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ABSTRACT Water stress and in particular drought are some of the most significant factors affecting plant
growth, food production, and thus food security. Furthermore, the possibility to predict and shape irrigation
on real plant demands is priceless. The objective of this study is to characterize, classify, and forecast water
stress in tomato plants by means of in vivo real time data obtained through a novel sensor, named bioristor,
and of different artificial intelligence models. First of all, we have applied classification models, namely
Decision Trees and Random Forest, to try to distinguish four different stress statuses of tomato plants. Then,
we have predicted, through the help of recurrent neural networks, the future status of a plant when considering
both a binary (water stressed and not water stressed) and a four-status scenario. The obtained results are very
good in terms of accuracy, precision, recall, F-measure, and of the resulting confusion matrices, and they
suggest that the considered novel data and features coming from the bioristor, together with the used machine
and deep learning models, can be successfully applied to real-world on-the-field smart irrigation scenarios
in the future.

INDEX TERMS AI modeling and forecasting, bioristor, precision agriculture, recurrent neural network,
tomato plants, tree-based classifiers, smart irrigation, water stress.

I. INTRODUCTION
Drought is one of the major drivers of water stress and yield
losses in agro-ecosystems. The year 2022 has seen one of the
most severe water shortage all over Europe since the begin-
ning of the recorded historical series of data. In particular,
Italy’s severe drought has caused crop yields to fall by up
to 45%.1

Water and heat stress have substantially reduced summer
crop yields, with grainmaize, soybeans, and sunflowers being
the most affected crops. In this context, the rational use of the
water resources in agriculture is mandatory to achieve a more
sustainable and successful food production. Water stress
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1https://www.ansa.it/english/news/general_news/2022/07/25/drought-

crop-yields-down-by-up-to-45-coldiretti_a926e415-5ecd-4bed-9f59-
2f2197d8aad8.html

negatively affects many physiological functions of plants,
including photosynthesis, transpiration, and nutrient uptake,
and reduces vegetative growth and crop yield, thus threat-
ening food security [13], [14]. The severe drought affecting
many regions of Europe further expanded and worsened as of
early August 2022. Dry conditions were related to a wide and
persistent lack of precipitations combined with a sequence of
heatwaves from May 2022 onward [15]. In this scenario, the
early detection of drought, and the water stress characteri-
zation and prediction via different approaches are critical for
agritech decision support systems and more sustainable water
management [16].

As a result, increasing efforts are made towards drought
characterization and modeling thanks to machine learning
(ML) approaches and artificial intelligence (AI) techniques.
The possibility to predict the onset and termination of
droughts, given the critical stage in mitigating the effects
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of drought, will be key to achieve the goal of agriculture
sustainability. So far, a major challenge is the development
of a method to accurately predict plant drought conditions for
the upcoming short-/medium term period [17].

Recently, a novel in vivo sensor, named ‘‘bioristor,’’ was
developed, patented, and applied in plants [18], [19], [20],
[21]. Bioristor provided new insights in the dynamic changes
of the chemical composition of the sap in the xylem, occur-
ring in drought-stressed tomato and grapevine plants [18],
[19]. The bioristor has been used as a smart sensor for
precision phenotyping in greenhouse conditions to fine tune
the regulation of Vapor Pressure Deficit (VPD) and achieve
increased water use efficiency and yield [19]. Moreover,
salinity stress was detected in a specific manner, allow-
ing one to hypothesize the ability to define the use of sea
water for tomato irrigation and improve fruit quality by con-
stantly monitoring the plant health, boosting water reuse, and
improving quality without compromising the yield itself [20].

The main contribution of this paper is twofold. The first
one is the exploitation, for the first time, of the data acquired
through the bioristor, during previously reported experiments
in a controlled environment, in order to build a proper
and innovative feature model to classify, by using tradi-
tional machine learning techniques, four possible water-stress
statuses of a tomato plant. The second one regards tak-
ing advantage of the novel bio-electrical features, obtained
from the bioristor, to predict, 24 hours ahead and by using
LSTM-based neural networks, the status of a tomato plant,
in order to be able to automate the irrigation process and allow
the plant to be healthy and fruit-bearing as much as possible.

The rest of the paper is divided into the following sections.
Section II summarizes some recent work about the applica-
tion of AI techniques to precision agriculture and water stress
detection. Section III accurately details the practical experi-
ments on the plants and the data collection, dealing with how
the tomato plants have been cultivated in a controlled environ-
ment as well as which novel bio-electrical data and features
have been extracted from the bioristor. Section IV summa-
rizes the main theoretical characteristics of the AI models we
applied to the bioristor data and features. Section V reports
the results we obtained, in terms of accuracy, precision, recall,
F-measure, and confusionmatrices, for both the classification
and the prediction analyses. Section VI discusses the main
achievements and observations that can be drawn from the
results presented in Section V, while Section VII draws some
conclusions and highlights possible future research directions
on the prediction and classification of water stress in plants,
by using the data of the bioristor.

