

at peak maximum daily temperature (T) and/or minimal day/night thermal difference, 

aroma profiles can be adversely affected (Marais et al. 1999, Tomasi  et al. 2006). Second, 

the main reason for forced early picking is the flattening of total acidity resulting primarily 

from temperature-driven, malic acid degradation. Thus, although management tools are 

available at the microclimate level to condition bunch exposure so as to preserve malic 

acid, the effect of its degradation appears primarily due to a high nocturnal temperature, 

which is clearly non-negotiable (Lakso and Kliewer 1975). 

Along with altered or atypical phenolic and aroma profiles, extra-early seasonal 

ripening and the subsequent compression of the growing season strongly challenge 

vineyard organisation and winery facilities in relation to the feasibility of night harvesting, 

operational opening dates and the handling practices of warm grapes that are more prone 

to oxidation. Thus crop management demands for delaying ripening are more pressing 

and driven not only by the pressures of global warming but also by emerging social 

attitudes towards “light and more responsible” drinking that tend to prefer wines of 

moderate alcohol content (Seccia and Maggi 2011). 

Yet there are several field practices, both traditional and innovative, available to 

control ripening date. Traditional approaches rely on techniques aimed at inducing effects 
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that can run contrary to received wisdom. For instance, there are several traditional ways 

of achieving delayed ripening: by a calibrated yield increase, late-season vine growth 

through scheduled shoot trimming and water supply, or even by imposing a source 

limitation on the vine canopy at specific dates via the use of shading nets, leaf removal or 

shoot trimming and anti-transpirant sprays (Filippetti et al. 2011). In effect, recent work by 

Palliotti et al. (2010), although aimed at a different goal, shows that the anti-transpirant 

Vapor Gard (Miller Chemical & Fertilizer Corporation, Hannover, PA, USA) applied twice 

at a 10-day interval on a portion of Sangiovese and Ciliegiolo canopies limits gas exchange 

[i.e. net photosynthesis (Pn) and  stomatal conductance (gs)] by 40–70% as compared with 

that of the unsprayed control, and that this effect typically lasts 40–45 days after first 

spraying. Interestingly, once the spray is washed off, leaves show the ability to completely 

recover their function. This implies that a late-season anti-transpirant treatment could 

prove to be a powerful tool for controlling ripening. Another alternative is the application 

of growth regulators. Böttcher et al. (2011) recently reported that a pre-veraison treatment 

with 1-naphthaleneacetic acid was effective in both delaying ripening and ameliorating 

synchronicity in sugar accumulation in Shiraz. In addition, it has been shown that the 

application of brassinazole and 1-methylcyclopropene (inhibitors of brassinosteroids and 

ethylene perception, respectively) can postpone ripening (Symons et al. 2006). A 

somewhat newer approach to desirable delayed ripening is the use of unripe grapes 

harvested during bunch thinning as a method for reducing wine alcohol content and pH 

(Kontoudakis et al. 2011). 

Based on well-established leaf age versus Pn relationships (Kriedemann et al. 1970, 

Poni et al. 1994), which attribute highest functionality to leaves located in the median 

shoot zone for the period between fruitset and veraison and best Pn performance to apical 

leaves in the postveraison period, our study focused on late-season leaf removal as a tool 

for delaying the ripening of cv. Sangiovese. The trial was specifically designed to: (i) 

establish how the whole-canopy net CO2  exchange rate (NCER) is seasonally modified in 

spur-pruned Sangiovese grapevines subjected to late-season leaf removal applied in the 

upper two thirds of the canopy as compared with non-defoliated control; and (ii) 

investigate whether and how seasonal NCER modifications are linked to single-leaf gas 

exchange rates, final vine balance and grape composition. 
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4.2. Material and methods 

4.2.1. Plant material and experimental layout 

The trial was run in 2012 at Piacenza (44°55'N, 9°44'E), Italy, using 4-year-old 

fruiting Sangiovese (Vitis vinifera) grapevines of the low-yielding VCR clone 23 grafted to 

SO4 rootstock and grown outdoors in 90-L pots. The pots were filled with a mixture of 

sand, loam and clay (65, 20 and 15% by volume, respectively) and kept well watered 

throughout the trial season. The vines were hedgerow-trained and pruned to a 100-cm 

long unilateral spur-pruned cordon raised 90 cm from the ground with three pairs of 

surmounting catch wires for a canopy wall extending about 1.3 m above the main wire. 

Winter pruning left an average of seven two-count bud spurs per vine. 

Twenty-two uniform vines arranged along two single, NE–SW-oriented (35°) rows 

were randomly assigned in a completely randomised design to the following treatments: 

(i) defoliation at pre-veraison when berries were still hard and green, and no sign of 

pigmentation was apparent (DEF-I); (ii) defoliation postveraison at an average sugar 

concentration of about 12°Brix (DEF-II); and (iii) non-defoliated control (C). The two end 

vines of each row were used as borders. Leaf removal was manually applied on day-of-

year (DOY) 195 (DEF-I) and DOY 207 (DEF-II) by stripping off six to seven main leaves 

and any laterals from the upper two thirds of the canopy. The stripping usually started 

underneath the fifth leaf below the shoot tip and proceeded downwards (Figure 1a). 

Severity of leaf removal was set at six to seven leaves to yield a window of about 40 cm in 

height in order to simulate the action of most commercial models of leaf plucking 

machines. As a few leaves above the distal bunches were retained, bunch microclimate 

was not directly modified by the treatments. Shoots were vertically positioned during 

elongation, and shoot trimming was applied above the top wire on DOY 172 to retain an 

average 17–18 bud number per shoot across treatments. 
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(a) 

(b) 
Figure 1. (a) The window opened in the canopies by removing on DOY 195 (DEF-II) 

and 207 (DEF-II) six to seven main leaves and any laterals from the medial-apical 

shoot zone and (b) the layout of the multichamber system in place. 
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4.2.2. Single-leaf gas exchange 

Net photosynthesis (Pn) and stomatal conductance (gs) rates of well-exposed, 

mature primary leaves of vines in the first of the two test rows were measured on DOYs 

186, 206, 218 and 240 using a CIRAS-2 portable photosynthesis system (PP Systems, 

Amesbury, MA, USA). At each measurement, four leaves per vine were chosen on two 

shoots and measured for each treatment in the morning hours (10:00–12:00) under 

constant saturating light [≅ 1500 μmol/(m2•s)] imposed with an additional external lamp 

mounted on top of the leaf chamber. Measurements were taken at ambient relative 

humidity and, the flow fed to the broad-leaf chamber (2.5 cm2 window size) was 200 

mL/min. To ensure stability of the inlet reference CO2 con centration [CO2], a mini CO2 

cartridge was used to provide automatic control of inlet (CO2) at 370 mmol/L. Three 

primary leaves inserted on the basal, median and apical portions on each shoot were 

tagged and sampled. In addition, the first or second fully expanded basal leaf of the lateral 

that had developed underneath the trimming cut was measured as well. 

4.2.3. Whole-canopy  gas exchange 

Whole-canopy NCER measurements were taken using a custom-built, flow-through 

system adapted by Poni et al. (1997) to run automated NCER readings on grapevine 

canopies. Under the current configuration, the system features ten flexible, inflated, 

transparent polyethylene chambers air-fed by centrifugal blowers, a Ciras-2 SC single-

channel infrared gas analyser (IRGA) (PP Systems) and a CR1000 data logger and control 

module (Campbell Scientific Inc., Logan, UT, USA) for system programming and data 

storing and processing (Figure 1b). Reference inlet and outlet CO2 air streams were 

switched at 2-min intervals to the CIRAS-SC by a solenoid valve and the absolute CO2 

concentration (μmol/mol) was recorded automatically before switching. The system was 

remotely connected to an external PC, and data checking was performed via Team Viewer 

software (TeamViewer GmbH, Uhingen, Germany). 

A BF2 sunshine sensor (Delta-T Devices, Ltd, Cambridge, England), which uses an 

array of cosine-corrected photodiodes and a shading pattern to produce two analogue 

outputs  corresponding to the diffuse and total light components, both converted into 
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photosynthetically active radiation (PAR) quanta (≈400–700 nm), was placed horizontally 

on top of a support stake next to the chambers enclosing the canopies. The BF2 was wired 

to the CR10 data logger, and PAR data were recorded simultaneously with [CO2]. 

Chamber inlet and outlet temperature was also recorded at the same frequency with 

copper- constantan thermocouples, respectively, placed within the duct of the inlet airflow 

stream and the ducts streaming air outside the chambers. 

The chambers were set up on the second row and continuously operated from DOY 

186 (4 July, 9 days before first leaf removal) to DOY 242 (29 August, 35 days after  second 

leaf removal). Between 4 and 7 August, the system was temporarily halted for 

maintenance; a gap also occurred from 18 to 20 August because of failure of the IRGA 

light source, which had to be ordered and replaced. Three chambers were established on 

the C, DEF-I and DEF-II treatments; the remaining chamber was left empty to provide 

assessment for gas exchange alteration because of the physical presence of the plastic 

enclosure itself. 

The flow rate fed to the chambers was initially set at 9.96 L/s and then raised to 12.6 

L/s on DOY 216 to take into account  a significant surge in diurnal mean air temperature. 

Because the polyethylene chambers had a volume of 1.25 m3 ± 0.12, a complete volume air 

change occurred at an interval varying from about 120 to 80 s. Whole-canopy NCER per 

vine (μmol CO2/s) and per leaf area (LA) unit (μmol  CO2/m2•s) was calculated from 

differential CO2 and flow rates after Long and Hallgren (1985). 

4.2.4. Vegetative growth, yield and grape composition 

Total LA per vine defoliated at both dates was estimated via the linear relationship 

between leaf fresh mass (FM) (x) and leaf blade surface (y) as determined on a sample of 

32 leaves (24 main and 8 lateral) pulled from the non-chambered vines and yielding the 

following linear equation: y = 39.026x, R2 = 0.964. The LA of this sample was quantified by 

measuring the surface of each lamina with a LA meter (LI-3000A, LI-COR Biosciences, 

Lincoln, NB, USA). The onset of veraison was visually assessed by berry colour 

appearance, which took place on 20 July (DOY 202). To allow assessment of recovery 

capacity for ripeness in the defoliated treatment, and having established a minimum 
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threshold of 18°Brix for acceptable ripeness, the control vines were harvested on 4 

September (DOY 248), whereas the defoliated vines were harvested a week later on 11 

September (DOY 255). 

Each chambered vine was individually picked at harvest, and all bunches were 

counted and weighed. A 50-berry sample per vine was taken to ensure that the positions 

within the bunch (top, mid, bottom) and exposures (internal or external berries) were 

represented. These samples were then weighed and stored at −20°C for subsequent colour 

and phenolic analysis. All the remaining crop per vine was crushed and must soluble 

solids concentration (°Brix) determined by a temperature-compensating Atago 

refractometer (RX-5000 Atago Co., Ltd, Tokyo, Japan). Titratable acidity (TA) was 

measured by a Crison compact titrator (Crison, Barcelona, Spain) with NaOH 0.1 N to the 

end point of pH 8.2 and expressed as g/L of tartaric acid equivalent.  

Anthocyanins and phenolic substances were determined after Iland (1988). The 

frozen 50-berry samples were thawed and then homogenised at high speed (7602 g) with 

an Ultra-Turrax (Rose Scientific Ltd, Edmonton, AB, Canada) homogeniser for 1 min. Two 

grams of the homogenate were transferred to a pretared centrifuge tube, enriched with 10 

mL aqueous ethanol (50%, pH 5.0), capped and mixed periodically for 1 h before 

centrifugation at 959 g for 5 min. A portion of the extract (0.5 mL) was added to 10 mL 1 M 

HCL, mixed and let stand for 3 h; then the absorbance values were measured at 520 nm 

and 280 nm on a Kontron spectrophotometer (Tri-M Systems and Engineering, Inc., Port 

Coquitlam, BC, Canada). Anthocyanins and phenolic substances were expressed as mg/g 

of FM and mg/berry. 

Soon after harvest, the vines were entirely defoliated and the FM of main and 

lateral leaf fractions recorded separately. Total LA was then estimated from the 

relationship of leaf FM to LA. At leaf fall, total cane number per vine was recorded as well 

as the total number of primary buds per cane. 
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4.2.5. Statistical treatment 

One-way analysis of variance was carried out and, in case of significance of F test, 

mean separation was performed by the Student-Newman-Keuls test at P < 0.05 and 0.01. 

Degree of variation around means is given as standard error. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

35 

 

4.3. Results 

4.3.1. Climate trends and whole-canopy NCER 

The 60-day measuring period (DOY 186–246) was marked by mostly clear days 

[average direct PAR from dawn to dusk ≥ 800 μmol/(m2•s)] and by a generally increasing 

trend of daily air vapour pressure deficit, which peaked at 2.99 kPa on DOY 235 (Figure 

2b) when mean daily ambient temperature reached 35°C (Figure 2a). Although the 

summer at the trial site was one of the hottest in the last 50 years, the system was effective 

at controlling overheating because maximum ΔT (outlet-inlet) was 1.4°C recorded on 

control vines on DOY 241 (Figure 2b). Notably, the air circulating around the leaf removed 

canopies was occasionally even slightly cooler than ambient T. 

The seasonal trend of canopy NCER (Figure 2c) plotted for all days logging the 

threshold of mean  daily PAR ≥ 800 μmol/(m2•s) shows that the C vines reached their 

maximum just before veraison (estimated at DOY 201) and maintained that level for about 

15 days before displaying a slight yet progressive decline. The baseline NCER/vine 

measured in the empty chamber averaged over the entire recording period was −0.0923 

μmol/s, thus indicating negligible physical interference of the chamber itself. 

Based on mean vine NCER calculated over the 3 clear days immediately preceding 

and following defoliation, the fractional reduction of NCER was 22.5 and 20.0% for DEF-I 

and DEF II, respectively, as compared with pretreatment NCER/vine (Figure 2c). The 

diurnal trend of canopy NCER plotted from dawn to dusk 2 days before and after DEF-I 

(DOY 193 vs DOY 197) (Figure 3b) and 2 days before and after DEF-II (DOY 205 vs DOY 

209) (Figure 4b) shows that defoliation on both dates started to reduce pretreatment rates 

early in the morning and recorded maximum reduction during the late morning hours. 

