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Abstract
The aim of this work is to investigate the problem of Logical Omniscience in epistemic
logic by means of truthmaker semantics. We will present a semantic framework based
on W -models extended with a partial function, which selects the body of knowledge
of the agents, namely the set of verifiers of the agent’s total knowledge. The semantic
clause for knowledge follows the intuition that an agent knows some information φ,
when the propositional content that φ is contained in her total knowledge. We will
argue that this ideamirrors the philosophical conception of immanent closure byYablo
(2014), giving to our proposal a strong philosophical motivation. We will discuss the
philosophical implications of the semantics and we will introduce its axiomatization.

Keywords Epistemic logic · Truthmaker semantics · Logical omniscience ·
Subject matter · Total knowledge

1 Introduction

The aim of this work is to employ truthmaker semantics to address the problem of
Logical Omniscience in epistemic logic.

The traditional epistemic modal logics are due to Jaakko Hintikka [2, 3], which
are normal modal logics based on the relational possible worlds semantics, where the
necessity operator is generally taken to represent knowledge and belief: φ is known at
a world w if and only if it is true at every possible world that is epistemically indistin-
guishable from w. An immediate consequence of this approach is that whenever an
agent knows all of the formulas in a set �, and � logically entails the formula φ, then
the agent also knows φ. We call this closure principle Full Logical Omniscience [4].

This approach works well for modeling the knowledge of ideal agents, namely
agents with unconstrained cognitive resources. However, our aim is to provide a theory
for actual non-ideal reasoners, whose performances might be inhibited by their limited
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memory, computational capacity, faulty reasoning etc. That is to say that real life agents
are fallible and resource-bounded.1

Therefore the predictions of Hintikkian approaches are not accurate for our pur-
poses; in fact the brightest mathematician might know all the axioms of set theory
without thereby knowing all their consequences. Accordingly, we will investigate how
to model a notion of knowledge lacking this implausibly strong feature by adopting
truthmaker semantics.

Truthmaker semantics is a novel mathematical and philosophical framework, which
sheds new light on traditional questions about meaning and content, such as what a
proposition expresses and what is its subject matter. Fine [5] defines a notion of
truthmaker content, which ismore fine-grained than the possible-world-based cognate,
so that it has proved useful in the reconstruction of the semantics and the logic of
different hyperintensional operators.

The application of truthmaker semantics to modal operators is still at its infant
stage.2 Yet, it has already proved to be beneficial for the philosophical analysis ofmeta-
physical modalities such as necessity and possibility [7] as well as deontic modalities,
i.e. obligation and permission [8, 9]. This paper will significantly contribute to pro-
vide a viable alternative to possible worlds semantics also for the epistemicmodalities.
In particular, Fine in [10] formalizes a relation of containment between propositions
which is arguably analogous to Yablo’s parthood: P is part of Q if and only if the
inference P , therefore Q is both truth-preserving and subject matter preserving [1].
Accordingly, we introduce an epistemic logic where the knowledge operator is not
closed under classical logic, but it is closed under the logic of containment. The result
is then a hyperintensional framework where Logical Omniscience fails, but the agents
are nevertheless logically competent. We call this account Total Knowledge.

The paper is structured as follows. Section 2 is dedicated to an overview of the issue
of Logical Omniscience: on the one hand, we will identify a list of principles which
we take to be inadequate for a non-idealized conception of knowledge, on the other
hand, we will argue for a suitable theory of closure of knowledge based on the idea
of subject matter sensitivity. In Section 3, we introduce the truthmaker semantics. In
Section 4we present our account of Total Knowledge and in the following two sections
we analyze its philosophical and technical features; the rest of the paper is dedicated to

1 We do not focus on modeling normative epistemic constraints: for example, given that an agent knows
P , what is she thereby permitted to know, or obliged to know? Also, our research is not based on empirical
studies and we do not aim to test it with experiments. As we will see, our goal is to identify and model
a philosophical diagnosis of the sources of non-omniscience, namely the subject matter sensitivity of
knowledge.
2 Hawke and Özgün [6] explore the application of Fine’s truthmaker semantics to the logic of conditional
knowledge. They provide six accounts of conditional knowledge that behave differently with respect to the
principles of Logical Omniscience. One of the main differences with our approach is that the epistemic
modalities are modeled as global properties of the model: they are not verified (falsified) by a particular
state or world but by every state of the model. On the contrary, we are interested in elaborating an account
of unconditional knowledge which is locally verified or falsified, which represents a fundamental property
of knowledge [4, p. 339]: we want to assume that every agent in the system is in some local state at any
point in time. This means that an agent decides whether a certain formula follows from the information in
the agent’s local state.
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the introduction of the proof-theory and the development of the completeness results,
developed in the Appendixes A and B.

2 Epistemic Logic and Logical Omniscience

In this section we will identify a list of principles that represent instances of Logical
Omniscience and that, therefore, we want to invalidate in our account of epistemic
logic. To introduce them, we work with the languageLK of knowledge, defined recur-
sively as

φ := p | φ ∧ φ | ¬φ | Kφ

where p ∈ Prop, a countable set of propositional variables, and Kφ is read as ‘the
agent knows φ’; disjunction and implication are defined as usual.

We assume the reader’s knowledge of standard modal logic, in particular of the
standard notions of Kripke models, denoted by M, and the usual notion of truth
in a model and a world, denoted by M, w |� φ. Moreover, we say φ is a logical
consequence of �, denoted by � |� φ, if and only if for all Kripke models, for all
worlds w and for all ψ ∈ �, if M, w |� ψ , then M, w |� φ. We say that a formula
φ is valid, denoted with |� φ, if and only if for all M and all worlds w, M, w |� φ.
Sometimes we write φ |�� to indicate that φ is a logical consequence of �.

The label ‘Logical Omniscience’ indicates a broad group of closure conditions on
knowledge. The most relevant instances of Logical Omniscience are the following.

• Closure under (Classical) Consequence: If φ |� ψ , then Kφ |� Kψ .
• Closure under (Classical) Validity: If |� φ, then |� Kφ;
• Closure under (Classical) Equivalence: If φ |�|� ψ then Kψ |�|� Kψ .

Closure under (Classical) Validity is a special case of Closure under (Classical) Con-
sequence as validity boils down to logical consequence from the empty set. The
discrepancy between the standard treatment and real agents is again apparent: we
do not know whether Goldbach’s conjecture is true or false, although it is one of the
two. Also, arguably it is perfectly rational for an agent to know basic arithmetic truths,
without thereby knowing that – say – Bézout’s identity is true (against Closure under
(Classical) Equivalence).

There are, in addition, other closure principles which sounds inappropriate for
modeling the logic of real epistemic agents:

• Closure under Disjunction: Kφ |� K (φ ∨ ψ)

Closure under Disjunction is a specific case of Closure under Consequence and
it represents an unreasonably strict constraint on non-idealized knowledge, as the
agents might lack the awareness of some formula ψ : suppose Alma knows that Jorge
is Colombian, it might well be the case that she does not know that Jorge is Colombian
or the cardinality of real numbers is 2ℵ0 .

On the other hand, there is a conflict between the representation of the non-ideal
component of agents’ knowledge and its rational component. Since ordinary agents
are non-ideal, they do not know all the consequences of what they know. However,
since they are rational, we cannot model an account of knowledge in which knowing
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something does not imply knowing anything else in particular. This is what Jago [11]
calls the problem of bounded rationality: the conflict between normative principles of
rationality and our limited cognitive resources.

Accordingly, the research for an adequate logic of knowledge should find a fair bal-
ance between these two components. This means that some idealization is inevitable
in the development of an epistemic logic which preserves agent’s rationality and log-
ical competence. We need then to identify a restricted form of closure of knowledge
which carries an explanation of why, on the one hand, some epistemic principles can
be preserved (the defensible core), while, on the other hand, there are some logical
consequences more epistemically precarious.

Yablo’s theory of immanent closure offers a solution to this issue: knowledge is
closed under containment, that is “to know that snow is cold and white, you should
know it is cold already, whereas there is no requirement of first knowing that snow
is cold or white before you count as knowing that snow is cold” [1, p. 116]. Yablo’s
understanding of containment (PA) between propositions can be defined as follows:

(PA) ψ is part of φ iff the inference φ, therefore ψ is

– truth-preserving – whenever φ is true, ψ is true, and
– subject matter preserving – whatever ψ si about, φ is about.

We can think of subject matter as a comprehensive set of ways things can be. For
example, the sentence ‘the snow is white or cold’, φ ∨ ψ , is true both when the snow
is white and when it is cold, thus the transition from ‘the snow is white’, φ, to the
sentence φ∨ψ extends the set of the ways for the disjunction to be true, by introducing
the whole set of ψ-ways to be true and, similarly, new ways to be false. New ways
for a sentence to be true are new opportunities to believe the consequence for the
wrong reasons. Hence, this belief is more epistemically vulnerable, because, even if
we are right in believing that φ ∨ ψ , a confusion on how it is true undermines my
justification in believing it, and, hence, my knowledge – as Gettier’s cases have taught
us. Similarly, new ways for a sentence to be false are more counterpossibilities for us
against what to be on guard [1, p. 118-119]. Yablo calls this form of closure under
parts immanent (IC):

(IC) If S knows that φ, and ψ is part of φ, then S knows that ψ .

