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A B S T R A C T

This paper explores the potential impacts of climate change and mitigation policies in the Euro Area,
considering the uncertainty and heterogeneity in both climate and economic systems. Using the MATRIX model,
a multi-sector and multi-agent macroeconomic model, we simulate various climate scenarios by employing
different carbon cycle models, damage functions, and marginal abatement curves found in the literature.
We find that heterogeneous climate damages amplify both the magnitude and the volatility of GDP losses
associated with global warming. By the end of the century, we estimate that assuming homogeneous shocks
may underestimate the effects of climate change on aggregate output by up to one-third. Moreover, we find that
the speed and feasibility of a low-carbon transition crucially depend on (i) the ambition in emission reduction
targets set by the policymaker, which determine the level of a carbon tax, and (ii) the rate of technological
progress, which influences the shape of the abatement cost curve.
1. Introduction

Climate change is considered one of the most pressing challenges
of our time. Its impacts are not only environmental but also economic
and social, affecting all sectors of society in different ways. However,
understanding the economic effects of climate change is a complex task
due to the presence of uncertainty and heterogeneity in both climate
and economic systems (Brown and Kroll, 2017). Climate uncertainty
stems from the unpredictable and long-term consequence of climate
change, caused, on the one hand, by the uncertain evolution of CO2
emissions resulting from human activity and, on the other hand, by
an incomplete understanding of Earth’s systems and their interactions.
Economic heterogeneity arises from different characteristics, prefer-
ences, and behaviors of various agents such as households, firms, and
governments. In a complex evolving economy, heterogeneous agents
adapt to a changing environment and interact in decentralized markets
using simple heuristics due to limited information and computational
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enricomaria.turco@unicatt.it (E. Turco), sergio.vergalli@unibs.it (S. Vergalli).

1 For the sake of example, in late 2021, higher natural gas prices due to the market imbalances resulting from the post-Covid recovery and subsequent global
energy crisis, further exacerbated by the Russia–Ukraine war, led many countries to slow down the process of phasing out coal, with evident adverse effects on
the environment.

abilities (Tversky and Kahneman, 1974; Gigerenzer, 2002; Dosi et al.,
2020). That can lead to coordination failures and market feedback
loops resulting in economic uncertainty that ultimately affects the
climate system.1 At the same time, evidence indicates that climate
damages are heterogeneously distributed, between and within coun-
tries, among agents operating in different areas and sectors that are
not equally exposed to extreme weather events (Schmidt et al., 2012;
Palagi et al., 2022).

The goal of this paper is to assess the economic impacts of climate
change and mitigation policies, taking into account the role of uncer-
tainty and heterogeneity in climate and economic systems. To do that,
we propose a climate extension of the Multi-Agent model for Transition
Risks (MATRIX) described in Ciola et al. (2023) and Turco et al. (2023).

The extended MATRIX model is an agent-based integrated assess-
ment model that combines an economic and a climate module. The
former develops a multi-sector and multi-agent macroeconomic replica
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of the Euro Area (EA). It considers a diverse set of agents belonging to
different sectors, such as households, corporates, banks, and public en-
tities interacting in decentralized markets. Private companies comprise
energy, capital, and consumption goods firms, all of which generate
CO2 emissions through the consumption of fossil fuels. The climate
module includes a carbon cycle and a climate damage function. The
carbon cycle converts the model-generated emissions of the EA and
the exogenous emissions from the rest of the world into atmospheric
concentrations of CO2, ultimately leading to an increase in the aver-
age global temperature. The damage function maps the temperature
increase into economic losses that hit firms’ production capacity. To
mitigate the detrimental effects of global warming, the government can
implement a carbon tax, adjusting its level as a function of the gap
between targeted and actual emissions reduction. The introduction of
the carbon tax, which represents an implicit price of emitting, moti-
vates firms to invest in cost-effective abatement technologies, whose
abatement potential increases with their costs, following the standard
Marginal Abatement Cost (MAC) curve approach.

To comprehensively assess the impacts of climate change and mit-
igation policies under uncertainty and heterogeneity, we leverage the
granularity and flexibility of the agent-based modeling by testing var-
ious carbon cycle models, damage functions, and MAC curves found
in the literature. We also consider different types of climate damage
depending on whether they are distributed homogeneously or hetero-
geneously across agents. This approach enables us to address the dual
dimension of uncertainty in the economic and policy analysis of climate
change: firstly, the bottom-up approach of the agent-based framework
accounts for uncertainty in aggregate climate and economic outcomes
resulting from the casual interactions of heterogeneous agents in decen-
tralized markets; secondly, the comparison of various climate models
in the literature addresses the uncertainty in modeling assumptions re-
garding functional forms and parameter specification that may impact
results.

Simulation results show that climate change will cause average GDP
losses to grow with rising temperatures, particularly when consider-
ing heterogeneous climate shocks. Specifically, under homogeneous
climate damages, the average realized losses at the end of the cen-
tury increase from 1.2% under a low-temperature scenario (+2 ◦C)
to 3.7% under a high-temperature one (+3.8 ◦C), that is consistent

ith existing studies in the standard Integrated Assessment Models
IAMs) literature.2 In contrast, when accounting for heterogeneous
limate damages, average GDP losses surge by 50% compared to the
omogeneous scenarios, amounting to 1.6% and 5.3% in the coldest
nd hottest projections. In the most extreme scenario, average losses
eak at 9.1%, also revealing a more skewed distribution that suggests
higher likelihood of catastrophic events.3 Therefore, in the presence

f heterogeneous climate shocks, rising temperature affects both the
agnitude and the volatility of economic losses resulting from climate

hange.
Further analysis of climate impacts on other macroeconomic vari-

bles demonstrates that homogeneous climate damages act similarly
o conventional supply shocks. That leads to higher prices, lower real
ages, and reduced employment. Conversely, heterogeneous climate

hocks cause a decline in output and employment, accompanied by
alling prices and real wages, similar to a supply-induced demand
hock (Guerrieri et al., 2022; Kharroubi and Smets, 2023). That is
ecause coordination failures arising from decentralized market inter-
ctions are exacerbated by heterogeneous climate shocks, resulting in

2 For example, DICE 1992 estimates a climate damage of 1.5% for a raise
n temperatures of +3.2 ◦C by 2100, whereas the GDP losses due to an increase
f +4.3 ◦C are equal to 4.3% in DICE 2016 (see Nordhaus, 2018).

3 These results can be compared with Lamperti et al. (2018) who estimate
n increase of +4.5 ◦C by 2100, which may produces GDP losses ranging from
2

.1% to 84.9% depending on the transmission channel under consideration. e
isordered cascading effects on the economy. In contrast, the economy
an absorb more quickly homogeneous climate shocks since all agents
eact similarly to the same amount of economic losses, leading to more
fficient coordination. That underscores the limits of standard IAMs
ounded on the representative agent hypothesis, which run the danger
f underestimating the economic impact of climate change (Farmer
t al., 2015; Balint et al., 2017).

The analysis of climate policy shows that a higher level of car-
on tax is necessary to achieve stricter emission reduction targets. In
articular, to achieve a 75% reduction in CO2 emissions by the end
f the century, a value between 110 and 210 euro per ton of CO2
EUR/tCO2) is required, in line with existing studies (see Clapp et al.,
009; Hintermayer et al., 2020; Calvin et al., 2023). However, the
ace and possibility of achieving these targets depend crucially on
he rate of technological progress, as reflected in the shape of cost
batement curves. Specifically, without abatement options, it would be
ossible to reduce carbon emissions only by 25% for a given level of
he carbon tax because of the limited substitutability of fossil fuel with
ther factors. High initial abatement costs can delay (or, in extreme
ases, prevents) the adoption of less polluting production techniques,
hus leading firms to reduce the consumption of fossil fuels in the
ace of rising emission price or, to some extent, substitute them with
ther factors. Finally, our analysis reveals that the transition path
owards the desired target exhibits a non-linear behavior. That is due to
ime lags between policy updates and abatement technology adoption,
hich can cause the carbon tax to overshoot the desired level. As a

esult, in line with Foramitti et al. (2021b), the government should
void revising the carbon tax too frequently. That will help maintain a
redible commitment and allow the system to respond smoothly to any
olicy change.

This paper expands the climate economic literature in three distinct
ays. First, we contribute to the integrated assessment literature on
ow uncertainty affects economic analyses of climate change and pol-
cy. The standard approach relies upon IAMs to analyze the complex
nteractions between the economy and the environment and assess
he costs and benefits of different policy interventions to mitigate
limate change. Despite the significant progress made in IAMs since
he pioneering work of Nordhaus (1991), criticisms regarding their
bility to accurately account for the role of uncertainty and hetero-
eneity in shaping climate policy persist (Pindyck, 2013; Farmer et al.,
015; Savin et al., 2023).4 In contrast, we employ an agent-based
AM framework, in line with Lamperti et al. (2018), Czupryna et al.
2020) and Safarzyńska and van den Bergh (2022). By simulating the
conomy as a complex adaptive system, the agent-based approach
llows capturing the endogenous sources of uncertainty due to the
resence of agent heterogeneity, bounded rationality, and decentral-
zed market interactions without resorting to exogenous stochastic
rocesses meant to internalize the volatility in economic and climate
ariables, e.g., through geometric Brownian motion. Hence, the agent-
ased method enables us to account for the inherent uncertainty in the
unctioning of climate-economic systems. Additionally, to control for
he epistemic uncertainty brought on by the application of discretionary
odeling assumptions, we simulate alternative scenarios using various

pecifications of each climate module under consideration (i.e., carbon
ycle, damage function, MAC curve).

Second, we contribute to the stream of literature assessing the
ole of heterogeneity in evaluating climate impacts (Schmidt et al.,
012; Brown and Kroll, 2017). Despite the growing evidence on the
mportance of heterogeneous effects of climate damage, theoretical
xploration of these elements using a modeling method has received

4 Although several studies have attempted to incorporate uncertainty in the
limate system through stochastic shocks and tipping points that may lead to
atastrophic outcomes (Weitzman, 2012; Dietz and Stern, 2015), the role of
conomic uncertainty has largely been overlooked in this approach.
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little attention. The representative agent hypothesis in standard IAMs
allows for analyzing the diverse climate impacts between countries
(regional inequality) but not among individuals living in the same
area (socio-economic inequality). There are few exceptions in conven-
tional (Dennig et al., 2015) and agent-based literature (Lamperti et al.,
2018; Safarzyńska and van den Bergh, 2022).

Third, we add to the growing body of agent-based literature on
climate and economic assessment of mitigation policies (Balint et al.,
2017; Castro et al., 2020). Based on the DSK model, Lamperti et al.
(2020) compare the effects of market-based versus performance-based
climate policies on the direction of technical change and the prevention
of environmental disasters. They find that command-and-control inter-
ventions are superior to market-based ones such as carbon tax or green
subsidies, as the former is favored by path dependence and guarantees
policy effectiveness irrespective of the timing of their introduction.
Foramitti et al. (2021a) compare the performance of emission tax
versus permit trading using a one-sector agent-based model, finding
that, under the latter arrangement, permit price falls after the suc-
cessful abatement, leading to higher production levels and resource
misallocation.

In this paper, we propose a novel approach to climate policy that in-
volves setting a predetermined emission reduction target and allowing
the government to progressively adjust the carbon price based on the
gap between desired and actual emissions. Such a target-based policy
approach has the following advantages: (i) it allows reproducing the
EU’s climate goal of reducing its emissions as defined in the ‘‘Fit for
55’’ package; (ii) it prevents the choice of setting arbitrary values for
the carbon tax and adjustment steps; (iii) it allows focusing on emission
reduction plans in a specific area, such as the EA economy, whereas
climate policies based on temperature targets inevitably call for the
adoption of global or multi-regional models, or making inferences on
the emissions pattern coming from the rest of the world.

In the following, Section 2 describes the overall structure of the
MATRIX model, Section 3 presents the calibration procedure, and
Section 4 discusses the results of the simulation experiments. Section 5
concludes and states future research directions.

2. Model

The Multi-Agent model for Transition Risks – the MATRIX model –
(Ciola et al., 2023; Turco et al., 2023) is an agent-based stock-flow
consistent5 macroeconomic model developed to analyze the function-
ing of real-world economies with a focus on energy production and
consumption. Under the assumption of an economic system comprising
a multiplicity of heterogeneous agents, the model generates the en-
dogenous dynamics of the simulated economy from their decentralized
interactions in different markets. In particular, workers provide labor
to energy (E), consumption (C), and capital (K) firms, which employ
it with other inputs in a Constant Elasticity of Substitution (CES)
production function to supply sector-specific goods. The latter then
enter as intermediate production inputs in other sectors (i.e., energy
services and capital) or are used for final consumption by households.
At the same time, banks collect deposits and provide credit to firms
to finance production, the government collects taxes and transfers
financial resources to low-income individuals, and the central bank sets
the policy rate following an inertial Taylor rule. Lastly, an exogenous
fossil fuel producer inelastically supplies a raw energy input at a given
price as an additional production factor as in Ponta et al. (2018).6

5 In other words, it adheres to the accounting principle by which any
hange in flow variables produces a corresponding variation in stock variables,
nd each agent’s assets represent another agent’s liabilities. Appendix A.8
eports the tables describing the aggregate balance sheet and transaction flow
atrix.
6 We set the price such that the ratio of fossil fuels expenditure over total
3

utput is in line with EA data (see Section 3).
Considering that a share of oil and gas production occurs domestically
through onshore or offshore activities by energy firms, we assume
that fossil rents are redistributed within the economy, partly to energy
firms (to account for domestic fossil fuel production), and partly to
households in proportion to their wealth.7

Fig. 1 provides a visual representation of the overall functioning of
the model.

Since the focus of this work is on the economic consequences of
climate change and mitigation policies for the EA economy, we employ
the European calibrated version of the MATRIX model (Turco et al.,
2023) as the Business-as-Usual (BAU) scenario for our analysis. Firms
now produce CO2 emissions through their consumption of fossil fuels
but can limit them by investing in a costly Abatement Technology
(AbT). At the same time, anthropogenic emissions modify the composi-
tion of the atmosphere and the energy balance of the planet, resulting
in widespread damages that affect the production capacity of the eco-
nomic system. Nevertheless, the government can (partially) address this
process and incentivize investments in the AbT by imposing a carbon
tax on CO2 emissions. Lastly, we assume that firms’ productivity grows
ollowing an exogenous path to reproduce the long-term dynamics of
he EA economy.

The next sections present a general description of the new fea-
ures of the model, while Appendices A and B provides additional
nformation on the economic and climate modules.

.1. Emissions

In the new version of the model, firms contribute to anthropogenic
limate change by generating CO2 emissions through their consumption
f fossil fuels. That depends on their specific emission intensities,
amely:

𝑓,𝑡 = 𝑒𝑓,𝑡𝑂𝑓,𝑡, (1)

here 𝐸𝑓,𝑡 are current period emissions of firm 𝑓 , 𝑒𝑓,𝑡 is the firm-
pecific emission intensity,8 and 𝑂𝑓,𝑡 is the consumed quantity of fossil
uels. Accordingly, total emissions are equal to the sum of individual
ontributions:

𝑡 =
𝐹
∑

𝑓=1
𝐸𝑓,𝑡. (2)

Nevertheless, since the model represents only the EA economy,
hose values account for only a portion of the global figure. Therefore,
e combine them with a set of simulated Rest Of the World (ROW)
missions, 𝐸𝑅𝑂𝑊𝑡 , which we generate following the Stochastic Impacts
y Regression on Population, Affluence, and Technology (STIRPAT)
ramework (Dietz and Rosa, 1994, 1997). In particular, we estimate a
ector autoregression model on the log differences of global population,
DP per capita, and emission intensities. Subsequently, we employ

he estimated parameters to forecast future emissions by bootstrapping
ultiple paths to include in the simulated economy.9

Lastly, the sum of EA and ROW emissions gives the global figure:
𝑊
𝑡 = 𝐸𝑡 + 𝐸𝑅𝑂𝑊𝑡 , (3)

which we increase by one-third (i.e., +33%) to account for non-CO2
greenhouse gases (see Montzka et al., 2011).