Defoliation did not appear to affect CO2 assimilation from 15:00 onwards, i.e. when daily 

temperature peaked and PAR started to decline below the 1000 μmol/(m2•s) threshold 

(Figures 3a,4a). 
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Figure 2. Seasonal trends of (a) air vapour pressure deficit (VPD) (◆), direct (●) and 

diffuse (---) photosynthetically active radiation (PAR), of (b) inlet and outlet chamber air T 

and of (c) whole-vine net CO2 exchange rate (NCER) measured on Sangiovese grapevines: 

non-defoliated (C) (●), defoliated in preveraison (DEF-I) (◇) and postveraison (DEF-II) (△) 

and empty chamber (□). In (c), the solid arrows indicate dates of defoliation, and the 

dotted arrows the dates of harvest. Vertical bars indicate standard error (SE) (n = 3). 
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Figure 3. Diurnal trends of (a) ambient T 

(▲,△), direct and diffuse photosynthetically 

active radiation (PAR) (●, ○) and of (b) 

whole-vine net CO2 exchange rate (NCER) 

measured two days before (DOY 193) (●) 

and after (DOY 197) (○) the preveraison 

defoliation carried out on DOY 195. Data 

reported for C and DEF-I treatments. Each 

data point is the mean of three vine 

replicates. Curves fitted to 5th or 6th order 

polynomial equations. 

Figure 4. Diurnal trends of (a) ambient T 

(▲,△), direct and diffuse photosynthetically  

active radiation (PAR) (●, ○) and of (b) 

whole- vine net CO2 exchange rate (NCER) 

measured  2 days before (DOY 205) (●)  and 

after (DOY 209) (○)  the postveraison 

defoliation carried out on DOY 207. Data 

reported for C and DEF-II treatments. Each 

data point is the mean of three vine 

replicates. Curves fitted to 5th or 6th order 

polynomial equations. 
 

When canopy/NCER is given on a per unit leaf basis (Figure 5) to homogenise 

within-treatment differences in LA development, it clearly shows significant NCER 

compensation in both treatments. In DEF-I, the maximum gain was reached on DOY 224, 

i.e. 29 days after treatment when NCER per unit LA increased by 1.98 μmol/(m2•s) as 

compared with that of C vines; at the end of the measurement season DEF-I still retained 

21.7% higher NCER than did C vines. In DEF-II, maximum efficiency as NCER 

compensation was reached earlier, at DOY 221 [i.e. 14 days after treatment, scoring + 2.24 

μmol/(m2•s) vs C vines], and at chamber dismantling DEF-II still showed a 35.3% higher 

NCER per unit LA than C. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

38 

 

 

Figure 5. Whole-vine net CO2 exchange rate (NCER) per unit leaf area measured on 

Sangiovese grapevines commencing on day-of-the-year (DOY) 180: non-defoliated (C) (●), 

defoliated in preveraison (DEF-I) (◇) and postveraison (DEF-II) (△) and empty chamber 

(□). Solid arrows indicate the dates of defoliation. Vertical bars indicate standard error (SE) 

(n = 3). 

4.3.2. Single-leaf gas exchange 

Net photosynthesis rates averaged over different leaf positions showed that DEF-I 

had much higher Pn [≅ +3 μmol/(m2•s)] than C at 12 and 26 days after treatment, whereas 

DEF-II scored higher Pn than C on DOY 221 [+1.3 μmol/(m2•s)], i.e. 14 days after 

treatment (Figure 6). At preharvest, DEF-I approached the Pn rates measured on C; 

however, DEF-II had maximum Pn compensation quantified as 2 μmol/(m2•s) higher 

than that of C. 
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Figure 6. (a) Single-leaf net photosynthesis rate (Pn) and (b) stomatal conductance (gs) 

measured on DOYs 186, 206, 218 and 240 measured on Sangiovese grapevines 

commencing on day-of-the-year (DOY) 180: non-defoliated (C) (●), defoliated in 

preveraison (DEF-I) (◇) and postveraison (DEF-II) (△). Within each date, values were 

pooled over different leaf types and position. Vertical bars indicate SE (n = 24). 
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Stomatal conductance essentially reflected Pn trends, although on DOY 221 and 

241, the two defoliation treatments did not differ. When the effect of leaf removal on 

single-leaf Pn was evaluated as a response relative to leaf position, hence age (Figure 7), 

significant compensation in basal leaves was recorded in DEF-I 23 days after leaf removal, 

while basal DEF-II leaves were less responsive. Not surprisingly, apical leaves showed 

marked compensation upon leaf removal although with a different dynamic: in DEF-I 

maximum Pn gain was scored 13 days after treatment and then this difference 

progressively decreased, whereas DEF-II showed significant Pn compensation in apical 

leaves only during the last set or readings. Lateral response was somewhat confounded by 

fairly large variability found in predefoliation readings, though it was apparent that DEF-

II has a significantly higher rate than that of the C vines at DOY 240, whereas 

measurements taken 22 days earlier did not differ among treatments (Figure 7). 
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Figure 7. Single-leaf net photosynthesis  rate (Pn) measured on day-of-the-year (DOY) 186, 

206, 218 and 240 on primary, (a) basal, (b) median and (c) apical according to insertion 

along main stem, and (d) lateral leaves of Sangiovese grapevines commencing on DOY 

180: non-defoliated (C) (●), defoliated in preveraison (DEF-I) (◇) and postveraison (DEF-

II) (△). Vertical bars indicate SE (n = 6). 

4.3.3. Vine performance and balance 

The LA removed in both defoliation treatments was slightly less than 1 m2 and 

corresponded to 28.3 and 27.2% of final LA estimated on DEF-I and DEF-II, respectively 

(Table 1). Limited LA formation occurred after each defoliation as it can be inferred by the 

modest fraction of lateral LA that developed on defoliated vines as compared with that on 

C vines. When the removed LA was added to the final LA in the defoliated treatment, total 

LA was similar to that of the C vines (3.29 and 3.48 m2 for DEF-I and DEF-II, respectively). 

Yield per vine and its components did not differ among treatments. LA-to-yield 

ratio (cm2/g) calculated at harvest not unexpectedly showed higher source availability per 
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unit of crop for the C vines compared with that of the DEF-I and DEF-II treatments, 

although this difference disappeared when the source–sink balance was given as the 

actual amount of carbon available per g/berry FM. Moreover, foliage efficiency as g 

CO2/(m2•s) calculated over the entire time span covered by the chamber readings (DOY 

186–242) showed that DEF-I and DEF-II vines were 33 and the 36% more efficient, 

respectively, than the C vines (Table 1). 

At first harvest (DOY 248), when only C vines were picked, must soluble solids 

accumulation was delayed in DEF-I and DEF-II by 1.3 and 2.4 °Brix, respectively, and TA 

was still significantly higher than that in C (Table 2). By contrast, must pH and 

anthocyanins and phenolic substances were similar among treatments. A week later (DOY 

255), DEF-I and DEF-II showed full and partial recovery in soluble solids content, both 

reaching the minimum set threshold. The remaining parameters were almost constant, 

although some variation compared with the preharvest date may be related to the 30.6 

mm of rain that fell between the first and second harvest (data not shown). 
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4.4. Discussion 

Our whole-vine enclosure system, as with previous studies employing the same 

type of equipment (Intrieri et al. 1998, Petrie et al. 2003, 2009, Tarara et al. 2011), was 

effective in assessing the complex and dynamic changes brought about by leaf removal at 

different seasonal dates, changes that are usually cumbersome to follow when relying only 

on a single-leaf approach (Poni et al. 2009). Our objective (i) shows that the short-term 

decline in NCER/vine (Figure 2c) upon leaf removal was slightly less than the fraction of 

actually removed total LA (Table 1). This finding is not surprising as opening such a 

window in the canopy enables, especially at high solar angles, more light interception by 

the basal part of the canopy. It should also be taken into account that the photosynthetic 

contribution of the soon-to-be-removed leaves changes as per timing of leaf removal 

simply because their age and, hence, a change in their efficiency. 

The strongest response returned by the whole-canopy readings was the capacity to 

compensate for photosynthesis at both leaf-removal dates in terms of amplitude and 

duration, a phenomenon that lasted until harvest. The data reported in Table 1 as g 

CO2/(m2•s) show that the average whole-season photosynthetic foliage efficiency of 

defoliated canopies was at least 30% higher than that of C vines and, when expressed on a 

per canopy basis, the amount of assimilates available for ripening (mg C/g berry FM, last 

column of Table 1) was similar, thereby fitting with the fairly homogeneous ripeness 

pattern ultimately reached by all treatments. The indication provided by this last index 

diverges from what could have been inferred from just expressing the total leaf-to-fruit 

ratio, which, albeit almost universally used as an index of source–sink balance (Kliewer 

and Dokoozlian 2005), confirmed its limitation as being static and, hence, unsuitable for 

describing actual leaf function in our trial using potted vines. 

The single-leaf readings further support Pn compensation, confirming it in terms of 

magnitude as compared with C rates and specifying that although the higher degree of 

compensation was provided  the younger, main and lateral leaves in the apical shoot zone, 

basal leaves were also able to show significant Pn compensation in the DEF-I treatment. 

Thus, the combined whole-canopy and single-leaf approach of our study supports the 

finding that grapevine leaves are capable of notable Pn compensation when a significant 
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portion of LA is removed, a finding in agreement with others (Candolfi-Vasconcelos and 

Koblet 1991, Poni and Giachino 2000). Moreover, that whole-canopy and single-leaf 

readings yielded a similar outcome suggests, as recently reported by Tarara et al. (2011), 

that a good linear association between the two techniques can be achieved. 

The defoliation DEF-I occurred on DOY 195 (13 July), i.e. still at preveraison when, 

according to Poni et al. (1994), working on the same cultivar, the leaves growing on the 

median part of the shoot (i.e. those actually removed) have the highest Pn rates. The data 

in Figure 7 for median leaves confirm that leaves pulled in DEF-I were active [mean Pn 

about 12 μmol/(m2•s) for data taken on DOY 186], though the Pn rates of apical leaves 

shown in the  same figure were even slightly higher, thereby contradicting what Poni et al. 

(1994) reported. This mismatch, however, can be easily explained as those authors worked 

on untrimmed shoots because the shoot apical parts still included some young developing 

leaves at preveraison, whereas in the present study the shoots were trimmed 14 days 

before the first gas exchange readings. Thus, ‘apical’ leaves located underneath the 

trimming cut likely had enough time to reach full expansion and ripeness by the time 

measurements started. In addition, leaves classified as ‘median’ in the study by Poni et al. 

(1994) corresponded to the equivalent position leaves labelled ‘apical’ in the present study. 

Then too, if photosynthetic activity of each shoot zone was similar before leaf removal, it is 

perfectly understandable why NCER per unit LA calculated  over 3 consecutive days after 

leaf stripping [3.78 μmol/(m2•s); Figure 5] was similar to pre-leaf removal rate [3.61 

μmol/(m2•s),  mean over DOY 190–192]. 

Postveraison, single-leaf Pn data again appeared to offer a somewhat different 

picture from that reported by Poni et al. (1994) and by Knoll and Redl (2012) for 

untrimmed shoots where the highest Pn in the apical shoot zone was assessed. Figure 7 

shows that the measurements taken  the day before DEF-II was defoliated (DOY 206) 

appear to show that the Pn rate was again similar across different position and leaf types 

[about 8 μmol/(m2•s)]. The same NCER per unit LA comparison previously shown for 

DEF-I confirms that the 3-day averaged NCER postveraison rate [4.19 μmol/(m2•s)] was 

even slightly higher than predefoliation rate [3.82 μmol/(m2•s)]. According to the NCER 

trend in Figure 5, DEF-I shows a decidedly improved compensation from DOY 215 on; this 
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response appears to match closely the improved basal leaf Pn recorded on DOY 218 

(Figure 7). Note too that the total photosynthetic contribution of each shoot zone is also a 

function of leaf number and size within it. As the basal part of the canopy included the 

first six to seven basal leaves, and given that these are usually larger than upper located 

leaves, it is to be expected that the basal canopy sector plays a major role in overall canopy 

photosynthetic balance. 
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Table 1. Vegetative growth, yield components and vine balance indices determined on Sangiovese grapevines either nondefoliated (C) 

or defoliated preveraison (DEF-I) or postveraison (DEF-II) 

 
Removed 

LA (m2) 

Total 

LA (m2) 

Primary 

LA (m2) 

Lateral 

LA (m2) 

Yield/vine 

(kg) 

Bunches/ 

vine 

Bunch 

mass 

(g) 

Berry 

mass (g) 

LA/FM 

(cm2/g) 

Carbon [g 

CO2/ 

(m2day)] 

Carbon/Y (mg 

CO2/ g berry 

FM) 

Control 0 a 3,4914 a 2,4655 a 1,0258 a 1,983 14,8 134,1 1,98 17,6 a 2,64 b 11,0 

DEF-I 0,9335 b 2.3608 b 1,6643 b 0,6964 b 2,241 15,7 140,1 1,92 10,5 b 3,51 a 9,8 

DEF-II 0,9483 b 2,5340 b 1,8766 b 0,6557 b 2,350 16,0 150,6 2,02 10,8 b 3,67 a 10,4 

Significance ** ** ** ** ns ns ns ns * ** ns 

* and ** denote a significant difference between treatments at P < 0.05 and 0.01 according to within column mean separation performed with SNK 

test. FM, berry fresh mass; LA, leaf area; ns, non significant. 
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When C vines were harvested upon reaching the minimum threshold of 18°Brix, the 

leaf-removal treatments showed a delayed sugar accumulation, which was more marked 

in DEF-II. Thus, a significant delay in soluble solids accumulation occurred despite the fact 

that seasonal source-to-sink ratio expressed as mg CO2/g FM and calculated for the entire 

period the chambers were on was not significantly modified by the treatments (Table 1). 

This appears to indicate that a late season apical-to-bunch defoliation that induces even a 

short-term drop in NCER/vine (Figure 5, DEF-II behaviour) is effective at temporarily 

hindering berry sugar accumulation. This appears to find support in a recent paper by 

Palliotti et al. (2013), who showed in a 2-year field trial on Sangiovese, comparing 

mechanical postveraison apical-to-bunch zone defoliation and a non-defoliated control, 

that defoliated vines registered a 1.2 °Brix reduction at harvest, although final LA-to-fruit 

ratio was 11.3 cm2/g, a value close to the one scored by DEF-II in the present study (Table 

1). 

