
Citation: Bianchetti, G.; De Maio, F.;

Abeltino, A.; Serantoni, C.; Riente, A.;

Santarelli, G.; Sanguinetti, M.;

Delogu, G.; Martinoli, R.; Barbaresi,

S.; et al. Unraveling the Gut

Microbiome–Diet Connection:

Exploring the Impact of Digital

Precision and Personalized Nutrition

on Microbiota Composition and Host

Physiology. Nutrients 2023, 15, 3931.

https://doi.org/10.3390/nu15183931

Academic Editor: Michael J. Barratt

Received: 30 June 2023

Revised: 8 September 2023

Accepted: 9 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Unraveling the Gut Microbiome–Diet Connection: Exploring
the Impact of Digital Precision and Personalized Nutrition on
Microbiota Composition and Host Physiology
Giada Bianchetti 1,2,† , Flavio De Maio 3,† , Alessio Abeltino 1,2, Cassandra Serantoni 1,2, Alessia Riente 1,2,
Giulia Santarelli 3,4 , Maurizio Sanguinetti 3,4 , Giovanni Delogu 4,5, Roberta Martinoli 6, Silvia Barbaresi 7,
Marco De Spirito 1,2 and Giuseppe Maulucci 1,2,*

1 Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito,
1, 00168 Rome, Italy; giada.bianchetti@unicatt.it (G.B.); alessio.abeltino@unicatt.it (A.A.);
cassandra.serantoni@unicatt.it (C.S.); alessia.riente@unicatt.it (A.R.); marco.despirito@unicatt.it (M.D.S.)

2 Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
3 Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”

IRCCS, 00168 Rome, Italy; flavio.demaio@unicatt.it (F.D.M.); giulia.santarelli@unicatt.it (G.S.);
maurizio.sanguinetti@unicatt.it (M.S.)

4 Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di
Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; giovanni.delogu@unicatt.it

5 Mater Olbia Hospital, 07026 Olbia, Italy
6 Società Italiana di Medicina Estetica, 00195 Rome, Italy; dott.roberta.martinoli@gmail.com
7 Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Watersportlaan 2,

Ghent University, 9000 Ghent, Belgium; silvia.barbaresi@ugent.be
* Correspondence: giuseppe.maulucci@unicatt.it; Tel.: +39-06-3015-4265
† These authors contributed equally to this work.

Abstract: The human gut microbiome, an intricate ecosystem housing trillions of microorganisms
within the gastrointestinal tract, holds significant importance in human health and the development
of diseases. Recent advances in technology have allowed for an in-depth exploration of the gut
microbiome, shedding light on its composition and functions. Of particular interest is the role
of diet in shaping the gut microbiome, influencing its diversity, population size, and metabolic
functions. Precision nutrition, a personalized approach based on individual characteristics, has
shown promise in directly impacting the composition of the gut microbiome. However, to fully
understand the long-term effects of specific diets and food components on the gut microbiome
and to identify the variations between individuals, longitudinal studies are crucial. Additionally,
precise methods for collecting dietary data, alongside the application of machine learning techniques,
hold immense potential in comprehending the gut microbiome’s response to diet and providing
tailored lifestyle recommendations. In this study, we investigated the complex mechanisms that
govern the diverse impacts of nutrients and specific foods on the equilibrium and functioning of
the individual gut microbiome of seven volunteers (four females and three males) with an average
age of 40.9 ± 10.3 years, aiming at identifying potential therapeutic targets, thus making valuable
contributions to the field of personalized nutrition. These findings have the potential to revolutionize
the development of highly effective strategies that are tailored to individual requirements for the
management and treatment of various diseases.

Keywords: precision nutrition; gut microbiome; dietary intervention; longitudinal studies; nutrigenomics;
personalized medicine

1. Introduction

The human gut microbiome, consisting of trillions of microorganisms residing in the
gastrointestinal tract, has emerged as a complex ecosystem that plays a crucial role in human
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health and disease [1]. It comprises a diverse community of bacteria, archaea, viruses, fungi,
and other microorganisms, collectively referred to as the gut microbiota. Recent advances
in high-throughput sequencing technologies have enabled a comprehensive exploration of
the gut microbiome and provided insights into its composition and functions [2].

The gut microbiome has garnered significant attention due to its profound impact
on various aspects of human physiology, including nutrient metabolism, immune sys-
tem development and regulation, host defense against pathogens, and even neurological
functions [3,4]. Among the factors influencing the gut microbiome, diet has emerged as
a key modulator of its composition and function [5]. The relationship between the gut
microbiome and food is an ongoing and reciprocating interaction that has generated sub-
stantial interest. However, the precise mechanisms linking the gut microbiome and diet
remain elusive. It is well-established that the composition of an individual’s diet exerts a
profound influence on the diversity and abundance of gut microbes [6]. Indeed, studies
have shown that different dietary patterns, such as high-fiber, plant-based diets versus
Western-style, high-fat diets, can result in distinct microbial communities in the gut [7].
These dietary variations can modulate the production of microbial metabolites, such as
short-chain fatty acids (SCFAs) [8], which have been linked to numerous health benefits,
including improved metabolic health and reduced risk of chronic diseases [9]. Conversely,
the gut microbiome possesses the capacity to shape how the host digests, absorbs and
metabolizes food components.

This intricate interplay between the gut microbiome and dietary factors holds substan-
tial implications for human health and disease, also being implicated in the development of
obesity [10], type 2 diabetes [11], inflammatory bowel diseases [12], and other disorders [13].
In this perspective, specific dietary supplements, such as prebiotics and probiotics, have
been investigated for their ability to shape the gut microbiota composition [14]. Prebiotics,
including dietary fibers, serve as substrates for beneficial gut bacteria, promoting their
growth and activity [15]. Probiotics, on the other hand, are live microorganisms that confer
health benefits when consumed in adequate amounts [16].

As the field of microbiome research continues to advance, innovative techniques and
approaches, including metagenomics, metabolomics, and computational modeling, are
being employed to unravel the intricate relationship between the gut microbiome and
food [17]. These studies aim to provide a deeper understanding of the mechanisms by
which the gut microbiome influences host physiology and to identify potential therapeutic
targets for personalized nutrition and disease management [18]. Indeed, since recent
research has shown that personalized nutrition interventions have the potential to directly
influence and modify the composition of the gut microbiome [19], precision nutrition is
emerging as a tool that aims to provide personalized dietary recommendations based on
an individual’s unique characteristics [20].

To this aim, it is crucial to collect real-time data on multiple factors that influence an
individual’s response to diet, gather information on their current dietary habits, analyze
their genetic makeup, and understand epigenetic modifications that can impact gene
expression. However, one of the challenges in implementing precision nutrition is the high
degree of inter-individual variability in dietary responses [21]. Indeed, different people may
exhibit diverse physiological and metabolic characteristics that influence how their bodies
process and respond to specific foods and nutrients. This means that to advance precision
nutrition interventions targeting the gut microbiome, it is essential to conduct longitudinal
studies that can help uncover the long-term effects of specific diets or food components on
the gut microbiome composition, diversity, and function, also allowing for the identification
of inter-individual variability and the factors that influence an individual’s response to
dietary interventions [22]. It is furthermore important to acknowledge that the design
of effective personalized nutrition interventions targeting the gut microbiome requires a
deeper understanding of microbial ecology, host-microbe interactions, and the complex
interplay between various dietary components and the microbiome, making this kind of
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study crucial to expand the knowledge base and refine the design of precision nutrition
interventions [23].

Moreover, given the availability of advanced sequencing technologies, it becomes
increasingly important to complement microbiome data with robust and precise dietary
data. Many studies rely on methods such as food frequency questionnaires (FFQs), self-
administered single-day food records, or 24 h dietary recalls to assess dietary intake.
However, these methods have limitations and may not capture the intricate relationships
between diet and the gut microbiome [24,25]. To address this, there is a need for improved
methods to assess and collect dietary data for microbiome studies according to food
preferences rather than relying solely on nutrient intake [26]. Additionally, the application
of machine learning (ML) approaches in this field holds great potential. ML has been
widely used in biomedical research and can diagnose or predict the risk of various health
conditions, including, among others, cancer [27] and metabolic impairments [28]. In sports
science, ML approaches can enhance research on the connection between the microbiome
and exercise [29]. By predicting an athlete’s exercise responsiveness and identifying the
key factors influencing their physiology, ML models can provide personalized lifestyle
recommendations to optimize an athlete’s microbiota and improve their overall health.
However, it is important to ensure the careful design of data collection processes, use
quantitative and objective target variables, and prioritize interpretable ML models to
enhance the understanding and interpretation of results. In this perspective, collaborations
across disciplines are crucial to address challenges and establish a common ground for
knowledge transfer.

Indeed, the high degree of inter-individual variability necessitates robust analytical
approaches that can effectively account for this variability and assess the effectiveness of
dietary interventions. One such method is the paired t-test, which is particularly valuable
in longitudinal studies where participants serve as their own controls. By comparing
measurements within individuals before and after an intervention, the paired t-test enables
the identification of significant changes within individuals while minimizing the impact
of inter-individual variability. This approach allows evaluation of the specific effects of
dietary interventions on the gut microbiome composition, diversity, and function, providing
valuable insights into the most effective strategies for personalized nutrition. By using this
statistical method, it is possible to better discern the true impact of interventions on the gut
microbiome and make informed decisions regarding precision nutrition recommendations
tailored to an individual’s unique needs and responses.

In this context, our study focused on personalized and precision nutrition, aiming
to investigate the influence of diet on the microbiota of a specific group of individuals.
Through a tailored nutritional intervention, we sought to gain a comprehensive under-
standing of how individual dietary factors impact the composition and function of the
gut microbiota and how these changes relate to various aspects of host physiology, in-
cluding anthropometric and physiological parameters. By investigating and unraveling
these complex underlying mechanisms, our research sought to shed light on the intricate
and multifaceted individual impact, discerning not only the differential effects of various
nutrients but also the influence of specific foods on the balance and functionality of the
microbiome. Our approach involves meticulously tracking participants’ dietary intake
and correlating it with changes in their physiological markers. By adopting this indirect
strategy, we aim to establish a robust cause-and-effect relationship between dietary inter-
ventions and physiological outcomes. We believe that this methodology not only leverages
the expertise of nutritionists but also provides a systematic framework for assessing the
impact of dietary changes on health-related variables. In doing so, we aim to create a
library of interventions that are linked to specific outcomes, enhancing the potential for
broader applicability beyond the scope of specialized nutritional knowledge. Through this
in-depth exploration, we aimed to make significant contributions to the identification and
elucidation of potential therapeutic targets, thereby paving the way for the development of
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highly effective personalized nutrition strategies tailored to the unique needs of individuals
and enabling the effective management and treatment of diverse diseases.

2. Materials and Methods
2.1. Study Population

In this single-arm, uncontrolled-pilot prospective study, 7 volunteers (4 females = 57%,
and 3 males = 43%, age = 40.9 ± 10.3 years, Body Mass Index (BMI) = 23.2 ± 2.9 kg/m2) were
recruited from our lab staff and asked to self-monitor their weight, diet, and activities as
previously described in [19] and represented in Figure 1, between March and July 2022. The
involved subjects were deemed “recruitable” due to their absence of antibiotic treatments
or probiotic cycles in the weeks prior to the study. The study was conducted in accordance
with the Declaration of Helsinki and approved by the Ethics Committee of Policlinico
Universitario “A. Gemelli” IRCCS for studies involving humans (ID: 5407—Prot. 2336/23).
Written informed consent was obtained from each subject involved in the study.
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Figure 1. Data acquisition. Representation of the wearables, devices, and techniques used to ex-
tract the comprehensive data integrated into the personalized approach from the participants. An
impedance scale allows evaluating anthropometric parameters; the smart band furnishes information
regarding physiological parameters and physical activity data; the web app ArMOnIA ensures a de-
tailed compilation of food diary; the collection of a stool sample is required for microbiome analysis.