The distinction between immanent closure and full logical omniscience mirrors the
distinction between pure and deductive principles of closure.3 Pure principles are those
that hold independently from the agent’s capacity to perform inferences. Similarly, the
idea behind immanent closure is that knowledge is preserved necessarily only with
respect to those principles that do not add new informational content to the pieces of
knowledge already owned by the agent. On the other hand, deductive principles are
those that, to move from premises to conclusions, require the agent to do something,

3 This distinction can be found in Holliday [12]. Thanks to an anonymous reviewer for suggesting this
reference.
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namely to perform some inferential act. This distinction helps us to clarify the type
of idealization we will model with our account: we represent agents with limited
computational abilities, so that their knowledgemight fail with respect to their capacity
of performing deductions.

Closure under Disjunction can be seen as an instance of a deductive principle, but
we could add to this family also the following principles, that we will comment further
in Section 5.1:

• Closure under Known Material Implication: K (φ → ψ) ∧ Kφ |� Kψ .
• Closure under Disjunctive Syllogism: K (¬φ) ∧ K (φ ∨ ψ) |� Kψ .

Paradigmatic examples of pure principles are Conjunctive Distribution and Weak
Simplification, which hence represent virtuous instances of closure of knowledge:

• Conjunctive Distribution: K (φ ∧ ψ) |� Kφ ∧ Kψ

• Weak Simplification: K (φ ∧ ψ) |� K (φ ∨ ψ)

Conjunctive Distribution is often considered a paradigmatic principle of ordinary
knowledge (compare [13, 14]), as it is an explicit form of closure under parts. Holliday
[15, p. 280] argues also thatWeak Simplification is very intuitive and difficult to deny.
The reason is that when the agent knows φ ∧ ψ , she already possesses the whole
information required to know φ ∨ψ , and, in a sense, more. The proposition that φ ∨ψ

isweaker than the one already knownby the agent, in the sense that it says less about the
same topics. In other words, the inference from φ∧ψ to φ∨ψ does not require to learn
anything new, where we mean ‘learning something new’ as an informal expression
which is connected to the topic of the information that a proposition expresses and its
subject matter.4

It is almost unanimously accepted that knowledge if factive, namely knowledge
implies truth:

• Factivity: Kφ |� φ.

Connected to Factivity is the principle that knowledge is consistent:

• Consistency: |� ¬K (φ ∧ ¬φ).

Consistency states that an agent cannot knowcontradictory information. This principle
is an immediate consequence of the assumption of the Factivity of knowledge and of
the fact that there are no true contradictions.

4 It might be argued that all classical inferences express trivial information and we do not learn anything
new by performing them. Following the previous reasoning, then, we would have Logical Omniscience
with respect to classical consequence over again. However, we do not accept this quick argument and we
follow Jago [16] in claiming that at least some results in logic are informative. Just to hint at a possible
explanation, Jago links the informativeness of the logical inferences to their computational complexity:
roughly, the more inferential steps an agent needs to infer some conclusion, the more informative this
conclusion is; accordingly, an agent is committed to know only those inferences which are ‘simple’ enough
to be considered trivial.
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3 Truthmaker Semantics

Fine’s truthmaker semantics is a systematic procedure to assign to each formula in a
propositional language a set of states which count as its trutmakers and a set of states
which count as its falsemakers. In what follows we present the standard framework of
exact verification in the inclusive version and of Analytic Entailment [10] as well as
the standard notions of modalized state spaces and W-models.

We use letters φ,ψ, γ... to denote formulas and we stick to a language, call it
L, consisting of propositional variables p, q, r ..., logical constants “¬,∧,∨” and
auxiliary symbols “(,)”; a well-formed formula in the language L is defined as:

φ := p | � | ¬φ | φ ∨ φ | φ ∧ φ

where p is a propositional variable; let Prop indicate the set of propositional variables.

Definition 1 A state space is a tuple S = (S,	) where

• S non-empty set of states;
• 	 ( relation) is a partial order over S, namely a reflexive, transitive and anti-
symmetric relation, such that:

– S is complete, namely every T ⊆ S has a least upper bound
⊔

T ∈ S (s � t
denotes the fusion of s and t , namely

⊔{s, t});
– we use � to denote the least upper bound of the empty set, � := ⊔

∅, and we
call it “null state”; observe that it is such that � 	 s for any s ∈ S;

– we use � to denote the least upper bound of the set S, � := ⊔
S, and we call

it full state.

Note that, given completeness, state spaces always contain the the null state and the
full state. A state space is extended to a state model, defined as follows.

Definition 2 A state model is a tuple M = (S,	, |.|+, |.|−) such that:

• (S,	) is a state space;
• |.|+, |.|− : Prop → P(S) are valuation functions such that

– |p|+ ⊆ S is a non-empty set of exact truthmakers of p;
– |p|− ⊆ S is a non-empty set of exact falsemakers of p;
– for every non-empty T ⊆ |p|+(|p|−),

⊔
T ∈ |p|+(|p|−) (complete closure).

We distinguish (at least) two different relations of verification(and falsification):
exact verification (�) is meant to capture the idea of the complete relevance of a state
responsible for the truth (falsity) of a formula; inexact verification (�), on the contrary,
is defined in terms of the previous relation, and it admits an element of irrelevance
among the parts of a state responsible for the truth (falsity) of a formula.
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Definition 3 (Exact Verification) Given a state model M = (S,	, |.|+, |.|−), the
conditions for a formula to be exactly verified (�) or exactly falsified ( �) by a state
s ∈ S are defined recursively:

s � p ⇔ s ∈ |p|+
s �p ⇔ s ∈ |p|−
s � ¬φ ⇔ s �φ

s �¬φ ⇔ s � φ

s � φ ∧ ψ ⇔ for some t , u (t � φ, u � ψ and s = t � u)

s �φ ∧ ψ ⇔ s �φ or s �ψ or for some t , u (t �φ, u �ψ and s = t � u)

s � φ ∨ ψ ⇔ s � φ or s � ψ or for some t , u (t � φ, u � ψ and s = t � u)

s �φ ∨ ψ ⇔ for some t , u (t �φ, u �ψ and s = t � u)

Definition 4 (Inexact Verification) Given a state model M = (S,	, |.|+, |.|−), for
any s ∈ S, we say that s inexactly verifies a formula φ if s contains an exact verifier
of φ; more formally s � φ iff for some t 	 s, t � φ.

Definition 5 (Modalized State Space) A modalized state space is a tuple (S, S♦,	)

with:

• (S,	) a state space;
• S♦ ⊆ S is a non-empty set of possible states such that for any t ∈ S and s ∈ S♦,
t 	 s implies t ∈ S♦ (closure under parts).

Definition 6 (Compatibility) A set of states T ⊆ S is compatible when
⊔

T ∈ S♦
and incompatible otherwise. We say that s ans t are (in)compatible when {s, t} is.
From the notion of possible states we can define a possible world as a maximal exten-
sion of a possible state, namely as a maximal member of S♦.

Definition 7 (Possible world) A possible world is a possible state which contains as a
part all states compatible with it: for a world w and any state s, s 	 w if w � s ∈ S♦.
We call W the set of possible worlds and W ⊆ S♦.

Definition 8 (W-space) A W-space is a modalized state space in which all possible
states are part of a possible world: for all s ∈ S♦, there is a w ∈ W such that s 	 w.

Definition 9 (W-model) A W-model is a tuple (S, S♦,	, |.|+, |.|−), such that
(S, S♦,	) is a W-space, and |.|+, |.|− are valuation functions defined as in state
model, and

• for all s, t ∈ S, if for some p ∈ Prop, s ∈ |p|+ and t ∈ |p|−, then s � t /∈ S♦
(exclusivity);

• for all w ∈ W , either some part of w is a member of |p|+ or some part of w is a
member of |p|− for all p ∈ Prop (exhaustivity).

We can then show that the properties of non-emptiness of the valuation functions,
their exclusivity and exhaustivity can be extended from the propositional letters to all
sentences in the language by a simple induction.
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Proposition 1 Let (S, S♦,	, |.|+, |.|−) be aW-model, then the following propositions
hold:

1. for all φ ∈ L, |φ|+ 
= ∅ and |φ|− 
= ∅;
2. for all s and t ∈ S, for all φ ∈ L, if s ∈ |φ|+ and t ∈ |φ|−, then s � t /∈ S♦.
3. for all w ∈ W and for all φ ∈ L, either some part of w is a member of |φ|+ or

some part of w is a member of |φ|−.
We are now in the position to define new modal notions of verification and logical

consequence which corresponds to classical logic. Note that we will use the symbol
|� to refer to loose consequence, even though we used the same for the notion of truth
in a Kripke model. No confusion will occur, because from now on we will need to
refer only to loose verification and loose consequence.