Given a similar level of LA removed, crop level and season-averaged carbon-to-

yield ratio in the two treatments (Table 1), higher sensitivity of DEF-II reflected by a 

greater delay in ripening is also quite puzzling and shifts the focus towards compensation 

and assimilate partitioning. It may be that berry ripening in DEF-I specifically benefits 

from significant Pn compensation shown by basal leaves on DOY 218, which is supported 

by evidence showing that certain leaves primarily feed the most closely located sinks 

(Flore and Lakso 1988). Quinlan and Weaver (1970) fed 14CO2 at fruitset to a bunch 

adjacent leaf, and 24 h later autoradiographs showed that photosynthates were traced in 

the adjacent bunch with no movement towards other sinks. 
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Table 2. Grape composition of Sangiovese grapevines either nondefoliated (C) or 

defoliated preveraison (DEF-I) or postveraison (DEF-II) at two harvest dates 

 Soluble 

solids 

(°Brix) 

TA 

(g/L) 

pH Anthocyanins Phenolic substances 

(mg/g) (mg/berry) (mg/g) (mg/berry) 

Harvest 04/09        

Control 18.8 a 5.34 a 3.13 0.63 1.05 2.14 4.20 

DEF-I 17.5 b 6.03 b 3.34 0.67 1.19 2.31 4.89 

DEF-II 16.4 c 6.22 b 3.32 0.64 1.19 2.27 5.09 

Significance ** ** ns ns ns ns ns 

Harvest 11/09        

Control – – – – – – – 

DEF-I 18.9 6.54 3.19 0.67 1.22 1.90 4.10 

DEF-II 18.0 6.69 3.18 0.67 1.23 1.98 4.27 

Significance ns ns ns ns ns ns ns 

* and ** denote a significant difference between treatments at P < 0.05 and 0.01 according to within 
column mean separation performed with SNK test. ns, non significant. 

A week after first harvest, DEF-I had fully recovered to the sugar concentration of 

C, whereas DEF-II gained 1.6 °Brix compared with the 18 °Brix target of C. Although the 

chambers were dismantled on DOY 242 (i.e. before harvest), the robustness of seasonal 

whole-canopy, gas exchange data enable a comparison between estimated canopy NCER 

from DOY 249 to 254 and the amount of sugar accumulated by the berries over that 

period. Given the yield per vine and soluble solids data (Tables 1 and 2), 31.3 and 40.5 g of 

sugar accumulated, respectively, in DEF-I and DEF-II berries during the period elapsing 

between the two harvests. We can thus estimate that canopy NCER from DOY 249 to 254 

approximately matches the last 5 days of actual readings (DOY 237–242), yielding an 

average daily assimilation of 12.5 and 17.1 g CO2/vine for DEF-I and DEF-II, respectively. 

This estimate seems rather conservative because DOYs 237–242 were the hottest of the 

entire  season, with maximum air T peaking around 40 °C, whereas DOYs 249–254 were 

clear and definitely cooler as maximum air T never exceeded 31 °C (Figure 2a) and, hence, 

more conducive to optimal NCER rates. If we then consider that total carbon gain per vine 

from DOY 249–254 was 75 and 102.6 g CO2 in DEF-I and DEF II, respectively, and apply a 

cost conversion coefficient into biomass of 0.55 (Ollat and Gaudillere 2000), the result is an 
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accumulated dry matter of 41.3 and 56.4 g, respectively, which is in agreement with 

respective weekly sugar gain values of 31.3 and 40.5 g. 

Few comparative data on the effect of late-season leaf removal for delaying ripening 

are available in the literature. Stoll et al. (2010) report that a significant delay in ripening in 

Riesling is reached when the leaf-to-fruit ratio was reduced from 14 to 8 cm2/g. More 

recently, they have shown that mechanical defoliation at fruitset (BBCH 71 according to 

Lorenz et al. 1995) above the bunch area, which retains about 70% of the LA on control 

vines, had no effect on grape composition, vine yield and berry size (Stoll et al. 2013). 

Their explanation for the lack of effect is that the final LA-to-fruit ratio calculated for the 

leaf-removal treatment (12.3 cm2/g vs 19.6 cm2/g in C) was still non-limiting. 

Interestingly, neither the present study nor those of Stoll et al. (2010, 2013) report a 

decrease in berry size and/or yield because of leaf removal, which, given that the aim of 

our trial is a delay in ripening, is a positive feature as an increased solute concentration 

because of smaller berry size might offset the retarding effect in grape composition 

pursued with leaf removal. 

Our results show that phenolic ripeness was unaffected by the leaf removal 

treatments, which registered no variation between first and second harvest. Kliewer and 

Dokoozlian (2005) report that maximum fruit skin coloration is reached when the LA-to-

fruit ratio varies from 11 to 14 cm2/g. There is a large body of literature (cited in Downey 

et al. 2006), however, showing that factors other than LA/Y have a higher impact on berry 

coloration, with berry size and bunch microclimate playing major roles. The first 

parameter was directly quantified in our study and showed inconsistent differences; the 

latter was not directly assessed. Leaf removal, however, was performed above the fruiting 

area and was unlikely to have caused abrupt modification in bunch microclimate. Indeed, 

the final amount of colour stored in berry skin was low. Air temperature was likely to 

have contributed to the lower concentration of anthocyanins as it rose over several days 

between veraison and harvest and finally peaked during the last week of chamber 

measurements (Figure 2b). It is well known that the optimal temperature for pigment-

producing enzymes (17–26°C) is lower than the optimal range for sugar activity (18–33°C), 

and that berry overheating leads to poor coloration in red cultivars (Spayd et al. 2002, 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

50 

 

Price et al. 2005). Moreover, Mori et al. (2007) have specifically shown that high T (≥ 35°C) 

can also enhance anthocyanin degradation postveraison. 

4.5. Conclusions 

Although conducted only over a single season, our trial using potted vines delivers 

data showing that there is a straightforward relationship between physiological 

adaptation to late-season leaf removal applied above the bunch area and final grape 

composition. Defoliation applied postveraison was more effective than that preveraison at 

temporarily limiting sugar accumulation, which was significantly lower at harvest than 

that in control vines. The gap in ripeness, however, was filled by the shift of harvest date 

in the defoliation treatments by just a week, a result that was also made possible by the 

amount and duration of photosynthetic compensation, which was clearly detected at both 

the single-leaf and whole-canopy level. 

The data for final grape composition are promising. In effect, had the defoliated 

vines been picked at the first date, this would have led to delayed technological ripening, 

i.e. sugar concentration and TA, yet with the same phenolic ripeness. Thus, it appears 

there is room for a decoupling between the two ripeness types that would result in a wine 

style that is currently much in demand by the market: one that is less alcoholic to meet the 

trend for ‘light drinking’ while at the same time largely retaining its phenolic substances, 

which have a well-documented positive action on human heath (Casey 2012). More work 

is now needed in the field to verify over a longer term the consistent reproducibility of our 

findings under an array of different genotypes and environments.  
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Abstract 

Grape berry composition mainly consists of primary and secondary metabolites. 

Both are sensitive to environment and viticultural management. As a consequence, climate 

change can affect berry composition and modify wine quality and typicity. Leaf removal 

techniques can impact berry composition by modulating the source-to-sink balance and, in 

turn, may mitigate some undesired effects due to climate change. The present study 

investigated the balance between technological maturity parameters such as sugars and 

organic acids, and phenolic maturity parameters anthocyanins in response to source-sink 

modulation. Sugar, organic acid, and anthocyanin profiles were compared under two 

contrasting carbon supply levels in two grape cultivars. Grape berries of cv. Cabernet 

Sauvignon and Sangiovese were collected at 9 and 14 developmental stages. In addition, 

whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a 

mathematic model was used to calculate the balance between carbon fixation and berry 

sugar accumulation. Carbon limitation affected neither berry size, nor the concentration of 

organic acids at harvest. However, it significantly reduced the accumulation of sugars and 

total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total 

anthocyanin concentration by 84.3 % as compared to the non source-limited control, 

whereas it decreased sugar concentration only by 27.1 %. This suggests that carbon 

limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon 

limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical 
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analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon 

for sugar accumulation under carbon limitation (76.9%) than under carbon sufficiency 

(48%). Thus, under carbon limitation, the grape berry can manage the metabolic fate of 

carbon in such a way that sugar accumulation is maintained at the expense of secondary 

metabolites. 

Keywords: Vitis vinifera L, wine alcohol content, wine color, climate change, leaf-to-fruit 

ratio, berry composition. 
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5.1. Introduction 

Grapevine is an important perennial crop cultivated in many countries (7519 mha in 

2013) (OIV, 2014). Its fruits are used predominantly for wine making, yet also for juice, 

raisins and fresh consumption. Grape berry composition, which is important for the grape 

growers and the wine industry, is mainly determined by sugars, organic acids, and 

various secondary metabolites (e.g. anthocyanins) (Conde et al., 2007). The accumulation 

of these components along berry development and ripening depends on the genotype and 

on the environment (Jackson and Lombard, 1993).  

Climate change already affects the physiology of the grapevine (Schultz, 2000), 

causing increased sugar concentration and, consequently, higher alcohol content in wines 

(Duchêne and Schneider, 2005; Bock et al., 2013), reduced organic acids and anthocyanins  

(Barnuud et al., 2013, 2014), and modified aroma profiles (Keller, 2010a). In the long term, 

the sustainability of wine production in several viticultural regions may be threatened by 

climate change (Schultz and Jones, 2010; Hannah et al., 2013). To face such challenges, the 

mechanisms controlling the accumulation of quality-related metabolites in grapes must be 

better understood. This will allow promoting innovative viticultural practices resulting in 

easier adaptation of wine production to climate change (van Leeuwen et al., 2013). 

Among the different viticultural practices affecting berry composition (Keller, 

2010a; Dai et al., 2011; Kuhn et al., 2014), source-sink modulation by summer pruning (i.e. 

leaf removal or shoot and cluster thinning) is an important tool that may control the 

relationship between yield and quality, and adjust the complex chemical composition of 

grape berry (Kliewer and Dokoozlian, 2005). For example, the berry sugar concentration is 

often positively correlated with leaf area-to-yield ratio when the ratio is below a threshold 

value of about 1 m2/Kg of fruit mass (Kliewer and Dokoozlian, 2005; Duchêne et al., 2012). 

Above this value, the sugar concentration usually reaches a plateau and becomes less 

responsive to source-sink modulation (Kliewer and Dokoozlian, 2005). The responses of 

organic acids to source-sink modulation have been less thoroughly studied, and 

contradictory reports showed that a lower leaf area-to-yield ratio caused either an increase 

(Wolpert et al., 1983; Ollat and Gaudillere, 1998; Wu et al., 2013), decline (Bravdo et al., 
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1985), or lack of response (Reynolds et al., 1994; Parker et al., 2015) of organic acids 

compared with a high leaf to yield ratio.  

In addition to primary metabolites, secondary metabolites (e.g. anthocyanins) also 

play an essential role in shaping wine quality and typicity. Anthocyanins are responsible 

for grape color, which is an important determinant of wine color. Grape anthocyanins 

derive from five anthocyanidins: cyanidin (Cy), delphinidin (Dp), peonidin (Pn), 

petunidin (Pt) and malvidin (Mv). They have different patterns of hydroxylation (di- or 

tri-hydroxylated forms), methylation, and can be further modified by acylation (Mazza, 

1995). The fine-tuning of anthocyanin composition has important impacts on the color hue 

and color stability of the resultant wines (Mazza, 1995). Source-sink modulation impacts 

berry coloration (Weaver, 1963; Kliewer and Weaver, 1971; Petrie et al., 2000a), and 

recently its effects on anthocyanin content  and composition (Guidoni et al., 2008; Pastore 

et al., 2011, 2013; Filippetti et al., 2015) drew attention of many research groups. For 

example, Wu et al. (2013) showed that retaining two leaves only in a girdled shoot with 

one cluster completely inhibited berry coloration. Moreover, Guidoni et al. (2008) reported 

that total anthocyanins were reduced by source limitation, with di-hydroxylated 

anthocyanins more sensitive than tri-hydroxylated ones in cv. Nebbiolo berries. However, 

other authors recently showed that a post-veraison source limitation resulting from either 

shoot trimming (Filippetti et al., 2015), removal of leaves above the clusters (Palliotti et al., 

2013b; Poni et al., 2013) or late-season application of anti-transpirants (Palliotti et al., 

2013a) significantly reduced the speed of sugar accumulation but did not affect the 

concentration of berry anthocyanins at harvest. As the source-sink modulation techniques 

also bring about concomitant modifications in the fruit zone microclimate (i.e. light and 

temperature regimes), the results must be interpreted with caution. It is well established 

that especially temperature significantly affects anthocyanin accumulation (Spayd et al., 

2002; Pereira et al., 2006; Mori et al., 2007). Therefore, experiments that are more precisely 

controlled and avoid confounding between the effects of source-sink modulation and 

microclimate are needed to quantify the actual response of anthocyanins to carbon 

availability. 
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The accumulation of carbon in primary and secondary metabolites is interconnected 

and results from a complicated metabolic network. For instance, sugar levels positively 

correlate with total anthocyanin levels (Vitrac et al., 2000; Dai et al., 2014), yet negatively 

correlate with organic acids (Keller, 2010b). Interestingly, the accumulation of sugars and 

anthocyanins can be uncoupled by environmental conditions such as high temperature 

(Sadras and Moran, 2012). In contrast, the effect of source-sink modulation on the sugar-

anthocyanin uncoupling seems more complicated  (Sadras and Moran, 2012). The 

anthocyanin : sugar ratio has been reported to be increased (Guidoni et al., 2002), 

decreased (Sadras et al., 2007), or unchanged (Petrie and Clingeleffer, 2006) by increasing 

source-sink ratio. The mechanisms underlying this diversity of responses warrant further 

investigation. If sugars and anthocyanins do have different sensitivities to source-sink 

modulation, such de-synchronization may help to define a window of source-sink ratios, 

within which sugars are reduced while anthocyanins are unaffected. This would provide 

valuable clues to mitigate the negative influences of climate change (Keller, 2010a). 