II. RELATED WORK
The usage of artificial intelligence, and specifically machine
learning techniques, in the agricultural field has been an
increasing topic in the last ten years [22]. For example, in [1]
the authors try to detect leaf miners in tomato plants by
applying two types of deep neural networks to classify and
segment plant images, while in [2] a convolutional neural

network is used to predict some growth indices of lettuce
plants, always using image data. In [3] the target crop regards
apples and in particular the classification of their maturation
degree in order to facilitate the work of picking robots. This
is achieved by exploiting histograms of oriented gradients,
SVM, and a fast identification technique for multiple targets,
very suitable for a complex occlusion environment. The focus
of the contribution in [4] is always the apple tree, but with the
aim of classifying leaf diseases by using image data and deep
neural networks with a robust speed up feature technique.
In [5] the focus is the nitrogen status of wheat crops, predicted
through artificial neural networks and genetic algorithms on
image data.

In particular, water status estimation and smart irrigation
via machine learning techniques and for different plantations
have been thoroughly studied and reviewed [23], [24], also
in the context of remote sensing and decision support sys-
tems [25]. For example, Sharma et al. [5] try to estimate soil
moisture by exploiting artificial neural networks on meteoro-
logical data to improve rice crop yield, while in [8] machine
learning techniques are applied to an IoT-based smart irri-
gation system to predict water needs in various crops when
considering soil moisture, air temperature, relative humid-
ity, and ultraviolet radiation as input data. Also in [7] an
IoT-based smart irrigation system is proposed for various
crops, namely spinach, beans, carrots, walnuts, corn, barley,
and maize. The module considers soil evaporation and plant
transpiration as input of a deep neural network predictive
model.

Romero et al. [9] focused on vineyards by using
multi-spectral images from an Unmanned Aerial Vehicle and
artificial neural networks to estimate their stem water poten-
tials. Revathy and Balamurali [10] try to predict, through
traditional and deep neural networks, enhanced by the fire-
fly optimization algorithm, the irrigation amount needed for
sugarcane crops in the next 30 years. As a benchmark, they
exploit future forecasts by the Community Climate System
Model and they achieve an accuracy well beyond 90% on four
different future irrigation strategies. Nagappan et al. [11] try
to predict evapotranspiration for smart irrigation using opti-
mized deep neural networks. Their model is based on a multi-
variate analysis of correlated variables, such as, for example,
temperature, wind speed, sunshine hours, etc., whose number
has been reduced to three via principal component analysis,
while the data samples were collected from 1995 to 2016 in
Veeranam, India. Farooque et al. [12] face the same problem,
the daily forecasting of evapotranspiration, using a similar
set of features, but applying different deep neural network
models, namely, LSTM, 1D-CNN, and convolutional LSTM.
Moreover, the data were collected across Prince Edward
Island, Canada, from 2011 to 2017 and the dataset was split
into four subsets, corresponding to the four seasons.

Table 1 summarizes the main characteristics of the
reviewed researches, highlighting the used input data, the
used artificial intelligence techniques, the target objective,
and the performed task (classification or prediction).
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TABLE 1. Summary of the reviewed related work.

In contrast to the them, the main novelty of the study
proposed in this paper, compared to the relevant literature,
is the application, for the first time, of machine learning tech-
niques, namely Decision Tree-based methods and recurrent
neural networks, to the data of a novel and recently patented
in vivo sensor, named ‘‘bioristor,’’ by using a novel and proper
feature set, for both the classification and prediction of water
stress in tomato plants, and so foster a proper smart irrigation
system thereof.

III. EXPERIMENTS AND DATA COLLECTION
A. TOMATO PLANTS GROWTH AND DROUGHT
TREATMENT
The data analyzed in the current paper are those reported
in [20], including the details of the plant growth and the
drought imposition.

In summary, two experiments in controlled conditions have
been performed.

In the first experiment, seven plants of the cultivar (cv.) Red
Setter were grown up to the stage of 5th fully expanded leaves.
The plants were kept fully irrigated until their fifth true leaf
had fully expanded, after which a bioristor was inserted in
the stem of each plant. After three days, four of the plants
were exposed to drought stress by withholding watering for
14 days; the plants were then irrigated over two days of
recovery, and, finally, a 7-day stress episode was imposed by
withholding water again. A set of three plants was kept fully
watered as a control set.