7 As in Turco et al. (2023), this assumption avoids the continuous outflow of
onetary resources from the national economy due to the purchase of foreign

ossil fuels but correctly replicates the statistical properties of the EA current
ccount, which has been balanced in the past two decades. A similar procedure
pplies to abatement costs (see Section 2.4 and Appendix A.8).

8 We calibrate initial emission intensities 𝑒𝑓,𝑡∗ to reflect sectoral differences
t a reference year 𝑡∗ and convert model units to real-world values (see
ection 3 for details).

9
 See Appendix B for additional details.
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Fig. 1. The MATRIX model and climate extensions (dashed lines and shaded areas).
2.2. Climate module

As stated before, firms contribute to anthropogenic climate change
by generating CO2 emissions through the consumption of fossil fuels.
However, there is a huge variety of climate models with varying
degrees of complexity in the climate science literature. Accordingly,
this work adopts a flexible approach and employs different models to
represent the future evolution of the climate and facilitate robustness
comparisons.10

Fig. 2 shows a representative reduced-form carbon cycle with three
main boxes: atmosphere, land, and ocean. After flowing into the at-
mosphere, only a fraction of anthropogenic CO2 emissions accumulate
in it. Indeed, a non-negligible share goes into land and ocean systems
because of photosynthesis and the dissolution of carbon in water.
Moreover, variations in atmospheric carbon concentrations and tem-
peratures affect the extent of those fluxes by increasing heterotrophic
respiration, Net Primary Production (NPP), and air–water carbon ex-
change. At the same time, the gradual circulation of carbon within
boxes (e.g., through thermohaline circulation in the ocean) requires
time to reach an equilibrium, thus generating delayed feedback and
reflows into the atmosphere. Lastly, the concentration of carbon in the
atmosphere determines its radiative forcing, which affects the energy
balance of the planet and induces the related change in the global
temperature of air and oceans.

Moving from land to its components (vegetation, detritus, and soil)
or from ocean to its layers (low and high latitude surface, intermediate
or deep), or by defining some intermediate levels of aggregation, the
MATRIX model tests a batch of climate modules with increasing degree
of complexity. Table 1 shows the alternative forms of the carbon cycle
employed in this work with the related sources, while Appendix B
provides their detailed description. We start from a simple climate
model that does not account for different carbon pools (TCRE) and then
move to two comparable climate boxes (DICE-2013R and WITCH) with

10 Burke et al. (2015) report that studies might focus only on a handful of
climate models for their projections and suggest using multiple models or an
ensemble.
4

Fig. 2. Representation of the carbon cycle.

3-layers: a one-pool atmosphere plus shallow and deep oceans. Lastly,
we test the C-ROADS and HECTOR models. Both expand the carbon
cycle by adding a land component with several layers and increasing
the complexity of the ocean carbon pool.

2.3. Climate damage

Estimating the economic damages associated with temperature in-
creases is an even more complex and uncertain process, and various
factors can affect the accuracy of such estimates. The major challenge
is the lack of proper knowledge about the precise shape and parame-
ters of the climate damage function, which describes the relationship
between temperature increases and economic damages. As highlighted
by Pindyck (2013), its assessment is ‘‘the most speculative element of
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Table 1
Carbon cycles: main boxes.

Name Boxes Source

TCRE Atmosphere Economides et al. (2018)
DICE-2013R Atmosphere; surface and deep oceans Nordhaus (1993a)
WITCH Atmosphere; surface and deep oceans Emmerling et al. (2016)

C-ROADS Atmosphere; vegetation and soil; Sterman et al. (2012)surface, intermediate and deep oceans

HECTOR Atmosphere; vegetation, detritus and soil; low and high Hartin et al. (2015)latitude surface oceans, intermediate and deep oceans
Table 2
Climate damage function.

Name Average damage Source

DICE 1991 𝐶𝐷𝑡 = 0.0133
(

𝛥𝑇𝑡
3

)2

Nordhaus (1993b)

RICE 1999 𝐶𝐷𝑡 = 1 − 1
1 + 0.001𝛥𝑇𝑡 + 0.049𝛥𝑇𝑡2

Nordhaus and Boyer (2000)

DICE 2013 𝐶𝐷𝑡 = 1 − 1
1 + 0.00267𝛥𝑇𝑡2

Nordhaus and Sztorc (2013)

DSK 2018 𝐶𝐷𝑡 =
𝑎𝑏,𝑡

𝑎𝑏,𝑡 + 𝑏𝑑,𝑡
with 𝑎𝑏,𝑡 = log

(

1 + 𝛥𝑇𝑡
)

and 𝑏𝑑,𝑡 = 100
𝜎𝑇𝑡∗
𝜎𝑇𝑡

Lamperti et al. (2018)

Note: average percentage reduction in labor productivity 𝐶𝐷𝑡 due to a given variation in the global temperature from the
preindustrial level 𝛥𝑇𝑡. 𝜎𝑇𝑡 denotes the standard deviation of the global temperature in the last 10 years.
g
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the analysis’’ (p. 862). To address this challenge, we adopt the same
approach used for the climate module and include different climate
damage functions to limit the risk of relying on ad-hoc assumptions and
control for the uncertainty of economic damage estimates. Moreover,
we assess if the presence of heterogeneous climate shocks can amplify
their aggregate impact. In particular, we test all functions assuming
both homogeneous and heterogeneous damages on the economic agents
in the system. In this way, we can provide a more robust evaluation of
the economic impacts of climate change.

As shown by Table 2, we employ four standard climate damage
functions, which we assume affect production by reducing labor pro-
ductivity by a percentage 𝐶𝐷𝑡. In DICE 1991, each period’s climate
damage takes a simple non-linear functional form based on the current
temperature deviation from the preindustrial level (𝛥𝑇𝑡). Its variants
(RICE 1999 and DICE 2013) adopt a comparable formulation using
a well-known inverse quadratic function, which relates temperature
increase to economic losses. Conversely, the DSK 2018 damage function
assumes a stochastic process and extracts the realized values from
a Beta distribution with parameters 𝑎𝑏,𝑡 and 𝑏𝑑,𝑡. The latter, which
affect both the mean and the skewness of the distribution, vary over
time based on the temperature’s evolution. More precisely, they de-
pend on the difference between the current global temperature and its
preindustrial level (𝛥𝑇𝑡) and the growth in temperature volatility (𝜎𝑇𝑡 ).

Lastly, we model climate damage as both a homogeneous and a
eterogeneous shock to labor productivity. In the former case, each
gent in the system experiences the same level of economic loss as
etermined by the damage function 𝐶𝐷𝑡. In the latter case, the damage
unction represents the average damage in the economy, which is
istributed unevenly among agents. In particular, each firm has a
robability 𝐶𝐷𝑡 of suffering a 100% reduction in labor productivity
hile it has no losses in the opposite case. As a result, the expected
amage experienced by each agent is equal to 𝐶𝐷𝑡.

.4. Carbon tax and abatement

arbon tax. The government sets an environmental carbon tax to
omply with broader global climate objectives and adaptively adjusts
t to reach a desired level of aggregate emissions following a tax
djustment mechanism (Hafstead and Williams, 2020). The reason to
xclusively focus on the carbon tax as a climate mitigation policy in this
ersion of the model stems from its prominence in the standard climate-
conomic literature. In the MATRIX model, if the aggregate emissions
5

of the economy 𝐸𝑡 are above (below) a given threshold 𝐸
𝐶𝐴

, then the
overnment increases (reduces) the tax, namely:

𝐶𝐴
𝑡 =

{

𝜏𝐶𝐴𝑡−1 + 𝜖
𝐶𝐴 if 𝐸𝑡 > 𝐸

𝐶𝐴
,

𝜏𝐶𝐴𝑡−1 − 𝜖
𝐶𝐴 otherwise,

(4)

where 𝜖𝐶𝐴 captures the speed of the adjustment, and 𝐸
𝐶𝐴

= (1 −
𝜂𝐶𝐴)𝐸𝑡∗ is the long-term desired level of emissions, computed in terms
of percentage reduction 𝜂𝐶𝐴 ∈ [0, 1] from a reference year 𝑡∗.

The realized carbon tax revenues are then collected at the firm level
ased on their emissions 𝐸𝑓,𝑡:

𝐴𝑋𝐶𝐴
𝑡 = 𝜏𝐶𝐴

∗
𝑡

𝐹
∑

𝑓=1
𝐸𝑓,𝑡 = 𝜏𝐶𝐴𝑡

𝐹
∑

𝑓=1
𝜀𝑓,𝑡𝑃

𝑂
𝑡 𝑂𝑓,𝑡, (5)

here 𝜀𝑓,𝑡 = 𝑒𝑓,𝑡∕𝑒𝑓∗ ,𝑡∗ are firms’ emission intensities relative to a
aseline sector/year {𝑓 ∗, 𝑡∗}, and 𝜏𝐶𝐴∗

𝑡 = 𝜏𝐶𝐴𝑡 𝑃𝑂𝑡 ∕𝑒𝑓∗ ,𝑡∗ is the implicit
arbon tax set by the government.11 The additional revenues then enter
he government budget, thus updating the public debt 𝐵𝑡 to:

𝑡 =
(

1 + 𝑖𝐶𝐵𝑡−1
)

𝐵𝑡−1 + 𝑇𝑅𝐴𝑡 − 𝑇𝐴𝑋𝐶𝐴
𝑡 − 𝑇𝐴𝑋𝑡, (6)

here 𝑇𝐴𝑋𝑡 is standard tax collection, 𝑇𝑅𝐴𝑡 are the transfers to low-
ncome households, and 𝑖𝐶𝐵𝑡 is the risk-free interest rate set by the
entral bank and paid on government bonds. By increasing the fiscal
pace, emission revenues allow the government to reduce the standard
ax rate and increase the transfers to low-income households. Accord-
ngly, we assume the public sector evenly distributes the additional
evenues in those two budget entries.12

batement. Firms can lower their emissions by investing in a costly
bT provided by an exogenous monopolist.13 Following Foramitti et al.

2021a), we assume that the AbT determines a percentage reduction in
he emission intensity of firms and involves a number 𝐽𝐴𝑏𝑇 of identical

11 We model the carbon tax in this way since it allows for its subsequent
conversion into real-world monetary units (see Section 3).

12 See Carraro et al. (1996), Parry and Bento (2000) and Bosello et al. (2001)
for analyses on the possible ‘‘double dividend’’ of environmental policies,
or Klenert and Mattauch (2016) and Maestre-Andrés et al. (2021) for the
redistributive impact of carbon taxes.

13 The technology underlying the abatement process is not specified and
could involve either an increase in efficiency or a shift towards less polluting
production factors as the model does not explicitly include a green energy

input.
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steps up to a maximum level 𝑒𝐴𝑏𝑇 . Each step represents a technological
advancement for its adopter, characterized by lower emission intensity
and a higher MAC. As a result, the investment in a new abatement step
depends on the direct comparison between its marginal cost and the
carbon tax.

Going into detail, the abatement cost 𝐴𝐶𝑓,𝑡 depends on the percent-
age reduction in the emission intensity 𝑒𝑓,𝑡 and the nominal expenditure
on fossil fuel 𝑃𝑂𝑡 𝑂𝑓,𝑡:14

𝐴𝐶𝑓,𝑡 = 𝐴𝐶
( 𝑒𝑓,𝑡∗ − 𝑒𝑓,𝑡

𝑒𝑓,𝑡∗

)

𝑃𝑂𝑡 𝑂𝑓,𝑡 = 𝐴𝐶
(

𝑒𝑓,𝑡
)

𝑃𝑂𝑡 𝑂𝑓,𝑡. (7)

ccordingly, the total costs of emissions are equal to:

𝐸𝐶𝑓,𝑡 = 𝜏𝐶𝐴
∗

𝑡 𝐸𝑓,𝑡 + 𝐴𝐶
(

𝑒𝑓,𝑡
)

𝑃𝑂𝑡 𝑂𝑓,𝑡
=
[

𝜏𝐶𝐴𝑡 𝜀𝑓,𝑡∗
(

1 − 𝑒𝑓,𝑡
)

+ 𝐴𝐶
(

𝑒𝑓,𝑡
)]

𝑃𝑂𝑡 𝑂𝑓,𝑡
= 𝐸𝐶

(

𝑒𝑓,𝑡
)

𝑃𝑂𝑡 𝑂𝑓,𝑡,
(8)

nd each firm has the incentive to invest in an additional abatement
tep as long as:

𝜕𝐸𝐶
(

𝑒𝑓,𝑡
)

𝜕𝑒𝑓,𝑡
< 0 ⟹ 𝜏𝐶𝐴𝑡 > 1

𝜀𝑓,𝑡∗
𝜕𝐴𝐶

(

𝑒𝑓,𝑡
)

𝜕𝑒𝑓,𝑡
= 1
𝜀𝑓,𝑡∗

𝑀𝐴𝐶
(

𝑒𝑓,𝑡
)

. (9)

s a result, the shape of the MAC curve plays a crucial role in determin-
ng the investment decision. Therefore, we control for the uncertainty
urrounding this function by considering different functional shapes
see Section 3). Moreover, since adopting new technology may require
ime, we suppose that firms can update their abatement step with
robability 𝜃𝐴𝑏𝑇 .

Lastly, since we assume the AbT as a discrete process divided in
𝐴𝑏𝑇 identical steps

{

𝑗 𝑒
𝐴𝑏𝑇

𝐽𝐴𝑏𝑇

}𝐽𝐴𝑏𝑇

𝑗=0
and given the maximum percentage

reduction in the emission intensity 𝑒𝐴𝑏𝑇 , the current abatement costs of
a firm 𝑓 at step 𝐽𝑓,𝑡 approximates as:

𝐴𝐶
(

𝑒𝑓,𝑡
)

≈
𝐽𝑓,𝑡
∑

𝑗=0

𝑒𝐴𝑏𝑇

𝐽𝐴𝑏𝑇
𝑀𝐴𝐶

(

𝑗 𝑒
𝐴𝑏𝑇

𝐽𝐴𝑏𝑇

)

and 𝑒𝑓,𝑡 = 𝐽𝑓,𝑡
𝑒𝐴𝑏𝑇

𝐽𝐴𝑏𝑇
, (10)

rom which we can compute the final price of fossil fuels paid by firm
:
𝑂
𝑓,𝑡 =

[

1 + 𝐸𝐶
(

𝑒𝑓,𝑡
)]

𝑃𝑂𝑡 . (11)

Indeed, emissions costs (i.e., the carbon tax plus the abatement) act as
a markup over the producer price, thus affecting the final demand for
raw energy inputs.

To preserve the stock-flow consistency of the model, we assume that
abatement costs incurred by firms are paid to a monopolist firm in the
abatement sector and then distributed back to households, with the
distribution proportional to their individual wealth (see Appendix A.8).