Therefore, the present study aims to quantify the relative sensitivities of different 

berry compounds (sugars, organic acids, and anthocyanins) to changes in source-sink 

modulation under controlled or semi-controlled conditions. Monitoring the carbon 

fixation rate of the whole-canopy and dynamic profiling of metabolites allowed us to 

conduct a quantitative analysis of carbon demand and supply, and to obtain detailed 

information on the source-sink balance. In addition, a detailed HPLC analysis allowed us 

to compare the effects of source-sink modulation on the developmental changes in 

anthocyanin profiles in two distinct cultivars, Cabernet Sauvignon and Sangiovese. 
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5.2. Material and Methods 

Two experiments were conducted with cv. Cabernet Sauvignon in Bordeaux 

(latitude 44° 46' 46'' N, longitude 00° 34' 01'' W), France, and cv. Sangiovese in Piacenza 

(latitude 45°02'52''N, longitude 9°42'2''E), Italy.  

5.2.1. Plant material and sampling 

5.2.1.1. Exp 1. Cabernet Sauvignon 

Fruiting-cuttings made of one shoot bearing one grape cluster of cv. Cabernet 

Sauvignon were prepared as described in Mullins and Rajasekaran (1981) and grown in a 

naturally lighted and semi-controlled greenhouse with chemical disease control applied 

every two weeks. Environmental conditions (air temperature, radiation at canopy level, 

and relative humidity) were recorded hourly throughout the experiment (Supplementary 

Figure S1).  

Thirty homogeneous fruiting-cuttings were subjected to two source-to-sink ratios at 

one week before veraison; a group of 15 plants had 12 leaves per cluster per vine (12L) 

while the remaining vines had three leaves per cluster per vine (3L). At 63 DAF (days after 

flowering), leaves underneath the basal cluster were removed in both treatments to 

standardize the microclimate effects; therefore, above the cluster, 3 and 12 leaves were 

maintained, yielding a total of  7 and 16 nodes per shoot for the 3L and 12L treatments, 

respectively. The remaining leaves and all secondary shoots were removed over the 

measurement period. The plants were randomly assigned to three blocks and each block 

composed of 5 plants of each treatment. 

Berries were sampled 9 times at one-week interval from one week after treatment 

(70 DAF) to 126 DAF. In order to ensure the capture of maturity in 3L treated vines, the 

last sampling date corresponded to an over-ripe stage. At each sampling date, two berries 

were sampled from the top and the middle of a single cluster, and the resulting 10 berries 

from 5 clusters (vines) of a given treatment within a plot were pooled to form a biological 
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replicate. Three biological replicates were obtained for each treatment at each sampling 

date. At harvest, all berries were sampled, counted, and weighed. 

5.2.1.2. Exp 2. Sangiovese  

The experiment was conducted on 4-year-old cane-pruned cv. Sangiovese 

grapevines grafted on M3 rootstock and grown outdoors in 40 L pots. The pots were filled 

with a mixture of sand, loam and clay (65, 20 and 15% by volume, respectively) and kept 

well watered throughout the trial season. Each vine had a 1m long fruiting cane with 8-9 

dormant buds. Shoot thinning was applied to retain one main shoot per node and, on each 

shoot, the basal cluster only was maintained. Vines were arranged along a single, 

vertically shoot-positioned, 35oNE-SW oriented row and hedgerow-trained. Eight uniform 

vines were assigned in a completely randomized design to the following two treatments 

one week before veraison: 3 leaves per cluster (shoot) or 12 leaves per cluster (shoot). As in 

the Cabernet Sauvignon experiment, at 40 DAF, leaves beneath the basal cluster were 

removed in both treatments to standardize the microclimate effects; therefore, above the 

cluster, 3 and 12 leaves were maintained, for 3L and 12L treatment, respectively. Shoots 

were trimmed to 8 and 16 nodes per shoot, for 3L and 12L treatment, respectively. The 

remaining leaves and all secondary shoots were removed throughout the measuring 

period.  

Berries were sampled 14 times at one-week interval from one week before treatment 

to 8 weeks after treatment, and thereafter at 4-day intervals for better capturing maturity. 

At each sampling date, three berries from a cluster were sampled and the 24 or 27 berries 

from 8 or 9 clusters (shoot) of a given vine under a treatment were pooled to form a 

biological replicate. Four biological replicates were obtained for each treatment at each 

sampling date. At harvest, all berries of a vine were sampled, counted, and weighed. 

5.2.2. Berry pretreatment  

Sampled berries from both experiments were immediately put into a pre-weighed 

tube and dropped into liquid nitrogen. The tubes were reweighed after deep freeze to 

calculate berry fresh weight and then stored in -80 °C for later biochemical analysis. 
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Berries stored in -80 °C were slightly thawed and separated quickly into skin, pulp, and 

seed in the laboratory. The skin and pulp were immediately ground into fine powder in 

liquid nitrogen using a ball grinder MM200 (Retsch, Haan, Germany).  

5.2.3. Sugars and organic acids 

An aliquot of 500 mg fine powder of pulp was extracted sequentially with ethanol 

(80% and 50%), dried in Speed-Vac, and re-dissolved in 2.5 mL de-ionized water. Glucose 

and fructose content were measured enzymatically with an automated micro-plate reader 

(Elx800UV, Biotek Instruments Inc., VT, USA) according to the method of Gomez et al. 

(2007). Tartaric acid content was assessed by using the colorimetric method based on 

ammonium vanadate reactions (Pereira et al., 2006). Malic acid was determined using an 

enzyme-coupled spectrophotometric method that measures the change in absorbance at 

340 nm from the reduction of NAD+ to NADH (Pereira et al., 2006). 

5.2.4. Analysis of anthocyanins 

An aliquot of 500 mg of berry skin powder was freeze-dried for 72 h and the dried 

powder (~50 mg) were extracted in 1.0 mL methanol containing 0.1% HCL (v/v). Extracts 

were filtered through a 0.45 μm polypropylene syringe filter (Pall Gelman Corp., Ann 

Harbor, USA) for HPLC analysis. Each individual anthocyanin was analyzed as described 

in Hilbert et al. (2003) and  Acevedo De la Cruz et al. (2012) with HPLC. Quantification 

was carried out by peak area integration at 520nm, and Malvidin-3-glucoside 

(Extrasynthèse, Lyon, France) standard was used for quantify the anthocyanin 

concentration. 

5.2.5. Leaf area measurement 

For Cabernet Sauvignon experiment, leaf area was estimated using the relationship 

between specific leaf area (m2 fresh area gDW-1) and total leaf dry weight as described in 

Castelan-Estrada et al. (2002). Leaf areas of the removed leaves for 3L treatment were 

determined at the initiation of treatment and whole plant leaf areas were determined for 

both treatments at the end of the experiment. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

63 

 

For Sangiovese experiment, leaf area was measured on the leaves that were 

removed the day of treatment and after harvest of all berries. Leaf area was determined by 

measuring the surface of each lamina with a leaf area meter (LI-3000A, LI-COR 

Biosciences, Lincoln, NE, USA). 

5.2.6. Chlorophyll concentration 

Six leaves per plant for 12L vines and 3 leaves per plant for 3L vines were measured 

using the portable Chlorophyll Meter SPAD 502 (Minolta Corp., Ramsey, NJ). On each 

leaf, five SPAD readings were taken at each leaf lobe and then averaged. 

5.2.7. Single-leaf gas exchange 

Net photosynthesis (Pn), evapotranspiration (E) and stomatal conductance (gs) 

rates of 6 leaves per plant were measured only in the Sangiovese experiment at 95 DAF 

using a CIRAS-2 portable photosynthesis system (PP Systems, Amesbury, MA, USA). On 

each vine, two shoots were chosen in basal and apical positions along the cane and, on 

each shoot, three mature leaves located in the basal, median, and apical positions of the 

main stem were measured in rapid sequence. Readings were performed in the morning 

hours (10h00-12h00) under constant saturating light (≈1500 µmol m–2 s–1) imposed with an 

additional external lamp mounted on top of the leaf chamber. Measurements were taken 

at ambient relative humidity and the flow fed to the broad-leaf chamber (4.5 cm2 window 

size) was 300 mL min–1. To ensure stability of the inlet reference CO2 concentration [CO2], 

a CO2 minicartridge was used to provide automatic control of inlet [CO2] at 380 mmol L–1. 

5.2.8. Whole-canopy gas exchange 

Whole-canopy net CO2 exchange rate (NCER) measurements were performed only 

in the Sangiovese experiment using the multi-chamber system reported in Poni et al. 

(2014) featuring alternating current, centrifugal blowers (Vorticent C25/2M Vortice, Milan, 

Italy) delivering a maximum air flow of 950m3 h–1; flexible plastic polyethylene chambers 

allowing 88% light transmission, 6% diffuse light enrichment and no alteration of the light 

spectrum. System also features a CIRAS-EGM4 single-channel absolute CO2 infrared gas 
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analyser (PP Systems, Amesbury, MA, USA) set at a 0–1000 parts per million 

measurement range and a CR1000 data logger wired to an AM16/ 32B Multiplexer 

(Campbell Scientific, Shepshed, UK). To facilitate air mixing and ensure higher stability in 

inlet CO2 concentration, air was forced through a buffer tank (500 L) before being directed 

to the chambers. Switching of air sampling from one chamber to another was achieved at 

programmed time intervals (90 s) using a set of solenoid valves (SIRAI, Padova, Italy); the 

air-flow rate to each chamber was controlled by a butterfly valve (Ghibson, Monteveglio, 

Italy) and measured with a Testo 510 digital manometer (Farnell, Lainate, Italy) using the 

flow restriction method (Osborne, 1977). The flow rate fed to the chambers was set at 7.1 

L/s and kept until the leaf removal treatment, when the flow rate was changed to 5 L/s. 

Whole-canopy NCER per vine (µmol CO2/s) and per leaf area (LA) unit (µmol CO2/m2s) 

was calculated from flow rates and CO2 differentials after. 

The chambers were set up on each vine and continuously operated 24 h per day 

from one week before treatment (2 July) until 95 days after flowering (1 September). 

Ambient (inlet) air temperature and the air temperature at each chamber’s outlet were 

measured by shielded 1–0.2 mm diameter PFA–Teflon insulated type-T thermocouples 

(Omega Engineering, Stamford, CT, USA), and direct and diffuse radiation were measured 

with a BF2 sunshine sensor (Delta-T Devices, Ltd, Cambridge, England) placed 

horizontally on top of a support stake next to the chambers enclosing the canopies. 

Ambient (inlet) relative humidity and the relative humidity at each chamber’s outlet were 

measured by a HIH-4000 humidity sensor (Honeywell, Freeport, IL, USA) mounted 

upstream of the EGM4. 

5.2.9. Data analysis 

All data analysis were conducted with R software (R Development Core Team, 

2010). Student t-test was used to verify the differences between the two source-sink ratios 

at each developmental stage. 

Carbon allocation analysis was conducted as it follows. First, the carbon 

accumulated in berries throughout development was calculated as a function of hexose 

concentration and berry fresh weight with a carbon transformation coefficient of 0.4 g 
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carbon g-1 hexose. Second, the total carbon accumulated (C) in berries per vine was fitted 

to the following sigmoid curve (Sadras et al., 2008): 

  
    

   
[
    
 
]
 

where t is the number of days after flowering, Cmax is the maximal quantity of 

carbon (g), t0 is  the number days after flowering when carbon quantity is half the 

maximum, and b represents the carbon accumulation duration from 0.25 Cmax to 0.75 

Cmax. Third, the carbon accumulation rate (g Carbon/ day) was calculated by using the 

first order derivation of the sigmoid curve. Finally, the relationship between the berry 

accumulated carbon and the photosynthesized carbon (obtained from whole-canopy gas 

exchange measurement) was quantified by their ratio to estimate the supply vs. demand 

carbon balance. 
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5.3. Results 

5.3.1. Leaf-to-fruit ratio 

As expected, leaf removal effectively reduced the total leaf area per vine in 3L 

treatment in Cabernet Sauvignon and Sangiovese (Tables 1 and 2). It also resulted in a 

significantly lower leaf-to-fruit ratio (LA/F) in 3L than 12L treatments in both cultivars. 3L 

vines all had a leaf area to yield ratio lower than 1.0 m2/Kg. On the other hand, both 12 L 

Cabernet Sauvignon vines and Sangiovese vines had a LA/F of 3.98 m2/Kg and 1.15 

m2/kg, respectively (Tables 1 and 2).  

Table 1. Effect of source-sink modulation on leaf area (LA), leaf area-to-yield ratio, and 

leaf chlorophyll content of Cabernet Sauvignon grapevines. Data are means of nine plants. 

Treatment ǂ 
Pre-trimming 

LA/vine 
(cm2) 

Removed 
LA/vine 

(cm2) 

Final 
LA/vine 

(cm2) 

LA / yield 
(m2/Kg) 

SPAD 

3L 1123 858 265 0.67 51.0 
12L 999 0 999 3.98 44.1 
Sig.(t test)+ ns ** ** ** ** 
ǂ3L: plants with three leaves per cluster; 12L: plants with twelve leaves per cluster.  
+ *,**, and ns indicate statistical significance at P=0.05, 0.001, and not significant, respectively.  

 
Table 2. Effect of source-sink modulation on leaf area (LA), whole net carbon exchange 

rate (NCER) per vine and per unit of leaf area, and leaf-to-yield ratio of Sangiovese 

grapevines. Data are means of four plants. NCER/vine and NCER/LA were averaged for 

all the post-treatment measurements. 

Treatmentǂ 

Pre-
trimming 

LA 
(m2) 

Removed 
LA 
(m2) 

Final 
LA 
(m2) 

NCER/vine 
(µmols-1) 

Pre     Post 

NCER/LA 
(µmolm-2s-1) 
Pre    Post 

gCO2/vine 
(cumulated 

over trial 
period) 

LA/yield 
(m2/Kg) 

3L 1.86 1.55 0.31 8.19    1.94 4.39      6.30 142 0.33 

12L 1.70 0.68 1.02 8.04    5.64 4.67      5.56 321 1.15 

Sig. (t test)+ ns ** ** ns          ** ns       ns ** ** 
ǂ3L: plants with three leaves per cluster; 12L: plants with twelve leaves per cluster.  
+ *,**, and ns indicate statistical significance at P=0.05, 0.001, and not significant, 
respectively.  
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5.3.2. Berry weight 

In Cabernet Sauvignon, the 3L treatment limited the increase in berry size that 

normally occurs between 80-90 DAF (days after flowering), but extended the growth 

duration to 110 DAF, when berries under 12L conditions already reached their maximal 

fresh weights (Figure 1A). The longer growth duration compensated the decreased growth 

rate and resulted in a very similar berry weight under both growth conditions at harvest. 