On the basis of the results obtained in the pilot experiment,
the same experiment was performed in the greenhouse of the
ALSIA plant phenomics facility (Metaponto, Italy), on cv.
Ikram.When plants reached the 5th fully expanded leaf stage,
the bioristors were integrated into the plants, and one day after
the implantation of the bioristor, watering was withheld from
four of the plants for 16 days to impose the drought stress and
then they were restored for a recovery phase of seven days.

B. BIORISTOR PREPARATION
As concerns the inherent structure of the bioristor, it is a
biosensor based on an Organic Electrochemical Transistor
(OECT). It is made of two textile fibers, treated by soaking
for 5 minutes in aqueous poly (3,4-ethylenedioxythiophene)

doped with polystyrene sulfonate (Clevios PH1000, Starck
GmbH, Munich, Germany) after which ethylene glycol
(10%v/v) and dodecyl benzene sulfonic acid (2%v/v) were
added. Fibers were then baked at 150◦C for 45 minutes in
three different steps. Finally, the whole process, from depo-
sition to heat treatment, was repeated three times to complete
the preparation. Before functionalization, each thread was
cleaned by plasma–oxygen cleaner treatment (Femto, Diener
electronic, Ebhausen/Germany) to increase its wettability and
to facilitate the adhesion of the aqueous conductive polymer
solution.

C. DATA WORKFLOW
After the novel bioristor was prepared, it was inserted into
the plant stem (Figure 1), and connected to a computer as
indicated in [26].More in detail, data were acquired bymeans
of a customized local control unit including a digital acquisi-
tion board, namely a NI USB-6343 multifunction I/O device
(National Instruments, Austin, TX, USA), connected to the
bioristor through electrical wires. Moreover, the board was
endowed with a multi-channel analog-to-digital converter
connected to a PC, where the readout data were processed by
a custom software application and then saved into the Cloud.
The sensor currents were converted to voltage, more easily
readable by the NI board, through a resistor. Resolutions were
8 µA and less than 100 nA for drain-source currents and gate-
source currents, respectively. The data from each connected
bioristor were acquired every second, locally saved on the PC,
and then sent to the Cloud wireless connections.

Indeed, this was only a possible first experiment performed
in a controlled scenario. The final scenario, where we expect
to apply the bioristor, is depicted in Figure 2, wherein the
complete workflow of data is represented.

As a matter of fact, we expect to apply the bioristor to
several plants in real crop fields, wire-connecting it to a local
processing unit that applies bias and reads currents from all
bioristors and sends, via 4G or LoRA-WAN [27] connection,
the collected data to the Cloud, where the AI engine will
analyze them in order to recognize the presence of hydric
stress. If hydric/water stress is present or is going to start in
the next hours, the AI engine will send via 4G or LoRA-WAN
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FIGURE 1. Scheme of the bioristor (left) and photo of the sensor installed on a tomato plant (right) in an
open field.

a command to the local smart actuator, i.e., an automated
irrigator.

D. DATA COLLECTION AND CONSIDERED FEATURES
The bioristor is utilized to measure the concentration and
movement of ions in the sieve tubes, with a specific focus on
xylem vessels, which are responsible for the unidirectional
transport of water and mineral nutrients from roots to aerial
tissues through the transpiration stream [28]. The bioristor
features are the result of the relationship between the sensor
and the changes occurring in the plant sap composition and
ion concentration during growth, development, and under
abiotic stress. When stomata are closed and the transpiration
stream is blocked, there is a reduction inwater loss that affects
both ion concentration and the sensor wetness status [29].
The concentration of ions decreases as a result of the com-
partmentalization of ions to balance the water potential inside
the plant xylem. Additionally, the water content in the plant
decreases due to the blockage of transpiration and reduced
water uptake from the soil [29].

The application of positive gate potential in the bioristor
results in a decrease of the current flowing into the channel,
caused by the entry of positive ionic charges into the polymer.
The bioristor was operated by applying a constant voltage
(Vds = −0.05V ) to drain and source terminals across the
main transistor channel. When a negative Vds is applied, the
holes in the channel will flow from drain to source, generating
an Ids current in the channel; Vg is applied to the gate terminal
and it is set to 0. Turning on Vg with a positive value, the
cations of the electrolyte are pushed into the channel, where
they interact with the organic semiconductor, causing an alter-
ation of its doping level and a consequent decrease in Ids [30].
Themodulation of the current between on and off status (Rds),
proportional to the cations present in the plant xylem sap,
is given by the following formula: Rds = |Ids − Ids0|/Ids0,
where Ids and Ids0 are the current across the channel when Vg
is ON and when it is OFF, respectively. Upon application of
a positive gate bias, the gate electrode and the device channel
charge capacitively, then a current flowing also through the