Definition 10 (Loose Verification) Given a sentence φ of L, a W-modelM and world
w ∈ M, φ is loosely verified in w, denoted with M, w |� φ, if and only if s ∈ |φ|+
for some s 	 w.

Definition 11 (LooseLogicalConsequence) For�∪{φ} ⊆ L,φ is a loose consequence
of �, denoted with � |� φ, if and only if , for every W-model M and world w ∈ M,
ifM, w |� ψ for all ψ ∈ � entails M, w |� φ.

Definition 12 (Loose Validity) For all φ ∈ L, φ is loosely valid if and only if for every
W-model M and world w ∈ M,M, w |� φ.

Theorem 2 For all W-models M and for all � ∪ {φ} ⊆ L, � |� φ if and only if
� |�CL φ, where CL stands for classical logic.

For further considerations on the relation between loose consequence and the clas-
sical one see [5], in particular the section titled Classical Truth-Conditions.

3.1 Propositions and Containment

A proposition is a set of states. The exact content of a proposition is denoted as
|φ|+ = {s ∈ S | s � φ}, |φ|− = {s ∈ S | s �φ}. The inexact content is denoted as
||φ||+ and ||φ||−, namely ||φ||+ = {s ∈ S | s � φ} and ||φ||− = {s ∈ S | s �φ}.

Sometimes we might want to enrich propositions with the following closure prop-
erties.

Definition 13 (Convex closure) X is convex when, if s ∈ X , u ∈ X , and s 	 t 	 u,
then t ∈ X too. We write Xc for the smallest convex set containing X .

Definition 14 (Complete closure) X is completely closed (or complete) when,for any
nonempty subset Y ⊆ X , its fusion

⊔
Y ∈ X . We write X f for the smallest complete

set containing X .

Definition 15 (Regular closure) X is regular when it is both (completely) closed and
convex. We write Xr for the smallest regular set containing X .
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The relation of containment between two propositions is defined as follows.

Definition 16 (Containment) For any set X and Y ⊆ S, Y is a partial content of X ,
i.e. Y � X , iff the following two conditions hold:

• X subsumes Y : for all s ∈ X , there is a t ∈ Y and t 	 s.
• Y subserves X : for all t ∈ Y , there is an s ∈ X and t 	 s.

The notation Y � X denotes the fact that X is a partial content of Y .

As an example of containment between propositions, Fine [5] argues that in saying
that he is an American philosopher, he is saying that he is a philosopher. However, in
saying that he is a philosopher, he is not saying that he is a philosopher or American.
The truthmaker-based definition of containment correctly predicts that, in the former
case, the second content is part of the first while, in the latter, it is not.

We can look at this relation of containment as an entailment relation, which is called
Analytic Entailment. Following the literature we refer to this relation with the notation
AC, from Angellic Content.

Definition 17 (Analytic Entailment) For all formulas φ and ψ ∈ L, φ analytically
entails ψ , φ >AC ψ , iff |φ|+f � |ψ |+f in every non-empty model M. And φ is
analytic equivalent to ψ – φ ≈AC ψ – when |φ|+r = |ψ |+r .

The logical system with respect to which this consequence relation is complete
corresponds to Angell’s system of analytic implication [17, 18], which is meant to
represent the notion of containment of meaning or synonymousness.

4 Semantics of Total Knowledge

The concept of containment and Analytic Entailment will play a key role in building
our epistemic semantics. More specifically, different entailment relations are involved
in two of the issues that concern us. One is involved in the question: what follows from
a statement of the form Kφ? The other is involved in the question: what consequence
relation (if any) is the modality ‘K’ closed under? In other words, what is the internal
logic of knowledge?

To avoid omniscience problems convincingly, when we address the first question,
we need to consider a classical modal consequence: indeed, we want to say that it is
metaphysically possible that an ordinary agent knows φ and does not know ψ , even
if ψ is a classical logical consequence of φ. Hence, in order to model a framework
that answers to the first question, we will adopt loose consequence, which, as we have
seen, is equivalent to the classical consequence (Definition 11).

On the other hand, in order to answer the second question, we will appeal to a
non-classical logical consequence. In particular, the consequence under which our K-
operator is closed is Analytic Entailment. As a result, loose consequence and Analytic
Entailment will interact in a logical system which delivers good results with respect
to the philosophical problems we are concerned with: it avoids Logical Omniscience
with respect to classical logic, but it preserves the agents’ logical competence, as we
will argue in the following sections.
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Our Truthmaker-based epistemic logic extends the framework provided by Fine in
a epistemic modal sense. Recall the language L:

φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ

where p ∈ Prop = {p, q, ...}. An atomic epistemic formula is of the form Kφ with φ

a formula inL, which is read as ‘the agent knowsφ’.5 We take an epistemic formula (or
K-formula) to be a truth-functional compound of formulas of the form Kφ – which we
call K-atoms. Note, therefore, that the epistemic language does not admit embedded
modalities such as KKφ and K¬Kφ, because Kφ itself is not a formula in L. We
then call Le the epistemic language, which is the closure under the truth-functional
connectives of L and all the K -formulas, and we define a well formed formula α in
Le as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | Kφ

where p is a propositional letter and φ ∈ L. Accordingly, in what follows, we will use
Greek letters φ,ψ, χ, . . . to denote specifically non-modal formulas in L, and we use
α, β, γ, . . . to refer to arbitrary formulas in Le.

An epistemic state space extends aW-space with a partial function mapping (some)
members of S into subsets of S. Let us call dom( f ) the domain of the partial function
f .
The idea behind this epistemic function is to select for some states and agents

their body of knowledge, namely the body of knowledge is the set of verifiers of the
agent’s total knowledge. However, before analyzing deeper the nature of the epis-
temic function, we will introduce the formal definition of epistemic models and exact
verification.

Definition 18 (Epistemic space) An epistemic space is a tuple S = (S, S♦,	, f ),
where

• (S, S♦,	) is a W-space;
• f is a partial function: f : S → P(S).

Definition 19 (Epistemic model) An epistemic modelM is a tuple (S, |.|+, |.|−) such
that S is an epistemic space, and |.|+ and |.|− are functions mapping the atomic
sentence letters of L into subsets of S such that for every sentence letter p ∈ Prop:

• |p|+ and |p|− are nonempty;
• for every non-empty T ⊆ |p|+(|p|−),

⊔
T ∈ |p|+(|p|−) (complete closure);

• if s ∈ |p|+ and t ∈ |p|− then s � t /∈ S♦ (exclusivity);
• if w ∈ W , then either some part of w is a member of |p|+ or some part of w is a
member of |p|− (exhaustivity).

5 Since we will work on the single-agent formalism, we will not indicate the agent as subscript on the
modality.
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Definition 20 (Epistemic semantics) Given an epistemic model M = (S, S♦,	
, f , |.|+, |.|−) and a state s ∈ S, exact verification is defined for propositional vari-
ables and Boolean operation as in the inclusive truthmaker semantics (Def. 3) and if
s ∈ dom( f ), then

s � Kφ ⇔ |φ|+ � f (s)
s �Kφ ⇔ |φ|+ � f (s)

Informally, an agents knows φ at s, if and only if φ is contained in her total knowledge
compatible with s. For example, if her total knowledge includes the proposition ‘it
is raining’, it does not necessarily include the proposition ‘is it raining or the atomic
bomb exploded’, because the latter propositional content is not necessarily contained
in the former. Similarly, if her total knowledge contains the conjunction of all the
Peano’s axioms, it does not necessarily contain complex propositional content related
to Bézout’s identity. Note that when s /∈ dom( f ), then there is no K-formula that is
verified or falsified in s. Thismeans that themetatheory of the semantic is non-classical
as it admits gaps.

In the following sections we will see how these intuitive ideas follow from our
semantic clauses, but we will first explore further the interpretation of the epistemic
function as the agents’ total knowledge.

4.1 Epistemic Function and Total Knowledge

We have already described the epistemic function as the agent’s body of knowledge,
i.e. the set of the verifiers of the agent’s total knowledge. In other words, if s is a state
in the domain of the epistemic function f , then s is the state that says that the agent
knows exactly the proposition f (s) and nothing more. Hence, we understand total
knowledge as a maximal epistemic state. In addition, the knowledge operator K tells
us that what follows from the agents’ total knowledge is what is analytically entailed
by it, namely what it is contained in it.