2.5. Growth

As the paper focuses on analyzing the long-term trends in the
coupled climate-economic dynamics, it must also account for economic
growth in the long run. To avoid overcomplicating the model, we
introduce an exogenous growth process in the original MATRIX frame-
work. Since labor and fossil fuels represent the sole exogenous inputs
(i.e., energy and capital are endogenous as they are a combination of
other factors of production), we assume that their productivity grows
at a constant rate 𝜁𝑔𝑟𝑜𝑤𝑡ℎ.15 In particular, given the CES production
function:

𝑄𝑓,𝑡 =

[ 𝐽
∑

𝑗=1
𝐴𝑗,𝑓 ,𝑡

(

𝑋𝑗,𝑓 ,𝑡
)

𝜎𝑓 −1
𝜎𝑓

]

𝜎𝑓
𝜎𝑓 −1

, (12)

14 As for the carbon tax, we adopt this assumption to allow for its subsequent
onversion into real-world monetary units (see Section 3).
15 In other words, we assume Harrod-neutral technical progress, which
nsures a balanced growth path (Uzawa, 1961).
6

where 𝑋𝑗,𝑓 ,𝑡 is the quantity of input 𝑗 = 1,… , 𝐽 employed by firm 𝑓
at time 𝑡, ∑𝐽

𝑗=1 𝐴𝑗,𝑓 ,0 = 1 are the factor shares, and 𝜎𝑓 is the Hicks
lasticity of substitution, we update the factor shares as follow:

𝑗,𝑓 ,𝑡 = 𝐴𝑗,𝑓 ,𝑡−1
(

1 + 𝜁𝑔𝑟𝑜𝑤𝑡ℎ
)

𝜎𝑓 −1
𝜎𝑓 , (13)

here 𝑗 identifies both labor and fossil fuels. Accordingly, at each time
, firms internalize the expected growth of productivity (i.e., E𝑡[𝜁

𝑔𝑟𝑜𝑤𝑡ℎ
𝑡+1 ]

𝜁𝑔𝑟𝑜𝑤𝑡ℎ) in their production decision for the subsequent period:
∗
𝑓,𝑡+1 =

(

1 + 𝜁𝑔𝑟𝑜𝑤𝑡ℎ
)

𝑄∗
𝑓,𝑡, (14)

here 𝑄∗
𝑓,𝑡 is the desired production of firm 𝑓 at time 𝑡 (see Ap-

pendix A), leading to a proportional increase in the demand for inputs
and promoting the accumulation of physical capital.

3. Calibration

In this work, we employ the parametrization of the MATRIX model
presented in Turco et al. (2023), which provides a scale replica of
the EA economy. Accordingly, the additional calibration effort regards
the newly introduced parts, such as the climate modules, emissions,
abatement functions, and damages. The calibration strategy is to follow
real-world data whenever possible or rely on other studies when these
are not available. In this Section, we provide a general overview of the
new calibration focusing on the economic aspects of climate change.

Climate module and damage functions. Starting from the climate mod-
ules and damage functions, we retrieve most of the parameters from
the supporting publications of the original models. Conversely, if spe-
cific coefficients or initial conditions are unavailable, we recover their
values following the indications reported in the original studies.16

Appendix B provides a detailed description of the climate modules
and a comprehensive list of the related parameters. At the same time,
Section 2.3 illustrates the damage functions employed in this work and
their sources.

CO2 Emissions. Given the COVID-19 outbreak at the beginning of 2020,
we set 𝑡∗ = 2019 as a reference year for our analysis. We employ
the historical emissions provided by the Our World in Data CO2 and
Greenhouse Gas Emissions dataset as an input of the climate module
for the period between 1800 and 2020 and then forecast the future path
of temperatures up to 2100 using the simulated emissions produced by
the model.

Since we focus on the EA economy, we treat ROW emissions as
exogenous and simulate their values by bootstrapping multiple time
series from a vector autoregression model estimated on the log differ-
ences of global population, GDP per capita, and emission intensities.17

At the same time, we calibrate the consumption of fossil fuels and
emission intensities of the model to replicate EA data. On the one
hand, we follow Ciola et al. (2023) and Turco et al. (2023) to set the
sectoral factor shares using the symmetric input–output tables at basic
prices of Eurostat. In particular, we divide the 65 main activities of the
dataset (European Classification of Economic Activities – NACE Rev.
2) between consumption (C) and capital (K) sectors using the relative
weight of final consumption and investments on total demand as a
proxy. Further, we identify the energy (E) and fossil fuel sectors with
the category ‘‘Electricity, gas, steam and air conditioning’’ in the former
case and with ‘‘Coke and refined petroleum products’’ and ‘‘Mining and
quarrying’’ in the latter. Lastly, we compute sectoral factor shares by
dividing the nominal expenditure on each intermediate input by total
costs (see Table 3, second to fourth rows). On the other hand, we define

16 That essentially relates to the HECTOR model, where its initial conditions
and a small number of parameters (related to ocean chemistry) depend on the
resolution of a non-linear system of equations (Hartin et al., 2016).

17 See Appendix B for additional details.
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Table 3
Production functions and emissions.

Sector Consumption (C) Capital (K) Energy (E) Source

Number of firms  𝑓 100 60 15 Ciola et al. (2023) and Turco et al. (2023)
Capital share 𝐴𝐾,𝑓 ,𝑡∗ 0.25 𝑁∕𝐴 0.33 Eurostat: Symmetric input-output table at basic prices
Labor share 𝐴𝑁,𝑓,𝑡∗ 0.69 0.91 0.28 " "
Energy share 𝐴𝐸,𝑓 ,𝑡∗ 0.03 0.04 𝑁∕𝐴 " "
Fossil fuel share 𝐴𝑂,𝑓 ,𝑡∗ 0.03 0.05 0.39 " "
Elasticity of substitution 𝜎𝑓 0.25 0.25 0.25 Ciola et al. (2023) and Turco et al. (2023)
Relative emission intensity 𝜀𝑓,𝑡∗ 1 0.46 1.40 Eurostat: Air emissions accounts by NACE Rev. 2 activity
the initial emission intensities of firms using their observed relative
values, namely:

𝑒𝑓,𝑡∗ =
𝜀𝑓,𝑡∗𝐸𝑡∗

∑𝐹

𝑓=1 𝜀
∗
𝑓,𝑡𝑂𝑓,𝑡∗

, (15)

here 𝐸𝑡∗ are EA CO2 emissions in 2019 (approx. 2.90 GtCO2), 𝑂𝑓,𝑡∗ is
the observed consumption of fossil fuels in the model, and 𝜀𝑓,𝑡∗ are real-
world relative emissions (see Table 3, last row). We compute the latter
by converting EA sectoral emissions from NACE rev. 2 categories into
the model ones (E, C, K) and then considering real-world sectoral ex-
penditures on fossil fuels per unit of emission in terms of consumption
firms.

Carbon tax and abatement. In Section 2, we design the (implicit) carbon
tax 𝜏𝐶𝐴∗

𝑡 set by the government as a percentage 𝜏𝐶𝐴𝑡 of the nominal
expenditure on fossil fuels per unit of emission, namely:

𝜏𝐶𝐴
∗

𝑡 =
𝑃𝑂𝑡
𝑒𝑓∗ ,𝑡∗

𝜏𝐶𝐴𝑡 =
𝑃𝑂𝑡 𝑂𝑓∗ ,𝑡∗
𝐸𝑓∗ ,𝑡∗

𝜏𝐶𝐴𝑡 = 𝜓𝑂𝐸𝑓∗ ,𝑡𝜏
𝐶𝐴
𝑡 . (16)

Therefore, we can transpose model units into real-world monetary
values by computing the conversion factor 𝜓𝑂𝐸𝑓∗ ,𝑡. In particular, given
its predominant role in the model due to the high number of firms
(see Table 3, first row), we use as a reference the consumption sector
in 2019, which implies a value of 𝜓𝑂𝐸𝑓∗ ,𝑡∗ = 98 euro per ton of CO2
EUR/tCO2). Moreover, we assume that the government can adjust the
ax 𝜏𝐶𝐴𝑡 by one percentage point (i.e., 𝜖𝐶𝐴 = 0.01) in every period
nd test three different emissions reduction targets from the 2020 level:
ow (𝜂𝐶𝐴 = 0.25), medium (𝜂𝐶𝐴 = 0.50) and high (𝜂𝐶𝐴 = 0.75).

Lastly, to reduce the degree of subjectivity, we assume that the public
sector evenly distributes the additional revenues in the available budget
entries.

Moving to the AbT, Cline (2011) analyzes the abatement func-
tions developed in three different models and computes their costs in
percentage terms of GDP (Table 4). RICE 2008 and EMF 22 follows
the well-known functional form developed by Nordhaus (2008). While
the calibration of the former relies on the original work of Nordhaus
(2008), the latter derives from its subsequent estimation on the results
of the EMF 22 Climate Change Control Scenarios project (Clarke et al.,
2009). Further, Ackerman and Bueno (2011) estimate a functional form
reproducing the shape of the bottom-up MAC curve developed by McK-
insey & Company (2009). Lastly, since we assume that abatement costs
are a function of the nominal expenditure on fossil fuels, we convert
the original curves by dividing them by the share of fossil fuels on total
output (𝜈𝑂 = 0.021).

Fig. 3 provides a visual representation of their shapes: while all
curves display similar costs for a high reduction objective (between
1.5% and 2% of real GDP), their marginal values are markedly dif-
ferent. Indeed, EMF 22 implies non-negligible initial costs, McKinsey
follows an asymptotic behavior near the maximum, and RICE 2008 lies
between the two. Lastly, we assume following Foramitti et al. (2021a)
that the AbT is characterized by 𝐽𝐴𝑏𝑇 = 20 steps up to a maximum
percentage reduction of 80% (𝑒𝐴𝑏𝑇 = 0.8, see Table 4). Moreover, we
suppose firms revise their choices on average once a year, thus implying

𝐴𝑏𝑇
7

a quarterly switching probability 𝜃 = 0.25.
4. Results and discussion

4.1. Climate assessment

We start by assessing climate change patterns by augmenting the
MATRIX model with different carbon cycles currently employed in the
literature (see Table 1). The goal is to construct a range of climate
scenarios featuring low and high-temperature projections to analyze the
economic impact of climate change.

Fig. 4 illustrates the coupled climate-economic dynamics generated
by the model. The upper panel depicts the evolution of the simulated
real GDP, which grows at a constant rate over time under the assump-
tion of exogenous technical change. At the same time, quarterly global
emissions follow real-world data between 1800 and 2020, while their
trajectory derives from the simulated CO2 paths after that year.

As stated before, the observed trends in the average temperature
(Fig. 4, bottom panel) stem from various climate modules (i.e., DICE-
2013R, C-ROADS, TCRE, WITCH, and HECTOR), which use as input the
observed global emissions up to 2020 and the simulated time series from
that year onwards. All frameworks closely replicate the temperature
dynamics up to 2020 but, after that point, follow different trajectories
despite the same macroeconomic and emission paths. The positive
change in the average temperature compared to the preindustrial level
ranges from nearly +1.2 ◦C (C-ROADS) to +2.2 ◦C (HECTOR) by 2050,
and the gap between models widens by the end of the century, with
+2 ◦C (C-ROADS) and +3.8 ◦C (TCRE) being the two extremes. Never-
theless, these trajectories are consistent with the IPCC scenarios (Byers
et al., 2022; Calvin et al., 2023). In particular, HECTOR and TCRE
models display the minimum distance from the baseline Shared Socioe-
conomic Pathways (SSP1 to SSP5), while C-ROADS and WITCH tend to
underestimate the expected increase in the average temperature (see
Table 5).

4.2. Economic effects of climate change

As global temperature rises, the economy suffers various climate-
related damages that reduce firms’ production capacity, expressed as a
percentage reduction in labor productivity. As stated before, to evaluate
the economic effects of climate change, we employ different climate
damage functions developed in the current literature (DICE 1991,
DICE 2013, DSK 2018, and RICE 1999). Further, we examine two
types of climate shocks depending on whether the damage is homoge-
neous or heterogeneous across agents. Lastly, given the wide range of
temperature projections generated by the different carbon cycles (see
Fig. 4, bottom panel), we estimate the average temperature change and
the resulting climate damages on three climate models – C-ROADS,
DICE-2013R, and TCRE –, which represent the low-, medium-, and
high-temperature scenarios, respectively.

Fig. 5 compares the estimated climate-induced GDP losses for the
low-, medium-, and high-temperature scenarios (columns) using dif-
ferent damage functions (rows). The plots show the distribution of
the values generated from 250 Monte Carlo runs, measured as the
percentage deviation of real GDP from the BAU scenario (i.e., without
damages) in 2100. The blue plots display the homogeneous climate

shock case, while the red ones show the heterogeneous case. Table 6
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Table 4
Abatement technology.

Total and marginal abatement cost functions (AC and MAC) relative to fossil fuel expenditure

Name AC MAC Parameters Source

RICE 2008 𝛼𝐴𝑏𝑇

𝜈𝑂
(𝑒)𝛽

𝐴𝑏𝑇 𝛼𝐴𝑏𝑇

𝜈𝑂
𝛽𝐴𝑏𝑇 (𝑒)𝛽

𝐴𝑏𝑇 −1 𝛼𝐴𝑏𝑇 = 0.028; 𝛽𝐴𝑏𝑇 = 2.8 Nordhaus (2008)

EMF 22 𝛼𝐴𝑏𝑇

𝜈𝑂
(𝑒)𝛽

𝐴𝑏𝑇 𝛼𝐴𝑏𝑇

𝜈𝑂
𝛽𝐴𝑏𝑇 (𝑒)𝛽

𝐴𝑏𝑇 −1 𝛼𝐴𝑏𝑇 = 0.025; 𝛽𝐴𝑏𝑇 = 1.28 Clarke et al. (2009) and Cline (2011)

McKinsey 𝛼𝐴𝑏𝑇

𝜈𝑂

[

log
(

𝛽𝐴𝑏𝑇

𝛽𝐴𝑏𝑇 − 𝑒

)

− 𝑒
]

𝛼𝐴𝑏𝑇

𝜈𝑂
𝑒

𝛽𝐴𝑏𝑇 − 𝑒
𝛼𝐴𝑏𝑇 = 8.6 × 10−3; 𝛽𝐴𝑏𝑇 = 0.81 Ackerman and Bueno (2011) and Cline (2011)

Other parameters

Variable Description Value Source

𝜈𝑂 Fossil fuel expenditure over total output 0.021 Eurostat: Symmetric input-output table at basic prices
𝑒𝐴𝑏𝑇 Maximum potential abatement 0.80 Foramitti et al. (2021a)
𝐽𝐴𝑏𝑇 Number of abatement steps 20 Foramitti et al. (2021a)
𝜃𝐴𝑏𝑇 Probability of new technology adoption 0.25 Authors’ calibration
Fig. 3. Total and marginal abatement costs. Note: MAC curves in terms of 2019 EUR/tCO2 (left panel) and total abatement costs in percentage terms of GDP (right panel) for
different CO2 emission reductions from the BAU level.
Fig. 4. Real GDP, global emissions, and average temperatures projections. Note: projections of real GDP (upper panel), global quarterly emissions (central panel), and average
emperature (bottom panel) generated by the MATRIX model using different climate boxes. Medians (solid lines) and 90% confidence intervals (shaded areas) computed on 250
ndependent replicas of the model.
8

https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700


Energy Economics 134 (2024) 107585D. Bazzana et al.
Fig. 5. Climate damages: real GDP loss in 2100. Note: real GDP loss from BAU in 2100 under heterogeneous and homogeneous shocks for low-, medium- and high-temperature
scenarios using different damage functions. Results computed on 250 independent replicas of the model.
Table 5
Simulated temperature in climate modules and SSP scenarios.

SSP1 SSP2 SSP3 SSP4 SSP5

DICE-2013R 0.09 0.14 0.14 0.08 0.25
C-ROADS 0.23 0.29 0.30 0.25 0.41
HECTOR 0.06 0.10 0.10 0.07 0.20
TCRE 0.07 0.09 0.08 0.08 0.18
WITCH 0.15 0.20 0.20 0.15 0.32

Note: root mean square error between temperature paths in selected climate mod-
ules (DICE-2013R, C-ROADS, TCRE, WITCH, and HECTOR) and baseline Shared
Socioeconomic Pathways (SSP1 to SSP5) on the period 2020–2100.

provides a quantitative summary of the figures, indicating both the
expected and realized losses resulting from the damage function.