FIGURE 2. Workflow of the bioristor data processing pipeline, with data
coming from the plants to the actuator, passing through the local
processing collector unit and the cloud-based AI engine.

liquid from the gate to the main channel (Igs) was monitored
continuously. The difference1Igs = Igs−Igs0 was calculated
to evaluate the sensor wetting status, where Igs0 represented
the current across the solution when Vg = 0 [29], [31].
Moreover, two time constants have been calculated by fitting
the non-linear drain and gate current curves (tds and tgs),
which are related to the inverse of both cation quantity and
mass [21], [32]. Time constants are related to the time ions
enter the polymer (tds), and to the diffusivity of ions in the
solution (tgs). The value of tds constant is derived from the
formula: A × (1 − e−t/tds ) + B, which represents how fast
the curve reaches a plateau situation.

Therefore, the presence of different ionic species that may
have overlapping trends is not taken into consideration. The
change of tds as well as the composition of the effect of all
ionic species will be assessed. With the same approach tgs is
calculated by fitting the curves of Igs current as a function of
time (Figure 3) resulting from the formula: A× (e−t/tgs )+B.
Under drought stress, Rds and 1Igs drop significantly as a
result of the diminished ion concentration and amount of
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FIGURE 3. a) Ids modulation when gate voltage is applied in OECT. Green circles indicate the drain-source
current when Vg = 0 (Ids0), and the drain source-current when Vg > 0 (Ids); b) Igs behavior when gate
voltage is applied in OECT. Green circles indicate the gate-source current when Vg = 0 (Igs0), and the
gate-source current when Vg > 0 (Igs); c) Ids curve fitted with an exponential model; d) Igs curve fitted with
an exponential model.

water in the plant sap, as a consequence of the low plant
transpiration and root water absorption [19], [29].

The considered dataset is composed of observations gath-
ered by ALSIA and IMEM facilities related to 13 tomato
plants. Each observation consists of four numerical param-
eters and one qualitative parameter (the status label or
class). Measurements and classifications were sampled every
15 minutes for about 14 and 16 days, depending on the exper-
imental facility. More precisely, the dataset is defined as: D=

(Rdsi,t , 1Igsi,t , tdsi,t , tgsi,t , statusi,t ) where i is the plant
identifier (Experiment, Plant), t is the measurement sampling
time, and statusi,t = {healthy, uncertain, stress, recovery} is
the target classification label provided on the basis of the
acquired physiological and morphometric traits. Indeed, at
6 days after drought initiation, the plant triggered physiolog-
ical responses such as the reduction of the stomatal conduc-
tance and significant reduction of the digital bio-volume [19].

Figure 4 shows the box-plots for the numerical features we
have considered, whereas Figure 5 reports the frequency dis-
tribution of the four considered statuses, i.e., ‘‘healthy’’ rep-
resenting tomato plants for sure in good conditions, ‘‘stress’’
representing tomato plants for sure in a stress condition (at

least six days passed after the last irrigation), ‘‘recovery’’
which represents the status of tomato plants watered after a
drought stress period, and ‘‘uncertain’’ which is the status
of tomato plants in the six days between the end of the
irrigation and a sure stress condition revealed. As can be
seen from the figure, all classes are well-represented. The
excess of instances of the healthy class, compared to the other
classes, is explained by the experimental design that involved
monitoring healthy plants and stressed plants periodically,
throughout the duration of the experiments.

IV. MACHINE LEARNING MODELS
In the carried out analyses we have tested several machine and
deep learning models, but in this paper we only present the
best obtained results. Thus, in the following, we only describe
the best performing models to both classify and predict the
water stress status of a tomato plant by using bioristor data.

As for the classification, we employed Decision Tree-
based models, namely standard Decision Tree, which is also
an explainable model, and an ensemble technique, i.e., Ran-
dom Forest, which is a black-box model. This choice comes
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FIGURE 4. Box-plots showing the variability of the four considered features in the considered
dataset.

FIGURE 5. Pie chart showing the distribution of the four regarded health
statuses in the considered dataset.

from the twofold aim to achieve both top performance and the
most interpretable results.

Conversely, as regards the prediction part, we used a neural
network-based model, i.e., a recurrent neural network (RNN)
with long short-term memory (LSTM), focusing only on
performance. All models have been implemented by using
Python 3.9 and its SciKitLearn package.

A. DECISION TREE
A Decision Tree can be regarded as a directed acyclic graph,
whose internal nodes iteratively execute a test on a certain fea-
ture, while edges determine the outcome of the test, and ter-
minal nodes, i.e., the so-called ‘‘leaves,’’ can have instances
belonging to one or more class labels. External nodes are:
the first node to be created, named ‘‘root’’ of the tree, and the
leaves. Generally, in each leaf node, each class k is associated
with a weight wk , which determines the strength of the class
in the leaf node itself. During the training phase the Decision
Tree model is built recursively exploiting the training set
according to the following procedure [33]:

• one of the features is chosen as the root, maximizing a
certain metric, usually either the Information Gain or the
Gini Index.