Conversely, 3L treatment did not affect the developmental profile of berry size in 

Sangiovese berries (Figure 1B). At harvest, Sangiovese berries were bigger than those of 

Cabernet Sauvignon and berries of both cultivars doubled their size from veraison to 

maturity. In addition, berry dehydration occurred in Cabernet Sauvignon berries as 

indicated by the decrease in berry fresh weight from 112 DAF to 126 DAF (Figure 1A).   

 
Figure 1. Effect of source-sink modulation on seasonal berry weight of Cabernet 

Sauvignon (A) and Sangiovese (B) vines having either three leaves (3L) or twelve leaves 

per cluster (12L). The solid arrow indicates date of source-sink modulation. Vertical bars 

indicate standard error (SE) (n=3 for Cabernet Sauvignon, and n=4 for Sangiovese).  
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5.3.3. Sugar concentration 

Hexose (glucose + fructose) concentrations of Cabernet Sauvignon and Sangiovese 

berries were significantly reduced by source limitation (Figure 2). The negative effects of 

source limitation were observed one week after treatment for Cabernet Sauvignon and 

two weeks after treatments for Sangiovese. At harvest, 3L treatment caused a 17.5% 

reduction of hexose concentration in Cabernet Sauvignon and a 36.7% reduction in 

Sangiovese compared to 12L treated berries. 

 
Figure 2. Effect of source-sink modulation on seasonal hexose concentrations of Cabernet 

Sauvignon (A) and Sangiovese (B) berries sampled from vines having either three leaves 

(3L) or twelve leaves per cluster (12L). The solid arrow indicates date of source-sink 

modulation. Vertical bars indicate standard error (SE) (n=3 for Cabernet Sauvignon, and 

n=4 for Sangiovese).  

5.3.4. Organic acids 

The developmental profiles of malic and tartaric acids were slightly affected by the 

source-sink modulation in Cabernet Sauvignon berries (Figure 3A and 3C). From veraison 

to near harvest, the concentrations of malic and tartaric acids were higher in the 3L than in 

the 12L treatment, while no significant differences were found at harvest. On the other 

hand, the developmental profiles of organic acids in Sangiovese berries were not 

significantly affected by source-sink modulation (Figure 3B and 3D). In addition, the flat 
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trend of tartaric acids in Cabernet Sauvignon berries is due to the fact that sampling 

started at a later stage (Figure 3C).  At harvest, the concentrations of malic acid were 1.78 

and 1.5 g/L and those of tartaric acids were 6.61 and 7.13 g/L for Cabernet Sauvignon and 

Sangiovese, respectively.  

 
Figure 3. Effect of source-sink modulation on seasonal malic acid (A, B) and tartaric acid 
(C, D) concentration of Cabernet Sauvignon (A) and Sangiovese (B) berries from vines 
having either three leaves (3L) or twelve leaves per cluster  (12L). The solid arrows 
indicate date of source-sink modulation. Vertical bars indicate standard error (SE) (n=3 for 
Cabernet Sauvignon, and n=4 for Sangiovese).  
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5.3.5. Anthocyanin composition and concentration 

Cabernet Sauvignon and Sangiovese berries showed different anthocyanin profiles 

under adequate source supply (Figure 4), with malvidin-derivatives dominant in the 

former and cyanidine-3-glucoside dominant in the latter. Moreover, all the acylated forms 

of anthocyanins were absent in Sangiovese (Figure 4A). These differences in composition 

were further affected by source limitation (Figure 4B and 4C). At harvest, the proportion of 

malvidin-derivatives was increased to 93.7% in 3L-treated berries in comparison with 

79.7% in 12L-treated berries of Cabernet Sauvignon (Figure 4B). Sangiovese was less 

affected by source limitation, with 55.6% of cynidin-3-glucoside in 3L-treated berries and 

42.4% in 12L-treated berries (Figure 4C).  

The developmental profiles of anthocyanin composition and concentration were 

significantly affected by source limitation in both cultivars (Figures 5 and 6). In Cabernet 

Sauvignon, the amount of total anthocyanins was systematically higher in 12L treated 

berries than in 3L treated berries throughout berry development (Figure 5A). 12L treated 

berries increased their anthocyanins sharply from 70 to 77 DAF, remained at a plateau 

until 98 DAF, and thereafter decreased progressively. 3L berries exhibited a similar 

developmental profile but with a much lower plateau than 12L berries. In Sangiovese, 12L 

berries started to accumulate anthocyanins from 68 DAF and reached a maximum at 

harvest. By contrast, 3L treatment almost completely depressed the accumulation of total 

anthocyanins, with only a slight increase between 95 to 105 DAF (Figure 5B). At harvest, 

3L treatment caused a 74.8% reduction in the concentration of total anthocyanins in 

Cabernet Sauvignon (1.32 mg/g FW in 3L versus 5.27 mg/g FW in 12L) and a 94.5% 

reduction in Sangiovese (0.22 mg/gFW in 3L versus 3.32 mg/gFW in 12L). 

Tri-hydroxylated and di-hydroxylated anthocyanins showed different 

developmental profiles and distinct responses to source limitation (Figure 5C-5H).  

Cabernet Sauvignon berries had higher tri-hydroxylated anthocyanins than di-

hydroxylated ones in both treatments (Figure 5C, 5E, and 5G), while the reverse was 

observed in Sangiovese (Figure 5D, 5F, and 5H). In Cabernet Sauvignon, 3L treatment 

decreased more di-hydroxylated (Figure 5C) than tri-hydroxylated anthocyanins (5E), 
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resulting in a lower ratio of di- to tri-hydroxylated anthocyanins (Figure 5G). By contrast, 

3L treatment equally decreased both the di- and tri-hydroxylated anthocyanins in 

Sangiovese, leaving the ratio of di- to tri-hydroxylated anthocyanins unaffected (Figure 

5H).  

 
Figure 4. Typical HPLC chromatograms of anthocyanins in berry skins of Cabernet 
Sauvignon and Sangiovese grape berries grown under non limited carbon supply  (A); and 
effects of source-sink modulation on anthocyanin composition of Cabernet Sauvignon (B) 
and Sangiovese (C) berry skins at harvest from vines with either three leaves (3L) or 
twelve leaves per cluster  (12L). Abbreviations: Dp = delphinidin, Mv = malvidin, Pt = 
petunidin, Cy = cyanidine, Pn = peonidin, glc = glucoside, ac = acetyl, cou = coumarate. 
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Tri-hydroxylated and di-hydroxylated anthocyanins showed different 

developmental profiles and distinct responses to source limitation (Figure 5C-5H).  

Cabernet Sauvignon berries had higher tri-hydroxylated anthocyanins than di-

hydroxylated ones in both treatments (Figure 5C, 5E, and 5G), while the reverse was 

observed in Sangiovese (Figure 5D, 5F, and 5H). In Cabernet Sauvignon, 3L treatment 

decreased more di-hydroxylated (Figure 5C) than tri-hydroxylated anthocyanins (5E), 

resulting in a lower ratio of di- to tri-hydroxylated anthocyanins (Figure 5G). By contrast, 

3L treatment equally decreased both the di- and tri-hydroxylated anthocyanins in 

Sangiovese, leaving the ratio of di- to tri-hydroxylated anthocyanins unaffected (Figure 

5H).  

The effect of source-sink modulation on anthocyanin acylation was further 

investigated in Cabernet Sauvignon berries (Figure 6). 3L treatment decreased more 

strongly the nonacylated anthocyanins than the acylated ones in comparison with 12L 

treated berries (Figure 6A and 6B). This unbalanced modification caused a significant 

increase in the proportion of acylated anthocyanins in 3L treated berries than 12L treated 

berries (Figure 6D). The proportion of acylated anthocyanins reached 58.4% in 3L and was 

46.1% in 12L at harvest (Figure 6D). 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

73 

 

 
Figure 5. Effect of source-sink modulation on the accumulation of total anthocyanins (A, 

B), di-hydroxylated anthocyanins (C,D), tri-hydroxylated anthocyanins (E,F), and the ratio 

of Di- to Tri-hydroxylated anthocyanins (G, H) in the skin of Cabernet Sauvignon (left 

panel) and Sangiovese berries (right panel). The two carbon supply levels were obtained 

by treating vines with either three leaves (3L) or twelve leaves per cluster  (12L). The solid 

arrows indicate date of source-sink modulation. Vertical bars indicate standard error (SE) 

(n=3 for Cabernet Sauvignon, and n=4 for Sangiovese).   
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Figure 6. Effect of source-sink modulation on the quantity (A, C) and proportion (B,D) of 

nonacylated anthocyanins (A,B) and acylated anthocyanins (C,D) in the skin of Cabernet 

Sauvignon berries  from vines with either three leaves (3L) or twelve leaves per cluster 

(12L). Vertical bars indicate standard error (SE) (n=3).  
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5.3.6. Leaf carbon fixation and berry carbon utilization 

Whole-canopy net CO2 exchange rates (NCER) were measured in Sangiovese and 

are shown in Figure 7. The NCER per unit leaf area (µmol m-2 s-1) was very similar (≈4.5 

µmol m-2 s-1) for the two groups of vines before treatment (Figure 7A and Table 2). After 

treatment, it became slightly higher in 3L (in average 6.30 µmol m-2 s-1) than in 12L 

treatment (in average 5.56 µmol m-2 s-1), without reaching a significant difference though 

(Table 2). However, when those marginal differences in each day were cumulated, the 

carbon fixed by a unit of leaf area over the experimental period was clearly higher in 3L 

than 12L treatment (Figure 7C). Single leaf photosynthesis rate at harvest, measured under 

optimal conditions at saturating light, was significantly higher in 3L treated leaves (15.1 

µmol m-2 s-1 ) than in 12L treatment (13.8 µmol m-2 s-1). Moreover, for both Cabernet 

Sauvignon (Table 1) and Sangiovese (Table 3), leaves from 3L plants had higher 

chlorophyll content than that of 12L plants (Table 3).  

Table 3. Effect of source-sink modulation on transpiration (E), stomatal conductance (gs), 

net photosynthesis (Pn) and chlorophyll content (SPAD) measured on six leaves per vine 

in Sangiovese. Data are means of four plants. 

Treatmentǂ E (mmol m-2 s-1) gs (mol m-2 s-1) Pn (µmol m-2 s-1) SPAD 

3L 8.59 0.368 15.1 40.9 

12L 8.86 0.345 13.8 38.0 

Sig.(t test) + ns ns ** * 

ǂ3L: plants with three leaves per cluster; 12L: plants with twelve leaves per cluster.  
+ *,**, and ns indicate statistical significance at P=0.05, 0.001, and not significant, respectively.  

The NCER per vine was calculated as the product of NCER per leaf area and total 

leaf area per vine (Figure 7B).  Before treatment, leaves of both groups had very similar 

NCER/vine (8.12 umol s-1). During the treatment, 40% and 83.3% leaf area were removed 

in comparison with pre-treatment for 12L and 3L vines, respectively (Table 2). These 

reductions in total leaf area per vine resulted in an abrupt proportional decrease of 

NCER/vine of 38.8% for 3L vines and 82.4% for 12L vines, averaged during the first three 

days after treatment (Figure 7B). Thereafter, vines reacted to their treatments, and the 3L 

plants showed a 66.1% reduction in NCER/vine in parallel with a 69.6% reduction in leaf 
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area per vine, as compared to 12L plants (Figure 7B and Table 2). When the NCER per vine 

was cumulated over the post-treatment period, the cumulated carbon per vine at harvest 

in 3L treatment was only reduced by 55.8% compared to 12L (Figure 7D).  

To investigate the carbon supply-demand balance, carbon accumulation rate in all 

the berries of a vine was also calculated and compared with the carbon fixed by 

photosynthesis (Figure 8). As expected, 3L berries accumulated much lower carbon (43.4 

g) than those of 12L treatment (81.9 g) at harvest (Figure 8A). In parallel, the carbon 

accumulation rate in berries (g carbon per day) was also decreased in 3L berries compared 

to 12L berries (Figure 8B). Considering the carbon accumulation rate as carbon utilization 

and the NCER per vine as carbon supply, the proportion of the former to the latter was 

calculated (Figure 8C). Total accumulated carbon per day in 3L berries accounted for 

~76.9% of that fixed by photosynthesis during the rapid sugar accumulation period 

(namely from 54 to 81 DAF), while it accounted for only ~48% in 12L berries over the same 

period. Interestingly, this proportion jumped to very high levels, even more than 100%, in 

several specific days in both treatments. Further analysis revealed that those days 

corresponded to cloudy days (Supplementary Figure S1) when NCERs per vine were very 

low (Figure 7B). 
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Figure 7. Effect of source-sink modulation on net carbon exchange rate (NCER) per unit of 

leaf area (A) and  per vine (B), as well as  cumulated carbon fixation per unit of leaf area 

(C) and per vine (D), recorded daily with a whole-canopy gas exchange system 

throughout the experimental period on Sangiovese vines either with three leaves (3L) or 

twelve leaves per cluster  (12L).  Values from empty chambers were also indicated (A, B) 

as a reference. The solid arrows indicate date of source-sink modulation. Vertical bars 

indicate standard error (SE) (n=4).  
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Figure 8. Effect of source-sink modulation on carbon allocation in Sangiovese grown with 

three leaves (3L) or twelve leaves (12L) per cluster. Carbon accumulated in  all berries per 

vine(A), carbon accumulation rate in all berries per vine per day (B), and proportion of 

photosynthesized carbon used for berry sugar accumulation during the developmental 

period (C).The solid arrows indicate date of source-sink modulation. (will be updated 

soon by including the 1 in 12L). 
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5.4. Discussion 

Source limitation induced by severe leaf removal in Cabernet Sauvignon and 

Sangiovese caused a significant reduction in the accumulation of sugars in berries. This 

result confirms many previous studies with different other Vitis vinifera L. cultivars, that 

reported a decrease in sugar accumulation following carbon limitation induced by late leaf 

removal (manual or mechanical), shoot trimming at fruit set and veraison (Poni and 

Giachino, 2000; Heuvel et al., 2005; Stoll et al., 2010; Poni et al., 2013; Palliotti et al., 2013b; 

Filippetti et al., 2015; Parker et al., 2015). However, there are also studies conversly 

showing that sugar accumulation is unaffected (Percival et al., 1994; Chorti et al., 2010; 

Sabbatini and Stanley Howell, 2010; Pastore et al., 2013) or even slightly increased (Bledsoe 

et al., 1988; Percival et al., 1994; Guidoni et al., 2002; Poni et al., 2006a, 2008; Palliotti et al., 

2011; Pastore et al., 2011; Bubola and Persuric, 2012; Gatti et al., 2012; Palliotti et al., 2012; 

Pastore et al., 2013) after a diminishing LA/Fruit ratio. These contradictory observations 

are most likely the result of the differences in the timing and severity of source to sink 

modulations. In fact, Kliewer and Dokoozlian (2005) have shown that a LA/Fruit above 

0.8 m2/Kg is critical for full ripening of the grapes. Studies reporting no effect of source-

sink modulations on sugar accumulation often did not go below this threshold value. In 

the present study, the LA/Fruit was lower than 0.8 m2/Kg in source limited vines for both 

cultivars, and accounting of the fact that a significant effect was observed. It is therefore of 

the utmost importance to consider the magnitude of LA/Fruit when compare trials on the 

effect of source-sink modulations on berry sugars.  