2.2. Timeline

In Figure 2, a schematic representation of the study timeline is reported. The study was
conducted starting in March 2022. Samples for nutrigenomics were collected in April 2022.
The research, as shown in the purple rectangles, involved two microbiome sampling time
points, namely T1 (April 2022) and T2 (May 2022), with T2 conducted shortly after T1. The
T1 data served as the initial data point, while the T2 sampling aimed to provide additional
insight and verify the reliability of the initial findings (see Section S1, Supplementary
Materials). Personalized evaluation of the participant’s health and microbiome state was
performed by averaging the data from T1 and T2, which served as the control group (yellow
square). This control value will be referred to as TCTRL from now on. In June 2022, a tailored
nutritional plan was implemented for each participant (orange diamond). Subsequently,
another round of microbiome sampling indicated as T3 and referred to as TDIET, was carried
out in July 2022 (one-month duration of the nutritional plan) to assess the impact of the
personalized nutritional intervention. The selection of one month for our nutritional plan
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was based on the highly dynamic nature of the microbiome, which can respond relatively
quickly to dietary alterations characterized by great adaptability. Indeed, it can adjust
to different dietary patterns, with specific microbial populations flourishing or declining
based on the presence or absence of certain nutrients. This is substantiated by studies
that have shown significant changes in gut microbiome composition following dietary
interventions typically lasting a few weeks to a month [30,31]. Moreover, while it is true
that substantial shifts in the overall microbial composition may require a longer duration,
intermediary changes like variations in specific microbial metabolites or short-chain fatty
acids can be observed within this time interval [32], making it reasonable to detect any
changes occurring as a result of dietary modifications.
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the microbiome sampling, the orange diamond represents the intervention, while in the blue circles,
the starting point and the intermediate evaluation of the results are provided.

2.3. Sample Collection Procedure for Nutrigenomics

For the nutrigenomics analysis, a saliva sample was required. The participants were
instructed to follow a supervised collection procedure to ensure the accuracy and integrity
of the DNA sample. The collection process involved refraining from eating, drinking,
smoking, or performing any oral hygiene activities for at least 30 min prior to collection.
Lipstick was required to be removed to prevent external contamination. Using a sterile
swab, participants vigorously rubbed the inside of their cheeks and gums for approximately
1 min, following specific circular motions. After collection, the swab was left to dry in the air
for approximately 1 min, ensuring that it did not come into contact with any surfaces, before
being carefully placed back into the provided collection tube. Each participant’s sample was
assigned a unique serial number to maintain anonymity throughout the analysis process,
which was performed by iDNA Genomics (Kifisia, Greece).

To explore genes and genetic variations related to nutrition, multiple sources, includ-
ing scientific research papers and genetic databases, have been consulted, including, for
example, NutriGenomeDB [33]. After the selection of genes, an extensive assessment of the
following genes (Table 1) was performed, encompassing a comprehensive evaluation of
their specific genotypes for each participant. The list here constitutes a standard panel and
was sent to the industry partner iDNA Genomics, who performed the quantification.
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Table 1. Categorization of genes analyzed. The table provides a categorization of the several
investigated genes. Each gene is listed along with its corresponding rs number, a unique identifier
for genetic variations.

Super-Category Category Gene rs_Number

Weight management

Carbohydrates ADRB2 rs1042713
TCF7L2 rs7903146

Proteins
FTO rs1558902
FTO rs9930506
FTO rs9939609

Fats

TCF7L2 rs12255372
FTO rs9930506

PPM1K rs1440581
PPARG rs1801282

FTO rs9939609

Snacking between meals MC4R rs17782313

Sweet taste preference SLC2A2 rs5400

Biological clock CLOCK rs1801260

Salt sensitivity
ACE rs4343
AGT rs699

ATP2B1 rs2681472

Saturated fats
APOE rs7412
APO3 rs429358

APOA2 rs5082

ω6/ω3 fatty acids FADS1 rs174546
FADS2 rs174570

Trans fats
FADS1 rs174546
LIPC rs1800588

APOC3 rs5128

Sensitivities

Caffeine
ADORA2A rs2298383
ADORA2A rs5751876

CYP1A2 rs762551

Alcohol
ADH1C rs283411
GABRA2 rs279858

Lactose MCM6 rs4988235

Gluten

HLA DQ 2.2 rs2395182
HLA DQ 2.2 rs4713586
HLA–DQA1 rs2187668
HLA–DQB1 rs7775228

HLA DQ rs7454108

Detoxification capacity
and antioxidant needs

Detoxification capacity CYP1A2 rs762551
GSTP1 rs1695

Antioxidant needs
SOD2 rs4880
CAT rs1001179

Vitamins

Vitamin A
BCO1 rs6564851

BCMO1 rs7501331

Vitamin B6 ALPL rs4654748

Vitamin B9—Folic and
Folic acid MTHFR rs1801133

Vitamin B12
FUT2 rs492602
TCN1 rs526934

Vitamin C
SLC23A1 rs10063949
SLC23A2 rs6053005
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Table 1. Cont.

Super-Category Category Gene rs_Number

Vitamins
Vitamin D

CYP2R1 rs10741657
GC rs2282679

VDR rs2228570

Vitamin E
SCARB1 rs11057830

TRIP6 rs964184

Minerals

Low calcium levels
CYP2R1 rs2060793

GC rs7041
VDR rs2228570

Increased calcium
concentration CYP24A1 rs1570669

Low iron levels
TMPRSS6 rs4820268

TF rs1799852
TFR2 rs7385804

Iron overload HFE rs1799945

Magnesium MUC1 rs4072037

Sports profile

Endurance

ACE rs4343
PPARA rs4253778

HFE rs1799945
NFIA–AS2 rs1572312

ADRB3 rs4994
HIF1A rs11549465
PPARD rs2016520
NRF2 rs7181866

Strength

MSTN rs1805086
PPARA rs4253778
ACTN3 rs1815739

AGT rs699

Power

ACTN3 rs1815739
NOS3 rs2070744
ACE rs4343
AGT rs699

ADRB2 rs1042713

Aerobic capacity
(VO2 max)

ADRB2 rs1042713
CRP rs1205

GSTP1 rs1695
ACE rs4343

Muscle mass
hypertrophy LEPR rs1137101

Motivation to exercise
BDNF rs6265
COMT rs4680

Injury predisposition

Pain tolerance COMT rs4680

Jumper’s knee and tennis
elbow injuries

COL5A1 rs12722
COL1A1 rs1800012
COL3A1 rs1800255

Achille’s tendon injury COL5A1 rs12722

Musculoskeletal health
BTNL2 rs10947262

SPTBN1 rs11898505

Exercise rehabilitation
CRP rs1205

SOD2 rs4880
ACTN3 rs1815739
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2.4. Sample Collection Procedure and Analysis of Microbiome

Fecal samples were collected using DANASTOOL tubes and stored at room tempera-
ture until DNA extraction (for a maximum of 7 days). For each sample, DNA extraction
was performed in a strictly controlled level-2 biological safety workplace. In keeping
with a previously described protocol [34], we used 200 µL of suspended fecal sample in
hexadecyltrimethylammonium bromide (CTAB) buffer to extract bacterial DNA with the
DANAGENE MICROBIOME Fecal DNA kit (Danagen-Bioted, Barcelona, Spain). DNA was
eluted in 200 µL of pre-heated nuclease-free water and stored at −20 ◦C until sequencing
processing. DNA concentration was assessed using the Qubit 4 fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA) and ds DNA High sensitivity assay (Thermo Fisher
Scientific) according to manufacturer’s procedures. V3–V4 and V6 hypervariable regions of
the 16S rRNA gene were amplified by using Microbiota solution B (Arrow diagnostics) and
prepared for the paired ends sequencing (2 × 250 bp, v2 chemistry, Illumina, San Diego,
CA, USA) on the Illumina MiSeq instrument (Illumina) [35,36]. Raw data were firstly
processed using MicrobAt suite software v1.2.1 provided by SmartSeq bioinformatic and
analyzed using R v4.0.2 (https://www.rstudio.com/, accessed on 7 September 2023) and
phyloseq package for downstream analyses in-house analysis pipeline [37]. Unassigned
amplicon sequence variants (ASVs) and taxonomic and prevalence-based pre-filtering (to
exclude ASVs with small mean and trivially large variation) were applied. Samples were
normalized to minimize the effect of the sequencing depth differences, and alpha diversity
was calculated. Alpha diversity metrics were computed as Shannon diversity index and
Pielou’s evenness. Beta diversity was evaluated using Bray-Curtis graphically represented
as principal coordinate analysis (PCoA). Significance between microbial community com-
position was obtained using the adonis function included in the vegan package, which
performs permutational multivariate analysis of variance (PERMANOVA). Before relative
abundances were measured, phyla representing less than 1% (Fusobacteria, Lentisphaerae,
Synergistetes, Tenericutes) were grouped and indicated as “<1% phyla”. Relative abun-
dances were measured at phylum, genus, and species levels, and statistical significance
was assessed by the Wilcoxon signed rank test.

2.5. Formulation of the Personalized Nutritional Plan

After the meticulous collection and analysis of data from the two microbiome con-
trol samples, as well as comprehensive assessments of anthropometric measurements,
physiological parameters, genomic information, and physical activity levels, a highly
personalized nutritional plan was developed. This intricate process involved two experi-
enced nutritionists who collaborated closely, utilizing the cutting-edge software known as
“Terapia Alimentare”, which is based on the methodology developed by Dietosystem, a
division of DS MediGroup S.p.A. (Terapia Alimentare Dietosystem® v19.00, DS-Medica,
http://www.dsmedica.info, accessed on 7 September 2023). The software provided valu-
able guidance, evidence-based recommendations, and data analysis tools that supported
the nutritionists throughout the process. These tools leverage comprehensive nutritional
databases, which allow them to calculate the nutritional content of a broad spectrum of
foods and recipes. Such databases encapsulate details about macronutrients and micronu-
trients, in addition to aspects like dietary fiber content and the glycemic index of foods. In
conjunction with this, these applications also incorporate established dietary guidelines
from trusted organizations like the World Health Organization [38] or the Food and the
European Food Safety Authority [39], as well as the specific national dietary guidelines of
various countries. This information provides a roadmap for the recommended intake of
different nutrients for various demographic groups, which the software utilizes to generate
well-rounded meal plans. By harnessing the combined power of the nutritionists’ knowl-
edge and the software’s comprehensive features, a truly tailored and effective nutritional
plan was created for each participant. For a more comprehensive understanding of how
our dietary interventions were tailored to each participant based on their genetic and mi-
crobiome profiles, see Supplementary Materials (Section S2) [40–44]. In particular, Table S2

https://www.rstudio.com/
http://www.dsmedica.info
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provides a detailed account of the individualized dietary recommendations, including spe-
cific genetic variations (SNPs) that were taken into consideration by our expert nutritionists.
Additionally, it outlines the corresponding nutritional guidance provided to optimize the
growth and activity of beneficial bacteria while minimizing the proliferation of potentially
harmful ones, serving as a valuable resource for those seeking a deeper insight into the
personalized nature of our dietary interventions.

2.6. Data Organization and Analysis

To evaluate the diet effect, we assessed a comprehensive set of variables collected
through the home-developed web app ArmOnIA (https://www.apparmonia.com/, ac-
cessed on 7 September 2023) [45–47]. The collected variables can be divided into 3 main
groups: anthropometric and physiological; microbiome; and nutritional parameters. Age,
weight, metabolic rate in kilocalories, body mass index (BMI), percentage of body fat,
muscle mass, bone mass, percentage of body water, daily physical activities, resting heart
rate, average heart rate, duration of deep sleep, duration of shallow sleep, and rapid eye
movement (REM) sleep were among the physiological parameters measured.