• Each node, except for the leaves, has a set of out-
bound edges and corresponding inbound children nodes.
ADecision Tree can be binary (only two outbound edges
per node) or multi-path (multiple outbound edges per

node). Each outbound edge corresponds to the fulfill-
ment of a condition on the values of the tested feature.

• Recursively, for each internal node, a new feature is
selected from the set of the features of the training
set, considering only the instances satisfying the test
associated with the edge itself. When no more features
can be selected, the node is considered as a leaf.

Once the construction of the Decision Tree has terminated,
the classification of a new, never seen, instance of the test set
follows the following steps:

• the given unlabeled instance follows an activation path
of nodes from the root to one leaf, passing different tests
on the features. The path to follow is determined by the
specific values of the features in the considered instance.

• each leaf is labeled with a unique class label. This deter-
mines that the instance to classify is assigned to the class
corresponding to the reached leaf.

Moreover, the structure and representation of a Decision
Tree model is inherently explainable, because the numeri-
cal tests on the different features can be considered as the
antecedents of IF-THEN rules with the following structures:

IF condition on f1 AND condition on f2 AND . . . .

THEN ik is Classj (1)

where ik is the k th instance to classify and Classj is the jth

class label in the set of all possible class labels.

B. RANDOM FOREST
Ensembles are machine learning techniques grouping a set
of classifiers together in order to perform a combined voting
classification [34]. Practically, the outcome of each classifier
is taken into account as a vote for the final decision and all
votes are combined, according to specific rules, to issue the
final output.

These techniques create a sort of super classifier, much
more accurate than any single composing classifier by itself,
because the single algorithms may suffer from issues usually
solved by minimizing the following two kinds of errors in
the ensemble: variance in sensitivity and bias in the model
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itself. Moreover, ensemble techniques usually exploit the
same basic classifier repeated n times and the output of
each classifier is different because of different allocations
strategies of the training samples. Indeed, ensemble methods
can be classified not only according to the voting strategy, but
also according to their training allocation strategy [35].

Random Forest is an ensemble method, made up of various
Decision Trees, that exploits bagging and features random-
ness in order to create an uncorrelated forest of Decision
Trees themselves [36]. These allocation strategies create a
random subset of features, ensuring low correlation among
Decision Trees. As for the final voting strategy, Random
Forest usually decides by considering the majority voting
techniques, i.e., choosing the class label output the most
among the considered trees, or the average predicted class
label of the single Decision Trees making up the forest itself.

Indeed, RandomForest only selects a subset of the features,
whereas Decision Trees regard all the possible feature splits,
marking a key difference between both techniques. Another
important difference is that Random Forest is a black-box
model, failing to be interpretable and explainable.

C. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) [37] are used to analyze
and process sequences of data with a certain chronological
order by sharing parameters across different parts of the
model itself; thus they are sequential networks allowing for
the information to persist while the training goes on following
the temporal sequence of data. This past information can be
also used when processing a current input datum. However,
the main disadvantage of an RNN is that it cannot remember
long term dependencies because of the vanishing gradient
issue.

LSTMs [38] are advancedRNNs, able to handle the vanish-
ing gradient problem threatening RNNs, and thus explicitly
designed to avoid long-term dependency problems. They are
suitable to process time series data as well as lags of unknown
duration between important events in a time series itself. The
basic component unit of an LSTM network is made up of a
cell, an input gate, an output gate, and a forget gate. Cells are
used to remember values over arbitrary time intervals, while
gates are used to regulate the information flow entering and
exiting a cell.

V. RESULTS
In this section, we present the obtained results for both the
classification and the prediction tasks we have carried out.

A. CLASSIFICATION
As regards classification, we have compared the results of an
explainable model, i.e., Decision Tree (DT), and of a black-
box model, i.e., Random Forest (RF).

The main hyper-parameters of both classifiers assume
the default values as in their SciKit-Learn implementation.
We have only varied the splitting criterion in the Decision
Tree by considering both the Gini impurity index and the

TABLE 2. Performance metrics over a 5-fold cross validation for the
considered classification models.

Information Gain, while the number of tree-classifiers in the
Random Forest model is exactly the default one, i.e., equal to
100. In the Random Forest model we have also set the random
state parameter, in order to provide randomness to the boot-
strapping of the instances used to build the tree-classifiers and
simultaneously to the feature sampling when considering the
best splitting at each internal node.