In contrast to the decrease in sugar concentration under source limitation, no 

significant differences were found in organic acids content at harvest in the two cultivars 

studied in this work. In a recent detailed developmental analysis, Parker et al. (2015) also 

observed lost of synchronization between sugar and organic acid in response to lowering 

LA/Fruit ratios, with sugar accumulation reduced but organic acids largely unaffected. 

Some other studies (Bledsoe et al., 1988; Poni et al., 2006a, 2009; Tardaguila et al., 2010; 

Pastore et al., 2013) reported that a decrease in source-sink ratio by leaf removal lead to 

decreased total acidity and malic acid, whereas tartaric acids was unaffected or even 

increased compared to vines without leaf removal. The authors of these studies frequently 
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pointed out a likely confounding effect of leaf removal and modified microclimate, 

making their result not really comparable with those found in the present study. Our 

results and those from Parker et al. (2015) both confirm that the organic acids are less 

responsive to carbon limitation than sugars.  

In addition to the relative sensitivity of sugars and organic acids, we also studied 

the response of important secondary metabolites such as anthocyanins. Source limitation 

caused 75% and 93.5% reductions in anthocyanin concentrations in Cabernet Sauvignon 

and Sangiovese berries at harvest, paralleled by only 17.5% and 36.7% reductions in 

sugars, as compared to the non source limited berries. After recalculation from the dataset 

of recent reports, we found that source limitation caused a 99.2% reduction in 

anthocyanins with a 38.5% reduction in sugars in cv. Jingyan (Vitis vinifera) (Wu et al., 

2013), and a 17.5% or 19.1% reduction in anthocyanins with a 8.4% or 6.8% reduction in 

sugars in cv. Sangiovese (Pastore et al., 2011, 2013). These results clearly indicate that the 

accumulation of sugars and anthocyanins are uncoupled under source limitation, and that 

carbon is preferentially allocated for sugar accumulation rather than anthocyanins. Several 

theories have been developed in literature to describe the relationship between primary 

and secondary metabolites in plants, and the two most relevant ones are the carbon-

nutrient balance (CNB) hypothesis and the growth-differentiation balance (GDB) 

hypothesis (reviewed in Koricheva et al., 1998).  CNB predicts that concentrations of 

Cabon-based secondary metabolites will decrease in cases where carbon fixation is 

reduced more than growth as a result of decreased available carbon pool for allocation to 

secondary metabolites. GDB provides a similar prediction, and a meta-analysis showed 

that both hypothesizes are valid for describing the dependence of total C-based secondary 

metabolites, particularly phenylpropanoid-derived compounds (including anthocyanins), 

on carbon availability in the leaves of woody plant (Koricheva et al., 1998). Arnold et al. 

(2004) confirmed, with a series of elegant experiments, that the phenolic content and 

coloration of poplar (Populus nigra x P. deltoides) sink leaves is reduced by disrupted 

carbon flow from source to sink, namely reduced carbon availability. In cell suspensions of 

cv. Gamay Freaux that constructively produce anthocyanins, Guardiola et al. (1995) 

proved with a mathematical modeling approach that primary (sugars) and secondary 
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(anthocyanins) metabolisms compete for carbon substrate when substrate is scarce. Our 

results provide a piece of evidence to the validity of CNB and GDB hypothesizes in a 

productive sink (berries) and pave the way for modeling the sugars and anthocyanins 

accumulations in grape berry under various source-sink ratios. Interestingly, (Sadras and 

Moran, 2012) also reported the uncoupling between sugars and anthocyanins 

accumulation under high temperatures conditions. However, the biological mechanisms 

underlying this uncoupling effect should be different from those under carbon limitation, 

because temperature has direct effect on anthocyanin biosynthesis and degradation by 

modulating gene expression and enzyme activities of related enzymes (Mori et al., 2007). 

Few studies have been conducted to understand the inhibitory effect of source limitation 

on anthocyanin accumulation at protein and/or transcription levels. Two recent genome-

wide transcriptome analyses showed that carbon limitation reduced the transcript 

abundance of UDP glucose:flavonoid-3-O-glucosyltransferase (UFGT) and GST4, which 

are known as important regulators of anthocyanin accumulation and transport (Pastore et 

al., 2011, 2013). A proteomic analysis showed that the abundances of chalcone synthase 

and dihydroflavonol reductase, which are both involved in anthocyanin pathway, were 

strongly reduced by source limitation (Wu et al., 2013). Our observed reduction in total 

anthocyanin in both cultivars under source limitation should also result from 

modifications in the key regulators of anthocyanin pathways, although further 

transcriptomic and proteomic experiments are needed to confirm these speculations. 

Since it is known that different molecules of anthocyanins have different color hues 

and stabilities (He et al., 2010), we also studied the alternation of anthocyanin composition 

in response to carbon limitation. The concentration and composition of anthocyanins are 

different between Cabernet Sauvignon and Sangiovese berries under normal (carbon 

sufficient) condition; Cabernet Sauvignon berries had higher concentration of malvidin 

(tri-hydroxylated) derivatives and acylated anthocyanins, whereas Sangiovese berries 

were richer in cyanidin-3-glucoside (di-hyroxylated), and no acylated anthocyanins were 

found. These results are in agreement with a previous report (Mattivi et al., 2006). Carbon 

limitation increased the proportion of cyanidin-3-glucoside in Sangiovese. In the same 

cultivar, other authors (Filippetti et al., 2007; Pastore et al., 2011, 2013) also found that a 
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decrease in source-sink ratio increased the proportion of cyanidin-3-glucoside. On the 

contrary, the proportion of the predominantly accumulated anthocyanin peonidin-3-

glucoside (di-hydroxylated) in cv. Nebbiolo was decreased by low source-sink ratio. In 

Cabernet Sauvignon, we found the proportion of di-hydroxylated anthocyanins (cyanidin 

and peonidin derivatives) was reduced by carbon limitation. These results indicate that 

the modification in anthocyanin composition in response to source limitation is cultivar 

dependent. It is known that the ratio between di- and tri-hydroxylated anthocyanins is 

under the control of the relative activity of F3’H and F3’5’H (Castellarin et al., 2006). 

Transcriptome analysis showed that carbon limitation increased the transcript abundance 

of F3’Hb, which is responsible for the biosynthesis of di-hydroxylated, and explained the 

observed modification in anthocyanin composition (Pastore et al., 2013). In Cabernet 

Sauvignon, we also observed that source limitation significantly increased the proportion 

of acylated anthocyanins in compared to non source limitation condition. The molecular 

regulation of anthocyanin acylation is largely unknown, although acylation can improve 

anthocyanin stability (He et al., 2010). Further efforts are warranted to investigate why the 

activities or expression of F3’H and F3’5’H respond to source limitation differentially 

between cultivars and why acylated anthocyanins are preferably accumulated under 

source limitation. 

Source and sink can communicate interactively and exert mutual influences on each 

other. When the source-to-sink ratio is reduced, the leaves (source) on the grapevine can 

increase leaf efficiency toward a compensation of their photosynthetic rate to meet the 

demand of berries (sink) (Candolfi-Vasconcelos and Koblet, 1990; Petrie et al., 2003; 

Kliewer and Dokoozlian, 2005). We observed that the source limited vines increased their 

NCER per unit of leaf area compared to source sufficient vines. This was further 

confirmed by a higher content of chlorophyll (7% more in Sangiovese vines and 13.5% 

more in Cabernet Sauvignon vines), and a higher photosynthesis capacity measured on 

single leaf under optimal conditions. Similar effects of source limitation on leaf 

chlorophyll content have been observed by other authors (Candolfi-Vasconcelos and 

Koblet, 1990; Petrie et al., 2000b). Such photosynthetic compensation can explain why the 

source limited vines lost 69.6% of their leaf area although carbon fixation was reduced 
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only 55.8% over berry ripening. However, it is clear that the compensation is partial, and 

this may be due to the fact that only the main leaves from the primary shoot were retained 

with all new growth being removed during our experiment. Mature leaves are less 

responsive to source-sink modulation (Candolfi-Vasconcelos et al., 1994b).  

Comparing carbon fixation by leaves and carbon utilization by berries can provide 

a valuable estimation of the carbon balance between demand and supply. This 

information is essential to understand the physiology of vines and may help to develop 

mechanistic models (Cola et al., 2014; Poni et al., 2006b). However, this comparison is often 

missing in the source-sink modulation experiments due to the lack of suitable facilities to 

measure it. The whole-canopy gas exchange approach (Poni et al., 2014) makes it possible 

to monitor the seasonal NCER and to quantify the carbon fixed following the source-sink 

modulation. In addition, we followed the dynamics of sugar accumulation of berries and 

calculated the quantity of carbon used in the berries via a mathematic sugar accumulation 

function (Sadras et al., 2008). This provided a good estimate of carbon utilization in the 

most important sink (berries) (Gutierrez et al., 1985; Coombe, 1989). The mathematical 

analysis of carbon-balance indicated that berry carbon utilization accounted for a higher 

proportion of fixed carbon for sugar accumulation under carbon limitation (73.4%) than 

under carbon adequacy (40.7%) during the sugar accumulation stages (54 to 81 DAF). This 

indicates that carbon allocation is not proportional to the carbon offer but with priorities to 

berries under source limitation, providing direct evidence to support the most applied 

assumption in grapevine carbon allocation models (Gutierrez et al., 1985; Bindi et al., 1996; 

Poni et al., 2006a; Pallas et al., 2008). The biological mechanisms behind this phenomenon 

have been poorly investigated. Pastore et al. (2011) showed that the transcript abundance 

of pyruvate decarboxylase isozyme 2 involved in glycolysis was reduced by a low source-

sink ratio. However, we found that the carbon limitation increased enzyme activities 

involved in primary carbohydrate metabolisms (Dai et al. unpublished data). These 

increases in metabolic enzymes may confer higher sink strength and therefore allow 

berries attracting a higher proportion of carbon under source limitation. It is worth to note 

that our calculation do not consider the carbon utilization for maintenance and reserves, 

nor the potential contribution of reserve remobilization for carbon offer (Gutierrez et al., 
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1985), but rather provides a quantitative indicator of carbon allocation. Therefore, the 

proportions close to 100% observed between 64 to 67 DAF in 3L vines are hardly realistic 

in real vines; instead they strongly indicate that carbon reserves are remobilized for berry 

sugar accumulation and/or vine maintenance. The same explanations go to the points 

where a proportion more than 100% was observed when it was cloudy and the vine 

photosynthesis rate was extremely low. Although we did not quantify the reserve 

remobilization, Weaver (1963) reported that reserves (both soluble sugars and starch) in 

shoots were significantly reduced by source limitation in cv. Carignane and Zinfandel 

vines. Kliewer and Antcliff (1970) estimated that as much as 40% of the total sugars in 

berries may come from storage tissues of the vine. Using 14C-labeling, (Candolfi-

Vasconcelos et al., 1994a) showed that carbon reserves from the woody storage tissues can 

be actively reallocated into berries under source limitations. An experimental coupling 

14C-labeling, whole-canopy net carbon exchange rate measurement, and carbon content 

assessment in various tissues (leaf, shoot, wood, fruit, and root) would provide more 

valuable dataset to quantify the carbon balance and allocation.  

5.5. Conclusions 

Source limitation induced by leaf removal one week before veraison significantly 

reduced the concentration of sugars and anthocyanins but did not alter the concentration 

of organic acids in Cabernet Sauvignon and Sangiovese. Moreover, the magnitude of 

reduction was much higher in anthocyanins than sugars in response to source limitation, 

attesting a decoupling between sugars and anthocyanins in both cultivars. Although the 

patterns of responses of sugars, organic acids, and total anthocyanins to source limitation 

are rather consistent between cultivars, the modification of anthocyanin compositions is 

cultivar dependent. Therefore grape berry can manage the metabolic fate of carbon in such 

a way that sugar accumulation is maximally maintained at the expense of secondary 

metabolites (e.g. anthocyanins) under source limitation. 
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5.6. Supplementary data 

A

 

B

 

C

 

D

 

Supplementary Figure 1. Seasonal trends of (A) air temperature and (B) air vapour 

pressure deficit (VPD) and photosynthetically active radiation (PAR) measured in a semi-

control greenhouse where Cabernet Sauvignon fruit cuttings were grown; (C) inlet and 

outlet chamber air temperature, (D) air vapour pressure deficit (VPD), direct and diffuse 

photosynthetically active radiation (PAR) measured in the whole-canopy gas exchange 

system where Sangiovese grapevines were grown. In (C) and (D), the solid triangle 

represent date of treatment. 
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Supplementary Figure 2. The two different leaf removal treatments: three leaves per 

cluster and twelve leaves per cluster. All the plants are in an custom-built flow-through 

multichamber system. 

 

A 

 

B 

 
Supplementary Figure 3. (A) Grape cluster from a plant with twelve leaves per cluster at 

harvest; (B) grape cluster from a plant with three leaves per cluster at harvest. 
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6. General conclusions 

During the three years of PhD, different leaf-to-fruit ratios were studied to clarify 

action mechanisms vs the ripening process. In this research was studied the effect of 

severity, timing and position of leaf removal on two cultivars, Sangiovese and Cabernet 

Sauvignon.  