To gain insights into the microbial composition, microbiome analysis was assessed
through key parameters: richness, a measure of the number of unique taxa present in a
sample; Pielou’s evenness index, to assess the distribution of abundances among differ-
ent taxa; Shannon diversity index, to evaluate the overall diversity and species richness
within the microbiome. In addition to these diversity metrics, we examined the relative
abundances of phyla, genera, and species in the microbial community.

Regarding the nutritional area, we examined specific nutritional parameters, including
the fraction of protein, carbohydrates, fats, and dietary fibers, intake of kilocalories, and
the thermal effect of food (TEF), which refers to the energy expenditure occurring to digest,
absorb, and metabolize the nutrients from the food. These parameters provided insights
into the macronutrient composition and energy content of the food categories. Furthermore,
we analyzed the levels of essential minerals such as calcium, iron, magnesium, potassium,
phosphorus, sodium, zinc, copper, and manganese. The foods recorded in the web app
were categorized into 141 classes starting from the classification system established by the
Food and Agriculture Organization (FAO) and World Health Organization (WHO) [48].
Building upon this classification, we further created additional groups by combining
specific variables. As a result, we defined distinct categories such as white fish, oily fish,
low-fat cheeses, high-fat cheeses, fresh cheeses, medium-aged cheeses, and long-aged
cheeses. These refined categories allowed for a more detailed analysis and understanding
of the nutritional characteristics and composition of different food items. By grouping the
foods based on these additional categories, we were able to uncover valuable insights and
patterns in relation to their nutritional profiles.

For each of these variables and each participant, the mean values related to the time
interval between two subsequent microbiome samples were quantified and used for the
comparative analysis and the evaluation of the personalized nutritional plan effect. In
particular, the participant’s health and microbiome state was evaluated by comparing the
pre-intervention data (TCTRL) and the post-intervention data (TDIET).

2.7. Statistics

For each of the variables previously described, a paired t-test was performed using
Python 3.10 (https://www.python.org/, accessed on 12 June 2023). The statistical analysis
was conducted using the libraries pandas (https://pypi.org/project/pandas/, accessed
on 12 June 2023), numpy (https://pypi.org/project/numpy/, accessed on 12 June 2023),
and scipy (https://pypi.org/project/scipy/, accessed on 12 June 2023). The paired t-test is
specifically designed for comparing two related samples, making it suitable for evaluating
the significance of differences between the initial measurements (before the diet, denoted
as TCTRL) and the final measurements (after the diet, denoted as TDIET). FDR correction
was applied to the obtained p-values. Beta diversity was investigated using Bray-Curtis

https://www.apparmonia.com/
https://www.python.org/
https://pypi.org/project/pandas/
https://pypi.org/project/numpy/
https://pypi.org/project/scipy/
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distance and represented by principal coordinates analysis (PCoA). Statistical differences
were assessed by permutational multivariate analysis of variance (PERMANOVA) test.

3. Results
3.1. Precision Nutrition

The precision nutrition approach employed in this study represented a cutting-edge
methodology that goes beyond traditional dietary recommendations. By incorporating
a holistic analysis of participants’ genetic profile, obtained by nutrigenomics analysis,
microbiome composition, and various physiological parameters, including anthropometric
measurements and physical activity levels (as outlined in Table S2 in the Supplemen-
tary Materials), we gained a comprehensive understanding of each individual’s unique
health characteristics.

Leveraging this wealth of information, our nutritionists devised personalized plans
tailored to the specific needs and goals of each patient, whose main characteristics are
reported in Table 2.

Table 2. Subject characteristics and macronutrient composition of different dietary types. The
table provides an overview of the subjects’ characteristics, their % of macronutrient intake, and the
macronutrient composition of the proposed dietary types. The subjects are identified by unique codes
(e.g., WL010114) and their corresponding age. The table presents the specific diet type followed
by each subject, including Mediterranean and Ketogenic/Low Carb, along with the percentage
distribution of macronutrients. The macronutrient breakdown includes carbohydrates (CHO), protein
(PRO), and lipids (LIP) expressed as percentages of the whole macronutrient intake. The data
highlight variations in macronutrient proportions among different dietary types, providing insights
into the dietary patterns followed by the subjects in the study.

Subject Age % Macronutrient Intake Diet Type % Macronutrients Diet-Provided

WL010114 26 CHO: 62.8%—PRO: 18.3%—LIP: 18.9% Mediterranean CHO: 47.9%—PRO: 21.9%—LIP: 30.2%
WL010112 28 CHO: 61.9%—PRO: 18.0%—LIP: 20.1% Mediterranean (with

high fish intake) CHO: 47.1%—PRO: 23.3%—LIP: 29.5%

WL010111 44 CHO: 64.2%—PRO: 19.0%—LIP: 16.8% Mediterranean (with
high fish intake) CHO: 45.2%—PRO: 24.4%—LIP: 30.4%

WL010107 46 CHO: 52.6%—PRO: 27.5%—LIP: 19.8% Mediterranean CHO: 47.5%—PRO: 23.0%—LIP: 29.5%
WL010106 52 CHO: 67.5%—PRO: 20.0%—LIP: 12.5% Mediterranean CHO: 44.0%—PRO: 21.7%—LIP: 34.3%
WL010105 50 CHO: 62.2%—PRO: 22.1%—LIP: 15.7% Mediterranean (with

high fish intake) CHO: 42.2%—PRO: 22.8%—LIP: 34.9%
WL010108 40 CHO: 61.2%—PRO: 20.5%—LIP: 18.3% Ketogenic/Low Carb CHO: 36.9%—PRO: 33.3%—LIP: 29.8%

Table 2 presented data on the participants’ age, diet type, and macronutrient percent-
ages before the diet (% Macronutrient Intake) and provided by the personalized nutritional
plan (% Macronutrients Diet-provided). The participants followed different nutritional
approaches, including the Mediterranean diet and a Ketogenic/Low-Carbohydrate diet.

In the Mediterranean diet group, participants WL010114, WL010112, WL010111,
WL010107, WL010106, and WL010105 adhered to a diet characterized by a moderate
carbohydrate intake ranging from 42.2% to 47.9% of total calories, protein intake varied
between 21.7% and 24.4%, while fat intake ranged from 29.5% to 34.9% of total calories.
Notably, participants WL010112, WL010111, and WL010105 within the Mediterranean
diet group followed a variation of the diet with a high fish intake. Participant WL01008
followed a different dietary approach known as the Ketogenic or Low-Carbohydrate diet.
This participant consumed a significantly lower proportion of carbohydrates, accounting
for 36.9% of total calories, while protein intake was relatively high at 33.3% of total calories.
Fat intake for participant RC008 was 29.8% of total calories.

An innovative aspect of the diet formulation was the incorporation of the genomic
profile and microbiome of each participant. The integration of genomic data, specifically
genetic variations such as single nucleotide polymorphisms (SNPs), allowed us to gain in-
sights into potential gene expression patterns that may influence an individual’s metabolism
and response to dietary components. These genetic variations can serve as proxies for
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understanding how certain genes may be expressed or regulated in a person’s body. In
this sense, to prescribe diets to the participants, the nutritionists applied a two-pronged
approach, drawing insights from both scientific literature and their extensive expertise
in the field of nutrigenomics. To elucidate how the genetic information was translated
into dietary recommendations, we have provided a detailed account in Supplementary
Table S2, which serves as a comprehensive reference that highlights key points of the inter-
ventions for each participant, including specific genetic variations and their implications.
It is important to highlight that these comments and considerations encompass a wide
range of factors, such as genetic predispositions to lactose intolerance, metabolic responses
to certain nutrients, and responses to dietary components linked to weight management
and sensitivities. By taking into account the individual information about specific genetic
variations together with microbial composition, the nutritionists gained valuable insights
into the specific bacterial species present. This data-driven approach enabled diet cus-
tomization to optimize the growth and activity of beneficial bacteria while minimizing the
proliferation of potentially harmful ones. By integrating both genomic and microbiome
data into the nutrition planning process, the dietary interventions were tailored to meet
the subjects’ nutritional requirements while also fostering a favorable microbial ecosystem.
This groundbreaking methodology, rooted in precision nutrition, underscores the intricate
interplay between nutrition and the gut microbiome and, by addressing the intricacies
of subjects’ genetic predispositions and considering their individual metabolic responses,
highlights the effectiveness of this integrative approach in revolutionizing the field of
nutrition, paving the way for precise and targeted dietary strategies.

3.2. Changes in Food Intake

One month after the administration of the personalized nutritional plan to the subjects
involved in the study, another microbiome sampling was performed to evaluate the indi-
vidual response to the diet. First, we investigated changes in food intake occurring after
the intervention. In Table 3, the food categories that significantly changed after nutritional
intervention among the 141 identified and previously introduced (see Section 2.6) are
reported.

Table 3. Changes in food items between TCTRL and TDIET. Comparison of mean values and
statistical analysis for various food items consumed in TCTRL (baseline) and TDIET (follow-up) stages
of the study. The t-statistics, trend (increase or decrease), and FDR-corrected p-values are provided to
indicate the significance of the observed changes. (*) indicates statistical significance at p ≤ 0.05.

Food Item TCTRL Mean ± SD TDIET Mean ± SD t-Statistics Trend p-Value

Cereal Bars (g) 13.1 ± 13.0 0.0 ± 0.0 2.673 Decrease 0.05 (*)
Chocolate (g) 18.7 ± 18.8 0.6 ± 1.7 2.466 Decrease 0.05 (*)
Ice Cream (g) 16.8 ± 23.1 60.7 ± 34.4 −2.796 Increase 0.05 (*)

Parmesan Cheese (g) 17.7 ± 4.4 24.2 ± 6.1 −3.113 Increase 0.05 (*)
Oily Fish (g) 109.4 ± 93.5 196.5 ± 131.5 −3.672 Increase 0.05 (*)

Table 3 presented data on changes in food items between two time points, TCTRL
(baseline) and TDIET (final), in the study participants. The mean values and standard
deviations (SD) were provided for each variable. In particular, it was interesting to observe
a significant decrease in the mean consumption of cereal bars (from 13.1 ± 13.0 g at TCTRL to
0.0 ± 0.0 g at TDIET, p-value = 0.05) and chocolate, from 18.7 ± 18.8 g at TCTRL to 0.6 ± 1.7 g
at TDIET, with p-value = 0.05.

In contrast, the mean consumption of ice cream increased significantly from 16.8 ± 23.1 g
at TCTRL to 60.7 ± 34.4 g at TDIET (p-value = 0.05), together with the intake of Parmesan
cheese, rising from 7.7 ± 4.4 g at TCTRL to 24.2 ± 6.1 g at TDIET (p-value = 0.05), and those
of oily fish, almost doubling between TCTRL (109.4 ± 93.5 g) and TDIET (196.5 ± 131.5 g,
p-value = 0.05).
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3.3. Changes in Nutritional Variables

The second part of our analysis involved the evaluation of changes in the intake of
several key nutrients among the study participants, whose results are reported in Table 4.

Table 4. Changes in nutritional variables before and after the intervention. This table presents the
mean values and standard deviations (±SD) of various nutritional variables, measured at two time
points, TCTRL (baseline) and TDIET (follow-up), along with the t-statistics, trend, and FDR-corrected
p-values. The data show the changes in calorie intake, macronutrient composition, and selected
micronutrients following the intervention. The asterisks (*) indicate statistically significant changes
(p ≤ 0.05).