In Table 2, we report the accuracy and the weighted pre-
cision, recall, and F-measure (F1) obtained in a 5-fold cross
validation classification test, when using the aforementioned
models. The table shows the average of the values as well
as the relative standard deviation. Moreover, in the case of
Decision Trees, it presents the outcomes when using both the
well-known Gini impurity and Information Gain [39] as a
metric to determine the features to use for the splits in the
trees.

From the outcomes of Table 2, we can infer that Random
Forest improves only a little the overall performance and
that, among the Decision Trees, the one reaching slightly
better results is the one employing Information Gain as a
metric to determine the splitting features. The good perfor-
mance is also evident in the confusion matrices depicted in
Figures 6, 7, and 8. Figures 6 and 7 report the confusionmatri-
ces for the Decision Tree models using Gini and Informa-
tion Gain, respectively. Figure 8 shows the confusion matrix
for the Random Forest model. Looking at the confusion
matrices, when using a Decision Tree and the Gini index,
the ‘‘Healthy’’ class is correctly recognized in the 96.21%
of the cases, the ‘‘Uncertain’’ class in the 88.75% of the
cases, the ‘‘Stress’’ class in the 88.28% of the cases, and the
‘‘Recovery’’ class in the 82.53% of the cases. When using
a Decision Tree and the Information Gain, the ‘‘Healthy’’
class is correctly recognized in the 96.38% of the cases, the
‘‘Uncertain’’ class in the 88.68% of the cases, the ‘‘Stress’’
class in the 89.06% of the cases, and the ‘‘Recovery’’ class
in the 82.72% of the cases. When using a Random Forest
model, the ‘‘Healthy’’ class is correctly recognized in the
97.97% of the cases, the ‘‘Uncertain’’ class in the 92.25%
of the cases, the ‘‘Stress’’ class in the 92.70% of the cases,
and the ‘‘Recovery’’ class in the 85.23% of the cases. Table 3
summarizes the just mentioned results.

Indeed, we can state that Random Forest can help to better
understand whether a tomato plant is water stressed, with an
increase of 3.60% compared to the best performing Decision
Tree model. The performance in detecting healthy plants
is, instead, quite similar, with an increase of only 1.66%
passing from the best performing Decision Tree model to
Random Forest. However, being Random Forest a black box
model, it lacks in interpretability, while from the Decision
Tree model we can infer some rules or, however, an order of
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FIGURE 6. Confusion matrix when using a decision tree model and the
Gini impurity index.

FIGURE 7. Confusion matrix when using a decision tree model and the
Information Gain.

FIGURE 8. Confusion matrix when using a random forest model.

TABLE 3. Percentage of correct identification per class label.

importance of the analyzed features. For example, when con-
sidering the Decision Tree models using Information Gain,
i.e., the best performing DT model, Rds is always the root
feature, i.e., the most discriminant one, followed by tgs or tds
at the second level, while the third level is usually occupied
by Rds or tds in case tgs is the second most important feature,
or tgs in case tds is the second most important feature.

B. PREDICTION
In this section, we present the principal results obtained to
predict the future status of a plant based on historical mea-
surements about Rds, 1Igs, tds, and tgs. As a starting point,
measurements collected every 15 minutes have been regular-
ized by applying a four step rollingmean kernel (i.e., one hour
smoothing) and sub-sampled to collect hourly measurements.
In order not to clutter the presentation, in what follows, the

time series index t refers to the hourly sampling time. The
recent past behavior of each plant is then summarized by
considering a few lagged historical values of its time series.
The number of these lagged values and the time difference
between value pairs is usually driven by domain knowledge,
that is, the biological processes of tomatoes.

In details, we performed a grid search varying both the
number of lagged measurements from 1 up to 12 hours,
as well as the time difference between them. The result of
this feature selection tuning was that using the current mea-
surements and the last two lagged ones with a time difference
of 3 hours accurately captured the dynamic behavior of the
tomato plant and allowed for accurate forecasting. More in
detail, for each plant i, for each time t , we created a 12 ele-
ment sequence composed of the parameter values at time t as
well as their values collected at t−3 and t−6 hours, namely:
Rdsi,t , Rdsi,t−3, Rdsi,t−6, 1Igsi,t , 1Igsi,t−3, 1Igsi,t−6, tdsi,t ,
tdsi,t−3, tdsi,t−6, tgsi,t , tgsi,t−3, tgsi,t−6.
Moreover, we investigated various prediction time hori-

zons, that is, for how long in the future we want to predict
the plant status. For such a purpose we considered predictions
one, two, three, six, twelve, twenty-four, and thirty-six hours
ahead. In particular, we found the best trade-off between
model complexity, accuracy, and prediction horizon times,
was to consider one day ahead forecasting, i.e., 24 hours.
We underline that using shorter time horizons would either
improve the model accuracy or require smaller time lags for
predictions.
In total, we obtained 3, 978 sequences that have been split