To give a different intuitive image of what we mean for body of knowledge and
total knowledge, think of f (s) as the set of epistemic possibilities which are in some
relevant sense compatible with s: t ∈ f (s) if it is compatible with the agent?s evidence
in s that t obtains. However, compatibility must not be understood in a technical sense,
namely as the possibility of the fusion of every state in f (s) and s itself: impossible
states can be part of bodies of knowledge as well, while technically they cannot be
compatible with any states.6 In fact, we take that a body of knowledge might be
subject to misrepresentations, so that an agent might consider epistemically possible
something that cannot consistently obtain. To say it with Hintikka: “we should allow
for options which only look possible but which contain hidden contradictions” [3,

6 The fact that impossible states cannot be compatible with any state is a direct consequence of the definition
of compatibility and also a poor feature of the framework. An idea to work around it is to introduce a
primitive relation of incompatibility. However, this topic goes behind the scope of the present work. For
more discussion on this issue, see [19].
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p. 476]. In other words, any state can be in principle compatible in this loose sense
with the agent’s evidence and therefore it can be a member of the relevant body of
knowledge.

In principle, an agent can have different total knowledge at different states.However,
there is also an intuitive requisite of totality. We expect f to determine the maximal
amount of information that is compatible with the starting state. This conception of
total knowledge, in fact, comes with some constraints.

Partiality of f
Since the proposition f (s) represents the agent total knowledge, we want to allow f
to be undefined for some states. The idea is that some states are too small to determine
any knowledge of an agent and they must be silent with respect to any knowledge
ascription, in the sense that they leave open what the agent knows. For example, the
state of snow beingwhite leaves open the color of blood, as well as whether I know that
the sun is shining. Not only because this state contains little information in general,
but also because it has no specific information about the agent’s epistemic state.

The case inwhich the function is undefined has a differentmeaning than the function
that assigns to an agent the empty set. When f (s) is empty, the agent?s body of
knowledge is the unverifiable proposition, i.e. the impossible proposition, which is
different from saying that a thin state does not determine any knowledge. In the latter
case, agents might or might not know certain information, while in the former, agents
have access only to the trivial falsity and nothing else, which entails that she does not
know anything.

Proposition 3 For all s ∈ S, if f (s) = ∅, then for all φ ∈ L, s � ¬Kφ.

Compatibility
There might be more than one state that determines the agent?s total knowledge, but
if they are compatible, they must agree on its content. The idea is that an agent cannot
have different total knowledge states in the same possible world, otherwise they would
not be maximal epistemic states. On the contrary, there might be two incompatible
states which determine different bodies of knowledge of an agent, hence the agent may
have different total knowledge in different possible worlds. Therefore, we assume that
if two compatible states are both in the domain of f they assign to the agent the same
total knowledge. We state a Compatibility condition as follows.

Condition 3.1 (Compatibility) For all s, t ∈ S, if s � t ∈ S♦ and s, t ∈ dom( f ), then
f (s) = f (t).

This condition is plausible because f (s) is the agent’s total knowledge and not just
– say – the strongest proposition that is known by the agent at s. We understand the
total knowledge as the maximal information that an agent has compatibly to the state
where she is located. Hence, if s ∈ dom( f ), s is the state that says that the agent’s
total knowledge is f (s). If there is a t ∈ dom( f ) which is compatible with s, then
f (s) and f (t) must coincide, as both f (s) and f (t) must individuate the maximal
epistemic state of the agent, which includes the whole compatible information.

This idea of total knowledge affects also the relation between verification and
falsification of the epistemic formulas. The exact verification for knowledge depends
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on whether f is defined in a state or not. If the function is not defined then K-formulas
are neither true nor false in that state. This means that our metatheory admits gaps with
respect to knowledge ascription. On the other hand, the verification and falsification
clauses are defined in a mutually exclusive way. This means that each state for which
the epistemic function is definedmust decide about both truth and falsity of knowledge.
There is no difference between the verifiers and the falsifiers of K-formulas.

This feature of our semantics might seem at odds with the bilateral spirit of truth-
maker semantics. However, it is justified by the interpretation of the epistemic function
just presented. As already mentioned, in principle we expect that f is defined only
on states robust enough to determine the total knowledge of an agent, hence it is
not surprising that those states express information concerning both verification and
falsification of the attribution of knowledge.

4.2 Features of Knowledge

Negation and Falsification
The relation between negation and falsification is very important in an epistemic con-
text, especially in our framework, as the clauses for knowledge do not really distinguish
between truthmakers and falsemakers of knowledge. Yet, our approach delivers the
right results: the falsification of a K-atom, i.e. the failure of knowing some formula,
is not equivalent to the verification of the knowledge of the negated formula: ¬Kφ is
not equivalent to K¬φ. The idea is that one can fail to know – say – that it is raining,
without thereby knowing that it is not raining.7 See for instance the following model.

w

t ts

f (s)

�

�

Let Prop = {p} and the valuation functions be as follows: |p|+ = {t} and |p|− =
{�}. Moreover, the epistemic function is defined onlywith respect to s and f (s) = {s}.
Hence, we have by construction that |p|+ � f (s), which means that s �Kp, i.e.
s � ¬K p. Moreover, |p|− � f (s), which means that s � K¬p. In words, an agent
in the state s, with f (s) as total knowledge, fails to know that p, and it does not know
¬p.

Exclusivity
Proposition 1 guarantees that the condition of exclusivity is preserved for each formula

7 Even if this aspect is obvious in Hintikkian epistemic logics, it is worth checking it in our setting, for
testing our definitions.
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φ ∈ L. We need to check that we can extend this result to each formula in Le as
well, namely also to the K-formulas. In order to do so, the fact that verification and
falsification are defined in amutual exclusive way is not a sufficient condition to obtain
the desired result, as the Compatibility Condition 3.1 is required.

Proposition 4 If Condition 3.1 holds, Proposition 1.2 holds for all α ∈ Le, namely
for all s and t ∈ S, if s ∈ |α|+ and t ∈ |α|−, then s � t /∈ S♦.

Proof It suffices to check the case of α := Kβ. Suppose s ∈ |Kβ|+ and s′ ∈ |Kβ|−,
namely s � Kβ and s′ �Kβ, which means that |β|+ � f (s) and |β|+ � f (s′).
Hence, f (s) 
= f (s′) and by Condition 3.1, we can conclude that s � s′ /∈ S♦. ��
Exhaustivity
In the previous section, we have extensively discussed the interpretation of the epis-
temic function and the reasons why it is partial, namely the fact that not every state
determines the total knowledge of every agent and, as a consequence, that the clauses
of verification and falsifications are not defined in amutual exhaustive way. If the func-
tion is not defined on a state, then no knowledge ascription is verified or falsified in
that state. Hence, our framework leaves room for gaps with respect to knowledge: it is
indeed perfectly conceivable that an agent finds herself undecided between assenting
or dissenting to some information. These considerations are particularly compelling
in our framework, as we are considering the relation of exact verification, namely
the relation between a formula and a state wholly relevant and responsible for its
verification (or falsification).

On the other hand, unlike states, possible worlds are maximal entities, namely they
are exhaustive with respect to the truth of every formula. Hence, given that the function
f selects the total knowledge of an agent, we expect that there is some proposition
P that is the total knowledge of the agent in (at least) a part of each possible world.
Also, there should be exactly one such P , which is guaranteed by the Compatibility
condition. Therefore, we impose an additional constraint on the epistemic function
which guarantees that it is always defined with respect to some part of every possible
world:

Condition 3.2 (Definability) For all s ∈ S♦, there is some t ∈ dom( f ), such that
s � t ∈ S♦.

Proposition 5 If Condition 3.2 holds, then for all w ∈ W, there is a s 	 w for which
s ∈ dom( f ).

Proof Consider an arbitrary w ∈ W . By Condition 3.2, it follow that there is a t ∈ S
such that t �w ∈ S♦ for which f is defined. By definition of possible world, we know
that t 	 w. ��

We have seen that Proposition 1.3 guarantees that possible worlds are exhaustive
with respect to every formula φ ∈ L, with the Definability condition we can prove
that this property is preserved also with respect to the K-formulas.

Proposition 6 For all w ∈ W and for all α ∈ Le, either there is a s 	 w such that
s ∈ |α|+ or there is some s′ 	 w such that s′ ∈ |α|−.
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Proof It suffices to check the case of α := Kβ. Consider an arbitraryw ∈ W . Suppose
that, for all s 	 w such that s ∈ dom( f ), s � Kβ for some β, i.e. |β|+ � f (s).
In particular, by Condition 3.2, we know that there is at least one t 	 w such that
t ∈ dom( f ). Hence, it follows by verification clauses that s �Kβ. ��

In conclusion, this proposition tells us that, even if there are states silent with
respect to knowledge, possible worlds always contain a state which determines the
total knowledge of the agents.

The property of non-emptiness on the valuation functions cannot be extended to
every K-formula: the fact that for all φ ∈ L, |φ|+ 
= ∅ and |φ|− 
= ∅ does not imply
that, for all φ ∈ L, |φ|+ � f (s) for some s ∈ S and |φ|+ � f (s′), for some s′ ∈ S.

Proposition 7 The Total Knowledge account invalidates the following principles:

• Closure under (Classical) Consequence: If φ |� ψ , then Kφ |� Kψ;
• Closure under (Classical) Validity: If |� φ, then |� Kφ;
• Closure under (Classical) Equivalence: If φ |�|� ψ then Kψ |�|� Kψ;
• Closure under Disjunction: Kφ |� K (φ ∨ ψ).