Starting from homogeneous climate shocks, average GDP losses
increase as temperatures rise, irrespective of the damage function under
consideration. For example, according to Table 6, for RICE 1999,
the realized reduction in real GDP at the end of the century rises
from 2% under the low-temperature scenario to 6.4% under the high-
temperature one. Similarly, for DSK 2018, GDP losses grow from 1.2%
to 2.6%. The same trend holds also for heterogeneous climate shocks.
However, in this case, not only does the average size of damages in-
crease with the temperature, but also the dispersion of their distribution
widens with global warming. Thus, in the presence of heterogeneous
climate shocks, rising temperature affects both the magnitude and the
volatility of losses from climate change. The enhanced volatility in
economic damages also emerges in the wide gap between expected and
realized outcomes in Table 6. While this gap is negligible under homo-
geneous shocks, it becomes significant in the other case. That means
9

that under heterogeneous climate shocks, the economy is more subject
to business fluctuations and market disruptions resulting from adverse
climate-related events than in the homogeneous case, experiencing, on
average, a 50% increase in the impact of those shocks.

To better understand the reasons behind those different effects, it
is worth exploring the climate impacts on other key macroeconomic
variables. Table 7 compares the consequences of climate change on
GDP deflator, real wage, and cumulative unemployment rate in 2100.18

On the one hand, results show that homogeneous climate damages act
similarly to conventional supply shocks, leading to higher prices, lower
real wages, and reduced employment. As expected, the magnitude
of their effects increases with the temperature. On the other hand,
heterogeneous climate shocks cause a further decline in output and
employment, accompanied by falling prices and real wages. Although
the economic losses stem from a reduction in firms’ productivity, as
in the homogeneous shock case, this situation is akin to a supply-
induced demand shock.19 That is because the coordination failures

18 The cumulative unemployment rate is defined as the cumulative deviation
from the baseline unemployment rate up to 2100.

19 The concept of a supply-induced demand shock, also referred to as
a Keynesian supply shock, gained prominence within the context of the
COVID-19 pandemic and the subsequent energy crisis (Guerrieri et al., 2022;
Kharroubi and Smets, 2023). It consists of a negative supply shock capable
of triggering a demand shortage, resulting in a contraction in output and
employment that surpasses the magnitude of the initial supply shock. That
typically occurs where strong sectoral complementarities exist, facilitating the
transmission and amplification of the supply shock’s effects from one sector to
another.
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Table 6
Climate damages: real GDP.

C-ROADS (+2.0 ◦C) DICE-2013R (+3.0 ◦C) TCRE (+3.8 ◦C)

Expected Realized Expected Realized Expected Realized
Homog. Heterog. Homog. Heterog. Homog. Heterog.

DICE 1991 −0.6% −0.3% −0.7% −1.4% −0.8% −2.2% −2.3% −2.2% −2.7%
DICE 2013 −1.0% −0.9% −1.6% −2.4% −2.1% −3.3% −3.9% −3.6% −5.1%
DSK 2018 −1.3% −1.2% −1.8% −1.8% −1.4% −2.7% −2.9% −2.6% −4.1%
RICE 1999 −1.7% −2.0% −2.4% −4.0% −3.8% −5.8% −6.6% −6.4% −9.1%

Note: average percentage deviation of real GDP from BAU for different climate boxes (C-ROADS, DICE-2013R, and TCRE), damage functions (DICE 1991, DICE 2013, DSK 2018,
and RICE 1999), and shock types (homogeneous versus heterogeneous). Values computed on the last observation (year 2100) of 250 independent replicas of the model.
e
r
t
f
e
l
(
o
r
c

Table 7
Climate damages.

GDP deflator

C-ROADS (+2.0 ◦C) DICE-2013R (+3.0 ◦C) TCRE (+3.8 ◦C)

Homog. Heterog. Homog. Heterog. Homog. Heterog.

DICE 1991 0.8% 0.6% 1.7% 0.7% 3.8% −0.3%
DICE 2013 1.7% 0.4% 3.7% −0.4% 5.8% −1.1%
DSK 2018 1.9% 0.2% 2.3% 0.0% 3.8% −0.5%
RICE 1999 3.2% 0.4% 5.5% 0.0% 10.3% −1.6%

Real wage

C-ROADS (+2.0 ◦C) DICE-2013R (+3.0 ◦C) TCRE (+3.8 ◦C)

Homog. Heterog. Homog. Heterog. Homog. Heterog.

DICE 1991 −0.6% −1.3% −1.2% −2.9% −2.1% −4.6%
DICE 2013 −1.0% −2.2% −2.2% −5.4% −3.7% −8.0%
DSK 2018 −1.4% −3.3% −1.9% −4.9% −2.9% −7.3%
RICE 1999 −1.6% −3.7% −4.0% −9.1% −6.4% −13%

Cumulative unemployment rate

C-ROADS (+2.0 ◦C) DICE-2013R (+3.0 ◦C) TCRE (+3.8 ◦C)

Homog. Heterog. Homog. Heterog. Homog. Heterog.

DICE 1991 1.2% 4.9% 3% 12.5% 3.7% 22.3%
DICE 2013 2.1% 10.1% 4.8% 26.7% 8.8% 40.3%
DSK 2018 3.9% 14.9% 5.3% 23.2% 8.1% 35.9%
RICE 1999 2.3% 17.0% 10.6% 44.4% 16.2% 66.7%

Note: average percentage deviation of GDP deflator, real wage, and cumulative
unemployment rate from BAU for different climate boxes (C-ROADS, DICE-2013R, and
TCRE), damage functions (DICE 1991, DICE 2013, DSK 2018, and RICE 1999), and
shock types (homogeneous vs. heterogeneous). Values computed on the last observation
(year 2100) of 250 independent replicas of the model.

inherent in decentralized market interactions are exacerbated by het-
erogeneous climate shocks, resulting in a disordered impact on the
economy. Faced with repeated supply bottlenecks, firms struggle to
fulfill production requirements and need to reduce economic activity,
leading to an increase in the unemployment rate, as shown in Table 7. A
higher unemployment rate compresses the nominal wage with depres-
sive effects on aggregate demand through the income channel, prices,
and output. In contrast, the economy can better absorb homogeneous
climate shocks since all agents react similarly to the same economic
loss, allowing for more efficient coordination.

It is important to note that, when considering traditional homoge-
neous shocks, our findings are consistent with prior research on the
effects of climate change that we use as a guide in the various damage
function scenarios. However, they significantly diverge when we take
into account heterogeneous shocks.

For a +3 ◦C warming, Nordhaus (1991) predicts net economic
harm between 1% and 2% of total world output by 2050, while in an
updated version (Nordhaus and Sztorc, 2013) estimate a GDP loss of
4% with a temperature increase of +3.8 ◦C by 2100. According to the
regional variant (Nordhaus and Boyer, 2000), a +2.5 ◦C increase in
global warming will cause a 2.8% reduction in Europe’s GDP. Those
results are consistent with our estimates produced using the DICE 1991,
DICE 2013, and RICE 1999 damage functions, but only in the event of
homogeneous climate shocks (see Table 6). Indeed, our work reveals
that when heterogeneous climate shocks are taken into account, GDP
10
losses are substantially higher. That shows that standard IAMs founded
on the representative agent hypothesis incur the danger of underesti-
mating the economic impact of climate change (up to one-third under
our estimates) by missing potential coordination failures resulting from
real-financial linkages and decentralized market interactions.

As for the DSK2018, Lamperti et al. (2018) assess the impacts of
disaggregated climate shocks in an agent-based IAM. Therefore, their
projections can be directly compared to the heterogeneous scenario
depicted in Table 6, though the outcomes are quite different. Based
on an average temperature increase of +4.5 ◦C, the authors find that
the average size of the damage fluctuates between 1% at the start and
5.4% at the end of the simulation. Regarding the actual impacts of
these damages on the end-of-century GDP level, they find significant
variations depending on the transmission channel of the climate shock
under consideration, ranging from a 84.9% reduction through labor
productivity to 13.5% through energy efficiency, 1.1% for inventories
loss and 25.6% for capital stock, with additional harms when these
shocks are combined. Despite the high values, a few warnings are in
order. In contrast to the MATRIX model, the DSK framework features
an endogenous growth process that has the potential to make climate
shocks linger longer and possibly exacerbate their effects, particularly
through channels related to labor productivity and capital stock.

4.3. Carbon tax and abatement

We assume that public authorities start implementing a carbon
tax in 2020 and then dynamically adjust it depending on the wedge
between actual and target CO2 emissions. In other words, the gov-
rnment increases it if current emissions fall short of the target and
educes it in the opposite situation. As shown in Section 2.4, the carbon
ax represents the implicit cost of emitting CO2 in terms of fossil
uel consumption.20 For this reason, we allow firms to invest in cost-
ffective emissions abatement technologies. In particular, they adopt a
ess polluting technology as long as its marginal cost is lower than the
implicit) emission price. At the same time, we also assess the effects
f the carbon tax in the absence of any abatement technology as a
obustness check. Indeed, the increase in the final cost of fossil fuels
an also reduce their consumption and, consequently, CO2 emissions.

Nevertheless, the imperfect substitutability of this input with other
production factors limits the extent of this type of emissions reduction
strategy. In other words, this resembles a short-term situation in which
firms do not have more efficient technologies at their disposition and
try to substitute the relatively more expensive (and polluting) input
with other (and cleaner) goods.

Fig. 6 shows the evolution of the carbon tax in terms of 2019 EUR
per tonne of CO2 for three different emissions reduction targets from
the 2020 level: low (−25%), medium (−50%) and high (−75%). When
firms can invest in an abatement technology, the tax converges to a
stable value before the end of the century, and the implied price of

20 Accordingly, we can compute its real-world counterpart by multiplying
its value with the observed expenditure on fossil fuels per emitted ton of CO2
(approx. 98 EUR/tCO in 2019, see Section 3).
2
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Fig. 6. Price of CO2 emissions (2019 EUR/tCO2) by emission target. Note: evolution of a carbon tax in 2019 euro per tonne of CO2 (EUR/tCO2) under different abatement
technologies and emissions reduction targets: low (−25%), medium (−50%) and high (−75%). Median (solid line), 50% and 90% confidence intervals (shaded areas) computed on
250 independent replicas of the model.
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Table 8
Carbon price, abatement technology and emissions targets.

Target RICE 2008 EMF22 McKinsey No abatement

−25% 18 ± 8 66 ± 8 13 ± 7 177 ± 20
−50% 67 ± 8 91 ± 9 44 ± 8 312 ± 0
−75% 155 ± 10 112 ± 17 212 ± 23 312 ± 0

Note: median plus 90% confidence intervals of a carbon tax in 2019 euro per tonne
of CO2 (EUR/tCO2) under different abatement technologies and emissions reduction
targets: low (−25%), medium (−50%) and high (−75%). Values computed on the last
bservation (year 2100) of 250 independent replicas of the model.

arbon is in line with existing studies (Clapp et al., 2009; Wagner
t al., 2012; Hintermayer et al., 2020). In particular, a 25% reduction
n CO2 emissions requires a marginal cost of carbon between 15 and
0 EUR/tCO2, while the achievement of the medium (−50%) and high
−75%) targets involves a value between 45 and 95 EUR/tCO2 in the
irst case and between 110 and 210 EUR/tCO2 in the second one (see
able 8). At the same time, the absence of an abatement technology
llows the economy to reach only the least ambitious goal (i.e., −25%
nd with a marginal cost between 155 and 200 EUR/tCO2), and the
olicy generates only a continuous but insufficient increase in the
arbon price under the two alternative targets. In other words, given
he limited substitutability of production factors in the short term, the
rowth in the price of fossil fuels does not sufficiently reduce their
onsumption and the related emissions (see Fig. 7). That highlights the
mportance of technological advancements and investments in emis-
ions reduction since the straightforward substitution of fossil fuels with
ther production inputs is not feasible at affordable prices.21

An interesting aspect of the transition path is its non-linear behav-
or. After an initial period of positive growth, the carbon tax declines
o a lower level in all the abatement technology scenarios (see Fig. 6).
hat is due to the slow adoption of new production techniques by
irms, which need time to make the necessary investments and lag
ehind the choices made by the policymaker. Accordingly, when the
conomy reaches the emissions target (see Fig. 8), the carbon tax is
ar beyond the optimal level, firms continue investing in abatement
echnologies, and the government has to reduce it to keep the economy
t the current (and desired) level of emissions. Moreover, the delay in

21 This result is even more significant since this version of the model does
ot allow firms to switch to greener energy sources as it assumes a single
nergy source.
11
Table 9
Real wage.

Low (−25%) Medium (−50%) High (−75%)

RICE 2008 −0.5% −1.1% −1.9%
EMF 22 −1.3% −1.9% −2.2%
McKinsey −0.3% −0.8% −1.8%
No abatement −2.8% −4.1% −4.1%

Note: average percentage deviation of real wage under different abatement technologies
and emissions reduction targets: low (−25%), medium (−50%) and high (−75%). Values
omputed on the last observation (year 2100) of 250 independent replicas of the model.

nvestments strongly depends on the shape of the abatement cost curve
see Fig. 9). High initial costs (as, for example, in the EMF 22 and
o abatement scenarios) postpone (or completely prevent in extreme
ases) the adoption of less polluting production techniques, instead
avoring the substitution of fossil fuels with other production factors
see Fig. 7).

While changes in emission reduction targets do not significantly
ffect aggregate output, our analysis indicates that an escalation in
arbon taxes leads to distributive consequences that adversely affect
orkers, who observe a decrease in the real wage (see Table 9). In
ractice, companies pass on the heightened production costs resulting
rom increased carbon taxes to their employees, thus diminishing their
urchasing power.

Yet, these shifts in market income do not translate into signifi-
ant variations in post-tax income distribution among individuals.22

Indeed, the redistributive measures implemented through government
transfers play a pivotal role in restraining the growth of income and
wealth inequality. Moreover, dividend redistribution from the abate-
ment monopolist further mitigates disparities in individual incomes.
These findings align with the ‘‘progressive revenues recycling’’ dis-
cussed in Konc et al. (2022). In the latter, the authors demonstrate that
this type of recycling mechanism garners the most political support and
may influence the long-term viability of the policy.

5. Concluding remarks

This work extends the MATRIX model (Ciola et al., 2023; Turco
et al., 2023) to perform analyses akin to the IAMs literature, providing

22 We calculate it as variations in the Gini index and changes in income and
wealth shares across quantiles.
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Fig. 7. Variation of fossil fuels consumption from baseline by emissions target. Note: evolution of fossil fuels consumption under different abatement technologies and emissions
reduction targets: low (−25%), medium (−50%) and high (−75%). Median (solid line), 50% and 90% confidence intervals (shaded areas) computed on 250 independent replicas of
the model.

Fig. 8. Variation of CO2 emissions from baseline by emissions target. Note: evolution of CO2 emissions under different abatement technologies and emissions reduction targets:
low (−25%), medium (−50%) and high (−75%). Median (solid line), 50% and 90% confidence intervals (shaded areas) computed on 250 independent replicas of the model.

Fig. 9. Abatement step by sector. Note: median abatement step by sector under different abatement technologies and a high (−75%) emissions reduction target. Median (solid
line), 50% and 90% confidence intervals (shaded areas) computed on 250 independent replicas of the model.
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coupled dynamics for climate and economic systems. Given the substan-
tial uncertainty surrounding relevant factors related to anthropogenic
climate change (Pindyck, 2013), the modeling strategy entails an agnos-
tic and flexible approach, which nests different carbon cycle modules,
climate damages, and abatement cost functions. The model is calibrated
to simulate the EA economy and evaluates the necessary carbon pricing
to meet different climate objectives.

Our projections highlight a potential increase in the average tem-
perature spanning from +2 ◦C to +3.8 ◦C at the end of the century.
Selecting three representative temperature paths (low-, medium-, and
high-), we then assess the effects of climate damages on the economy.
We account for the uncertainty about their impacts by employing four
different climate damage functions from the related literature. More-
over, we test them considering both homogeneous and heterogeneous
effects on the population of agents.

On average, homogeneous climate damages may impact real GDP
between 1.2% (low-temperature) to 3.7% (high-temperature), with
significant differences between climate damage functions. Our results
on climate damage are in line with the standard literature when we
consider homogeneous shocks. Introducing heterogeneous shocks in-
creases both their average size and dispersion, highlighting the loss of
economic coordination in decentralized markets as a possible relevant
factor in assessing climate change effects. Additionally, the character-
ization of the shock modifies accordingly, from a purely supply shock
to a supply-induced demand shock, with falling prices and real wages.