Pre-véraison and post-véraison treatments on Sangiovese berries were both 

successful at delaying ripening. Specifically the delay in sugar accumulation of one week, 

for the berries with low carbon availability in comparison with no source limitation. 

However the postponement in sugar accumulation did not interfere with the anthocyanin 

accumulation, neither with total acidity and organic acids concentration at harvest in 

Sangiovese grapes. In both treatment, pre-véraison and post-véraison leaf removal, the 

leaves had a full compensation of photosynthesis which have been observed previously by 

other authors (Candolfi-Vasconcelos and Koblet, 1990; Petrie et al., 2003; Kliewer and 

Dokoozlian, 2005; Poni et al., 2008). This response of vine compensation after source-to-

sink modulation was seen also when measurement was done on single leaves. 

From the results obtained in the first year, we can affirm that the timing of leaf 

removal is very important, because of the difference in sugar content of pre- and post-

véraison, whereas the latter had a lower sugar concentration. We can specify that if leaf 

area to fruit modulations are done later in the season, a higher delay in ripening is 

possible. 

Moreover, the position in which leaves were removed, apical to the cluster zone, 

perfectly fits the target for berry ripening retardation. In this case, the cluster is protected 

from high light and temperature, which is detrimental for anthocyanin accumulation. For 

this reason, there are no differences in the anthocyanin concentration at harvest in all 

plants, but only low sugar concentration in treated vines, which is due mainly to low 

carbon availability. 

After véraison defoliation in fruit cuttings of Cabernet Sauvignon, grapes berries at 

harvest had lower concentration of sugar compared to control plants. This response, even 
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with a different variety, of source limited plants is the confirmation of the first work, 

specifically the two experiments had a leaf removal apical to cluster zone at véraison. The 

only difference was the severity of leaf removal, which in the second case was more severe 

(63% of leaves removed on Sangiovese, and 76% of leaves removed on Cabernet 

Sauvignon). This difference had a great impact on anthocyanin accumulation, that 

decreased considerably with no possibility of compensation. As for the first experiment, 

no changes in organic acids and acidity was found. 

In the light of the last two research, another study was necessary to answer the 

questions of vine photosynthesis after severe leaf removal, and the repeatability of the 

treatment on real vines and another variety.  

The results of the third experiment was comparable with the previous ones, and the 

delay in technical ripening (sugar concentration) was evident also for Sangiovese grape 

berries. However, the low color content found in berries of Sangiovese can be explained by 

the difference responses of different cultivars; in fact Cabernet Sauvignon anthocyanin 

profile is very different from Sangiovese, with the latest having more di-hidroxylated 

anthocyanins, which are more unstable compared to tri-hydroxylated anthocyanins. 

Another important fact is that the severe source limitation in Sangiovese vines had only a 

slight compensation of whole-vine photosynthesis, probably because of the timing of leaf 

removal, the age of remaining leaves, and the absence of secondary leaves. 

In the two similar researches on severity of source to sink modulations on Cabernet 

Sauvignon and Sangiovese, the decoupling between sugars and anthocyanins is 

demonstrated when calculation of carbon fixation by leaves and carbon utilization by 

berries is done. According to the last study, the carbon reserves are remobilized for berry 

sugar accumulation and/or vine maintenance, not for anthocyanin accumulation. 

In conclusion, limitation of carbon availability in grapevines can delay ripening, 

however it is strongly recommended to consider the severity and the timing of source 

limitation. This canopy management technique can be a valuable tool to delay berry sugar 

accumulation and reduce alcohol content in wines, because of its easy mechanization and 

low cost. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

98 

 

7. References 

Andersen, C. P. 2003. Source-sink balance and carbon allocation below ground in plants 
exposed to ozone. New Phytologist 157:213–228. 

Battaglini, A., G. Barbeau, M. Bindi, and F.-W. Badeck. 2008. European winegrowers’ 
perceptions of climate change impact and options for adaptation. Regional 
Environmental Change 9:61–73. 

Bergqvist, J., N. Dokoozlian, and N. Ebisuda. 2001. Sunlight exposure and temperature 
effects on berry growth and composition of Cabernet Sauvignon and Grenache in the 
central San Joaquin Valley of California. American Journal of Enology and Viticulture 
52:3–9. 

Böttcher, C., K. Harvey, C. G. Forde, P. K. Boss, and C. Davies. 2011. Auxin treatment of 
pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the 
synchronicity of sugar accumulation. Australian Journal of Grape and Wine Research 
17:1–8. 

Camps, J. O., and M. C. Ramos. 2012. Grape harvest and yield responses to inter-annual 
changes in temperature and precipitation in an area of north-east Spain with a 
Mediterranean climate. International journal of biometeorology 56:853–64. 

Candolfi-Vasconcelos, M. C., and W. Koblet. 1990. Yield, fruit quality, bud fertility and 
starch reserves of the wood as a function of leaf removal in Vitis vinifera-Evidence of 
compensation and stress recovering. Vitis 29:199–221. 

Caspari, H. W., A. Lang, and P. Alspach. 1998. Effects of girdling and leaf removal on fruit 
set and vegetative growth in grape. American Journal of Enology and Viticulture 
49:359–366. 

Chorti, E., S. Guidoni, and A. Ferrandino. 2010. Effect of different cluster sunlight 
exposure levels on ripening and anthocyanin accumulation in Nebbiolo grapes. 
American Journal of Enology and Viticulture 61:23–30. 

Conde, C., P. Silva, N. Fontes, A. C. P. Dias, R. M. Tavares, M. J. Sousa, A. Agasse, S. 
Delrot, and H. Gerós. 2007. Biochemical changes throughout grape berry 
development and fruit and wine quality. Food 1:1–22. 

Coombe, B. G. 1987. Influence of temperature on composition and quality of grapes. Acta 
Horticulturae nternational Society for Horticultural Science 206:23–36. 

Coombe, B. G. 1992. Research on Development and Ripening of the Grape Berry. Am. J. 
Enol. Vitic. 43:101–110. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

99 

 

Cormier, F., R. Couture, C. B. Do, T. Q. Pham, and V. H. Tong. 1997. Properties of 
anthocyanins from grape cell culture. Journal of Food Science 62:246–248. 

Diago, M. P., B. Ayestarán, Z. Guadalupe, Á. Garrido, and J. Tardaguila. 2012. Phenolic 
composition of Tempranillo wines following early defoliation of the vines. Journal of 
the science of food and agriculture 92:925–34. 

Diago, M. P., M. Vilanova, and J. Tardaguila. 2010. Effects of timing of manual and 
mechanical early defoliation on the aroma of Vitis vinifera L . Tempranillo wine. 
American Journal of Enology and Viticulture 3:382–391. 

Dokoozlian, N. 2000. Grape berry growth and development. Pages 30–37 Raisin 
Production Manual. 

Downey, M. O., N. K. Dokoozlian, and M. P. Krstic. 2006. Cultural practice and 
environmental impacts on the flavonoid composition of grapes and wine: a review of 
recent research. American Journal of Enology and Viticulture 57:257–268. 

Duchêne, E., and C. Schneider. 2005. Grapevine and climatic changes: a glance at the 
situation in Alsace. 

English, J. T., C. S. Thomas, J. J. Marois, and W.D. Gubler. 1989. Microclimates of 
grapevine canopies associated with leaf removal and control of Botrytis bunch rot. 
The American Phytopathological Society 79:395–401. 

Farrar, J. F., and D. L. Jones. 2000. The control of carbon acquisition by roots. New 
Phytologist 147:43–53. 

Ferguson, J. C., J. M. Tarara, L. J. Mills, G. G. Grove, and M. Keller. 2011. Dynamic thermal 
time model of cold hardiness for dormant grapevine buds. Annals of botany 107:389–
96. 

Fraga, H., a C. Malheiro, J. Moutinho-Pereira, and J. a Santos. 2012. Future scenarios for 
viticultural zoning in Europe: ensemble projections and uncertainties. International 
journal of biometeorology. 

Fraga, H., A. C. Malheiro, J. Moutinho-Pereira, and J. A. Santos. 2013. An overview of 
climate change impacts on European viticulture. Food and Energy Security 1:94–110. 

Fregoni, M. 1998. Viticoltura di qualità. L’informatore agrario, Verona. 

Friend, A. P., and M. C. T. Trought. 2007. Delayed winter spur-pruning in New Zealand 
can alter yield components of Merlot grapevines. Australian Journal of Grape and 
Wine Research 13:157–164. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

100 

 

Gaal, M., M. Moriondo, and M. Bindi. 2012. Modelling the impact of climate change on the 
hungarian wine regions using random forest. Applied ecology and environmental 
research 10:121–140. 

Galbreath, J. 2012. Climate change response: Evidence from the Margaret River wine 
region of Australia. Business Strategy and the Environment 10. 

Greer, D. H., and C. Weston. 2010. Heat stress affects flowering, berry growth, sugar 
accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a 
controlled environment. 

Guidoni, S., A. Ferrandino, and V. Novello. 2008. Effects of seasonal and agronomical 
practices on skin anthocyanin profile of Nebbiolo grapes. American Journal of 
Enology and Viticulture 59:22–29. 

Hannah, L., P. R. Roehrdanz, M. Ikegami, a. V. Shepard, M. R. Shaw, G. Tabor, L. Zhi, P. a. 
Marquet, and R. J. Hijmans. 2013. Climate change, wine, and conservation. 
Proceedings of the National Academy of Sciences 110:6907–6912. 

Haselgrove, L., R. Botting, V. Heeswijck, P. HOJ, P. Dry, C. Ford, and P. Iland. 2000. 
Canopy microclimate and berry composition: The effect of bunch exposure on the 
phenolic composition of Vitis vinifera L. cv. Shiraz grape berries. Australian Journal Of 
Grape And Wine Research 6:141–149. 

He, F., L. Mu, G.-L. Yan, N.-N. Liang, Q.-H. Pan, J. Wang, M. J. Reeves, and C.-Q. Duan. 
2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 
15:9057–91. 

Howell, G. S. 2001. Sustainable grape productivity and the growth-yield relationship: A 
review. American Journal of Enology and Viticulture 52:165–174. 

Hunter, J. J., O. T. De Villiers, and J. E. Watts. 1991. The effect of partial defoliation on 
quality characteristics of Vitis vinifera L. cv. Cabernet Sauvignon grapes. II. Skin color, 
skin sugar, and wine quality. American Journal of Enology an Viticulture 42:13–18. 

Hunter, J. J., and J. H. Visser. 1990. The effect of partial defoliation on growth 
characteristics of Vitis vinifera L. cv. Cabernet Sauvignon II. Reproductive growth. 
South African Journal of Enology and Viticulture 11:26–32. 

Iland, P., P. Dry, T. Proffitt, and S. Tyerman. 2011. The grapevine: From the science to the 
practice of growing vines for wine. Page 320. Hardback. Patrick Iland Wine 
Promotions. 

Intrieri, C., I. Filippetti, G. Allegro, M. Centinari, and S. Poni. 2008. Early defoliation (hand 
vs mechanical) for improved crop control and grape composition in Sangiovese (Vitis 
vinifera L.). Australian Journal of Grape and Wine Research 14:25–32. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

101 

 

IPCC. 2014. IPCC Climate Change 2014: Fifth Assessment Report. Intergovernmental 
Panel on Climate Change:138. 

Jackson, D. I., and P. B. Lombard. 1993. Environmental and management practices 
affecting grape composition and wine quality - A Review. American Journal of 
Enology and Viticulture 44:409–430. 

Jeong, S. T., N. Goto-Yamamoto, S. Kobayashi, and M. Esaka. 2004. Effects of plant 
hormones and shading on the accumulation of anthocyanins and the expression of 
anthocyanin biosynthetic genes in grape berry skins. Plant Science 167:247–252. 

Jogaiah, S., D. P. Oulkar, A. N. Vijapure, S. R. Maske, A. K. Sharma, and R. G. Somkuwar. 
2013. Influence of canopy management practices on fruit composition of wine grape 
cultivars grown in semi-arid tropical region of India. African Journal pf Agricultural 
Research 8:3462–3472. 

Jones, G. V., and F. Alves. 2012. Impact of climate change on wine production: a global 
overview and regional assessment in the Douro Valley of Portugal. International 
Journal of Global Warming 4:383–406. 

Jones, G. V., M. A. White, O. R. Cooper, and K. Storchmann. 2005. Climate Change and 
Global Wine Quality. Climatic Change 73:319–343. 

Joscelyne, V. L., M. O. Downey, M. Mazza, and S. E. P. Bastian. 2007. Partial shading of 
Cabernet Sauvignon and Shiraz vines altered wine color and mouthfeel attributes, but 
increased exposure had little impact. Journal of agricultural and food chemistry 
55:10888–10896. 

Keller, M. 2010. Managing grapevines to optimise fruit development in a challenging 
environment: a climate change primer for viticulturists. Australian Journal of Grape 
and Wine Research 16:56–69. 

Kemp, B. S., R. Harrison, and G. L. Creasy. 2011. Effect of mechanical leaf removal and its 
timing on flavan-3-ol composition and concentrations in Vitis vinifera L. cv. Pinot Noir 
wine. Australian Journal of Grape and Wine Research 17:270–279. 

Kennedy, J. 2002. Understanding grape berry development. Practical winery & 
vineyard:2–5. 

Kennedy, J. A., C. C. Saucier, and Y. Glories. 2006. Grape and wine phenolics: History and 
perspective. American Journal of Enology and Viticulture 57:239–249. 

King, P. D., D. J. McClellan, and R. E. Smart. 2012. Effect of severity of leaf and crop 
removal on grape and wine composition of Merlot vines in Hawke’s Bay vineyards. 
American Journal of Enology and Viticulture 63:500–507. 

Kliewer, W. M. 1966. Sugars and organic acids of Vitis vinifera. Plant physiology 41:923–31. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

102 

 

Kliewer, W. M. 1968. Changes in the concentration of free amino acids in grape berries 
during maturation. American Journal of Enology an Viticulture 19:166–174. 

Kliewer, W. M. 1973. Berry composition of Vitis vinifera cultivars as influenced by photo-
and nycto-temperatures during maturation. Amer Soc Hort Sci J. 

Kliewer, W. M. 1977. Influence of temperature, solar radiation and nitrogen on coloration 
and composition of Emperor grapes. American Journal of Enology and Viticulture 
28:96–103. 