Proof Consider the following counter-examples. Let Prop = {p} and φ := p ∨ ¬p,
which is a classical validity. Consider the modelM, structured as in the figure below:

w

s tt f (t)

�

�

Moreover we let:

• S♦ = {w, s, t,�},
• |p|+ = {s}, and |p|− = {�},
• dom( f ) = {t}, f (t) = {t}.

M is an epistemic model, where f is defined only with respect to t . Hence, Condition
3.1 is vacuously satisfied and so is Condition 3.2, because every element in S♦ is
compatible with t . Moreover, both the valuations functions are non-empty for every
propositional letter and trivially closed under fusion. Note that w is a possible world
and, since s � p∨¬p, it follows that w |� p∨¬p by definition of loose verification.
However, since f (t) = {t} and s 
	 t , |p ∨ ¬p|+ � f (t). Hence, t � K (p ∨ ¬p),
and thus w 
|� K (p ∨ ¬p). This shows that Closure under (Classical) Validity does
not hold.

The same frame can be adopted to construct a counter-model to the principle of
Closure under (Classical) Consequence. One classical logical consequence of interest
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in this context is the introduction of the disjunction, i.e. φ |� φ ∨ ψ , for all φ and
some ψ ∈ L.

Let φ := q and ψ := p. Moreover, we set |p|+ = {s}, |q|+ = {t} and |p|− =
|q|− = {�} and f (t) = {t}. Hence |q|+ � f (t) and so w |� Kq. However, we have
that |p∨ q|+ = {s, t, w}. Since w 
	 t , |p∨ q|+ � f (t). Therefore, we can conclude
that w 
|� K (p ∨ q). Which shows also that Closure under Disjunction is invalid.

Consider the previous model and the following formulas: φ := q andψ := q∧(q∨
p). The two formulas are a classical equivalence, i.e. φ |�|� ψ , which corresponds
to one of the law of absorption. In fact, in our model, |q|+ = {t} and |q ∧ (q ∨ p)|+ =
{t, w}, because t � q∨ p and t � q, thus t = t � t � q∧(q∨ p). Moreover, s � q∨ p
andw = s � t , hence w � q ∧ (q ∨ p). Hence, w |� q andw |� q ∧ (q ∨ p). However
f (t) = {t}, hence it follows that |q|+ � f (t), i.e.w |� Kq. On the other hand,w 
	 t ,
which means that |q ∧ (q ∨ p)|+ � f (t), i.e. w 
|� K (q ∧ (q ∨ p)). In other words,
an agent located in the world w, who happens to know some information q, does not
necessarily know everything which is logically equivalent to q, against Closure under
(Classical) Equivalence. ��

5 Closure of Knowledge

After discussing what does not follow from a K-formula, we look at the logical struc-
ture of the framework. The first feature to underline is that a knowledge ascription is
always consistent: we can prove that no possible world makes both true and false the
same knowledge ascription:

Proposition 8 For all φ ∈ L, for all epistemic modelM, and for allw ∈ W,M, w 
|�
Kφ ∧ ¬Kφ.

Proof Assume by contradiction that there is aw ∈ W and a φ ∈ L such that,M, w |�
Kφ ∧ ¬Kφ. This means that there are s, s′ 	 w, such that |φ|+ � f (s) and |φ|+ �

f (s′), but this is impossible because, by Compatibility Condition 3.1, f (s) = f (s′).
��

Moreover, we can prove that in our account there is no egregious violation of closure
and both Conjunction Distribution and Weak Simplification are valid principles:

Proposition 9 For all φ and ψ ∈ L and for all epistemic models M, Conjunction
Distribution and Weak Simplification are valid principles.

This proposition shows that our epistemic semantics delivers already very good results
for the knowledge operator. However, the flexibility of our approach allows us to go
further and consider other principles that we may want to validate. We can therefore
consider different classes of epistemic frames, varying with respect to the constraints
on the epistemic function.

Condition 4.1 (Reflexivity) For all s ∈ dom( f ), s ∈ f (s).

Definition 21 A factive epistemicmodelMF is an epistemicmodel, where f is reflex-
ive, i.e. Condition 4.1 holds.
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The condition of Reflexivity is necessary to validate the principle of Factivity, one
of the distinguished features of a knowledge operator, namely the fact that we can
know only true propositions.

Proposition 10 For all φ ∈ L and for all factive models MF , Kφ |� φ.

We can consider further constraints to impose on the epistemic function, such as
its closure under fusion and convexity:8

Definition 22 A complete epistemic model M f is an epistemic model, where for all
s ∈ dom( f ), f (s) = f (s) f , i.e. it is closed under fusion.

Definition 23 A regular epistemic model Mr is an epistemic model, where for all
s ∈ dom( f ), f (s) = f (s)r , i.e. it is closed under fusion and convexity.

Imposing convexity on the propositional content does not affect the principles
validated, but from a philosophical perspective the relation of containment between
convex verifiable propositions is antisymmetric, unlike what happens for arbitrary
propositions and even complete propositions (Lemma 5 in [20, p. 650]). This property
places our relation of containment close to a genuine notion of partial content. Insisting
on convexity, then, avoids distinguishing propositions which are not distinguished by
containment.

Recall that we called Analytic Entailment the relation between closed propositions
(>AC ). Accordingly, we have the following closure principle for the K-operator:

Proposition 11 For all φ andψ ∈ L, for all complete epistemic modelsM f , if φ >AC

ψ , then Kφ |� Kψ .

This is one of themost relevant desideratum for our account and a result thatwe have
already defended in the introduction, because it represents a non-ideal logical com-
petence which is philosophically well motivated. Closure under Analytic Entailment
is in fact a truthmaker version of Yablo’s immanent closure. We will explore further
their relationship and the connection with the notion of subject matter in Section 5.2.

5.1 Fragmentation of the States of Mind

The closure under fusion of the epistemic function has the consequence of validating
Agglomeration as well:

• Agglomeration: (Kφ ∧ Kψ) |� K (φ ∧ ψ)

Proposition 12 For all φ and ψ ∈ L, and for all complete epistemic models M f ,
Kφ ∧ Kψ |� K (φ ∧ ψ).

8 Note that in the counter-models above, we have intentionally designed the epistemic functions as already
closed under fusion and convexity and such that reflexivity holds. Therefore, the following results do not
affect the invalidities that we obtained before.
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Proof Consider an arbitrary complete model M f and world w such that M f , w |�
Kφ ∧ Kψ . Then there is a s ∈ S♦, such that s 	 w and s � Kφ, and there is
a s′ ∈ S♦, such that s′ 	 w and s′ � Kψ . Given Condition 3.1, we can say that
|φ|+ � f (s) and |ψ |+ � f (s). Hence, it suffices to prove that |φ ∧ψ |+ � f (s). Take
an arbitrary t ∈ |φ ∧ ψ |+, then t = t ′ � t ′′ and t ′ ∈ |φ|+ and t ′′ ∈ |ψ |+. There is, by
assunption, a u ∈ f (s) such that t ′ 	 u and there is a u′ ∈ f (s) such that t ′′ 	 u′.
Hence, t ′ � t ′′ = t 	 u �u′′. Since f (s) is closed under fusion, u �u′ ∈ f (s), proving
the first clause of the relation of containment. The second clause follows easily by the
truthmaker verification clauses. ��

It has been argued9 that this principle might reasonably fail with respect to non-
ideal knowledge, because ordinary agents might experience a fragmentation of states
ofmind. Thismeans that they tend to compartmentalize information already possessed
and fail to ‘put them together’ in a single frame of mind. The consequence is that even
if an agent knows φ andψ , it does not follow that she knows their conjunction, namely
the two pieces of information at once. Our semantics does not force us to accept this
principle.10

Nonetheless, the fragmentation of knowledge seems to us explicitly related to a
contingent epistemic status, concerning the focus of the agent in a particular moment.
The phenomenon we want to capture instead aims at a more specific picture, quite
unrelated to what an agent is paying full attention in a specific moment. Rather, we
focus on the general informational content of her body of knowledge even if she does
not single it out in that very moment.

Hoek [21] argues in a similar way against the theories of fragmentation and he
develops a theory of minimal rationality which has many elements in common with
ours.11 In particular, he argues that a minimally rational subject’s beliefs are not
perfectly integrated, but neither are they partitioned into isolated compartments, as in
fragmentation theories of beliefs. A theory of fragmentation risks to lack predictive
powers as the beliefs in different fragments do not constrain one another, hence ‘switch
fragments, and all bets are off’.

For these reasons, Agglomeration represents a minimal form of idealization that
we are willing to accept, given that our goal is to formalize a notion of knowledge
which depends on the subject-matter sensitivity, as argued byHoek:minimally rational
beliefs are linked together by their thematic connections rather than their entailment
relations.