We test a climate policy with various target shares of emission
reductions for the EA economy, considering a carbon tax coupled with
different abatement technologies. We show that in the absence of
such a technology the carbon tax allows for reaching only the least
ambitious climate objective with a higher carbon cost (between 155
and 200 EUR/tCO2). On the contrary, when the abatement technology is
available, all emission reduction objectives can be reached, resulting in
carbon prices in line with previous studies. However, uncertainty about
the abatement costs’ functional shape leads to different adoption times,
with higher initial costs significantly slowing the transition process.
Finally, while changes to emission reduction targets have minimal
impact on overall output, our analysis highlights that higher carbon
taxes have negative effects on workers. This is evidenced by a decline
in real wages, as companies transfer to their employees the higher pro-
duction costs resulting from higher carbon taxes, thereby reducing their
purchasing power. Despite these changes in market income, post-tax
income distribution among individuals remains relatively unchanged.
In the Matrix model, government transfers and dividend redistribution
from the abatement monopolist are crucial in curbing the growth of
income and wealth inequality.

Several theoretical and policy implications can be deduced from
this framework. First, different combinations of IAMs’ components can
provide widely different scenarios, which require different levels of
carbon pricing to reach the intended goals. An ensemble approach, as
is standard in the climate assessment literature, can help to smooth the
uncertainty embedded in these processes. Second, considering the com-
plexity of the socioeconomic system can refine policy measures. Models
with homogeneous (aggregate) climate damages – as standard IAMs
grounded on the representative agent hypothesis – might underplay the
resulting economic damage. Third, a reachable abatement technology
is needed for the most ambitious climate targets, as well as affecting
the speed of emission reductions. Related investments are, therefore,
necessary alongside carbon pricing.

This work is subject to several limitations. Most notably, emission
reduction relies mainly on a general abatement technology rather than
considering alternative renewable energy options. Nevertheless, the
energy transition will require a structural change in production pro-
cesses, with huge investments in renewable energy production capacity
and electrifying the economy. Accordingly, incorporating all those
aspects into future versions of the model would allow investigating the
13

economic and financial problems related to this process (see, among r
others, Ponta et al., 2018; Safarzynska et al., 2023; Di Domenico et al.,
2023). At the same time, climate policy options can also be extended to
include other channels, such as emission trading schemes, regulations,
and subsidies for green technologies. That could also include other
types of revenue recycling, which might bring different distributional
effects (Konc et al., 2022). Additionally, as long as the model is cal-
ibrated on single states or economic areas, the global dimension of
climate changes will be stylized, relying on exogenous paths for the
evolution of the rest of the world’s emissions.

Nevertheless, we show that the climate-extended MATRIX model
could provide a solid base to develop all of these further extensions,
themselves needed endeavors to assess climate change and the green
transition in light of existing uncertainties and complexities.
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ppendix A. The MATRIX model

.1. Overview

In this Appendix, we provide a brief exposition of the original MA-
RIX model’s main components. For more details refer to the parental
aper (Ciola et al., 2023; Turco et al., 2023).

The MATRIX model depicts an economy composed of heterogeneous
gents. These include households, firms, banks, an exogenous fossil fuel
ector, a central bank, and a government. Households (ℎ = 1,… ,𝐻 )
re divided between workers (𝑊 ), entrepreneurs ( 𝐹 ), and bankers
𝐵). Firms (𝑓 = 1,… , 𝐹 ) belong to three different sectors: energy
ervices (E), consumption goods (C), and capital goods (K). The banking
ector consists of (𝑏 = 1,… ,𝐵) banks. Entrepreneurs and bankers
wn respectively one firm and bank each.

ouseholds. Households’ income sources vary depending on their type
nd economic status. They receive a wage if employed; a dividend
f they are an entrepreneur or banker of an active company; and a
ublic transfer if their income falls below a certain level. Households
uy consumption goods and save money in the form of bank deposits.
urthermore, firm and bank owners recapitalize their own companies
n the event of a default.

irms. Before beginning production, firms purchase the necessary in-
uts in decentralized markets. Subsequently, they update their net
orth based on profits or losses and adjust their desired price, quantity,
nd related input demand for the following period. Because firms
repay for production factors, if the expected cash outflow exceeds
nternal funds, they borrow from banks to bridge the financing gap.

anks. Banks hold deposits, lend to businesses in accordance with
apital requirements, and purchase government bonds.

overnment and central bank. The government collects income taxes
rom individuals and businesses, distributes transfers to low-income
ndividuals and bails out failing banks. The deficit is funded by issuing
ew bonds, subject to a debt sustainability rule. The risk-free policy

ate is set as an inertial Taylor rule by the central bank.
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Matching protocol. The agents can observe only a portion of the market
nd interact with trading partners following a decentralized search and
atching mechanism. Demand units visit supply units, with the ones

ffering larger amounts of goods at a lower price having higher chances
o sell. It must be noticed that decentralized market interactions can
esult in unfilled demand or excess supply. Agents adapt their con-
umption and production plans due to matching frictions and changing
conomic conditions, which impact the macroeconomy. The latter is
hus subject to cycles, fluctuations, and possibly recessions.

In the following, we present the sequence of events as well as a
ynthesis of the behavioral equations of the agents.

.2. Sequence of events

The model follows this sequence of events (the novel parts com-
ared to the original model are highlighted in italics):

1. Firms are already endowed with desired levels of production,
selling prices, and input demands from the previous turn.23

2. If climate policy is binding, the government fixes or updates the car-
bon price level. Firms evaluate investment in abatement technology
based on new information.

3. Markets for production factors open:

i. Labor market: workers inelastically supply waged labor (up
to one unit) to hiring firms, pay income taxes, and set their
consumption budget;

ii. Fossil fuel market: firms purchase the energy input from
the fossil fuel sector monopolist;

iii. Energy market: E-firms generate energy services by com-
bining fossil fuel, labor, and capital goods. They sell them
to C- and K-firms.

iv. Consumption goods market: C-firms combine capital stock,
labor, fossil fuel, and energy services to produce the con-
sumption goods. They sell it to households;

v. Capital goods market: K-firms supply capital goods to C-
and E-firms employing labor, fossil fuel, and energy ser-
vices;

4. Expected prices and quantities are updated.These now include
expected climate, abatement, and policy costs.

5. Firms compute profits, their due taxes, the dividends to their
owner, and the share of outstanding debt to the banks.The
accounting process of the firms now includes the costs borne for the
abatement technology and the climate policy.

6. Insolvent or illiquid firms that cannot be bailed by their owner’s
own resources default and new firms are initialized.

7. The firms set their new input demand for the next turn, given
their expectations and resources, resorting eventually to the
credit market.This now accounts also for the expected climate-
related costs.

8. The Banks agents account for profits and NPL. Banks default
procedure.

9. The government updates the tax rate and social transfers accord-
ing to a fiscal sustainability rule.

10. The central bank fixes the policy rate given its Taylor rule.
11. Climate module: firms emissions are updated. These act as an input

to the climate module, that modifies the mean global temperature for
the next turn or year.

12. Climate damages are computed and transmitted to the economy
based on the previous turn variation in temperature.

23 The system is initialized at the perfect competition steady state solution
t 𝑡 = 0.
14
A.3. Households

The nominal income 𝑌ℎ,𝑡 of the households ℎ = 1,… ,𝑊 depends
on their type:

𝑌ℎ,𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑊𝑡𝑁𝑤,𝑡 for workers,
𝐷𝐼𝑉𝑓,𝑡 − 𝑅𝐸𝐶𝑓,𝑡 for entrepreneurs,
𝐷𝐼𝑉𝑏,𝑡 − 𝑅𝐸𝐶𝑏,𝑡 for bankers.

(A.1)

Workers supply labor
(

𝑁𝑤,𝑡 ∈ [0, 1]
)

in exchange for a uniform
salary 𝑊𝑡 that reflects market conditions and inflation expectations.
Entrepreneurs and bankers get dividends, 𝐷𝐼𝑉ℎ,𝑡 and sustain recapital-
zation costs, 𝑅𝐸𝐶ℎ,𝑡 if bankrupt. The household’s consumption budget,
𝐻𝑑
ℎ,𝑡, is defined as the weighted sum between permanent income, 𝑌ℎ,𝑡,24

nd deposits:
𝑑
ℎ,𝑡 = 𝑌ℎ,𝑡 + 𝜒𝐷ℎ,𝑡, (A.2)

ith 𝜒 being the propensity to consume out of financial wealth.

.4. Firms

Firms agents – divided into three sectors (E, C, K) – set their desired
rice and quantity according to a learning mechanism based on market
onditions and strategic interaction. In particular, they set the {𝑃 ,𝑄}
ombination by imitating the strategy of a target competitor,25 if more
rofitable, or by exploring a neighbor of their current strategy. The
irm 𝑓 sets then a target 𝑠 and updates its desired quantity and price
𝑄∗
𝑓,𝑡+1, 𝑃𝑓,𝑡+1}:

∗
𝑓,𝑡+1 =

{

𝜁𝑄𝑄∗
𝑓,𝑡 + (1 − 𝜁𝑄)𝑄𝑠,𝑡 if 𝛱𝑠,𝑡 ≥ 𝛱𝑓,𝑡,

𝜁𝑄𝑄∗
𝑓,𝑡 + (1 − 𝜁𝑄)�̂�𝑓,𝑡 otherwise,

(A.3)

𝑃𝑓,𝑡+1 =

{

𝜁𝑃𝑃𝑓,𝑡 + (1 − 𝜁𝑃 )𝑃𝑠,𝑡 if 𝛱𝑠,𝑡 ≥ 𝛱𝑓,𝑡,
𝜁𝑃𝑃𝑓,𝑡 + (1 − 𝜁𝑃 )𝑃𝑓,𝑡 otherwise,

(A.4)

where 𝑃𝑠,𝑡, 𝑄𝑠,𝑡 and 𝛱𝑠,𝑡 are, respectively the price, quantity, and profits
of the target competitor 𝑠, while 𝜁𝑄 and 𝜁𝑃 indicate the speed of
adjustment of price and desired quantity. If the profits realized by
the target firm 𝑠 are greater than 𝑓 ’s, the latter are then smoothly
adjusted towards them. Otherwise, the firm 𝑓 explores a neighborhood
of its current strategy, {�̂�𝑓,𝑡, 𝑃𝑓,𝑡}, by drawing a random number from
a uniform distribution, the sign of which being positive (negative) in
case of excess demand (supply).

Given 𝑄∗
𝑓,𝑡+1, the desired production, and

{

E𝑓,𝑡
[

𝑃𝑗,𝑡+1
]}𝑛
𝑗=1, the

expected input prices, each firm 𝑓 sets the conditional input demand
that minimizes its expected direct costs E𝑓,𝑡

[

𝐷𝐶𝑓,𝑡+1
]

. The production
technology is subject to a Constant Elasticity of Substitution (CES)
and irreversible investments. Therefore, the cost minimization problem
reads as:

min
{𝑋𝑓,𝑗,𝑡+1;𝛥𝑋𝑓,𝑗,𝑡+1}𝐽𝑗=1

E𝑓,𝑡
[

𝐷𝐶𝑓,𝑡+1
]

=
𝑛
∑

𝑗=1
E𝑓,𝑡

[

𝑃𝑗,𝑡+1
]

𝛥𝑋𝑗,𝑓 ,𝑡+1 (A.5)

s.t. 𝑄∗
𝑓,𝑡+1 =

[ 𝐽
∑

𝑗=1
𝐴𝑗,𝑓 ,𝑡+1

(

𝑋𝑗,𝑓 ,𝑡+1
)𝜌𝑓

]

1
𝜌𝑓

, (A.6)

𝑋𝑗,𝑓 ,𝑡+1 = 𝛥𝑋𝑗,𝑓 ,𝑡+1 + (1 − 𝛿𝑗 )𝑋𝑗,𝑓 ,𝑡, (A.7)

𝛥𝑋𝑗,𝑓 ,𝑡+1 ≥ 0 when 𝑗 indicates physical capital, (A.8)

here 𝛥𝑋𝑗,𝑓 ,𝑡+1, 𝛿𝑗 , and 𝐴𝑗,𝑓 ,𝑡+1 are the additional input demand, the
epreciation rate, and the factor share of input 𝑗, while 𝜌𝑓 is the inputs

24 The permanent income is set as a weighted average of current net income
and past permanent income levels, updated by expected inflation.

25 This is determined through a logit model computed as the differ-
ence between firms’ relative production: 𝑑𝑓,𝑠,𝑡 = |

|

|

�̂�𝑓,𝑡 − �̂�𝑠,𝑡
|

|

|

, where �̂�𝑓,𝑡 ≡
𝑃𝑓,𝑡𝑄𝑓,𝑡−min (𝑃𝑓,𝑡𝑄𝑓,𝑡) .
max (𝑃𝑓,𝑡𝑄𝑓,𝑡)−min (𝑃𝑓,𝑡𝑄𝑓,𝑡)
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substitution parameter. Following this problem, the nominal demand
for an additional input is:

𝐻𝑑
𝑗,𝑓 ,𝑡+1 = E𝑓,𝑡

[

𝑃𝑗,𝑡+1
]

[(

𝐴𝑗,𝑓 ,𝑡+1𝜓𝑓,𝑡+1
E𝑓,𝑡

[

𝑃𝑗,𝑡+1
]

)𝜎𝑓

𝑄∗
𝑓,𝑡+1 − (1 − 𝛿𝑗 )𝑋𝑗,𝑓 ,𝑡

]

∀𝑗 = 1,… , 𝐽 ,

(A.9)

where

𝜓𝑓,𝑡+1 =

[ 𝑛
∑

𝑗=1

(

E𝑓,𝑡
[

𝑃𝑗,𝑡+1
])1−𝜎𝑓 (𝐴𝑗,𝑓 ,𝑡+1

)𝜎𝑓

]
1

1−𝜎𝑓
, (A.10)

re the expected marginal costs.
If the expected direct costs are higher than internal liquidity, the

irms try to borrow in a decentralized credit market. If credit rationing
s present, firms set instead the optimal input demand that maximizes
he attainable production. The firms seek then to satisfy their input
emand in the different decentralized markets.

.5. Banking sector

The banking sector provides credit to firms that need additional
esources to purchase production inputs. The price of the loan depends
pon the financial situation of the borrower-lender and on a systemic
isk component, while its quantity on capital requirements. The interest
ate 𝑖𝑏,𝑓 ,𝑡 on loans charged by bank 𝑏 to the borrowing firm 𝑓 at the time
is given by:

𝑏,𝑓 ,𝑡 = 𝑖𝐶𝐵𝑡 + 𝜌𝐵
𝐿𝑓,𝑡
𝑁𝑊𝑓,𝑡

+ 𝜚𝐵
(

1 −
𝑁𝑊𝑏,𝑡

max𝑠=1,…,𝐵 𝑁𝑊𝑠,𝑡

)

+ 𝜄𝐵
𝑁𝑃𝐿𝑡−1
𝐿𝑡−1

,

(A.11)

where 𝜌𝐵 , 𝜚𝐵 , 𝜄𝐵 > 0 are interest rate-related parameters. The cost of
external finance is then increasing with the risk-free policy rate 𝑖𝐶𝐵𝑡 , the
firm’s leverage ratio, 𝐿𝑓,𝑡∕𝑁𝑊𝑓,𝑡, and the non-performing loans ratio,
𝑃𝐿𝑡−1∕𝐿𝑡−1, while decreasing with the bank’s net worth, 𝑁𝑊𝑏,𝑡.
In line with the Basel III international regulatory framework, banks

ust comply with macro-prudential capital requirements that define (i)
he total amount of credit that they can extend and (ii) the maximum
xposure to a single counterpart. That implies that borrowing firms
ight be unable to fully satisfy their financing needs, in which case

hey are forced to scale down the desired production and, subsequently,
heir input demand.