Variable TCTRL Mean ± SD TDIET Mean ± SD t-Statistics Trend p-Value

Intake (Kcal) 1457 ± 554 1488 ± 549 −0.580 Increase 0.583
Carbohydrates (%) 57.1 ± 5.1 51.7 ± 11.1 1.445 Decrease 0.198

Proteins (%) 20.8 ± 3.3 25.5 ± 8.5 −1.380 Increase 0.217
Fibers (%) 4.7 ± 1.5 4.9 ± 1.5 −0.633 Increase 0.550

Calcium (mg) 413 ± 121 601 ± 251 −2.732 Increase 0.05 (*)
Potassium (mg) 1476 ± 712 1815 ± 615 −2.693 Increase 0.05 (*)

Phosphorus (mg) 572 ± 241 709 ± 292 −2.556 Increase 0.05 (*)
Sodium (mg) 1200 ± 717 1388 ± 760 −3.027 Increase 0.05 (*)

Zinc (mg) 4 ± 2 5 ± 2 −2.565 Increase 0.05 (*)

Table 4 presents data on various nutritional variables, including the total intake (in
kilocalories), the fraction of macronutrients, and the mass of selected micronutrients before
(TCTRL) and after (TDIET) the nutritional intervention. Interestingly, despite the total intake,
as well as the fraction of macronutrients, carbohydrates, proteins, fats, and fibers, did not
change after the nutritional intervention, we observed a significant increase in the intake of
several micronutrients, including calcium, potassium, phosphorus, sodium, and zinc.

Adequate calcium intake is essential for maintaining strong bones and teeth, as well as
for supporting various physiological processes in the body [49]. The participants showed
a statistically significant increase in calcium intake (p-value = 0.05) after the dietary inter-
vention, passing from 413 ± 121 mg at TCTRL to 601 ± 251 mg at TDIET. Another important
mineral is potassium, which plays a crucial role in maintaining proper electrolyte balance,
supporting nerve function, and regulating blood pressure [50]. The significant increase in
potassium intake, from 1476 ± 712 mg (TCTRL) to 1815 ± 615 mg (TDIET) (p-value = 0.05),
indicates that the dietary intervention resulted in a noteworthy rise in the consumption of
potassium-rich foods. In addition, the participants exhibited a significant increase in phos-
phorus intake (from 572 mg at TCTRL to 709 mg at TDIET, p-value = 0.05), which is involved
in numerous physiological processes, including energy metabolism, DNA synthesis, and
bone health [51]. There was also a significant increase in sodium intake (p-value = 0.05),
which rose from 1200 ± 717 mg to 1388 ± 760 mg after the diet. Sodium is an essential
electrolyte that plays a role in maintaining fluid balance, nerve function, and muscle con-
traction. However, excessive sodium intake can contribute to high blood pressure, so it is
important to monitor sodium intake within recommended limits [52]. Finally, a significant
increase (p-value = 0.05) in zinc intake was observed, from 4 ± 2 mg at TCTRL to 5 ± 2 mg
at TDIET, an essential mineral involved in the enzymatic reaction, immune function, and
DNA synthesis [53].

3.4. Effects of the Nutritional Plan on Anthropometric and Physiological Parameters of
the Participants

To monitor the effects of the personalized diet on the anthropometric and physiological
parameters of the participants, we further compared the mean values of weight, BMI, body
composition, resting heart rate (RHR), and sleep quality before and after the nutritional
intervention. The results, including the trend and the p-value obtained from the paired
t-test, are reported in Table 5.
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Table 5. Changes in anthropometric and physiological parameters over time. This table presents
the mean values and standard deviations (SD) of various anthropometric and physiological pa-
rameters for the study participants at TCTRL (baseline) and TDIET (follow-up). The anthropometric
variables include weight (kg), BMI (kg/m2), basal metabolism (kcal), physical activity (kcal), body
fat (%), muscle mass (kg), bone mass (kg), and water content (%). The physiological variables include
resting heart rate (bpm), average heart rate (bpm), duration of deep sleep (min), duration of shallow
sleep (min), and duration of REM sleep (min). The t-statistics, trend direction, and FDR-corrected
p-values are also provided. Significant changes are denoted by asterisks (*) for p-value ≤ 0.05.

Group Variable TCTRL Mean ± SD TDIET Mean ± SD t-Statistics Trend p-Value

Anthropometric

Weight (kg) 69.1 ± 12.6 67.2 ± 11.5 2.116 Decrease 0.08
BMI (kg/m2) 23.1 ± 2.8 22.4 ± 2.2 2.343 Decrease 0.05 (*)

Basal Metabolism (kcal) 1327 ± 279 1317 ± 249 0.486 Decrease 0.64
Physical Activity (kcal) 402 ± 254 441 ± 280 −0.804 Increase 0.45

Body Fat (%) 27.1 ± 7.2 26.2 ± 6.3 1.604 Decrease 0.16
Muscle (kg) 47.1 ± 10.8 47.1 ± 10.0 −0.001 Increase 0.10

Bone Mass (kg) 2.7 ± 0.4 2.7 ± 0.4 0.427 Decrease 0.68
Water (%) 50.0 ± 3.9 51.4 ± 3.5 −2.300 Increase 0.06

Physiological

Resting Heart Rate (bpm) 60.9 ± 7.1 57.9 ± 7.3 2.571 Decrease 0.05 (*)
Average Heart Rate (bpm) 73.8 ± 4.5 73.1 ± 5.0 1.033 Decrease 0.34

Deep Sleep (min) 85.3 ± 12.3 88.0 ± 8.2 −0.685 Increase 0.52
Shallow Sleep (min) 281.5 ± 20.8 261.2 ± 14.4 3.682 Decrease 0.05 (*)

REM (min) 59.5 ± 15.2 58.7 ± 17.1 0.252 Increase 0.81

The first part of Table 5 provides an overview of the changes observed in various
anthropometric parameters before and after the diet intervention. Participants experienced
a significant decrease in BMI, from 23.1 ± 2.8 kg/m2 at TCTRL to 22.4 ± 2.2 kg/m2 at TDIET
(p-value = 0.050), suggesting a positive trend towards improved body composition.

A decrease was also retrieved in basal metabolism, which represents the amount of
energy expended by the body at rest, passing from 1327 ± 279 kcal to 1317 ± 249 kcal after
the intervention. However, since this change was not statistically significant (p-value = 0.64),
it may not be directly influenced by the diet intervention. In line with these observations,
we observed a slight, although not significant, decrease in the percentage of body fat and
bone mass, with a contextual increase in muscle mass and water percentage, representative
of a shift towards a better state of health. The level of physical activity also did not change
before and after the intervention.

In the second part of Table 5, we focused on the results observed on various physiolog-
ical parameters before and after the diet intervention. Interestingly, there was a significant
decrease in resting heart rate (RHR), with p-value = 0.05. This suggests that the diet may
have had a positive impact on cardiovascular health, as a lower resting heart rate is gen-
erally associated with better heart function and fitness. While there were no significant
changes observed in average heart rate, deep sleep, or REM sleep duration, there was
a significant decrease in the duration of shallow sleep (p-value = 0.05), highlighting the
complex relationship between diet and physiological parameters.

3.5. Effects of the Nutritional Plan on the GUT Microbiome
3.5.1. Evaluation of the Stability of the Microbial Composition

To evaluate the stability and reliability of the individual’s gut microbiome before
the nutritional intervention and the consequent effect of the personalized plan, the beta
diversity, a measure reflecting the similarity or dissimilarity of the microbiome sampling,
was evaluated using Bray–Curtis distance and represented by principal coordinates anal-
ysis (PCoA), see Figure 3. For the comparison of the two control time points before the
nutritional intervention, see the Supplementary Materials, Figure S1.
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Figure 3. Beta diversity analysis between T1, T2, and T3. Beta diversity was investigated using
Bray–Curtis distance and represented by principal coordinates analysis (PCoA). Statistical differences
between the three groups (T1 and T2, as control groups, and T3 after diet) were assessed by Permuta-
tional Multivariate Analysis of Variance (PERMANOVA) test (p > 0.05). Different shapes represent
different time points while varying colors are associated with the various studied samples.

The graph in Figure 3, which represents the two principal components on the x and y
axis, highlights that the two points, T1 and T2 (circle and square, respectively), overlap for
each sample, indicating no variation in the microbiota. Interestingly, looking at the PCoA
representation of the beta diversity at T3, following the nutritional intervention (square
point), a spatial shift in the microbial diversity can be observed, highlighting the effective
impact of the personalized plan on the gut microbiome of different participants.

Statistical differences between the three groups (T1 and T2, as control groups, and T3
after diet) were assessed by permutational multivariate analysis of variance (PERMANOVA)
test (see Supplementary Table S1), which relies on a distribution of data so that the only
way to characterize the distribution is to have multiple samples. In this context, we can
only graphically compare two points belonging to the same individual with a different
spatial distribution (depending on unique or shared microbial features).

3.5.2. Evaluation of the Changes in Composition after the Nutritional Intervention

To provide a quantitative evaluation of the changes induced in the gut composition
by the nutritional intervention, we evaluated several variables related to diversity and
microbial abundance. The results are reported in Table 6.
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Table 6. Changes in diversity and microbial abundance in response to intervention. This table
presents the mean values (TCTRL and TDIET) and statistical analysis results for several variables related
to diversity and microbial abundance in terms of both phylum and species, for which only those
exhibiting statistically significant variations were included. The t-statistics, trend, and FDR-corrected
p-values are provided to examine the changes observed between the two time points. (*) stands for
p-value ≤ 0.05; (◦) stands for p-value ≤ 0.1.

Group Variable TCTRL Mean ± SD TDIET Mean ± SD t-Statistics Trend p-Value

Diversity
Richness 409.7 ± 44.8 528.1 ± 110.9 −4.355 Increase 0.05 (*)

Pielou’s evenness 0.627 ± 0.026 0.634 ± 0.029 −0.626 Increase 0.55
Shannon diversity 3.76 ± 0.12 3.96 ± 0.11 −3.396 Increase 0.05 (*)

Phyla

Firmicutes 0.54 ± 0.14 0.60 ± 0.15 −1.895 Increase 0.11
Bacteroidetes 0.27 ± 0.20 0.21 ± 0.19 0.837 Decrease 0.43
Proteobacteria 0.08 ± 0.14 0.06 ± 0.05 0.682 Decrease 0.52
Actinobacteria 0.07 ± 0.10 0.08 ± 0.07 −0.283 Increase 0.79

Verrucomicrobia 0.02 ± 0.04 0.04 ± 0.05 −0.896 Increase 0.40

Species

Acinetobacter junii (1.2 ± 1.6) × 10−5 (2.8 ± 2.0) × 10−5 −2.525 Increase 0.05 (*)
Alistipes finegoldii (2.9 ± 3.1) × 10−4 (1.3 ± 2.0) × 10−4 2.662 Decrease 0.05 (*)
Alistipes finegoldii

DSM 17242 (2.4 ± 4.5) × 10−6 (6.9 ± 6.8) × 10−6 −2.602 Increase 0.05 (*)

Bacteroides plebeius (5.6 ± 5.5) × 10−5 (6.9 ± 6.8) × 10−5 3.046 Decrease 0.05 (*)
Klebsiella sp. 0.0 ± 0.0 (1.5 ± 1.7) × 10−5 −2.367 Increase 0.05 (*)

Klebsiella sp. 8.1T 0.0 ± 0.0 (1.2 ± 1.3) × 10−5 −2.482 Increase 0.05 (*)
Klebsiella sp.

XW111 (7.6 ± 2.0) × 10−7 (7.8 ± 7.7) × 10−5 −2.651 Increase 0.05 (*)

Klebsiella sp. YSI6A 0.0 ± 0.0 (2.9 ± 3.2) × 10−5 −2.445 Increase 0.05 (*)
Klebsiella variicola 0.0 ± 0.0 (8.7 ± 9.9) × 10−5 −2.318 Increase 0.06 (◦)

Lachnospiraceae
bacterium DJF RP14 (2.7 ± 5.7) × 10−4 (3.9 ± 6.2) × 10−4 −2.407 Increase 0.05 (*)

Lachnospiraceae
bacterium DJF

VP18k1
(1.5 ± 1.8) × 10−4 (3.6 ± 3.2) × 10−4 −2.768 Increase 0.05 (*)

Lactobacillus
crispatus (4.2 ± 3.1) × 10−5 (1.7 ± 1.6) × 10−4 −2.467 Increase 0.05 (*)

Roseburia faecis (1.2 ± 1.2) × 10−4 (2.0 ± 3.4) × 10−5 2.587 Decrease 0.05 (*)
Roseburia sp.