9 In [14], for example, the authors argue that the phenomenon of fragmentation is one of the main sources
of non-omniscience.
10 We will see in the second part of the paper, that we have more compelling proof-theoretical reasons to
accept it, as Agglomeration is essential to the reduction in normal form of the K-formulas.
11 Thanks to an anonymous reviewer for suggesting this interesting reference.
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Related to the phenomenon of fragmentation are the principles of Closure under
Known Material Implication and its specific instance of Closure under Disjunctive
Syllogism:

• Closure under Known Material Implication: K (φ → ψ) ∧ Kφ |� Kψ .
• Closure under Disjunctive Syllogism: K (¬φ) ∧ K (φ ∨ ψ) |� Kψ .

These two principles are not valid in our framework. However to find a counter-
example, we need a frame more sophisticated than the previous ones. Indeed, we need
to resort to the fact that the body of knowledge of some agent, even if located in a
possible state, might in turn be inconsistent, in the sense that it contains impossible
states.12 Consider the following epistemic model.

�

t
w

st ′

�
Let φ := p and ψ := q, then consider a modelM as in the figure, where S♦ = {w}↓,
f (s) = {s, t, t ′}, |p|− = {s, t, t ′}, |p|+ = {t ′}, |q|− = {�}, |q|+ = {s}. M is
an epistemic model, where the epistemic function is defined only with respect to s;
Condition 3.1 is vacuously satisfied and so is Condition 3.2, because every element
in S♦ is compatible with s. In the model both the valuations functions are non empty
for every propositional letter and closed under fusion, as desired. Therefore, this is an
instance of an epistemic model. Note also that f (s) is closed under fusion, therefore
M is also an instance of complete epistemic model. From the valuation function, it
follows that |p∨q|+ = {t, t ′, s}. Therefore we have by construction that |p|− � f (s),
and |p∨q|+ � f (s). However, |q|+ � f (s), because there is an element in f (s), i.e.
t ′, such that s 
	 t ′, and s is the only element in |q|+. Accordingly, w |� K (¬p) and
w |� K (p ∨ q), but w 
|� Kq.

The validity of Closure under Disjunctive Syllogism is controversial: on the one
hand it is subject to some counter-intuitive epistemic situations, such as Surprise Exam
Paradox [22];13 on the other hand it is a special case ofClosure under KnownMaterial
Implication, which can be regarded as a basic requirement of logical competence for
non-ideal agents.

As argued by Rosenkranz [23, p. 35], there is general agreement on the fact that
knowledge implies belief. The principle of Closure under Known Material Implica-
tion requires in turn that agents never fail to come to believe a conclusion of modus

12 We focus only on a counter-model of Closure under Disjunctive Syllogism, which is in turn a counter-
example to Closure under Known Material Implication.
13 Compare also the ‘Criterion counter-example’ to Disjunctive Syllogism presented in [6, p. 8].
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ponens whose premises they know, while ordinary agents cannot expect to satisfy this
requirement in every occasion. To say it with Rosenkranz [23, p. 36], knowledge is a
cognitive achievement, even when it comes naturally. This idea reminds of the notion
of deductive principles that we mentioned before, namely those principles that require
the agent to perform some cognitive act. These are distinct from the pure principles,
which are those that we want to capture with our notion of Total Knowledge.

Consider, for example, the scenario in which Jones knows that Mary lives in New
York, that Fred lives in Boston and that Boston is north of New York. Yet Jones fails
to infer the obvious: that Mary will have to travel north to visit Fred [24]. The fact
that Jones does not employ his ability to infer via modus pones is not necessarily a
symptom of his logical incompetence. The failure of this principle has been associated
with the phenomenon of fragmentation of states of mind, as famously argued by Lewis
[25] (but also [26, 27] and [14]). The idea concerning the previous scenario is that
Jones has two different frames of mind: he knows in one that Mary lives in New York
and in a different one that Fred lives in Boston and that Boston is north of New York,
but he fails to put them together, because of a lack of focus or a limited memory.

As already mentioned, this theory of fragmentation is related to the limits of human
memory and focus abilities, but it cannot explain by itself in a satisfying way why
agents fail to follow through the logical consequences of what they know. It seems
strange to say that when agents don’t follow through the logical consequences of what
they believe, it is always because they have not conjoined the premises whereas, when
they do, they suddenly come to believe all their infinitely many consequences [28].
Accordingly, even if it might be reasonable to say that combining one’s information
can constitute an important insight which brings new knowledge, performing this
operation cannot guarantee knowledge of all the logical consequences of what one
knows. Therefore, it is hard to look at the phenomenon of fragmentation, as much as
widespread in empirical cognitive activities, as part of the fundamental problem of
Logical Omniscience [14].

As we showed, the Total Knowledge account invalidates Closure under Known
Material Implication, whereas Agglomeration holds in the class of complete epis-
temicmodels. Note that the previous counter-model ofClosure under KnownMaterial
Implication is a complete model, which then validates Agglomeration. In light of this,
since the failure of Agglomeration is a paradigmatic symptom of the fragmentation of
knowledge, the Total Knowledge account does not predict that the failure of Closure
under Known Material Implication is ascribable to the same source. The diagnosis
of the Total Knowledge account is that Closure under Known Material Implication is
not valid because (¬φ ∨ ψ) ∧ φ does not analytically entail ψ , as the counter-model
presented above witnesses.

5.2 A Subject-matter Sensitive Knowledge

In a truthmaker-based framework we formalize the notion of containment between
propositions as a relation between the truth(false)makers of the propositions and their
parts. In the case of regular propositions, this notion of containment assumes very
interesting features, which display its affinity with Yablo’s understanding of the same
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concept. Indeed, it can be argued that, for all verifiable complete propositions, con-
tainment expresses a form of Yablo’s immanent closure.

To see why, we first introduce a truthmaker-based notion of subject matter. We
distinguish the positive subject matter of some propositional content, its negative and
its overall subject matter. The first one is the fusion of the positive content, the second
one is the fusion of the negative content and the third, which amounts to the subject
matter of the bilateral proposition, is the fusion of both the positive and negative
contents.

Definition 24 (Positive Subject Matter) Le φ be a sentence and |φ|+ the respective
verifiable proposition, according to the inclusive semantics, the subject-matter of |φ|+
is

⊔ |φ|+, i.e. the fusion of the exact verifiers of φ. We denote it with s+φ .

It can be shown [10, p. 212] that for regular contents, the two clauses of the definition
of containment are equivalent to the two requirements for immanent closure:

Proposition 13 In all modalized models M, let |φ|+ and |ψ |+ be two verifiable and
regular propositions, then

1. |φ|+ subsumes |ψ |+ if and only if ||φ||+ ⊆ ||ψ ||+ – ψ is an inexact consequence
of φ;

2. |ψ |+subserves |φ|+ if and only if s+ψ 	 s+φ – ψ’s subject matter is part of φ’s
subject matter.

In words, the forward clause (subsumption) corresponds to inexact consequence,
while the backward clause (subserving) corresponds to subject matter preservation.
It is evident, at this point, the close connection with Yablo’s notion of containment
(PA) between two propositions, which amounts itself to the conjunction of a clause of
truth-preservation and one of subject matter inclusion. For this reason, closure under
Analytic Entailment is a form of immanent closure (as underlined in [5]): knowledge
is closed under those inferences that do not change the subject.14

There are, however, some differences with respect to a Yablovian immanent clo-
sure.15 First of all, the notion of truth-preservation that Yablo had in mind is classical
[1, 31], unlike inexact consequence (which corresponds to FDE) that is paraconsistent
and paracomplete. Secondly, we work only with the positive content of propositions
and their positive subject matter, while Yablo’s idea of subject matter preservation
includes both the positive and the negative contents. Our choice has the drawback that
the semantics does not distinguish between propositions with the same verifiers and
different falsifiers.

On the other hand, it is possible to generalize our approach to include also the
negative content of propositions and adapt our Total Knowledge to the notion of
containment between bilateral propositions.

14 Note that also Elgin in [29] argues that knowledge is closed under (known) analytic entailment: a relation
that holds just in case the meaning of one contains the meaning of the other.
15 Hawke [30] and Holliday [15] explore the technical details of Yablo’s proposal and in particular its
problems.
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To implement this idea we need (i) to model the agent’s total knowledge as a
bilateral proposition; (ii) to adopt a semantics for knowledge that requires, in order
for a sentence to be known by an agent, that the bilateral content of the sentence is
contained in her Total Knowledge.

We call a bilateral epistemic function a partial function that selects for some state
in the domain an ordered pair of unilateral propositions:

f : S → P(S) × P(S)

thus, the body of knowledge determined by a state s is a pair 〈P, P ′〉, for P, P ′ ⊆ S.
The notion of epistemic model can be redefined with the new bilateral epistemic
function as expected. As before, we understand knowledge in direct reference to con-
tainment. Recall the definition of containment with respect to bilateral propositions:

Definition 25 (Bilateral containment) For all φ and ψ ∈ Le, 〈ψ〉 is contained in 〈φ〉,
denoted 〈ψ〉 � 〈φ〉, just in case (i) |ψ |+ � |φ|+ and (ii) |ψ |− ⊆ |φ|−, i.e. (i) the
positive content of ψ is part of the one of φ, and (ii) every falsifier of ψ is also a
falsifier of φ.