Banks must conform to macroprudential capital requirements, such
s those under the Basel III international regulatory framework. That
efines two constraints: first, the total amount of credit; second, the
aximum exposure to a single counterpart. Borrowing firms may then

e unable to fully satisfy their desired input demand and, thus, output
evel.

.6. Central bank

The central bank sets the risk-free policy rate, 𝑖𝐶𝐵𝑡 , following a
aylor rule of the inertial type, that is:

𝐶𝐵
𝑡 = 𝜌𝐶𝐵𝑖𝐶𝐵𝑡−1+(1−𝜌

𝐶𝐵) max
[

0, 𝑟∗ + 𝑝∗ + 𝜆𝑦(𝑢∗ − 𝑢𝑡−1) + 𝜆𝑝(𝑝𝐶,𝑡−1 − 𝑝∗)
]

.

(A.12)

he central bank reacts to deviations in inflation and unemployment
ates from their target levels, respectively 𝑝∗ and 𝑢∗, given the steady-
tate interest rate 𝑟∗. The interest rate is slowly adjusted to avoid abrupt
hanges in firms’ financing conditions, with 𝜌𝐶𝐵 defining the speed of
15

djustment (Castelnuovo, 2003). 𝐼
.7. Government

The government collects taxes (𝑇𝐴𝑋𝑡) from the agents’ income,
istributes transfers (𝑇𝑅𝐴𝑡) to low-income households, and provides
iquidity of last resort (𝐸𝑋𝑃𝑡) to failed banks. If in need, the govern-
ent can issue additional bonds bought by the banking sector, and

n which pays the risk-free policy rate (𝑖𝐶𝐵𝑡 ). Hence, public debt (𝐵𝑡)
volves according to:

𝑡 = (1 + 𝑖𝐶𝐵𝑡−1)𝐵𝑡−1 + 𝑇𝑅𝐴𝑡 + 𝐸𝑋𝑃𝑡 − 𝑇𝐴𝑋𝑡. (A.13)

The debt-to-GDP ratio dynamics can be written as:

𝑡+1 =
1 + 𝑖𝐶𝐵𝑡
1 + 𝑔𝑡

𝑏𝑡 − 𝑓𝑡+1, (A.14)

where 𝑏𝑡 is debt-to-GDP ratio, 𝑓𝑡 ≡ (𝑇𝐴𝑋𝑡 − 𝑇𝑅𝐴𝑡 − 𝐸𝑋𝑃𝑡)∕𝐺𝐷𝑃𝑡 is
he primary budget-to-GDP, and 𝑔𝑡 is the expected nominal growth rate
f GDP. The government complies with a fiscal sustainability rule that
revents public debt from increasing indefinitely. Thus, the government
djusts gradually the current debt-to-GPD ratio to a target value 𝑏∗ at
rate 𝜌𝐺:

𝑡+1 = 𝑏𝑡 + 𝜌𝐺(𝑏∗ − 𝑏𝑡). (A.15)

A.15) and (A.14) obtains the expected primary balance, that is:

− 𝑓𝑡+1 = 𝜌𝐺𝑏∗ + (1 − 𝜌𝐺)

[

1 −
1 + 𝑖𝐶𝐵𝑡

(1 + 𝑔𝑡)(1 − 𝜌𝐺)

]

𝑏𝑡,. (A.16)

To comply with the expected primary balance, the government sets
the tax rate, 𝜏𝑡𝑎𝑥𝑡 . The share of social transfer over GDP, 𝜏𝑡𝑟𝑎𝑡 , is fixed at

rate 𝜓𝐺. The latter can be increased only if:
𝑡𝑟𝑎
𝑡 = max

(

𝜓𝐺 ,−𝑓𝑡+1
)

, (A.17)

where 𝜏𝑡𝑟𝑎𝑡 represents the share of social expenditures and 𝜓𝐺 is the
constant benchmark value, meaning that the expected primary balance
guarantees enough fiscal space. The tax rate for the current period is
then:

𝜏𝑡𝑎𝑥𝑡 = max
(

0, 𝑓𝑡+1 + 𝜏𝑡𝑟𝑎𝑡
)

. (A.18)

f negative, the tax rate is set equal to zero, as consumer and firm
ubsidies are not considered in this version.

.8. Stock-flow consistency

See Tables A.10 and A.11.

.9. MATRIX model parameters

See Table A.12.

ppendix B. Climate boxes

This section presents the methodology employed to forecast ROW
missions and describes in details the alternative climate boxes tested
n the paper.

.1. Global emissions forecast

The Stochastic Impacts by Regression on Population, Affluence,
nd Technology (STIRPAT) framework (Dietz and Rosa, 1994, 1997;
ork et al., 2003; Liddle, 2015; Vélez-Henao and Font Vivanco, 2019)
xtends the standard IPAT equation (Ehrlich and Holdren, 1971, 1972;
ommoner et al., 1972) by allowing for non-unitary elasticities be-
ween environmental impacts (𝐼), population (𝑃 ), affluence (𝐴), and
echnology (𝑇 ), namely:

𝑏 𝑐 𝑑

𝑡 = 𝑎𝑃𝑡 𝐴𝑡 𝑇𝑡 𝑍𝑡, (B.1)
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Table A.10
Aggregate balance sheet.

Households E-firms C-firms K-firms Banks Government Central bank Total

Deposits +𝐷ℎ +𝐷𝑒 +𝐷𝑐 +𝐷𝑘 −𝐷 0
Capital +𝐾𝑒 +𝐾𝑐 +𝐾
Bonds +𝐵𝑏 −𝐵 +𝐵𝑐𝑏 0
Loans −𝐿𝑒 −𝐿𝑐 −𝐿𝑘 +𝐿 0
Reserves +𝐻 −𝐻 0
Net worth −𝑁𝑊ℎ −𝑁𝑊𝑒 −𝑁𝑊𝑐 −𝑁𝑊𝑘 −𝑁𝑊𝑏 −𝑁𝑊𝑔 −𝐾

𝛴 0 0 0 0 0 0 0 0
Table A.11
Aggregate transaction flow matrix.

Households E-firms C-firms K-firms Banks Fossil fuel Abatement Government Central bank 𝛴

CA KA CA KA CA KA CA KA

Consumption −𝐶 0 0 +𝐶 0 0 0 0 0 0 0 0 0 0
Public Exp. +𝑇𝑅𝐴 0 0 0 0 0 0 +𝐸𝑋𝑃 0 0 0 −𝐺 0 0
Investment 0 0 −𝐼𝑒 0 −𝐼𝑐 +𝐼𝑘 0 0 0 0 0 0 0 0
Abatement +𝐴𝑏 −𝐴𝑏𝑒 0 −𝐴𝑏𝑐 0 −𝐴𝑏𝑘 0 0 0 0 +𝐴𝑏(−𝐴𝑏) 0 0 0
Energy 0 +𝐸 0 −𝐸𝑐 0 −𝐸𝑘 0 0 0 0 0 0 0 0
Fossil fuel +(1 − 𝜂𝑜)𝐹 −𝐹𝑒 + 𝜂𝑜𝐹 0 −𝐹𝑐 0 −𝐹𝑘 0 0 0 +𝐹 (−𝐹 ) 0 0 0 0
Wages +𝑊 −𝑊𝑒 0 −𝑊𝑐 0 −𝑊𝑘 0 0 0 0 0 0 0 0
Taxes −𝑇ℎ −𝑇𝑒 0 −𝑇𝑐 0 −𝑇𝑘 0 −𝑇𝑏 0 0 0 +𝑇 0 0
Carbon taxes 0 −𝐶𝑇𝑒 0 −𝐶𝑇𝑐 0 −𝐶𝑇𝑘 0 0 0 0 0 +𝐶𝑇 0 0
Loan interests 0 −𝑖𝐿𝑒 0 −𝑖𝐿𝑐 0 −𝑖𝐿𝑘 0 +𝑖𝐿 0 0 0 0 0 0
Bonds interests 0 0 0 0 0 0 0 +𝑖𝐶𝐵𝐵𝑏 0 0 0 −𝑖𝐶𝐵𝐵 +𝑖𝐶𝐵𝐵𝑏 0
Profits +𝐷𝑃𝑟 −𝑃𝑟𝑒 +𝑈𝑃𝑟𝑒 −𝑃𝑟𝑐 +𝑈𝑃𝑟𝑐 −𝑃𝑟𝑘 +𝑈𝑃𝑟𝑘 −𝑃𝑟𝑏 +𝑈𝑃𝑟𝑏 0 0 +𝑖𝐶𝐵𝐵𝑐𝑏 −𝑖𝐶𝐵𝐵𝑐𝑏 0
Stocks:
𝛥 Deposits −𝛥𝐷ℎ 0 −𝛥𝐷𝑒 0 −𝛥𝐷𝑐 0 −𝛥𝐷𝑘 0 +𝛥𝐷𝑏 0 0 0 0 0
𝛥 Loans 0 0 +𝛥𝐿𝑒 0 +𝛥𝐿𝑐 0 +𝛥𝐿𝑘 0 −𝛥𝐿𝑏 0 0 0 0 0
𝛥 Bonds 0 0 0 0 0 0 0 0 −𝛥𝐵𝑏 0 0 +𝛥𝐵 −𝛥𝐵𝑐𝑏 0
𝛥 Reserves 0 0 0 0 0 0 0 0 −𝛥𝐻 0 0 0 +𝛥𝐻 0
𝛥 Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0
or, in logarithm terms:

log(𝐼𝑡) = log(𝑎) + 𝑏 log(𝑃𝑡) + 𝑐 log(𝐴𝑡) + 𝑑 log(𝑇𝑡) + log(𝑍𝑡), (B.2)

where 𝑎 is a scale parameters, 𝑏, 𝑐, and 𝑑 are the factor elasticities,
and 𝑍𝑡 is a stochastic component.26 In the case of CO2 emissions, this
formulation implies we can explicit them as a function of population
(𝑃 ), GDP per capita (𝐴), and emission intensity (𝑇 ), the latter measured
as CO2 emissions per unit of GDP.

Forecasting future global emissions thus requires an econometric
framework that can model the interdependence between those factors,
including potentially lagged effects. Accordingly, Vector Autoregression
(VAR) can account for all these aspects: on the one hand, it introduces
the lags of endogenous variables to control for delayed impacts; on the
other hand, the variance–covariance matrix of innovations implicitly
captures the contemporary interdependence between the variables (see
Kilian and Lütkepohl, 2017).

We retrieve annual data on world population and real GDP (in
constant 2015 US$) from World Bank (2023), while Friedlingstein et al.
(2022) provide a comprehensive dataset (The Global Carbon Budget
2022) on regional and global CO2 emissions. Overall, our data span
the period between 1965 and 2020, totaling 56 observations. After
computing the GDP per capita (𝐴) and emissions per unit of GDP (𝑇 ),
we test for unit roots in the time series (see Table B.13). Given the
obtained results, we decide to use the first log difference of global
emission intensity and GDP per capita while double differencing the
logarithm of population to avoid underestimating the forecast variance.

We select the optimal lag order through the Akaike, Schwarz
Bayesian, and Hannan–Quinn information criteria, which all point to
one lag, and estimate the VAR(1) model:

𝒚𝒕 = 𝝁 + 𝐵1𝒚𝒕−𝟏 + 𝜺𝒕 with 𝒚𝒕 =
⎡

⎢

⎢

⎣

𝛥2 log(𝑃𝑡)
𝛥 log(𝐴𝑡)
𝛥 log(𝑇𝑡)

⎤

⎥

⎥

⎦

, (B.3)

26 The standard IPAT equation implies: 𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑍 = 1.
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𝑡

where 𝝁 is a vector of constants, 𝐵1 is the matrix containing the
coefficients of lagged effects, and 𝜺𝒕 ∼  (𝟎, 𝛴) is a vector of innovations
with zero mean and variance–covariance matrix 𝛴 = 𝐵−1

0 𝐵−1
0

′, with
𝐵0 being the (implicit) matrix capturing the contemporary interdepen-
dence between the endogenous variables (see Kilian and Lütkepohl,
2017).

We conclude by forecasting their values by bootstrapping 1000
independent replicas up to 2100 and then reconstructing the original
time series (i.e., population, real GDP, and CO2 emissions). Fig. B.10
compares the simulated paths (blue lines and shaded areas) with the
baseline Shared Socioeconomic Pathways (SSP– Byers et al., 2022) from
SSP1 to SSP5 (red lines). Our procedure covers most of the possible
future evolutions of population and CO2 emissions. Conversely, it tends
to underestimate the expected growth of real GDP. Nevertheless, since
the focus is on forecasting future emissions and our results match
existing projections, we employ the simulated paths in the MATRIX
model to predict the exogenous dynamics of ROW emissions.27

B.2. Transient carbon response to cumulative emissions – TCRE

Climate literature identifies a direct linear relationship between
emissions and temperature, often referred to as Transient Carbon Re-
sponse to cumulative Emissions (TCRE) (Economides et al., 2018; Dietz
and Venmans, 2019). This model simplifies the analysis in economic
models but discounts eventual nonlinearities in climate change and is
highly influenced by the parametrization value. In this version, the
temperature anomaly evolves according to the following equation:

𝛥𝑇𝑡 = 𝛥𝑇𝑡−1 + 𝜂𝑡𝑐𝑟𝑒𝜁𝑡𝑐𝑟𝑒𝐸𝑊𝑡 , (B.4)

with 𝜂𝑡𝑐𝑟𝑒 being the initial pulse-adjustment timescale parameter, 𝜁𝑡𝑐𝑟𝑒
the TCRE parameter, and 𝐸𝑊𝑡 global CO2 emissions.

27 In particular, we associate each simulated path to a specific random
number generator seed of the MATRIX model.
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Table A.12
MATRIX model: economy parameters.

Variable Description Value Source

𝑊 Number of workers 1000

Ciola et al. (2023) and Turco et al. (2023)

𝛽𝐶 Households discount rate 0.996
𝜀 Households memory parameter 𝛽𝐶

𝜒 Marginal propensity to consume out of wealth 1 − 𝛽𝐶

𝛽𝐹 Firms discount rate 0.980
𝜇𝐹 Firms dividend payout ratio 1 − 𝛽𝐹

𝜌𝑊 Wage stickiness 0.56
𝜃𝑊 Insider–outsider bargaining power 0.51
𝜄𝑊 Inflation anchoring 0.67
𝛿𝑁 labor depreciation rate 1
 𝐶 Number of C-firms 100
𝐴𝑁,𝐶 Factor share capital (C-firms) 0.25
𝐴𝐾,𝐶 Factor share labor (C-firms) 0.69
𝐴𝐸,𝐶 Factor share energy (C-firms) 0.03
𝐴𝑂,𝐶 Factor share natural resource (C-firms) 0.03
𝛿𝐶 Consumption goods depreciation rate 1
𝜎𝐶 Elasticity of substitution (C-firms) 0.25
 𝐸 Number of E-firms 15
𝐴𝑁,𝐸 Factor share capital (E-firms) 0.28
𝐴𝐾,𝐸 Factor share labor (E-firms) 0.33
𝐴𝑂,𝐸 Factor share natural resource (E-firms) 0.39
𝛿𝐸 Energy services depreciation rate 1
𝜎𝐸 Elasticity of substitution (E-firms) 0.25
𝐾 Number of K-firms 60
𝐴𝑁,𝐾 Factor share labor (K-firms) 0.91
𝐴𝐸,𝐾 Factor share energy (K-firms) 0.04
𝐴𝑂,𝐾 Factor share natural resource (K-firms) 0.05
𝛿𝐾 Depreciation rate of physical capital 0.05∕4
𝜎𝐾 Elasticity of substitution (K-firms) 0.25
𝛾𝑃𝑄 Maximum size of price–quantity exploration 0.05
𝜁𝑄 Speed of adjustment: quantity 0.75
𝜁𝑃 Speed of adjustment: price 0.75
𝜔 Intensity of choice 10
𝜈𝑂 Foreign natural resource expenditure over GDP 0.021
𝛿𝑂 Foreign natural resource depreciation rate 1
𝜂𝑂 Share of foreign natural resource going to E-firms 0.09
 𝐵 Number of banks 10
𝛾𝐵 Capital adequacy ratio 0.08
𝜔𝐵 Risk weighting 1
𝜅𝐵 Maximum single exposure to borrowers 0.25
𝜚𝐵 Interest rate setting parameter: bank financial soundness 0.029∕4
𝜌𝐵 Interest rate setting parameter: firm leverage 0.017∕4
𝜄𝐵 Interest rate setting parameter: share of aggregate NPL 0.001∕4
𝜃𝐵 Share of loans repaid at each time-step 0.0125
𝑝∗ Inflation target 0.02∕4
𝑢∗ Target unemployment rate 0.087
𝑟∗ Steady state real interest rate 1∕𝛽𝐶 − 1
𝜆𝑝 Monetary policy rule weights: inflation 1.41
𝜆𝑢 Monetary policy rule weights: unemployment 0.11
𝜌𝐶𝐵 Speed of adjustment of the monetary policy rule 0.85
𝑏∗ Target debt-GDP ratio 0.75
𝜌𝐺 Speed of adjustment to target debt-GDP ratio 0.007
𝜓𝐺 Share of social expenditures 0.094
𝐶 Maximum number of new partners (C-market) 0.25
𝐸 Maximum number of new partners (E-market) 4
𝐾 Maximum number of new partners (K-market) 4
𝑁 Maximum number of new partners (labor market) 10
𝐵 Maximum number of new partners (credit market) 0.2
B.2.1. TCRE model parameters
See Table B.14.