Kliewer, W. M., and N. K. Dokoozlian. 2005. Leaf area/crop weight ratios of grapevines: 
Influence on fruit composition and wine quality. American Journal of Enology and 
Viticulture 56:170–181. 

Kliewer, W. M., L. A. Lider, and H. B. Schultz. 1967. Influence of artificial shading of 
vineyards on the concentration of sugar and organic acid in grapes. Am. J. Enol. Vitic 
18:78–86. 

Kliewer, W. M., and C. S. Ough. 1970. The effect of leaf area and crop level on the 
concentration of amino acids and total nitrogen in Thompson seedless grapes. Vitis 
9:196–206. 

Kliewer, W. M., and R. J. Weaver. 1971. Effect of crop level and leaf area on growth, 
composition, and coloration of “Tokay” grapes. American Journal of Enology and 
Viticulture 22:172–177. 

Koch, K. E. 1996. Carbohydrated-modulated gene expression in plants. Annual Review of 
Plant Physiology and Plant Molecular Biology 47:509–540. 

Kotseridis, Y., A. Georgiadou, P. Tikos, S. Kallithraka, and S. Koundouras. 2012. Effects of 
severity of post-flowering leaf removal on berry growth and composition of three red 
Vitis vinifera L. cultivars grown under semiarid conditions. Journal of agricultural and 
food chemistry 60:6000–6010. 

Lakso, A. N., and W. M. Kliewer. 1975. The Influence of Temperature on Malic Acid 
Metabolism in Grape Berries I-Enzyme Responses. Plant Physiology 56:370–372. 

Lebon, G., G. Wojnarowiez, B. Holzapfel, F. Fontaine, N. Vaillant-Gaveau, and C. Clément. 
2008. Sugars and flowering in the grapevine (Vitis vinifera L.). Journal of experimental 
botany 59:2565–78. 

Lee, J., and R. P. Schreiner. 2010. Free amino acid profiles from “Pinot noir” grapes are 
influenced by vine N-status and sample preparation method. Food Chemistry 
119:484–489. 

Lee, J., and P. A. Skinkis. 2013. Oregon “Pinot noir” grape anthocyanin enhancement by 
early leaf removal. Food Chemistry 139:893–901. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

103 

 

Lohitnavy, N., S. Bastian, and C. Collins. 2010. Berry sensory attributes correlate with 
compositional changes under different viticultural management of Semillon (Vitis 
vinifera L.). Food Quality and Preference 21:711–719. 

Mattivi, F., R. Guzzon, U. Vrhovsek, M. Stefanini, and R. Velasco. 2006. Metabolite 
profiling of grape: flavonols and anthocyanins. Journal of Agricultural and Food 
Chemistry 54:7692–7702. 

Mazza, G., L. Fukumoto, P. Delaquis, B. Girard, and B. Ewert. 1999. Anthocyanins, 
phenolics, and color of Cabernet Franc, Merlot, and Pinot Noir wines from British 
Columbia. Journal of Agricultural and Food Chemistry 47:4009–4017. 

Mira de Orduña, R. 2010. Climate change associated effects on grape and wine quality and 
production. Food Research International 43:1844–1855. 

Mori, K., N. Goto-Yamamoto, M. Kitayama, and K. Hashizume. 2007. Loss of anthocyanins 
in red-wine grape under high temperature. Journal of experimental botany 58:1935–
45. 

Morrison, J. C., and A. C. Noble. 1990. The effects of leaf and cluster shading on the 
composition of Cabernet Sauvignon grapes and on fruit and wine sensory properties. 
American Journal of Enology and Viticulture 41:193–200. 

Mullins, M. G., A. Bouquet, and L. E. Williams. 1992. Biology of the grapevine. Cambridge 
University Press. 

OIV. 2014. The wine market  : evolution and trends May 2014. Pages 1–14. 

Ollat, N., P. Diakou-Verdin, J. P. Carde, F. Barrieu, J.-P. Gaudillere, and A. Moing. 2002. 
Grape berry development: A review. Journal International des Sciences de la Vigne et 
du Vin (France) 36. 

Ollat, N., and J. P. Gaudillere. 1998. The effect of limiting leaf area during stage I of berry 
growth on development and composition of berries of Vitis vinifera L. cv. Cabernet 
Sauvignon. American Journal of Enology and Viticulture 49:251–258. 

Ough, C. S., and R. M. Stashak. 1974. Further studies on proline concentration in grapes 
and wines. American Journal of Enology and Viticulture 25:7–12. 

Palliotti, A., M. Gatti, and S. Poni. 2011. Early leaf removal to improve vineyard efficiency: 
Gas exchange, source-to-sink balance, and reserve storage responses. American 
Journal of Enology and Viticulture 62:219–228. 

Palliotti, A., F. Panara, F. Famiani, P. Sabbatini, G. S. Howell, O. Silvestroni, and S. Poni. 
2013. Postveraison application of antitranspirant Di-1-p-Menthene to control sugar 
accumulation in sangiovese grapevines. American Journal of Enology and Viticulture 
64:378–385. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

104 

 

Palliotti, A., S. Tombesi, O. Silvestroni, V. Lanari, M. Gatti, and S. Poni. 2014. Changes in 
vineyard establishment and canopy management urged by earlier climate-related 
grape ripening: A review. Scientia Horticulturae 178:43–54. 

Petrie, P. R., M. C. T. Trought, and G. S. Howell. 2000a. Influence of leaf ageing, leaf area 
and crop load on photosynthesis, stomatal conductance and senescence of grapevine 
(Vitis vinifera L. cv. Pinot noir) leaves. Vitis 39:31–36. 

Petrie, P. R., M. C. T. Trought, and G. S. Howell. 2000b. Fruit composition and ripening of 
Pinot Noir ( Vitis vinifera L .) in relation to leaf area. Australian Journal Of Grape And 
Wine Research 6:46–51. 

Petrie, P. R., M. C. T. Trought, G. S. Howell, and G. D. Buchan. 2003. The effect of leaf 
removal and canopy height on whole-vine gas exchange and fruit development of 
Vitis vinifera L. Sauvignon Blanc. Functional plant biology 30:711–717. 

Pirie, A., and M. G. Mullins. 1977. Interrelationships of sugars, anthocyanins, total phenols 
and dry weight in the skin of grape berries during ripening. American Journal of 
Enology an Viticulture 28:204–209. 

Poni, S., F. Bernizzoni, and S. Civardi. 2008. The effect of early leaf removal on whole-
canopy gas exchange and vine performance of Vitis Vinifera L . “ Sangiovese .” Vitis 
47:1–6. 

Poni, S., F. Bernizzoni, S. Civardi, and N. Libelli. 2009. Effects of pre-bloom leaf removal 
on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. 
Australian Journal of Grape and Wine Research 15:185–193. 

Poni, S., L. Casalini, F. Bernizzoni, S. Civardi, and C. Intrieri. 2006. Effects of early 
defoliation on shoot photosynthesis, yield components, and grape composition. 
American Journal of Enology and Viticulture 57:397–407. 

Price, S. F., P. J. Breen, M. Valladao, and B. T. Watson. 1995. Cluster sun exposure and 
quercetin in Pinot noir grapes and wine. American Journal of Enology and Viticulture 
46:187–194. 

Di Profio, F., A. G. Reynolds, and A. Kasimos. 2011. Canopy management and enzyme 
impacts on Merlot, Cabernet franc, and Cabernet Sauvignon. I. Yield and berry 
composition. American Journal of Enology and Viticulture 62:139–151. 

Risco, D., D. Pérez, A. Yeves, J. R. R. Castel, and D. S. S. Intrigliolo. 2014. Early defoliation 
in a temperate warm and semi-arid Tempranillo vineyard: Vine performance and 
grape composition. Australian Journal of Grape and Wine Research 20:111–122. 

Rolland, F., E. Baena-Gonzalez, and J. Sheen. 2006. Sugar sensing and signaling in plants: 
conserved and novel mechanisms. Annual review of plant biology 57:675–709. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

105 

 

Ruml, M., A. Vuković, M. Vujadinović, V. Djurdjević, Z. Ranković-Vasić, Z. Atanacković, 
B. Sivčev, N. Marković, S. Matijašević, and N. Petrović. 2012. On the use of regional 
climate models: Implications of climate change for viticulture in Serbia. Agricultural 
and Forest Meteorology 158:53–62. 

Sadras, V. O., A. Montoro, M. A. Moran, and P. J. Aphalo. 2012. Elevated temperature 
altered the reaction norms of stomatal conductance in field-grown grapevine. 
Agricultural and Forest Meteorology 165:35–42. 

Sadras, V. O., and M. a. Moran. 2012. Elevated temperature decouples anthocyanins and 
sugars in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine 
Research 18:115–122. 

Sadras, V. O., P. R. Petrie, and M. A. Moran. 2013. Effects of elevated temperature in 
grapevine. II juice pH, titratable acidity and wine sensory attributes. Australian 
Journal of Grape and Wine Research 19:107–115. 

Santos, J., A. Malheiro, J. Pinto, and G. Jones. 2012. Macroclimate and viticultural zoning in 
Europe: observed trends and atmospheric forcing. Climate Research 51:89–103. 

Schultz, H. R. 2000. Climate change and viticulture: A European perspective on 
climatology, carbon dioxide and UV-B effects. Australian Journal Of Grape And Wine 
Research 6:2–12. 

Schultz, H. R., and G. V Jones. 2010. Climate induced historic and future changes in 
viticulture. Journal of Wine Research 21:137–145. 

Sheen, J., L. Zhou, and J. C. Jang. 1999. Sugars as signaling molecules. Current Opinion in 
Plant Biology 2:410–418. 

Skinkis, P. A., and A. J. Vance. 2013. Understanding vine balance: An important concept in 
vineyard management. Extension work, Oregon state University:1–10. 

Smart, R. E., J. K. Dick, I. M. Gravett, and B. M. Fisher. 1990. Canopy management to 
improve grape yield and wine quality - principles and practices. South African journal 
of Enology and Viticulture 11:3–18. 

Smart, R. E., J. B. Robinson, G. R. Due, and C. J. Brien. 1985. Canopy microclimate 
modification for the cultivar Shiraz II. Effects on must and wine composition. Vitis 
24:119–128. 

Smart, R., and M. Robinson. 1991. Sunlight into wine: a handbook for winegrape canopy 
management. Winetitles. 

Soar, C. J., V. O. Sadras, and P. R. Petrie. 2008. Climate drivers of red wine quality in four 
contrasting Australian wine regions. Australian Journal of Grape and Wine Research 
14:78–90. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

106 

 

Spayd, S. E., J. M. Tarara, D. L. Mee, and J. C. Ferguson. 2002. Separation of sunlight and 
temperature effects on the composition of Vitis vinifera cv. Merlot berries. American 
Journal of Enology and Viticulture 53:171–182. 

Staff, S. L., D. C. Percival, J. A. Sullivan, and K. H. Fisher. 1997. Fruit zone leaf removal 
influences vegetative, yield, disease, fruit composition, and wine sensory attributes of 
Vitis vinifera L. “Optima” and “Cabernet franc.” Canadian Journal of Plant 
Science:149–153. 

Sternad Lemut, M., K. Trost, P. Sivilotti, and U. Vrhovsek. 2011. Pinot Noir grape colour 
related phenolics as affected by leaf removal treatments in the Vipava Valley. Journal 
of Food Composition and Analysis 24:777–784. 

Stines, A. P., J. Grubb, H. Gockowiak, P. A. Henschke, P. B. Høj, and R. Heeswijck. 2000. 
Proline and arginine accumulation in developing berries of Vitis vinifera L. in 
Australian vineyards: Influence of vine cultivar, berry maturity and tissue type. 
Australian Journal of Grape and Wine Research 6:150–158. 

Stines, A. P., D. J. Naylor, P. B. Høj, and R. van Heeswijck. 1999. Proline accumulation in 
developing grapevine fruit occurs independently of changes in the levels of delta1-
pyrroline-5-carboxylate synthetase mRNA or protein. Plant physiology 120:923. 

Stoll, M., M. Scheidweiler, M. Lafontaine, and H. R. Schultz. 2010. Possibilities to reduce 
the velocity of berry maturation through various leaf area to fruit ratio modifications 
in Vitis Vinifera L. Riesling. Progrès agricole et viticole 127:68–71. 

Sweetman, C., V. O. Sadras, R. D. Hancock, K. L. Soole, and C. M. Ford. 2014. Metabolic 
effects of elevated temperature on organic acid degradation in ripening Vitis vinifera 
fruit. Journal of experimental botany 65:5975–88. 

Tarara, J. M., J. Lee, S. E. Spayd, and C. F. Scagel. 2008. Berry temperature and solar 
radiation alter acylation, proportion, and concentration of anthocyanin in Merlot 
grapes. American Journal of Enology and Viticulture 59:235–247. 

Tardaguila, J., J. a. Blanco, S. Poni, and M. P. Diago. 2012. Mechanical yield regulation in 
winegrapes: comparison of early defoliation and crop thinning. Australian Journal of 
Grape and Wine Research 18:344–352. 

Tardaguila, J., F. M. De Toda, S. Poni, and M. P. Diago. 2010. Impact of early leaf removal 
on yield and fruit and wine composition of Vitis vinifera L. Graciano and Carignan. 
American Journal of Enology and Viticulture 61:372–381. 

Vasconcelos, M. C., and S. Castagnoli. 2000. Leaf canopy structure and vine performance. 
American Journal of Enology and Viticulture Viticulture 51:390–396. 



Manipulation of ripening in Vitis vinifera L.: leaf-to-fruit ratio and cultural practices interactions 

 

107 

 

Vilanova, M., M. P. Diago, Z. Genisheva, J. M. Oliveira, and J. Tardaguila. 2012. Early leaf 
removal impact on volatile composition of Tempranillo wines. Journal of the science 
of food and agriculture 92:935–42. 

Yamane, T., T. J. Seok, N. Goto-Yamamoto, Y. Koshita, and S. Kobayashi. 2006. Effects of 
temperature on anthocyanin biosynthesis in grape berry skins. American Journal of 
Enology and Viticulture 57:54–59. 

Zoecklein, B. W., T. K. Wolf, N. W. Duncan, J. M. Judge, and M. K. Cook. 1992. Effects of 
fruit zone leaf removal on yield, fruit composition, and fruit rot incidence of 
Chardonnay and white Riesling (Vitis vinifera L.) grapes. American Journal of Enology 
and Viticulture 43:139–148. 

 

 