11SE39 (1.5 ± 1.4) × 10−4 (2.1 ± 3.3) × 10−4 2.748 Decrease 0.05 (*)

Bacterium
NLAE–zl–P167 (1.2 ± 1.2) × 10−5 (1.6 ± 4.1) × 10−6 2.468 Decrease 0.05 (*)

Butyrate–producing
bacterium

PH07BW10
(2.5 ± 2.6) × 10−3 (1.3 ± 2.0) × 10−3 2.385 Decrease 0.05 (*)

Butyrate–producing
bacterium SR1/5 (4.0 ± 3.8) × 10−4 (8.7 ± 5.9) × 10−4 −2.597 Increase 0.05 (*)

Table 6 displays the results of the analysis conducted on various microbiome pa-
rameters, including diversity, phyla, and species. Specifically, all the results for diversity
and phyla were presented in the table, whereas for species, we only included those that
exhibited statistically significant variations.

Richness, Pielou’s evenness, and Shannon diversity indicated different aspects of the
microbial community structure, overall reflecting the gut microbiome diversity. Regarding
richness, a significant increase was observed (p-value = 0.05), suggesting that the number
of unique microbial species or taxa present in the gut increased from 409.7 ± 44.8 at
TCTRL to 528.1 ± 110.9 at TDIET, following the nutritional intervention. Pielou’s evenness,
instead, referred to the distribution of microbial abundances, indicating how evenly the
different species are represented. Although there was a slight increase in this parameter,
rising from 0.627 ± 0.026 to 0.634 ± 0.029 between TCTRL and TDIET, this change was not
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statistically significant. The last parameter, Shannon diversity, took into account both the
number of species and their evenness in the community, so a higher value indicates a more
diverse and balanced microbial ecosystem. In this case, we observed a significant increase
(p-value = 0.05) following the administration of the personalized diet plan, from 3.76 ± 0.12
at TCTRL to 3.96 ± 0.11 at TDIET. Overall, the results suggest that the intervention had a
notable impact on the gut microbiome diversity, especially highlighting a greater number
of unique species and a more diverse microbial community.

The second part of the table provided information on the relative abundance of
different bacterial phyla in the gut microbiome and their corresponding statistical analysis
results. In this case, we observed an increase in the relative abundance of Firmicutes (from
0.54 ± 0.14 at TCTRL to 0.60 ± 0.15 at TDIET), Actinobacteria (from 0.07 ± 0.10 at TCTRL to
0.08 ± 0.07 at TDIET), and Verrucomicrobia (from 0.02 ± 0.04 at TCTRL to 0.04 ± 0.05 at
TDIET), and a contextual decrease in the fraction of Bacteroidetes, passing from 0.27 ± 0.20
at TCTRL to 0.21 ± 0.19 at TDIET, and Proteobacteria, with starting value of 0.08 ± 0.14 and
final value of 0.06 ± 0.05 [54]. However, despite these variations, no significant changes
were retrieved.

For this reason, we studied more in-depth, up to the level of bacterial species. The
results are reported in the third part of the table. Acinetobacter junii showed a significant
increase in abundance (p-value = 0.05), while Alistipes finegoldii exhibited a decrease in
abundance (p-value = 0.05), indicating a significant reduction in its presence within the gut
microbiome. Similarly, Alistipes finegoldii DSM 17242 showed a significant increase with a
p-value of 0.05 (*), suggesting that this specific strain has become more abundant. Bacteroides
plebeius displayed a decrease from (5.6 ± 5.5) × 10−5 at TCTRL to (6.9 ± 6.8) × 10−5 at
TDIET (p-value = 0.05), indicating a significant reduction in its presence within the gut
microbiome. Klebsiella sp. and its various strains, including Klebsiella sp. 8.1T, Klebsiella
sp. XW111, Klebsiella sp. YSI6A and Klebsiella variicola all exhibited significant increases in
abundance. The p-values ranged from 0.05 to 0.06, suggesting that these Klebsiella species
have become more abundant within the gut microbiome. Similarly, Lachnospiraceae bacterium
DJF RP14 and Lachnospiraceae bacterium DJF VP18k1 both showed significant increases in
abundance, with values passing from (2.7 ± 5.7) × 10−4 and (1.5 ± 1.8) × 10−4 at TCTRL to
(3.9 ± 6.2) × 10−4 and (3.6 ± 3.2) × 10−4 at TDIET (p-values of 0.05 and 0.03), respectively,
together with Lactobacillus crispatus, which significantly increases from (4.2 ± 3.1) × 10−5

to (1.7 ± 1.6) × 10−4, following the nutritional intervention (p-value = 0.05). Conversely,
Roseburia faecis, Roseburia sp. 11SE39, bacterium NLAE–zl–P167, Butyrate-producing
bacterium PH07BW10, and Butyrate-producing bacterium SR1/5 all displayed significant
decreases in abundance. The p-values indicate a significant reduction in the presence of
these bacterial species within the gut microbiome.

4. Discussion

The present study employed a precision nutrition approach that incorporated a com-
prehensive analysis of participants’ genetic profiles, microbiome composition, and various
physiological parameters to develop personalized dietary plans. The results demonstrated
the efficacy of this approach in optimizing health characteristics and promoting a favorable
microbial ecosystem. Indeed, the findings revealed significant changes in food intake,
nutrient intake, anthropometric parameters, physiological parameters, and gut microbiome
composition after the implementation of the personalized dietary intervention.

A first performed qualitative analysis showed consistent changes in food intake with
an emphasis on increasing vegetables, legumes, and fresh fruit, which are rich in essential
nutrients and dietary fiber. Omega-3 fatty acids from sources like fish and flaxseeds, known
for their cardiovascular benefits [55], were also included with a contextual reduction in
processed and refined foods in favor of whole grains and lean proteins. The incorporation
of antioxidant-rich foods like lemon juice, cocoa powder, and green tea highlights the
importance of combating oxidative stress and, together with other findings, supports the
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idea that a balanced and nutrient-rich diet, abundant in plant-based foods and healthy fats,
can positively impact health and well-being [56].

Furthermore, while the summarized results shed light on the general trends and
patterns observed across the study population, a longitudinal analysis allows us to assess
changes within individuals over time. This approach enables us to capture personalized
responses to dietary interventions, considering inter-individual variations (see Supplemen-
tary Materials, Section S3) and potential confounding factors. By employing paired t-tests,
we can statistically compare the microbiome composition, nutrient profiles, and food intake
of the seven individuals before and after dietary modifications, assessing changes longitu-
dinally on each patient and using the individual’s baseline microbiota composition as the
reference point, ultimately providing a more accurate assessment of the impact on their
specific microbial ecosystem. This approach also enabled us to overcome the limitation
related to the small number of subjects involved in our study.

The analysis of anthropometric parameters revealed positive trends towards improved
body composition, with a significant reduction in BMI, suggesting weight loss. Moreover,
there was a decrease in body fat and bone mass percentages, along with an increase in
muscle mass and water percentage, indicating that the personalized dietary intervention
may have contributed to favorable changes in participants’ body composition [57].

This positive trend is also confirmed by the observations in terms of physiological
parameters, where a significant decrease in resting heart rate (RHR), generally associated
with better cardiovascular health and fitness [58,59], is highlighted. Although no significant
changes were observed in average heart rate, deep sleep, or REM sleep duration, there was
a significant decrease in the duration of shallow sleep, suggesting that the personalized
dietary intervention may have had a positive impact on cardiovascular health and sleep
quality [60].

Interestingly, the evaluation of gut microbiome parameters revealed significant changes
in diversity and species abundance, highlighting a significant increase in the number of
unique microbial species (richness) and overall microbial diversity (Shannon diversity),
which are representative of a more diverse and balanced microbial ecosystem. The im-
portance of microbial diversity has been extensively studied in the field of microbiome
research, with numerous scientific studies highlighting its significant role in maintaining
various aspects of human health, including gut barrier function [61,62], immune system
regulation [63,64], nutrient metabolism [65], mental health and brain function [66,67], and
disease prevention [30].

Thanks to our in-depth analysis, we were able to monitor changes in the gut micro-
biome at the level of microbial species. In particular, in our study, we identified several
microbes that exhibited significant changes in abundance following the dietary interven-
tion, including Acinetobacter junii, which, according to recent studies, is involved in the
metabolism of fats [68]. The observed higher consumption of high-fat foods, including ice
cream, Parmesan cheese, and oily fish, can thus explain the correlation with diet. Similarly,
Alistipes finegoldii DSM 17242, a bile-tolerant bacteria constituting a biomarker of the healthy
gut [69], which is mostly associated with high-fat diets, showed a significant increase fol-
lowing the nutritional intervention, possibly being associated with the higher intake of
Parmesan and oily fishes that, besides being high-fat foods, also elicit bile release [70,71].

It is worth noting that the observed significant increase in various Klebsiella species,
such as Klebsiella sp. 8.1T, sp. XW111, sp. YSI6A, and Klebsiella variicola add an intriguing
aspect to the discussion. The genus Klebsiella belongs to the family Enterobacteriaceae and
can survive for extended periods in diverse environments, including dust, water, and
animal or poultry feces [72,73]. This information raises the possibility that the higher
consumption of fruits, vegetables, and fish in the Mediterranean diet model, which may be
contaminated by water or soil, could contribute to the proliferation of Klebsiella species
within the gut microbiome.

Furthermore, the observed increase in certain bacterial taxa, specifically Lachnospiraceae
and Lachnobacterium, in response to the dietary intervention provides valuable insights
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into their potential metabolic roles and associations with specific food components. Lach-
nospiraceae are known for their involvement in carbohydrate catabolic pathways leading to
the production of acetate and butyrate, as well as metabolic pathways of aromatic amino
acids resulting in the release of beneficial compounds like indole-propionic acid, indole,
phenol, and p-cresol. Previous studies have reported an increase in Lachnospiraceae abun-
dances following a diet supplemented with omega-3 polyunsaturated fatty acids (PUFA),
such as those found in oily fishes [74]. Additionally, the presence of Lachnobacterium, which
has been positively associated with animal-derived nutrients and negatively correlated
with vegetable-based diet patterns [75], suggests a potential connection to the consumption
of animal-derived foods, including ice creams (often high in saturated fats due to the
presence of milk), Parmesan cheese, and fish.

The higher intake of omega-3 and animal-derived foods can also be related to the
observed decrease in the abundance of Bacteroides Plebeius and Roseburia species.

Bacteroides plebeius, known for its involvement in the metabolism of glycosaminogly-
cans, particularly dermatan sulfate (DS) and heparan sulfate (HS) degradation, has been
linked to dysbiosis-associated rheumatoid arthritis [76] and, interestingly, a negative corre-
lation between Bacteroides plebeius and omega-3 enriched diets was observed, which aligns
with the anti-inflammatory properties of oily fish that can counteract the inflammation
induced by this bacterium. Additionally, a low-carbohydrate diet has been shown to inhibit
its growth [77].

Another bacterial species, Roseburia faecis, which plays a vital role in the breakdown
of dietary polysaccharides to produce SCFAs like butyrate, shows a negative correlation
with diets rich in animal proteins (such as oily fish, cheese, and ice cream) and low in
carbohydrates [78]. The lack of suitable substrates in these foods, mainly carbohydrates
and dietary fibers, is likely responsible for the negative correlation observed. Furthermore,
Roseburia faecis thrives on fermenting sugars like fructose, glucose, maltose, cellobiose,
raffinose, xylose, sorbitol, melibiose, amylopectin, and starch, while lactose (glucose +
galactose), the primary sugar in milk, is not among its preferred fermentable sugars [79].
The Mediterranean diet, associated with the increased intestinal presence of Roseburia spp.,
has been found to promote the growth of this beneficial bacterial species [80]. Another
species, Roseburia sp. 11SE39 also demonstrates a similar pattern. It is negatively correlated
with diets high in animal protein and low in carbohydrates, which is consistent with the
trend observed in our participants. This further supports the notion that diets rich in
animal-derived foods like oily fish, cheese, and ice cream, which are abundant in animal
fats and proteins and low in carbohydrates, can hinder the growth of this specific taxa, also
emphasizing the influence of dietary composition on the abundance and activity of specific
microbial species within the gut microbiota.