into training and validation sets, accounting for 80% and 20%
of sequences, respectively. The target of this modeling was
to predict the status of the plant one day ahead (i.e., at time
t + 24 hours) from its current time lagged measurements.
As a pre-processing phase, we normalized the four features
(i.e., Rds, 1Igs, tgs, and tds), by applying the z-score normal-
ization. More precisely, the values of each feature x, that is,
{xi; 1 ≤ i ≤ N }, where N is the number of measurements,
were recomputed as: x ′

i =
xi−µx

σx
where x ′

i is the normalized
value of xi, while µx and σx are the mean and standard devia-
tion of x, respectively. This normalization is required to cope
with the heterogeneity of the considered features. Indeed, Rds
is a current modulation (expressed as a fractional ratio), 1Igs
is the difference between drain and source currents (measured
in µA), tds and tds are time constants derived to model the
ion diffusion in the polymer and on the solution, respectively
(measured in seconds).

Furthermore, we have derived two types ofmodels, one full
predictor that forecasts one day ahead the status (i.e., healthy,
uncertain, stress, and recovery) and a simplified model that
only predicts if the plant will be stressed or not stressed.
Both models are based on recurrent neural networks for their
capability to describe sequences of observations.

Figure 9 shows the architecture of the full predictor model,
implemented using Keras2 framework. Each input sequence

2https://keras.io/
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FIGURE 9. Architecture of the RNN based predictor.

is fully connected to a hidden layer composed of 30 standard
LSTM cells, which, in turn, are fully connected to a four
node output layer that provides the one-hot encoding of the
prediction of tomato plant status. We used ReLu as activation
function for LSTM cells, sigmoid as recurrent activation
function, and softmax for the output layer. In summary,
the proposed model has a total of 3, 964 trainable parame-
ters. We performed also a fine-tuning of the model hyper-
parameters, varying the number of LSTM cells and also
considering an additional hidden layer of neurons between
the LSTM and the output layers. In particular, as a result
of our testing, we found that adding another layer led to a
decrease in forecast accuracy when using validation (i.e., not
included in the training) sequences because of over-fitting.
Similarly, increasing the number of LSTM cells did not result
in any performance improvements. On the other hand, our
testing has shown that for one hour ahead prediction, the
optimal number of LSTM cells is 20.

The architecture of the simplified model differs from the
one depicted in the figure in that the LSTM layer is composed
of 15 cells and the output layer consists of only one neuron
whose two states are associatedwith thestressed andnot

stressed status. These simplifications have reduced the
number of trainable parameters to 1, 036 only.
For the training we used, as loss function, the categorical

cross entropy metric for the full predictor and the binary
cross entropy for the simplified one. We have also applied
custom weights, derived from the marginal frequencies of the
plant status, to the loss function, in order to cope with the
unbalanced occurrences of status labels themselves. Finally,
for training both models we used the Adam [40] optimizer.

Table 4 summarizes the details of the full predictor model
and of its validation.

In addition, to prevent over-fitting, the training has been
stopped when there was no improvement on the loss function
in the last ten epochs. Figure 10 depicts the behavior of the
loss function (Fig. 10.a) and of the accuracy (Fig. 10.b) as
a function of the number of processed epochs during the
training of the full predictor.

In detail, the training has stopped after processing 168 out
of the 300 epochs since the loss function did not get
any reduction in the last ten epochs, achieving an accu-
racy of 95.5% in the training set and 91.1% in the valida-
tion phase. Similar results have been obtained also for the
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FIGURE 10. Loss function (a) and accuracy (b) as a function of the number of processed epochs for training the full
predictor.

TABLE 4. Summary of the hyperparameters for the full predictor.

simplified model, where the training stopped after 209 out of
300 epochs.

In addition, to evaluate the diagnostic capabilities of our
models, Fig. 11.a and Fig. 11.b plot the Receiving Opera-
tion Characteristic (ROC) curves, for the full and simplified
model, respectively. Each curve plots, for the given plant
status, the true positive rate as a function of the false positive
rate and provides a measure of the sensitivity of the model
as a function of the fall-out. For the full model, the ROC and
area under the curve (AUC) are computed, on a per tomato
plant status basis, as target status vs all other statuses. As can
be seen from the figure both models achieve a very good
accuracy.