Accordingly, we can state the clauses of knowledge as follows. For all s ∈ S such that
s ∈ dom( f ),

s � Kφ iff 〈φ〉 � f (s) s �Kφ iff 〈φ〉 � f (s)

Note that it is possible to show ([10], Theorem 25) that bilateral containment with
respect to a bilateral semantics (see also e.g. [5]) gives rise to the same logic of AC: the
system AC is sound for the bilateral semantics and hence every formula valid under
the unilateral semantics is also valid under the bilateral semantics.

As before, knowledge is closed under analytic entailment:

Proposition 14 For all φ,ψ ∈ Le and w ∈ W if w |� Kφ and 〈ψ〉 � 〈φ〉, then
w |� Kψ .

This new semantics takes in consideration both the positive and the negative content
of the agents’ total knowledge. This feature affects also the notion of subject matter
preservation, which is a crucial part of immanent closure. To see why, recall that the
negative subject matter of φ, s−φ , is the fusion of its negative content. The overall
subject matter of φ is the fusion of its negative and positive content

⊔
(|φ|+ ∪ |φ|−),

i.e.
sφ = s+φ � s−φ .

It is possible to show that if the bilateral proposition 〈ψ〉 is analytically entailed by
the bilateral proposition 〈φ〉 then, not only ψ is an inexact consequence of φ, but also
the overall subject matter of ψ is part of the overall subject matter of φ.

Proposition 15 For all φ,ψ ∈ Le if 〈ψ〉 � 〈φ〉, then sψ 	 sφ .

Proof We already know by Proposition 13, that s+ψ 	 s+φ . It is easy to see that also

s−ψ 	 s−φ holds: s−ψ ∈ |ψ |− by closure under fusion, and since |ψ |− ⊆ |φ|−, �|ψ |− ∈
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|φ|−; it follows that �|ψ |− 	 �|φ|−, i.e. s−ψ 	 s−φ . Therefore we can conclude that

s+ψ � s−ψ 	 s+φ � s−ψ , i.e. sψ � sφ . ��
This bilateral approach appears to be philosophically satisfying and there are many

details that deserve further investigation.
The idea that knowledge is sensitive to subject matter preservation is quite

widespread in the literature of epistemic logic. Hawke et al. [14], for example, intro-
duce a system of epistemic logic with a topic-sensitive modality of knowledge, which
is very close in spirit to our idea of closure under analytic containment. On the other
hand, their starting point is very different, and each account is informed by a different
picture of what propositional content is.

Hawke et al. [14] follow Yablo’s theory of thick content, namely they supplement
truth conditions with an account of topicality. Topics are elements of an algebraic
structure which are assigned by a topic function to every element of the logical lan-
guage. Hence, the notion of topicality differs from Yablo’s subject matter, but they
have in common the idea that content is given by two elements which are in principle
independent from each other. Accordingly, knowledge is understood as truth in all
epistemic worlds and topic inclusion.

While discussing Yablo’s theory, Fine [32, p. 134] remarks that “thick content is
an enhancement of intensional content; it is intensional content plus subject matter.
For me, thick content is not so much an enhancement as a modification of intensional
content”. This modification consists of identifying the content with the set of states
which make a sentence true or false, unlike the traditional intensional content, which
rather looks at the possible worlds where the sentence is true or false. Hence, the very
notion of intensional content is put aside for a brand new understanding of content
in terms of verification and falsification by states. The truthmaker-based notion of
subjectmatter naturally emerges from the content of a sentence: it is not just addedwith
mathematical idealized tools. The algebra of topics, in fact, provides the semanticswith
a partially syntactic element, reminiscent of theAwareness functions [26].16 Moreover,
an algebra of topics is silent about what topics are: we only know that they are non-
linguistic items and that they are transparent with respect to Boolean connectives.
Despite these differences, the philosophical ideas that ground both approaches are
similar and so is the resulting logics in their crucial elements: knowledge is closed
under conjunction elimination but not under disjunction introduction.

6 The Epistemic Logic

In this section we introduce the epistemic logic with respect to which our Total Knowl-
edge semantics is sound and complete. We call it EL. As a first step, we will introduce

16 The authors claim that “the version of awareness logic closest to our framework is the one in terms of
‘awareness generated by primitive propositions’, where an agent is aware of a formula φ just in case it
is aware of all of its atomic constituents taken together. We stress the syntactic features of this approach,
not shared by ours: awareness is still given by a construction based on atomic formulas, whereas our topic
function assigns topics, non linguistic items in the semantics, to formulas, with a recursion on the basic
non-epistemic operators (negation and conjunction, thus disjunction)” ([14], footnote 11).
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the standard axiomatic system of Analytic Entailment AC [10]. As it will become
apparent soon, the reason is that the logic AC is an integral part of our the system EL.

We shall set up a single-premise deductive system consisting of derivations of
the form φ �AC ψ , which we call single formulas sequents (from now on, it is
convenient to abbreviate it with only sequent). We derive valid sequents (rather than
valid sentences) from the axioms using the rules. Reasoning with multiple premises
may be understood by taking their conjunction.17 We say that two formulas φ and ψ

are provably equivalent if φ ��AC ψ .

Definition 26 The system AC consists of the following axioms and rules.

(E0) φ ��AC ¬¬φ

(E1) φ ��AC φ ∧ φ

(E2) φ ∧ ψ �AC ψ ∧ φ

(E3) (φ ∧ ψ) ∧ χ �AC φ ∧ (ψ ∧ χ)

(E4) φ ��AC φ ∨ φ

(E5) φ ∨ ψ ��AC ψ ∨ φ

(E6) (φ ∨ ψ) ∨ χ ��AC φ ∨ (ψ ∨ χ)

(E7) ¬(φ ∧ ψ) ��AC ¬φ ∨ ¬ψ

(E8) ¬(φ ∨ ψ) ��AC ¬φ ∧ ¬ψ

(E9) φ∧(ψ∨χ) ��AC (φ∧ψ)∨(φ∧χ)

(E10) φ∨(ψ∧χ) ��AC (φ∨ψ)∧(φ∨χ)

(E11)
φ �AC ψ ψ �AC χ

φ �AC χ

(E12)
φ �AC ψ

φ ∧ χ �AC ψ ∧ χ

(E13)
φ �AC ψ

φ ∨ χ �AC ψ ∨ χ
(E14) φ ∧ ψ �AC φ

(E15) φ �AC �
(E16) ⊥�AC φ

Fine shows [10, p. 202] a rule of positive replacement is admissible in the sense
that it preserves theorem-hood. If φ,ψ, χ are formulas of L, let χ(φ/ψ) be the result
of replacing the occurrences of φ in χ by ψ . Then the rule of positive replacement is
the following.

φ ��AC ψ
(PR)

χ ��AC χ(φ/ψ)

Lemma 16 The following rule is derivable in AC.

φ1 �AC ψ1 φ2 �AC ψ2
(E17)

φ1 ∨ φ2 �AC ψ1 ∨ ψ2

Theorem 17 (Theorems 14 and 21 in [10]) φ �AC ψ iff φ >AC ψ .

Now, we introduce the language and the epistemic logic EL. Recall that we dis-
tinguish between the set of non-modal formulas L and the modal language Le, i.e.
the union of L and all the K-formulas, closed under the truth-functional connectives.
Recall also the following definitions:

• a K-atom is a formula of the form Kφ, for any φ ∈ L;
• a negated K-atom is a formula of the form ¬Kφ, for any φ ∈ L;
• a K-literal is either a K-atom or a negated K-atom;

17 In general, this is not something we can do in truthmaker semantics, where conjunctions differ semanti-
cally from their conjuncts taken together. But here our notion of entailment is based on containment, rather
than exact entailment, and so, in particular, φ ∧ ψ >AC φ is valid.
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• an epistemic formula (or K-formula) is any truth-functional compound of only
K-literals;

• we call simply literal λ any propositional letter p in Prop or its negation. Let us
call Lit the set of all such literals.

In accordance to our formulation of the proof system for AC, we shall set up a
single-premise deductive system consisting of single formulas sequents of the form
φ �EL ψ , where EL stands for epistemic logic. Let us call CL the proof system of
propositional classical logic. We do not spell out CL in details: the axioms and rules
are those of the classical propositional sequent calculus.