Another interesting observation was related to the presence and abundance of Lac-
tobacillus crispatus, a dominant species in the cervicovaginal microbiome of Caucasian
women, which has already been shown to be influenced by dietary factors. Specifically,
studies have found that milk and dairy consumption promote a higher relative abundance
of Lactobacillus crispatus in the vaginal microbiota due to its carbohydrate metabolism,
particularly glycogen utilization in the vaginal environment [81]. Although this finding
pertains to the mucosal environment of the vagina, it is worth noting that oral supple-
mentation of L. crispatus may involve passage through the gut before reaching the final
destination, thus allowing its detection in fecal samples (albeit transiently). Interestingly,
a study proposed the concept of a probiotic cheese-based formula containing L. crispatus
as a potential “gender probiotic food” for preventing gynecological infections [82]. This
connection between increased intake of ice cream and Parmesan cheese and L. crispatus
suggests a potential match with the literature. However, further investigation, including
sex-based statistical correlations, could provide a better understanding of the relationship
between L. crispatus and dietary factors.

The Butyrate–producing bacterium SR1/5 is involved in carbohydrate metabolism, par-
ticularly the utilization of dietary fibers. Butyrate-producing bacteria are found in various
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classes within the Firmicutes phylum [69]. Butyrate, a short-chain fatty acid, is formed
from sugar molecules through a series of reactions, ultimately leading to the liberation of
butyrate from Butyryl-CoA. While the specific pathways utilized by SR1/5 are not well
characterized, the majority of known butyrate-producing gut strains employ the butyryl-
CoA:acetate CoA-transferase pathway [83]. In the context of the significant increase in
Parmesan cheese, ice creams, and oily fish, it is essential to consider the sugar content in
milk-derived products such as cheese and ice cream, as well as the biochemical pathways
present in Firmicutes that facilitate the conversion of carbohydrates to butyrate. This
connection between the Butyrate–producing bacterium SR1/5 and the observed increase in
milk-based foods provides a plausible link, suggesting that the consumption of these foods
may influence the abundance or activity of SR1/5 in the gut.

The integration of microbiome and host-microbial metabolome analyses promises
to illuminate the intricate metabolic interplay between the gut microbiota and the host
in both health and disease. However, the elusive definition of a “healthy core gut micro-
biota gold standard” remains an ongoing challenge. While recognizing the absence of
a universally accepted definition of a healthy microbial community structure, our study
primarily aimed to comprehend the impact of dietary interventions on participants’ gut
microbiota and their potential repercussions on overall health. Our approach to identi-
fying beneficial and detrimental bacteria draws on established literature and empirical
observations, considering broader taxonomic categories as indicators of potential microbial
imbalances with functional significance. Rather than assuming that individual species or
genus-level taxa would singularly transform microbiome function, we leveraged existing
research to pinpoint specific bacterial taxa or patterns linked to various health outcomes
or microbial community imbalances. These dietary recommendations targeted observed
imbalances, striving to foster a more favorable gut microbial ecosystem. Furthermore, it
is noteworthy that our study revealed substantial improvements in various physiological
and anthropometric parameters, such as resting heart rate and BMI. These findings align
with well-documented indicators of enhanced health status, underscoring the potential
advantages of our dietary interventions for overall well-being.

In essence, our study seeks to deepen the comprehension of the intricate interplay
between diet, gut microbiota, and host health. We aim to establish correlations between
dietary interventions and changes in the microbiota and host responses, contributing to a
broader understanding of personalized nutrition’s potential impact on health.

Nonetheless, achieving consensus in this realm remains challenging, especially given
the substantial variation influenced by factors such as individual demographics, ethnic-
ity, sex, lifestyle, diet, and age [84]. Gut bacteria release bioactive metabolites into the
bloodstream, and advanced analytical tools like mass spectrometry and nuclear magnetic
resonance enable the identification of disease-associated metabolites in various biologi-
cal samples. This facilitates cooperative analyses of the microbiome, metabolome, and
host phenotypes to unveil potential mechanistic links between the human and microbial
ecosystems [85]. Future advances in microbiome-wide association studies, supported by
bioinformatic algorithms and correlation coefficients, will enable further categorization of
microbial genes into specific groups, such as metagenomic linkage groups, metagenomic
species, co-abundance gene groups, or metagenomic species pan-genomes [86]. The re-
sulting microbial gene catalog represents a rich data source to establish associations and
predictions regarding health or disease status, leveraging the power of advanced machine
learning technologies.

5. Conclusions

In conclusion, the study utilized a precision nutrition approach, integrating genetic
profiles, microbiome composition, and physiological parameters to create personalized
dietary plans. The proposed digitalized approach offers cost advantages through efficiency,
scalability, and data analysis, as well as the benefits of personalization, real-time monitoring,
continuous support, and behavior change, making it more advantageous compared to
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traditional methods. Its potential to revolutionize personalized nutrition interventions,
offering individuals a more engaging, effective, and accessible way to optimize their dietary
choices and overall health, combined with the obtained findings, highlights the importance
of personalized nutrition in optimizing health and well-being, as well as the role of the gut
microbiome in dietary interventions. Although these interesting results pave the way for
the integration of nutritional approaches in the modulation of gut health, further research
is needed to understand the underlying mechanisms and long-term implications.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nu15183931/s1, Section S1: Evaluation of the stability and relia-
bility of the individual’s gut microbiome before the nutritional intervention; Section S2: Personalized
Interventions and Comprehensive Evaluations for Individualized Health Optimization. Section S3:
Evaluation of the inter-individual variations. Figure S1. Beta diversity analysis between T1 and
T2. Beta diversity was investigated using Bray–Curtis distance and represented by Principal coordi-
nates analysis (PCoA). Statistical differences between the two groups (T1 and T2) were assessed by
Permutational Multivariate Analysis of Variance (PERMANOVA) test (p > 0.05). Different shapes
represent different time points, while different colors are associated with the various studied samples;
Figure S2. Relative abundance at genus level. Relative abundance at genus level was investigated on
the 20 most representative genera. Each line links samples belonging to the same individual, whereas
box plot chart is representative of the median and 25th and 75th percentiles (TCTRL: dark green, TDIET:
dark red). Statistical differences were inferred using Wilcoxon test for paired samples followed by
Bonferroni’s correction. Table S1. Results of the PERMANOVA test on beta-diversity before and after
the nutritional intervention. This table presents the results of R2 and p-value of the Permutational
Multivariate Analysis of Variance (PERMANOVA) test performed on T1, T2, and T3, respectively,
to evaluate the stability of the microbial composition before the nutritional intervention. Table S2.
Personalized intervention and evaluations for different subjects. This table provides an overview of
individual subjects along with their age, physiological evaluation, genome evaluation, microbiome
evaluation, and principal intervention. The subjects’ energy requirements, specific sensitivities,
genetic predispositions, and microbiome composition are highlighted. Personalized interventions,
including dietary modifications and supplementation recommendations, are tailored based on each
subject’s characteristics. The interventions aim to address imbalances in the microbiome, optimize
nutrient intake, and promote overall health and well-being.

Author Contributions: Conceptualization, F.D.M. and G.M.; Data curation, G.B., F.D.M., G.S., R.M.
and S.B.; Formal analysis, G.B., F.D.M., G.S., R.M. and S.B.; Funding acquisition, G.M.; Investigation,
G.B., F.D.M., G.S., R.M. and S.B.; Methodology, G.B., F.D.M. and G.M.; Project administration, F.D.M.
and G.M.; Resources, F.D.M., R.M., S.B. and G.M.; Software, G.B., A.A., C.S. and A.R.; Supervision,
F.D.M., G.D. and G.M.; Validation, G.B., F.D.M., G.D., R.M. and S.B.; Visualization, G.B., F.D.M., A.A.,
C.S., A.R., G.S., M.S., G.D., R.M., S.B., M.D.S. and G.M.; Writing—original draft, G.B.; Writing—review
& editing, G.B., F.D.M., G.D., R.M., S.B. and G.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was supported in part by a research grant awarded to GM from Regione Lazio
PO FSE 2014–2020 “Intervento per il rafforzamento della ricerca nel Lazio—incentivi per i dottorati
di innovazione per le imprese”, co-funded by RAN Innovation, and by a research grant awarded to
GM by Università Cattolica del Sacro Cuore-Linea D1, R4124500391, 2021.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of Policlinico Universitario “A. Gemelli” IRCCS
(ID:5407—Prot. 2336/23).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patients to publish this paper.

Data Availability Statement: Data are available upon request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/nu15183931/s1
https://www.mdpi.com/article/10.3390/nu15183931/s1


Nutrients 2023, 15, 3931 21 of 24

References
1. Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016,

14, e1002533. [CrossRef]
2. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A

Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature 2010, 464, 59–65. [CrossRef]
3. Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 2012, 489, 242–249.

[CrossRef]
4. O’Toole, P.W.; Jeffery, I.B. Gut Microbiota and Aging. Science 2015, 350, 1214–1215. [CrossRef]
5. Sonnenburg, J.L.; Bäckhed, F. Diet-Microbiota Interactions as Moderators of Human Metabolism. Nature 2016, 535, 56–64.

[CrossRef]
6. David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.;

Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [CrossRef]
[PubMed]

7. Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.;
et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science 2011, 334, 105–108. [CrossRef]

8. O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.;
Cryan, J.F. Short Chain Fatty Acids: Microbial Metabolites for Gut-Brain Axis Signalling. Mol. Cell. Endocrinol. 2022, 546, 111572.
[CrossRef]

9. Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A.
Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [CrossRef]
[PubMed]

10. Liu, B.-N.; Liu, X.-T.; Liang, Z.-H.; Wang, J.-H. Gut Microbiota in Obesity. World J. Gastroenterol. 2021, 27, 3837–3850. [CrossRef]
[PubMed]

11. Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of Gut Microbiota in Type 2 Diabetes
Pathophysiology. EBioMedicine 2020, 51, 102590. [CrossRef]

12. Matsuoka, K.; Kanai, T. The Gut Microbiota and Inflammatory Bowel Disease. Semin. Immunopathol. 2015, 37, 47–55. [CrossRef]
13. Altamirano-Barrera, A.; Uribe, M.; Chávez-Tapia, N.C.; Nuño-Lámbarri, N. The Role of the Gut Microbiota in the Pathology and

Prevention of Liver Disease. J. Nutr. Biochem. 2018, 60, 1–8. [CrossRef] [PubMed]
14. Cunningham, M.; Azcarate-Peril, M.A.; Barnard, A.; Benoit, V.; Grimaldi, R.; Guyonnet, D.; Holscher, H.D.; Hunter, K.;

Manurung, S.; Obis, D.; et al. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol. 2021, 29, 667–685. [CrossRef]
[PubMed]

15. Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [CrossRef]
16. Martín, R.; Langella, P. Emerging Health Concepts in the Probiotics Field: Streamlining the Definitions. Front. Microbiol. 2019,

10, 1047. [CrossRef]
17. Zhang, X.; Li, L.; Butcher, J.; Stintzi, A.; Figeys, D. Advancing Functional and Translational Microbiome Research Using

Meta-Omics Approaches. Microbiome 2019, 7, 154. [CrossRef] [PubMed]
18. Daliri, E.B.-M.; Ofosu, F.K.; Chelliah, R.; Lee, B.H.; Oh, D.-H. Health Impact and Therapeutic Manipulation of the Gut Microbiome.