B.3. Dynamic integrated climate-economy — DICE

We also consider a carbon cycle akin to the ones employed in
the DICE 2013R model. That includes an ocean box and captures the
interrelationships between the carbon concentrations and temperatures
on the lower and upper parts of the ocean. The carbon stocks of the
three reservoirs (atmosphere 𝐶𝑎𝑡𝑚,𝑡, upper ocean 𝐶𝑢𝑜,𝑡 and deep ocean
𝐶𝑙𝑜,𝑡) are updated by the exchanges between the three pools:

𝐶 = 𝑓 𝐶 + 𝑓 𝐶 + 𝐸𝑊 , (B.5)
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𝑎𝑡𝑚,𝑡 𝑎𝑎 𝑎𝑡𝑚,𝑡−1 𝑢𝑎 𝑢𝑜,𝑡−1 𝑡−1
𝐶𝑢𝑜,𝑡 = 𝑓𝑎𝑢𝐶𝑎𝑡𝑚,𝑡−1 + 𝑓𝑢𝑢𝐶𝑢𝑜,𝑡−1 + 𝑓𝑙𝑢𝐶𝑙𝑜,𝑡−1, (B.6)

𝐶𝑙𝑜,𝑡 = 𝑓𝑢𝑙𝐶𝑢𝑜,𝑡−1 + 𝑓𝑙𝑙𝐶𝑙𝑜,𝑡−1, (B.7)

for 𝑓𝑥𝑦 with 𝑥, 𝑦 ∈ [𝑎, 𝑢, 𝑙] denoting the share of the carbon in pool 𝑥
flowing to the target pool 𝑦. The global temperature anomaly at the
atmospheric level (𝛥𝑇𝑡) and the ocean one (𝛥𝑇𝑜,𝑡) are calculated as
follows. First the radiative forcing (𝑅𝐹𝑡) is defined as:

𝑅𝐹𝑡 = 𝜂
log

[𝐶𝑎𝑡𝑚,𝑡−1
𝐶𝑎𝑡𝑚,0

]

, (B.8)

log(2)
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Fig. B.10. Simulated. Note: forecast of global population (left panel), real GDP (central panel), and CO2 emissions (right panel) up to 2100. Median (blue solid line), 50%, and
90% confidence intervals (blue shaded areas) computed on 1000 independent extractions. Red lines depict the official Shared Socioeconomic Pathways (SSP) from SSP1 to SSP5.
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Table B.13
Augmented Dickey–Fuller test.

Variable Constant Constant and trend

log(𝑃𝑡) 0.1052 0.9994
log(𝐴𝑡) 0.3560 0.1127
log(𝑇𝑡) 0.9963 0.2288
𝛥 log(𝑃𝑡) 0.9567 0.0140
𝛥 log(𝐴𝑡) 3.06 × 10−5 0.0002
𝛥 log(𝑇𝑡) 2.16 × 10−6 1.10 × 10−5

𝛥2 log(𝑃𝑡) 3.01 × 10−5 0.0003

Note: p-values of Augmented Dickey–Fuller test with constant and constant plus trend
on log and log difference (first and second) of population (𝑃 ), GDP per capita (𝐴), and
mission intensity (𝑇 ).

Table B.14
Climate box parameters, TCRE.

Variable Description Value Source

𝜂𝑡𝑐𝑟𝑒 Transient carbon response to emissions 0.0019 Allan et al. (2021)
𝜁𝑡𝑐𝑟𝑒 Initial pulse-adjustment timescale 1 " "

with 𝜂 being the forcing of equilibrium CO2 doubling (W m−2). Then,

𝛥𝑇𝑡 = 𝛥𝑇𝑡−1 + 𝑐1
[

𝑅𝐹𝑡 −
𝜂
𝜆
𝛥𝑇𝑡−1 − 𝑐3

(

𝛥𝑇𝑡−1 − 𝛥𝑇𝑜,𝑡−1
)

]

, (B.9)

with 𝑐1 being the climate equation coefficient for the upper-level ocean,
𝜆 the equilibrium temperature impact (◦C per doubling CO2), and 𝑐3 the
transfer coefficient from the upper to lower stratum. 𝛥𝑇𝑜,𝑡 is defined as

𝛥𝑇𝑜,𝑡 = 𝛥𝑇𝑜,𝑡−1 + 𝑐4
(

𝛥𝑇𝑡−1 − 𝛥𝑇𝑜,𝑡−1
)

, (B.10)

with 𝑐4 being the transfer coefficient for the lower level.

.3.1. DICE model parameters
See Table B.15.

.4. World induced technical change hybrid – WITCH

The World Induced Technical Change Hybrid (WITCH) model em-
loys a carbon cycle derived from the DICE family of carbon cycles (Em-
erling et al., 2016). Although similar to the one in the previous

ubsection, it is still included to test a different parametrization. The
arbon atmosphere is set as:

𝑎𝑡𝑚,𝑡 = 𝑓𝑎𝑎𝐶𝑎𝑡𝑚,𝑡−1 + 𝑓𝑢𝑎𝐶𝑢𝑜,𝑡−1 + 𝐸𝑊𝑡−1, (B.11)

with 𝑓𝑥𝑦 and 𝑥, 𝑦 ∈ [𝑎, 𝑢, 𝑙] denoting the share of the carbon in pool 𝑥
flowing to the target pool 𝑦. The upper ocean carbon pool is defined
as:
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𝐶𝑢𝑜,𝑡 = 𝑓𝑎𝑢𝐶𝑎𝑡𝑚,𝑡−1 + 𝑓𝑢𝑢𝐶𝑢𝑜,𝑡−1 + 𝑓𝑙𝑢𝐶𝑢𝑜,𝑡−1, (B.12)
whereas the lower ocean carbon is equal to:

𝐶𝑙𝑜,𝑡 = 𝑓𝑢𝑙𝐶𝑢𝑜,𝑡−1 + 𝑓𝑙𝑙𝐶𝑙𝑜,𝑡−1. (B.13)

The difference in GHG concentrations affects the change in the
radiating factor:

𝑅𝐹𝑡 = 𝜂
log

[𝐶𝑎𝑡𝑚,𝑡−1
𝐶𝑎𝑡𝑚,0

]

log(2)
, (B.14)

The atmosphere and ocean temperatures are updated accordingly:

𝛥𝑇𝑡 = 𝛥𝑇𝑡−1 + 𝜉1
[

𝑅𝐹𝑡−1 − 𝜉2𝛥𝑇𝑡−1 − 𝜉3
(

𝛥𝑇𝑡−1 − 𝛥𝑇𝑜,𝑡−1
)]

, (B.15)

𝛥𝑇𝑜,𝑡 = 𝛥𝑇𝑜,𝑡−1 + 𝜉4
(

𝛥𝑇𝑡−1 − 𝛥𝑇𝑜,𝑡−1
)

, (B.16)

ith 𝜉1 being the lag parameter, 𝜉2 the climate feedback parameter,
3 the atmosphere–ocean exchange coefficient, and 𝜉4 the ocean heat
apacity.

.4.1. WITCH model parameters
See Table B.16.

.5. Climate rapid overview and decision support – C-ROADS

We now describe a climate module inspired by the Climate Rapid
verview And Decision Support (C-ROADS) model (Sterman et al.,
012). In this module, CO2 in the atmosphere is determined by the
nterrelation between anthropogenic emissions and exchanges between
n ocean and a land box.

.5.1. Land
The Net Primary Production (𝑁𝑃𝑃𝑡) absorbs carbon from the atmo-

phere:

𝑃𝑃𝑡 = 𝑁𝑃𝑃0

[

1 + 𝛽 log
(𝐶𝑎𝑡𝑚,𝑡−1
𝐶𝑎𝑡𝑚,0

)]

(

1 − 𝛽𝑇 1𝛥𝑇𝑡−1
)

, (B.17)

where 𝛽𝑇 1 is a coefficient capturing the effect of the increase in mean
surface temperature from the preindustrial level (𝛥𝑇𝑡) on NPP, and
𝑁𝑃𝑃0 coincides with the preindustrial NPP. Part of the carbon can be
stored or released from other stocks, namely the biosphere stock 𝐶𝑏,𝑡
and the soil humus 𝐶ℎ,𝑡. Therefore, other fluxes should be considered.

hese include the ones from the biosphere to the atmosphere, 𝐹𝑏𝑎:

𝑏𝑎 =
𝐶𝑏,𝑡−1
𝑏𝑟𝑡

(1 − ℎ𝑢𝑚), (B.18)

here 𝑏𝑟𝑡 is the retention rate of carbon in the biosphere, and ℎ𝑢𝑚 is
he humification factor. Next is the flux from the soil to the atmosphere
ℎ𝑎:

=
𝐶ℎ,𝑡−1 , (B.19)
ℎ𝑎 ℎ𝑟𝑡
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Table B.15
Climate box parameters: DICE.

Variable Description Value Source

𝑓𝑢𝑎 Fraction of upper ocean carbon to atmosphere 0.267 Nordhaus (1993a)
𝑓𝑎𝑎 Fraction of staying atmosphere carbon 0.666 " "
𝑓𝑢𝑢 Fraction of staying upper ocean carbon 0.610 " "
𝑓𝑛𝑠 Fraction of atmosphere to upper ocean carbon 0.333 " "
𝑓𝑙𝑢 Fraction of lower ocean carbon to upper ocean carbon 0.004 " "
𝑓𝑙𝑙 Fraction of staying lower ocean carbon 0.995 " "
𝑓𝑢𝑙 Fraction of upper ocean carbon to lower ocean 0.114 " "
𝑐1 Lag parameter 0.226 " "
𝜂 Climate feedback parameter 2.9 " "
𝑐2 Atmosphere ocean exchange-coefficient 0.44 " "
𝑐4 Ocean heat capacity 0.02 " "
𝜆 Scaling parameter 5.35 " "
𝐶𝑎𝑡𝑚,0 Initial value CO2 atmosphere 𝐺𝑡𝐶 588 " "
𝐶𝑢𝑜,0 Initial value CO2 upper ocean 𝐺𝑡𝐶 1350 " "
𝐶𝑙𝑜,0 Initial value CO2 lower ocean 𝐺𝑡𝐶 10 000 " "
𝑇𝑢𝑜,0 Initial value average temperature upper ocean ◦C 0.43 " "
𝑇𝑙𝑜,0 Initial value average temperature lower ocean ◦C 0.06 " "
𝑇0 Average temperature preindustrial level ◦C 14 " "
Table B.16
Climate box parameters: WITCH.

Variable Description Value Source

𝑓𝑢𝑎 Fraction of upper ocean carbon to atmosphere 0.04 Emmerling et al. (2016)
𝑓𝑎𝑎 Fraction of staying atmosphere carbon 0.88 " "
𝑓𝑢𝑢 Fraction of staying upper ocean carbon 0.95 " "
𝑓𝑛𝑠 Fraction of atmosphere to upper ocean carbon 0.12 " "
𝑓𝑙𝑢 Fraction of lower ocean carbon to upper ocean carbon 0.00075 " "
𝑓𝑙𝑙 Fraction of staying lower ocean carbon 0.999 " "
𝑓𝑢𝑙 Fraction of upper ocean carbon to lower ocean 0.005 " "
𝜉1 Lag parameter 0.226 " "
𝜉2 Climate feedback parameter 1.36 " "
𝜉3 Atmosphere ocean exchange-coefficient 0.31 " "
𝜉4 Ocean heat capacity 0.05 " "
𝜆 Scaling parameter 5.35 " "
𝐶𝑎𝑡𝑚,0 Initial value CO2 atmosphere 𝐺𝑡𝐶 735 " "
𝐶𝑢𝑜,0 Initial value CO2 upper ocean 𝐺𝑡𝐶 1000 " "
𝐶𝑙𝑜,0 Initial value CO2 lower ocean 𝐺𝑡𝐶 10 000 " "
𝑇 𝑜0 Initial value average temperature upper ocean ◦C 1 " "
𝑇0 Average temperature preindustrial level ◦C 14 " "
C

𝜉

A

with ℎ𝑟𝑡 being the retention rate for carbon into soil. Lastly, humifica-
tion captures the flux from the biosphere to the soil layer through the
flux 𝐹𝑏ℎ:

𝐹𝑏ℎ =
𝐶𝑏,𝑡−1
𝑏𝑟𝑡

ℎ𝑢𝑚. (B.20)

These fluxes affect the next period’s atmospheric carbon stocks such
that:

𝐶𝑎𝑡𝑚,𝑡 = 𝐶𝑎𝑡𝑚,𝑡−1 + 𝐹𝑏𝑎 + 𝐹ℎ𝑎 − 𝐹𝑎𝑏, (B.21)

as well as the other stocks:

𝐶𝑏,𝑡 = 𝐶𝑏,𝑡−1 + 𝐹𝑎𝑏 − 𝐹𝑏𝑎 − 𝐹𝑏ℎ, (B.22)

𝐶ℎ,𝑡 = 𝐶ℎ,𝑡−1 + 𝐹𝑏ℎ − 𝐹ℎ𝑎. (B.23)

B.5.2. Ocean
The carbon concentration in the atmosphere also depends b the

exchanges with the oceans. These are modeled by a two-layer eddy
diffusion box. The net carbon flux from mixed to deep ocean (𝛥𝐶𝑚𝑑,𝑡)
depends on the difference in the carbon concentration in the two layers:

𝛥𝐶𝑚𝑑,𝑡 = 𝜅𝑒𝑑𝑑𝑦

𝐶𝑚,𝑡−1
𝑑𝑚

− 𝐶𝑑,𝑡−1
𝑑𝑑

𝑑𝑚𝑑
, (B.24)

here 𝐶𝑚𝑑,𝑡 is the mixed layer carbon concentration, 𝑑𝑥 represent the
thickness of the layer, 𝑑𝑚𝑑 is the average thickness and 𝜅𝑒𝑑𝑑𝑦 is a eddy
diffusion parameter. The mixed layer carbon concentration depends on
19

d

the change both in atmospheric carbon concentration and temperature
with respect to their preindustrial levels, and the Revelle factor 𝜉𝑡:

𝐶𝑚,𝑡 = 𝐶𝑚,0(1 − 𝛽𝑇 2𝑇𝑚,𝑡−1)
( 𝐶𝑎𝑡𝑚,𝑡
𝐶𝑎𝑡𝑚,0

)1∕𝜉𝑡
, (B.25)

The Revelle parameter (𝜉𝑡) evolves over time following the atmospheric
O2:

𝑡 = 𝜉0 + 𝛿 log
( 𝐶𝑎𝑡𝑚,𝑡
𝐶𝑎𝑡𝑚,0

)

. (B.26)

B.5.3. C-ROADS model parameters
See Table B.17.