The evaluation of the performance achieved by the
proposed prediction models have been investigated by
a cross validation approach. In particular, we applied a
stratified KFold with 5 splits to ensure that each model
fitting/validation trial had the same fraction of tomato sta-
tuses. As can be seen from the confusion matrix of the
full model, shown in Figure 12, the model achieves a very
good performance in predicting whether a given plant will
be subject to hydric stress after 24 hours (97.40% of correct
identification). A similar performance is also achieved by
the simplified model, whose confusion matrix is reported in
Figure 13. In this case the percentage of correct identification
of the stress label is equal to 88.15%.

TABLE 5. Performance metrics for the prediction task over a stratified
5-fold cross validation for both 4- and 2-status models.

Tables 5 summarizes the performance metrics for both
models. As can be seen, the two prediction models achieve
very good and comparable performance with respect to all
metrics. In particular, the simplified 2-status model has an
overall accuracy of about 93% in predicting the irrigation
needs, while the full predictor of about 89%.

VI. DISCUSSION
As concerns the classification, the very good results we
obtained (more than 90% for all the considered metrics)
demonstrate, first of all, the successful applicability of the
tree-based models to the considered dataset and feature set,
even if it is slightly unbalanced in favor of the ‘‘Healthy’’
class. It also appears that there is no clear difference in
using Gini impurity or Information Gain in the Decision Tree
models, and that Random Forest, although being an ensemble
of Decision Trees, only achieve a very little improvement in
comparison with simple Decision Tree models. These mod-
els, moreover, also guarantee interpretability, thus they should
be preferred even if they provide a little worse performance.
In terms of explainability, Rds appears to be the first feature
used by the Decision Trees in dividing the dataset, i.e., Rds is
the root feature, and this is consistent with the ability of the
bioristor in revealing changes in the concentration of the ions,
already identified as the main players in the drought stress
response [19].

Looking at the confusion matrices, the ‘‘Healthy’’ class
always achieves very good performance, well beyond 90%
of TPR (True Positive Rate), while the ‘‘Recovery’’ class
is always the worst (less than 90% in terms of TPR even
with Random Forest) when considering the correct identi-
fication. However, this is not a very critical issue, given
that the recovery phase takes place when the plant has been
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FIGURE 11. Receiving operating characteristic curves for the full model (4 statuses) (a) and the simplified model
(2 statuses) (b).

FIGURE 12. Confusion matrix for the 24h forecasts in the full model
(4 statuses).

FIGURE 13. Confusion matrix for the 24h forecasts in the simplified
model (2 statuses).

re-irrigated for sure (through rain or artificial irrigation) and
so its perfect identification can be easily obtained in other
ways.

On the other hand, the time series predictive analysis has
demonstrated very high accuracy both in predicting, 24 hours
in advance, the four different statuses (with a 97.40% of

correct prediction of the stress status) as well as in the early
identification of the stress/non-stress status (with a 88.15%
of correct prediction of the stress status) with a simplified
model. In addition, the precision for predicting the stress
status, defined as the ratio between the number of correctly
predicted stress statuses over the number of predicted stress
statuses, for the twomodels is 86.7% and 79.3%, respectively.
This will be very useful in order to know in advance the
possible manifestation of a hydric stress in the plants and
thus enacting proper countermeasures, e.g., the activation of a
proper smart irrigation system, to keep the plants healthy and
fruit-bearing as long as possible within their natural life cycle.

Finally, we remark that the considered models take into
account only measurements collected from the bioristor dur-
ing the previous six hours, at times t , t − 3, and t − 6. In par-
ticular, the models could be augmented by regarding external
actions, such as irrigation times, that were not available in
this study, and that can be used to determine better the plant
recovery times.

VII. CONCLUSION
In this paper, we applied for the first time machine and deep
learning models and techniques to the features and data com-
ing from a bioristor positioned into tomato plants to monitor
their water stress status. In particular, we tried to classify the
water stress status in four classes, by using Decision Trees
and Random Forest models, achieving very high results in
terms of accuracy, precision, recall, and F-measure. More-
over, we have tried to forecast the water stress status after
24 hours from the current status of the plant, by considering
both a binary and a four-status model and using recurrent
neural networks, obtaining very good diagonal confusion
matrices in both cases. The very good results demonstrate
the feasibility of the application of machine and deep learning
models to bioristor data to analyze and predict the water stress
status of plants both from a static and a dynamic point of view.

Future developments will target the application of the used
models on a real field scenario, and the identification of
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classification and prediction models that integrate environ-
mental measurements, such as, temperature, humidity, and
irrigation quantities and times, in order to improve further
the achieved performance. Another promising direction for
future research is the identification of time series models for
forecasting the behavior of Rds, 1Igs, tds, and tgs based on
their historical data. These models will be integrated into
classification systems to better explain the behavior of plants
under various stimuli and environmental conditions and to
better forecast their irrigation needs.
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