High Throughput 2020, 9, 17. [CrossRef] [PubMed]
19. Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.;

Personalized Microbiome Class Students; et al. Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans.
Cell Host. Microbe. 2019, 25, 789–802.e5. [CrossRef]

20. Livingstone, K.M.; Ramos-Lopez, O.; Pérusse, L.; Kato, H.; Ordovas, J.M.; Martínez, J.A. Precision Nutrition: A Review of Current
Approaches and Future Endeavors. Trends Food Sci. Technol. 2022, 128, 253–264. [CrossRef]

21. Walther, B.; Lett, A.M.; Bordoni, A.; Tomás-Cobos, L.; Nieto, J.A.; Dupont, D.; Danesi, F.; Shahar, D.R.; Echaniz, A.; Re, R.; et al.
GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Mol. Nutr.
Food Res. 2019, 63, 1900677. [CrossRef]

22. Nogal, B.; Blumberg, J.B.; Blander, G.; Jorge, M. Gut Microbiota–Informed Precision Nutrition in the Generally Healthy Individual:
Are We There Yet? Curr. Dev. Nutr. 2021, 5, nzab107. [CrossRef] [PubMed]

23. Johnson, A.J.; Zheng, J.J.; Kang, J.W.; Saboe, A.; Knights, D.; Zivkovic, A.M. A Guide to Diet-Microbiome Study Design. Front.
Nutr. 2020, 7, 79. [CrossRef] [PubMed]

24. Kuhnle, G.G.C. Nutritional Biomarkers for Objective Dietary Assessment. J. Sci. Food Agric. 2012, 92, 1145–1149. [CrossRef]
[PubMed]

25. Shim, J.-S.; Oh, K.; Kim, H.C. Dietary Assessment Methods in Epidemiologic Studies. Epidemiol. Health 2014, 36, e2014009.
[CrossRef]

26. Barabási, A.-L.; Menichetti, G.; Loscalzo, J. The Unmapped Chemical Complexity of Our Diet. Nat. Food 2020, 1, 33–37. [CrossRef]
27. Bianchetti, G.; Taralli, S.; Vaccaro, M.; Indovina, L.; Mattoli, M.V.; Capotosti, A.; Scolozzi, V.; Calcagni, M.L.; Giordano, A.;

De Spirito, M.; et al. Automated Detection and Classification of Tumor Histotypes on Dynamic PET Imaging Data through
Machine-Learning Driven Voxel Classification. Comput. Biol. Med. 2022, 145, 105423. [CrossRef]

https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.1038/nature08821
https://doi.org/10.1038/nature11552
https://doi.org/10.1126/science.aac8469
https://doi.org/10.1038/nature18846
https://doi.org/10.1038/nature12820
https://www.ncbi.nlm.nih.gov/pubmed/24336217
https://doi.org/10.1126/science.1208344
https://doi.org/10.1016/j.mce.2022.111572
https://doi.org/10.3390/ijms23031105
https://www.ncbi.nlm.nih.gov/pubmed/35163038
https://doi.org/10.3748/wjg.v27.i25.3837
https://www.ncbi.nlm.nih.gov/pubmed/34321848
https://doi.org/10.1016/j.ebiom.2019.11.051
https://doi.org/10.1007/s00281-014-0454-4
https://doi.org/10.1016/j.jnutbio.2018.03.006
https://www.ncbi.nlm.nih.gov/pubmed/29653359
https://doi.org/10.1016/j.tim.2021.01.003
https://www.ncbi.nlm.nih.gov/pubmed/33551269
https://doi.org/10.3390/nu5041417
https://doi.org/10.3389/fmicb.2019.01047
https://doi.org/10.1186/s40168-019-0767-6
https://www.ncbi.nlm.nih.gov/pubmed/31810497
https://doi.org/10.3390/ht9030017
https://www.ncbi.nlm.nih.gov/pubmed/32751130
https://doi.org/10.1016/j.chom.2019.05.005
https://doi.org/10.1016/j.tifs.2022.08.017
https://doi.org/10.1002/mnfr.201900677
https://doi.org/10.1093/cdn/nzab107
https://www.ncbi.nlm.nih.gov/pubmed/34514287
https://doi.org/10.3389/fnut.2020.00079
https://www.ncbi.nlm.nih.gov/pubmed/32596250
https://doi.org/10.1002/jsfa.5631
https://www.ncbi.nlm.nih.gov/pubmed/22351524
https://doi.org/10.4178/epih/e2014009
https://doi.org/10.1038/s43016-019-0005-1
https://doi.org/10.1016/j.compbiomed.2022.105423


Nutrients 2023, 15, 3931 22 of 24

28. Bianchetti, G.; Di Giacinto, F.; De Spirito, M.; Maulucci, G. Machine-Learning Assisted Confocal Imaging of Intracellular Sites of
Triglycerides and Cholesteryl Esters Formation and Storage. Anal. Chim. Acta 2020, 1121, 57–66. [CrossRef]

29. Mancin, L.; Rollo, I.; Mota, J.F.; Piccini, F.; Carletti, M.; Susto, G.A.; Valle, G.; Paoli, A. Optimizing Microbiota Profiles for Athletes.
Exerc. Sport Sci. Rev. 2021, 49, 42. [CrossRef]

30. Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the Gut Microbiota in Nutrition and Health. BMJ 2018, 361, k2179.
[CrossRef]

31. Leeming, E.R.; Johnson, A.J.; Spector, T.D.; Le Roy, C.I. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration.
Nutrients 2019, 11, 2862. [CrossRef] [PubMed]

32. Ramos Meyers, G.; Samouda, H.; Bohn, T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic
Variability. Nutrients 2022, 14, 5361. [CrossRef]

33. Martín-Hernández, R.; Reglero, G.; Ordovás, J.M.; Dávalos, A. NutriGenomeDB: A Nutrigenomics Exploratory and Analytical
Platform. Database 2019, 2019, baz097. [CrossRef]

34. Posteraro, P.; De Maio, F.; Menchinelli, G.; Palucci, I.; Errico, F.M.; Carbone, M.; Sanguinetti, M.; Gasbarrini, A.; Posteraro, B. First
Bloodstream Infection Caused by Prevotella Copri in a Heart Failure Elderly Patient with Prevotella-Dominated Gut Microbiota:
A Case Report. Gut. Pathog. 2019, 11, 44. [CrossRef]

35. De Maio, F.; Ianiro, G.; Coppola, G.; Santopaolo, F.; Abbate, V.; Bianco, D.M.; Del Zompo, F.; De Matteis, G.; Leo, M.; Nesci, A.; et al.
Improved Gut Microbiota Features after the Resolution of SARS-CoV-2 Infection. Gut. Pathog. 2021, 13, 62. [CrossRef] [PubMed]

36. De Maio, F.; Boru, C.E.; Avallone, M.; Velotti, N.; Bianco, D.M.; Capoccia, D.; Greco, F.; Guarisco, G.; Nogara, M.; Sanguinetti,
M.; et al. Characterization of Gut Microbiota in Patients with Metabolic Syndrome Candidates for Bariatric/Metabolic Surgery:
Preliminary Findings of a Multi-Center Prospective Study. Diabetes Res. Clin. Pract. 2021, 180, 109079. [CrossRef]

37. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. Available online:
https://pubmed.ncbi.nlm.nih.gov/23630581/ (accessed on 15 June 2023).

38. World Health Organization (Ed.) Promoting a Healthy Diet for the WHO Eastern Mediterranean Region: User-Friendly Guide; World
Health Organization, Regional Office for the Eastern Mediterranean: Cairo, Egypt, 2012; ISBN 978-92-9021-834-0.

39. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Establishing Food-Based Dietary
Guidelines. EFS2 2010, 8, 1460. [CrossRef]

40. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.;
Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336.
[CrossRef]

41. Milani, C.; Hevia, A.; Foroni, E.; Duranti, S.; Turroni, F.; Lugli, G.A.; Sanchez, B.; Martín, R.; Gueimonde, M.; van Sinderen, D.; et al.
Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S RRNA Gene-Based Analysis Protocol. PLoS ONE 2013,
8, e68739. [CrossRef] [PubMed]

42. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference
from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [CrossRef]

43. Glöckner, F.O.; Yilmaz, P.; Quast, C.; Gerken, J.; Beccati, A.; Ciuprina, A.; Bruns, G.; Yarza, P.; Peplies, J.; Westram, R.; et al. 25
Years of Serving the Community with Ribosomal RNA Gene Reference Databases and Tools. J. Biotechnol. 2017, 261, 169–176.
[CrossRef] [PubMed]

44. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol.
2019, 37, 852–857. [CrossRef]

45. Bianchetti, G.; Abeltino, A.; Serantoni, C.; Ardito, F.; Malta, D.; De Spirito, M.; Maulucci, G. Personalized Self-Monitoring of
Energy Balance through Integration in a Web-Application of Dietary, Anthropometric, and Physical Activity Data. J. Pers. Med.
2022, 12, 568. [CrossRef] [PubMed]

46. Abeltino, A.; Bianchetti, G.; Serantoni, C.; Ardito, C.F.; Malta, D.; De Spirito, M.; Maulucci, G. Personalized Metabolic Avatar: A
Data Driven Model of Metabolism for Weight Variation Forecasting and Diet Plan Evaluation. Nutrients 2022, 14, 3520. [CrossRef]

47. Abeltino, A.; Bianchetti, G.; Serantoni, C.; Riente, A.; De Spirito, M.; Maulucci, G. Putting the Personalized Metabolic Avatar
into Production: A Comparison between Deep-Learning and Statistical Models for Weight Prediction. Nutrients 2023, 15, 1199.
[CrossRef]

48. Food and Agriculture Organization of the United Nations. FAO/WHO Global Individual Food Consumption Data Tool (GIFT):
Methodological Document; FAO: Rome, Italy, 2022.

49. Pu, F.; Chen, N.; Xue, S. Calcium Intake, Calcium Homeostasis and Health. Food Sci. Hum. Wellness 2016, 5, 8–16. [CrossRef]
50. Stone, M.S.; Martyn, L.; Weaver, C.M. Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients 2016,

8, 444. [CrossRef] [PubMed]
51. Serna, J.; Bergwitz, C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020, 12, 3001.

[CrossRef]
52. Farquhar, W.B.; Edwards, D.G.; Jurkovitz, C.T.; Weintraub, W.S. Dietary Sodium and Health: More Than Just Blood Pressure.

J. Am. Coll. Cardiol. 2015, 65, 1042–1050. [CrossRef]
53. Prasad, A.S. Zinc in Human Health: Effect of Zinc on Immune Cells. Mol. Med. 2008, 14, 353–357. [CrossRef]

https://doi.org/10.1016/j.aca.2020.04.076
https://doi.org/10.1249/JES.0000000000000236
https://doi.org/10.1136/bmj.k2179
https://doi.org/10.3390/nu11122862
https://www.ncbi.nlm.nih.gov/pubmed/31766592
https://doi.org/10.3390/nu14245361
https://doi.org/10.1093/database/baz097
https://doi.org/10.1186/s13099-019-0325-6
https://doi.org/10.1186/s13099-021-00459-9
https://www.ncbi.nlm.nih.gov/pubmed/34656179
https://doi.org/10.1016/j.diabres.2021.109079
https://pubmed.ncbi.nlm.nih.gov/23630581/
https://doi.org/10.2903/j.efsa.2010.1460
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1371/journal.pone.0068739
https://www.ncbi.nlm.nih.gov/pubmed/23869230
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://www.ncbi.nlm.nih.gov/pubmed/28648396
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.3390/jpm12040568
https://www.ncbi.nlm.nih.gov/pubmed/35455683
https://doi.org/10.3390/nu14173520
https://doi.org/10.3390/nu15051199
https://doi.org/10.1016/j.fshw.2016.01.001
https://doi.org/10.3390/nu8070444
https://www.ncbi.nlm.nih.gov/pubmed/27455317
https://doi.org/10.3390/nu12103001
https://doi.org/10.1016/j.jacc.2014.12.039
https://doi.org/10.2119/2008-00033.Prasad


Nutrients 2023, 15, 3931 23 of 24

54. Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio:
A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [CrossRef] [PubMed]

55. Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.;
Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association.
Circulation 2017, 136, e1–e23. [CrossRef] [PubMed]

56. Hever, J.; Cronise, R.J. Plant-Based Nutrition for Healthcare Professionals: Implementing Diet as a Primary Modality in the
Prevention and Treatment of Chronic Disease. J. Geriatr. Cardiol. 2017, 14, 355–368. [CrossRef] [PubMed]

57. Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of
Current Methodology. Nutrients 2021, 13, 2493. [CrossRef]

58. Saxena, A.; Minton, D.; Lee, D.; Sui, X.; Fayad, R.; Lavie, C.J.; Blair, S.N. Protective Role of Resting Heart Rate on All-Cause and
Cardiovascular Disease Mortality. Mayo Clin. Proc. 2013, 88, 1420–1426. [CrossRef] [PubMed]

59. Serantoni, C.; Zimatore, G.; Bianchetti, G.; Abeltino, A.; De Spirito, M.; Maulucci, G. Unsupervised Clustering of Heartbeat
Dynamics Allows for Real Time and Personalized Improvement in Cardiovascular Fitness. Sensors 2022, 22, 3974. [CrossRef]

60. Eugene, A.R.; Masiak, J. The Neuroprotective Aspects of Sleep. MEDtube Sci. 2015, 3, 35–40.
61. Peterson, L.W.; Artis, D. Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nat. Rev. Immunol.