B.6. HECTOR

In this section, we present a climate box inspired by the HECTOR
model, which includes a three-module carbon cycle: atmosphere, land,
and ocean (Hartin et al., 2015). In the climate box, any change in the
atmospheric carbon depends on anthropogenic emissions (𝐹𝐴) and the
carbon fluxes between atmosphere–land (𝐹𝐿) and atmosphere–ocean
(𝐹𝑂):

𝐶𝑎𝑡𝑚,𝑡 = 𝐶𝑎𝑡𝑚,𝑡−1 + 𝐹𝐴,𝑡 − 𝐹𝐿,𝑡 − 𝐹𝑂,𝑡. (B.27)

s the emissions flux is such that 𝐹𝐴,𝑡 = 𝐸𝑊𝑡 , we proceed now to

escribe the two other ones.
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Table B.17
Climate box parameters: C-ROADS.

Variable Description Value Source

𝐶𝑜 CO2 ocean preindustrial level 10.237 Sterman et al. (2012)
𝑁𝑃𝑃0 Net primary production preindustrial level 85.177 " "
𝛽𝑐 Response of NPP to carbon 0.42 " "
𝑏𝑟𝑡 Years carbon in bio retention 10.6 " "
ℎ𝑟𝑡 Years carbon in humus retention 27.8 " "
ℎ𝑢𝑚 Humification factor 0.428 " "
𝜉0 Revelle reference buffer factor 0.97 " "
𝛿𝑐 Index for response of buffer to carbon concentration 3.92 " "
𝜅𝑒𝑑𝑑𝑦 Eddy diffusion coefficient for circulation in ocean 4400 " "
𝑑𝑚𝑖𝑥 Mixed ocean depth 100 " "
𝑑𝑑𝑒𝑒𝑝 Deep ocean depth 3500 " "
𝛽𝑇 1 Sensitivity of carbon uptake to temperature by land −0.01 " "
𝛽𝑇 2 Sensitivity of carbon uptake to temperature by ocean 0.003 " "
𝑐1 Diffusion for atmospheric temperature 0.098 " "
𝜆𝑐 Equilibrium climate sensitivity 2.9 " "
𝑐3 Diffusion in deep oceans temperature equation 0.088 " "
𝑐4 Sensitivity of atmospheric to deep ocean temperature 0.025 " "
𝛾𝑟𝑓 Radiative forcing coefficient 5.35 " "
𝜎𝑢𝑝𝑙𝑜 Ocean heat capacity 11 " "
𝐶𝑎𝑡𝑚,0 Initial value CO2 atmosphere 𝐺𝑡𝐶 590 " "
𝐶𝑢𝑜,0 Initial value CO2 upper ocean 𝐺𝑡𝐶 1023.73 " "
𝐶𝑙𝑜,0 Initial value CO2 lower ocean 𝐺𝑡𝐶 35 830 " "
𝐶𝑏𝑖𝑜,0 Initial value CO2 biosphere 𝐺𝑡𝐶 902.87 " "
𝐶ℎ𝑢𝑚,0 Initial value CO2 humus 𝐺𝑡𝐶 1013.5 " "
𝑇𝑢𝑜,0 Initial value average temperature upper ocean 0.43 " "
𝑇𝑙𝑜,0 Initial value average temperature lower ocean 0.06 " "
𝑇𝑡,0 Average temperature preindustrial level 14 " "
B.6.1. Land
The land box is divided into three land layers (terrestrial vegetation,

detritus, and soil), linked with each other and the atmosphere. The CO2
absorption from the land layer 𝐹𝐿,𝑡 depends on the difference between
the net primary production (𝑁𝑃𝑃 ) and the heterotrophic respiration of
soil and detritus layers (𝑅𝐻𝑥, with 𝑥 ∈ [𝑠, 𝑑]):

𝐹𝐿,𝑡 = 𝑁𝑃𝑃𝑡 − 𝑅𝐻𝑑,𝑡 − 𝑅𝐻𝑠,𝑡. (B.28)

𝑁𝑃𝑃𝑡 is the net primary production representing how much carbon
dioxide vegetation takes in during photosynthesis minus the quantity
it releases with respiration:

𝑁𝑃𝑃𝑡 = 𝑁𝑃𝑃0

[

1 + 𝛽𝑛𝑝𝑝 log
(𝐶𝑎𝑡𝑚,𝑡−1
𝐶𝑎𝑡𝑚,0

)]

. (B.29)

According to (B.29), the net primary production depends on a carbon
fertilization parameter 𝛽𝑛𝑝𝑝 and the change of the carbon stock in the
atmosphere with respect to the preindustrial level. 𝑅𝐻𝑦,𝑡 denotes the
heterotrophic respiration summed over user-specified boxes (𝑦 ∈ [𝑠, 𝑑]
meaning soil and detritus) and evolves as follows:

𝑅𝐻𝑦,𝑡 = 𝐶𝑦,𝑡𝑓𝑟𝑦𝑄
𝑇𝑡−1∕10
10 . (B.30)

The heterotrophic respiration in the two layers is a function of
he carbon stock in detritus and soil (𝐶𝑑,𝑡 and 𝐶𝑠,𝑡 respectively), the
nnual fraction of respiration carbon transferred to the detritus and soil
ayer (𝑓𝑟𝑑 and 𝑓𝑟𝑠), and 𝑄10, which represents the terrestrial respiration
emperature response. Hence, the land carbon absorption is negatively
ffected by global warming, producing positive feedback dynamics
etween climate and carbon cycle (Sterman et al., 2012). The land
arbon stocks dynamics are the result of changes in the fluxes between
he three carbon land pools as follows:

𝑣,𝑡 = 𝑁𝑃𝑃𝑡𝑓𝑛𝑣 + 𝐶𝑣,𝑡−1(1 − 𝑓𝑣𝑑 − 𝑓𝑣𝑠), (B.31)

𝑑,𝑡 = 𝐶𝑑,𝑡−1(1 − 𝑓𝑑𝑠) +𝑁𝑃𝑃𝑡−1𝑓𝑛𝑑 + 𝐶𝑣,𝑡−1𝑓𝑣𝑑 − 𝑅𝐻𝑑,𝑡, (B.32)

𝐶𝑠,𝑡 = 𝐶𝑠,𝑡−1 +𝑁𝑃𝑃𝑡−1𝑓𝑛𝑠 + 𝐶𝑣,𝑡−1𝑓𝑣𝑠 + 𝐶𝑑,𝑡−1𝑓𝑑𝑠 − 𝑅𝐻𝑠,𝑡, (B.33)

where 𝐶𝑣 represents the carbon stock in vegetation, and 𝑓𝑥𝑦 is the
annual fraction of carbon transferred from the upper layer 𝑥 to the
lower layer 𝑦, with 𝑥 ∈ [𝑣, 𝑑] and 𝑦 ∈ [𝑑, 𝑠].
20
B.6.2. Ocean
The ocean carbon cycle model extends the traditional box structure

of Knox and McElroy (1984) following Lenton (2000). The ocean–
atmosphere carbon flux is the sum of the ocean surface fluxes which
depend upon the solubility of carbon within the two surface ocean
boxes. According to Takahashi et al. (2009), each surface ocean box
exchanges CO2 emissions according to the atmosphere–ocean gradient
of the partial pressure 𝑝CO2:

𝐹𝑖,𝑡 = 𝛷𝐾ℎ𝑖,𝑡𝐴𝑟𝑖𝑆𝑐
−1∕2
𝑖,𝑡 𝑈2

10𝛥𝑝CO2, (B.34)

where 𝛷 is a unit conversion parameter (Hartin et al., 2016), 𝐾ℎ𝑖,𝑡
represents the Henry’s Law constant, 𝐴𝑟𝑖 is the area of the surface
layer 𝑖 (𝑖 = 𝐻𝐿,𝐿𝐿, meaning high and low latitude), whereas 𝑈10 and
𝑆𝑐𝑖,𝑡 are the average wind speed and the Schmidt number. The surface
box temperatures are linearly dependent on the global atmospheric
temperature and are initially set at 2 ◦C in the high latitudes and
22 ◦C in the low latitudes. This gradient in the ocean water temperature
produces a flux of carbon into the cold high-latitude sea and a flow of
carbon from the warm low-latitude sea.

To initialize the ocean component of the model, we take as fixed
the physical flows of water between the ocean boxes, and we derive
the initial level of carbon stocks consistent to reach a steady state.
Following Lenton (2000), we assume a preindustrial atmosphere–ocean
flow equal to 1 GtC per year that nets out in the steady state, with a
positive outgassing from the waters at lower latitude (+1 GtC) and a
negative one for the higher latitudes (−1 GtC). Alkaline levels 𝑎𝑙𝑘𝑖 in
the two surface boxes are set to compel this assumption about flows.
Alkaline levels, as well as the dissolved inorganic carbon (𝐷𝐼𝐶𝑖,𝑡),
calculated from the atmospheric carbon, concur to solve the ocean
chemistry subsystem (see Hartin et al., 2016, for the detailed carbonate
chemistry equations), which defines the partial pressure 𝑝CO2,𝑖,𝑡, the
Schmidt parameter 𝑆𝑐𝑖,𝑡, and Henry’s constant solubility parameter
𝐾ℎ𝑖,𝑡. At every turn, these are set to reflect the change in carbon
differentials between the atmosphere and the ocean, affecting the flux
𝐹𝑂,𝑡.

Within the ocean, the thermohaline circulation of water mass in the
ocean generates a flux of carbon between the ocean boxes. This carbon
flux from layer 𝑥 to layer 𝑦 in the ocean is positively affected by the
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Table B.18
Climate box parameters: HECTOR.

Variable Description Value Source

𝑓𝑑𝑠 Fraction of detritus carbon transferred to soil 0.6 Hartin et al. (2015)
𝑓𝑣𝑠 Fraction of vegetation carbon transferred to soil 0.001 " "
𝑓𝑛𝑑 Fraction of NPP carbon transferred to detritus 0.6 " "
𝑓𝑛𝑠 Fraction of NPP carbon transferred to soil 0.05 " "
𝑓𝑛𝑣 Fraction of NPP carbon transferred to vegetation 0.35 " "
𝑓𝑟𝑑 Fraction of respiration carbon transferred to detritus 0.25 " "
𝑓𝑟𝑠 Fraction of respiration carbon transferred to soil 0.02 " "
𝑓𝑣𝑑 Fraction of vegetation carbon transferred to detritus 0.034 " "
𝑄10 Terrestrial respiration temperature response 2.45 " "
𝛽𝑛𝑝𝑝 Carbon fertilization parameter 0.36 " "
𝛷 Unit conversion parameter 0.585 " "
𝛼ℎ Henry constant solubility parameter of CO2 0.727 " "
𝐴𝑜ℎ𝑠 Fraction area of high latitude ocean 0.15 Sarmiento and Toggweiler (1984)
𝐴𝑜𝑙𝑠 Fraction area of low latitude ocean 0.85 Sarmiento and Toggweiler (1984)
𝑈ℎ Wind speed in ocean surface 6.7 Takahashi et al. (2009)
𝑎𝑙𝑘ℎ𝑙 Alkalinity levels high latitude ocean box μmol∕kg 2291 × 10−6 Calibration
𝑎𝑙𝑘𝑙𝑙 Alkalinity levels low latitude ocean box μmol∕kg 2246 × 10−6 Calibration
𝑆 Ocean average salinity 34.5 Hartin et al. (2015)
𝐸𝐿𝐼𝑘𝑖𝑑 Water mass exchange (low latitude to intermediate) m3 s−1 2.08 × 108 Lenton (2000) and Knox and McElroy (1984)
𝐸𝐼𝐷𝑘𝑤𝑖 Water mass exchange (intermediate to deep) m3 s−1 1.25 × 107 Lenton (2000) and Knox and McElroy (1984)
𝜅𝑜𝑙𝑠 Thermohaline circulation m3 s−1 7.2 × 107 Hartin et al. (2015)
𝜅𝑜ℎ𝑠 High-latitude circulation m3 s−1 4.9 × 107 " "
𝑠𝑝𝑦 Seconds per year 31 557 600 " "
𝑉𝑜ℎ𝑠 Volume of High latitude surface m3 5.4 × 1015 " "
𝑉𝑜𝑙𝑠 Volume of Low latitude surface m3 3.6 × 1016 " "
𝑉𝑜𝑑𝑒 Volume of intermediate ocean m3 9.64 × 1017 " "
𝑉𝑜𝑖𝑛 Volume of deep ocean m3 3.24 × 1017 " "
𝐶𝑎𝑡𝑚,0 Atmospheric carbon 𝐺𝑡𝐶 588.1 " "
𝐶𝐷,0 Initial Detritus carbon 𝐺𝑡𝐶 55.2941 Calibration
𝐶𝑆,0 Initial Soil carbon 𝐺𝑡𝐶 1808.8235 Calibration
𝐶𝑉 ,0 Initial Vegetation carbon 𝐺𝑡𝐶 500 Calibration
𝐶𝐻𝐿,0 Initial Surface high latitude ocean carbon 𝐺𝑡𝐶 138.72 Calibration
𝐶𝐿𝐿,0 Initial Surface low latitude ocean carbon 𝐺𝑡𝐶 723.15 Calibration
𝐶𝐼𝑂,0 Initial Intermediate ocean carbon 𝐺𝑡𝐶 8309.75 Calibration
𝐶𝐷𝑂,0 Initial Deep ocean carbon 𝐺𝑡𝐶 26 383.65 Calibration
𝑁𝑃𝑃0 Initial Net primary production 𝐺𝑡𝐶 50.0 Hartin et al. (2015)
𝐹𝐿,0 Atmosphere–land steady state carbon flux 𝐺𝑡𝐶∕𝑦 0.0 Hartin et al. (2015)
𝐹𝑂,0 Atmosphere–ocean steady state carbon flux 𝐺𝑡𝐶∕𝑦 0.0 Lenton (2000)
𝑇𝐻𝐿,0 High latitude surface ocean temperature ◦C 2.0 Lenton (2000)
𝑇𝐿𝐿,0 Low latitude surface ocean temperature ◦C 22.0 Lenton (2000)
𝜆𝐶 Equilibrium climate sensitivity 2.9 " "
𝛾𝑅𝐹 Radiative forcing coefficient 5.35 " "
𝑘ℎ Ocean heat uptake efficiency 1.16 Hartin et al. (2015)
mass water exchanged (𝑇 𝑟𝑥−>𝑦), the carbon stock in the two layers, and
heir volume (𝑉 ) as follows:

𝑥−>𝑦,𝑡 = 𝑇 𝑟𝑥−>𝑦

(𝐶𝑖,𝑡
𝑉𝑖

−
𝐶𝑗,𝑡
𝑉𝑗

)

. (B.35)

.6.3. Global atmospheric temperature
The change in the surface global atmospheric mean temperature is

alculated by:

𝑇𝑡 =
𝜆

1 + 𝑘ℎ
𝑅𝐹𝑡, (B.36)

where 𝜆 is a climate feedback parameter, 𝜅ℎ representing the ocean
heat uptake efficiency and 𝑅𝐹𝑡 represents the total radiative forcing:

𝐹𝑡 = 𝛾𝑅𝐹 log
( 𝐶𝑎𝑡𝑚,𝑡
𝐶𝑎𝑡𝑚,0

)

, (B.37)

here 𝛾𝑅𝐹 is a scaling parameter (Hartin et al., 2015).

.6.4. HECTOR model parameters
See Table B.18.
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