2014, 14, 141–153. [CrossRef]
62. Kostic, A.D.; Gevers, D.; Siljander, H.; Vatanen, T.; Hyötyläinen, T.; Hämäläinen, A.-M.; Peet, A.; Tillmann, V.; Pöhö, P.;

Mattila, I.; et al. The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes.
Cell Host. Microbe. 2015, 17, 260–273. [CrossRef]

63. Torii, A.; Torii, S.; Fujiwara, S.; Tanaka, H.; Inagaki, N.; Nagai, H. Lactobacillus Acidophilus Strain L-92 Regulates the Production
of Th1 Cytokine as Well as Th2 Cytokines. Allergol. Int. 2007, 56, 293–301. [CrossRef]

64. Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [CrossRef]
65. Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions.

Science 2012, 336, 1262–1267. [CrossRef]
66. Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev.

Neurosci. 2012, 13, 701–712. [CrossRef] [PubMed]
67. Sampson, T.R.; Mazmanian, S.K. Control of Brain Development, Function, and Behavior by the Microbiome. Cell. Host. Microbe.

2015, 17, 565–576. [CrossRef]
68. Jiang, S.; Fan, Q.; Zhang, Z.; Deng, Y.; Wang, L.; Dai, Q.; Wang, J.; Lin, M.; Zhou, J.; Long, Z.; et al. Biodegradation of Oil by

a Newly Isolated Strain Acinetobacter Junii WCO-9 and Its Comparative Pan-Genome Analysis. Microorganisms 2023, 11, 407.
[CrossRef] [PubMed]

69. Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.;
Robbertse, B.; et al. NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database 2020, 2020, baaa062.
[CrossRef] [PubMed]

70. Milani, C.; Duranti, S.; Napoli, S.; Alessandri, G.; Mancabelli, L.; Anzalone, R.; Longhi, G.; Viappiani, A.; Mangifesta, M.;
Lugli, G.A.; et al. Colonization of the Human Gut by Bovine Bacteria Present in Parmesan Cheese. Nat. Commun. 2019, 10, 1286.
[CrossRef]

71. Haskey, N.; Estaki, M.; Ye, J.; Shim, R.K.; Singh, S.; Dieleman, L.A.; Jacobson, K.; Gibson, D.L. A Mediterranean Diet Pattern
Improves Intestinal Inflammation Concomitant with Reshaping of the Bacteriome in Ulcerative Colitis: A Randomised Controlled
Trial. J. Crohn’s Colitis 2023, jjad073. [CrossRef]

72. Samanta, I.; Bandyopadhyay, S. Chapter 14—Klebsiella. In Antimicrobial Resistance in Agriculture; Samanta, I., Bandyopadhyay, S.,
Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 153–169. ISBN 978-0-12-815770-1.

73. Dong, N.; Yang, X.; Chan, E.W.-C.; Zhang, R.; Chen, S. Klebsiella Species: Taxonomy, Hypervirulence and Multidrug Resistance.
eBioMedicine 2022, 79, 103998. [CrossRef]

74. Noriega, B.S.; Sanchez-Gonzalez, M.A.; Salyakina, D.; Coffman, J. Understanding the Impact of Omega-3 Rich Diet on the Gut
Microbiota. Case Rep. Med. 2016, 2016, e3089303. [CrossRef]

75. Filippis, F.D.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; Storia, A.L.; Laghi, L.; Serrazanetti, D.I.; Cagno, R.D.; Ferrocino, I.;
Lazzi, C.; et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated
Metabolome. Gut 2016, 65, 1812–1821. [CrossRef] [PubMed]

76. Cheng, M.; Zhao, Y.; Cui, Y.; Zhong, C.; Zha, Y.; Li, S.; Cao, G.; Li, M.; Zhang, L.; Ning, K.; et al. Stage-Specific Roles of Microbial
Dysbiosis and Metabolic Disorders in Rheumatoid Arthritis. Ann. Rheum. Dis. 2022, 81, 1669–1677. [CrossRef] [PubMed]

77. Duncan, S.H.; Belenguer, A.; Holtrop, G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced Dietary Intake of Carbohydrates
by Obese Subjects Results in Decreased Concentrations of Butyrate and Butyrate-Producing Bacteria in Feces. Appl. Environ.
Microbiol. 2007, 73, 1073–1078. [CrossRef] [PubMed]

78. Nie, K.; Ma, K.; Luo, W.; Shen, Z.; Yang, Z.; Xiao, M.; Tong, T.; Yang, Y.; Wang, X. Roseburia Intestinalis: A Beneficial Gut
Organism From the Discoveries in Genus and Species. Front. Cell. Infect. Microbiol. 2021, 11, 757718. [CrossRef]

79. Duncan, S.H.; Aminov, R.I.; Scott, K.P.; Louis, P.; Stanton, T.B.; Flint, H.J. Proposal of Roseburia Faecis Sp. Nov., Roseburia
Hominis Sp. Nov. and Roseburia Inulinivorans Sp. Nov., Based on Isolates from Human Faeces. Int. J. Syst. Evol. Microbiol. 2006,
56, 2437–2441. [CrossRef]

https://doi.org/10.3390/nu12051474
https://www.ncbi.nlm.nih.gov/pubmed/32438689
https://doi.org/10.1161/CIR.0000000000000510
https://www.ncbi.nlm.nih.gov/pubmed/28620111
https://doi.org/10.11909/j.issn.1671-5411.2017.05.012
https://www.ncbi.nlm.nih.gov/pubmed/28630615
https://doi.org/10.3390/nu13082493
https://doi.org/10.1016/j.mayocp.2013.09.011
https://www.ncbi.nlm.nih.gov/pubmed/24290115
https://doi.org/10.3390/s22113974
https://doi.org/10.1038/nri3608
https://doi.org/10.1016/j.chom.2015.01.001
https://doi.org/10.2332/allergolint.O-06-459
https://doi.org/10.1016/j.cell.2014.03.011
https://doi.org/10.1126/science.1223813
https://doi.org/10.1038/nrn3346
https://www.ncbi.nlm.nih.gov/pubmed/22968153
https://doi.org/10.1016/j.chom.2015.04.011
https://doi.org/10.3390/microorganisms11020407
https://www.ncbi.nlm.nih.gov/pubmed/36838372
https://doi.org/10.1093/database/baaa062
https://www.ncbi.nlm.nih.gov/pubmed/32761142
https://doi.org/10.1038/s41467-019-09303-w
https://doi.org/10.1093/ecco-jcc/jjad073
https://doi.org/10.1016/j.ebiom.2022.103998
https://doi.org/10.1155/2016/3089303
https://doi.org/10.1136/gutjnl-2015-309957
https://www.ncbi.nlm.nih.gov/pubmed/26416813
https://doi.org/10.1136/ard-2022-222871
https://www.ncbi.nlm.nih.gov/pubmed/35985811
https://doi.org/10.1128/AEM.02340-06
https://www.ncbi.nlm.nih.gov/pubmed/17189447
https://doi.org/10.3389/fcimb.2021.757718
https://doi.org/10.1099/ijs.0.64098-0


Nutrients 2023, 15, 3931 24 of 24

80. Haro, C.; Montes-Borrego, M.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; Gómez-Delgado, F.; Pérez-Martínez, P.; Delgado-Lista, J.;
Quintana-Navarro, G.M.; Tinahones, F.J.; Landa, B.B.; et al. Two Healthy Diets Modulate Gut Microbial Community Improving
Insulin Sensitivity in a Human Obese Population. J. Clin. Endocrinol. Metab. 2016, 101, 233–242. [CrossRef]

81. Moura, G.B.; Silva, M.G.; Marconi, C. Milk and Dairy Consumption and Its Relationship With Abundance of Lactobacillus
Crispatus in the Vaginal Microbiota: Milk Intake and Vaginal Lactobacillus. J. Low. Genit. Tract. Dis. 2023, 27, 280–285. [CrossRef]

82. Patrignani, F.; Siroli, L.; Parolin, C.; Serrazanetti, D.I.; Vitali, B.; Lanciotti, R. Use of Lactobacillus Crispatus to Produce a Probiotic
Cheese as Potential Gender Food for Preventing Gynaecological Infections. PLoS ONE 2019, 14, e0208906. [CrossRef]

83. Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Links between Diet, Gut Microbiota Composition and Gut Metabolism. Proc. Nutr.
Soc. 2015, 74, 13–22. [CrossRef]

84. Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [CrossRef]
85. Pedersen, H.K.; Forslund, S.K.; Gudmundsdottir, V.; Petersen, A.Ø.; Hildebrand, F.; Hyötyläinen, T.; Nielsen, T.; Hansen, T.;

Bork, P.; Ehrlich, S.D.; et al. A Computational Framework to Integrate High-Throughput “-Omics” Datasets for the Identification
of Potential Mechanistic Links. Nat. Protoc. 2018, 13, 2781–2800. [CrossRef] [PubMed]

86. Plaza Oñate, F.; Le Chatelier, E.; Almeida, M.; Cervino, A.C.L.; Gauthier, F.; Magoulès, F.; Ehrlich, S.D.; Pichaud, M. MSPminer:
Abundance-Based Reconstitution of Microbial Pan-Genomes from Shotgun Metagenomic Data. Bioinformatics 2019, 35, 1544–1552.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1210/jc.2015-3351
https://doi.org/10.1097/LGT.0000000000000736
https://doi.org/10.1371/journal.pone.0208906
https://doi.org/10.1017/S0029665114001463
https://doi.org/10.1038/s41579-020-0433-9
https://doi.org/10.1038/s41596-018-0064-z
https://www.ncbi.nlm.nih.gov/pubmed/30382244
https://doi.org/10.1093/bioinformatics/bty830
https://www.ncbi.nlm.nih.gov/pubmed/30252023

	Introduction 
	Materials and Methods 
	Study Population 
	Timeline 
	Sample Collection Procedure for Nutrigenomics 
	Sample Collection Procedure and Analysis of Microbiome 
	Formulation of the Personalized Nutritional Plan 
	Data Organization and Analysis 
	Statistics 

	Results 
	Precision Nutrition 
	Changes in Food Intake 
	Changes in Nutritional Variables 
	Effects of the Nutritional Plan on Anthropometric and Physiological Parameters of the Participants 
	Effects of the Nutritional Plan on the GUT Microbiome 
	Evaluation of the Stability of the Microbial Composition 
	Evaluation of the Changes in Composition after the Nutritional Intervention 


	Discussion 
	Conclusions 
	References