Definition 27 (Epistemic Logic EL) EL extends classical logicwith the following rule
(K1) and axiom (K2):

(K0) Classical propositional axioms and rules in CL

(K1)
φ �AC ψ

K (φ) �EL K (ψ)
(K2) K (φ) ∧ K (ψ) �EL K (φ ∧ ψ)

Proposition 18 The following theorems K3 − K6 are deducible in EL:

(K3) K (φ ∧ ψ) �EL K (φ)

(K4) K (φ) ∧ K (ψ) �EL K (φ ∨ ψ)

(K5) K (φ ∧ ψ) �EL K (φ) ∧ K (ψ)

(K6)
φ ��AC ψ

K (φ) ��EL K (ψ)

Proof K3 is derivable from E14 φ ∧ ψ �AC φ and K1;K4 is derivable from K2,K1
and the fact that φ ∧ ψ �AC φ ∨ ψ is AC-derivable; K5 is derivable from K3 and
classical logic; K6 is derivable from K1. ��
Theorem 19 (Completeness of EL) EL is sound and complete with respect to the class
of Complete Epistemic models M f : for all φ ∈ Le, �EL ψ if and only if |� φ.

Proof The proof is developed in Appendix A. ��
The class of epistemic models which validate the principle of Factivity is the one

of factive epistemic models MF , namely the class of epistemic models where f is
Reflexive (Condition 4.1). The logic of this class of models extendsELwith the axiom
of factivity:

Definition 28 The system EL+ consists of the axiom in EL plus K7: K (φ) �EL+ φ.

Theorem 20 (Completeness of EL+) EL+ is sound and complete with respect to the
class of Factive Complete Epistemic modelsMF : for all φ ∈ Le, �EL+ φ if and only
if |� φ.
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Proof The proof is developed in Appendix B. ��

6.1 Hyperintensionality

The idea of subject matter sensitivity seems to give us good reasons to reject closure
under disjunction and at the same time to include conjunction distribution within
the defensible core of knowledge. Similarly, logically equivalent sentences do not
necessarily say the same things, namely they are not necessarily about the same topic.
Yablo suggests to giveup closure under logical equivalence,which amounts to claiming
that knowledge is a hyperintensional operator: equivalent propositions are those that
share the same intension, because they are true in the same possible worlds.

The notion of hyperintensionality has became of prime importance in the litera-
ture of philosophical logic, to the point that Nolan [33] predicted a ‘hyperintensional
revolution’ for the 21st century.

There are many definitions of hyperintensionality, and of hyperintensional contexts
and logics in the literature [33, 34]. Leitgeb [35] developed the logic HYPE, which is
presented as a ‘background system for hyperintensional operators’.Hedefines hyperin-
tensionality as the failure of substitutivity with respect to classical logical equivalents.
A unary connective S is defined to be hyperintensional if prefixing sentences logically
equivalent in classical logic by S can lead to sentences which differ in truth value
at some state. A hyperintensional logic is a logic which can model hyperintensional
operators.

In otherwords, fromaproof-theoretic perspective, according toLeitgeb’s definition,
the entailment �L is hyperintensional if and only if for all formulas φ,ψ, χ and all
the propositional variables p of the language, the following claim does not hold:

φ ��CL ψ implies χ(φ/p) ��L χ(ψ/p).

The Total Knowledge account creates an hyperintensional epistemic context, as
the failure of closure under classical equivalence witnesses from a semantic perspec-
tive:we cannot substitute classically equivalent formulaswithin the scope aK-operator
salva veritate. In other words, the knowledge operator is hyperintensional with respect
to the classical equivalents, in accordance to Leitgeb’s intuition of hyperintensional-
ity.18

φ ��CL ψ does not imply χ(φ/p) ��EL+ χ(ψ/p).

On the other hand, we can easily address the challenge of the granularity of the
knowledge operator. The label of ‘granularity problems’ [28, 37] refers to a family of
issues concerning the right level of fine-grainedness:

18 [36] criticizes these definitions. If hyperintensionality is simply defined as failure of inter-substitution
in L for classically equivalent formulas, then virtually every non classical logic would turn out to be
hyperintensional in this sense, as classical equivalence may simply not be preserved in L . According to
Odintsov andWansing, the notion of hyperintensionality must be understood in terms of self-extensionality.
A logic L with consequence relation �L is self-extensional if and only if for all formulas φ,ψ, χ and all
the propositional variables p of the language, the following claim does not hold: φ ��L ψ implies
χ(φ/p) ��L χ(ψ/p). In the Total Knowledge account, since EL+ is a modal extension of CL , we also
meet Odintsov and Wansing’s requirement for a genuine hyperintensional operator.

123

1092



A Truthmaker-based Epistemic Logic

This can be understood again in terms of substitution salva veritate for the
relevant operators: X is strictly more fine-grained than Y when all substitutions
that go through for X also do for Y , but X fails some, which goes through for Y
[38, p. 26].

In other words, we can image a spectrum of fine-graininess of operators, where the
lower bound is occupied by the hyperintensional operators as fine-grained as syntax
and the upper bound is occupied by intensional operators. A requirement often sug-
gested is that a hyperintensional operator should not be as fine-grained as the syntax of
the language one is working with ? on pain of giving away the very point of having a
semantics for it. The real challenge is tomodel hyperintensional operators with exactly
the ‘right amount’ of hyperintensionality, which should be justified with independent
philosophical reasons.

The knowledge operator in the Total Knowledge framework is not as fine-grained
as syntax, as we can substitute within the K-operator sentences that are exactly ver-
ified (falsified) by the same states. In other words, the knowledge operator does not
discriminate between propositions with the same truth(false)-maker intension. More
formally, let EX indicate the logic of Exact Entailment [39] and AC the logic of
Analytic Entailment, then it holds that:

φ ��EX ψ implies χ(φ/p) ��EL+ χ(ψ/p)
φ ��AC ψ implies χ(φ/p) ��EL+ χ(ψ/p)

We understand two sentences that are analytically equivalent as having the same
meaning. Recall that when Angell [17] introduced the first original formulation of
the propositional logic of analytic containment, his aim was to formalize a notion of
entailment understood in terms of containment of meanings:

The concept of entailment [...] has also been connected to the concept of contain-
ment in Kant?s sense of analytic containment: A entails B only if the meaning
of B is contained in the meaning of A. [17, p. 1]

Angell claims that this concept of Analytic Entailment is also connected to the concept
of synonymity: “S1 is synonymous with S2 if and only if S1 entails S2 and S2 entails
S1”.

From these considerations it emerges that our knowledge operator does not dis-
criminate between synonyms. For example, if an ordinary agent knows that there are
female foxes in the forest, then she also knows that there are vixens in the forest. We
do not model situations in which the agent is not a competent user of the language
and ignores that vixens are in fact female foxes. We do not deny that these situations
are possible in ordinary life and even frequent. We just claim that this is not neither a
semantic phenomenon nor a logical phenomenon, namely it is not related to the logical
competence of ordinary agents. For these reasons, synonymity is a good lower bound
of fine-graininess for non-ideal knowledge.
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7 Conclusions and Further Work

In this work, we have introduced a truthmaker-based epistemic logic which aims to
model a knowledge operator for non-ideal agents, namely an account where Logical
Omniscience fails. In particular, our approach is based on the notion of W-models
extended with a partial epistemic function, which associates some state to a set of
states, namely a proposition. This proposition is interpreted as the agent’s body of
knowledge, namely the set of verifiers of her total knowledge at a certain state. The
semantic clauses for knowledge, introduced and defended in Section 4, are based on
the intuition that an agent knows some information φ, when the propositional content
that φ is contained in her total knowledge at that state. An agent fails to know φ at a
state, when the propositional content that φ is not contained in her total knowledge.

This semantics invalidates all the controversial epistemic principles we have briefly
examined in Section 2. At the same time, it is able to characterize logical competent
non-ideal agents, because the notion of knowledge is closed underAnalytic Entailment,
as shown in Section 5. In particular, we have seen in Section 5.2 that the truthmaker
characterization of the relation of containment, under certain conditions, corresponds
to Yablo’s notion of immanent closure, which is a philosophically sound form of
closure for non-ideal knowledge.

In Section 6, we developed the proof system EL, by showing that it is sound and
complete with respect to epistemic models where the epistemic function f is closed
under fusion.Moreover, we extendedELwith the axiom corresponding to the factivity
of knowledge; the result is the proof system EL+, which is sound and complete with
respect to factive epistemic models.

Our Total Knowledge account cannot express embedded formulas, which, however,
play an important role in the analysis of non-ideal agents? knowledge and, in particular,
of their introspective abilities. Hintikkian epistemic semantics validates both positive
and negative introspection, which, on the other hand, are principles often opposed by
epistemologists (compare [40]). Accordingly, as a future work, we will develop a new
version of the semantic and axiomatization which expresses embedded modalities but
does not validate the introspection principles.

Moreover, it might be objected that the the clauses of verification and falsification
should not be mutually exclusive, in order to properly distinguish between exact ver-
ification and falsification of knowledge. Even though we argued for an interpretation
of the epistemic function which justifies such a choice, in the context of a bilateral
semantics, it is worth exploring a different bilateral approach,whichwe leave to further
work .

Appendix A

In this Appendix we prove the completeness theorem of the logic EL with respect to
the class of complete epistemic models (Theorem 19).

Theorem 21 (Soundness of EL) EL is sound with respect to the class of epistemic
models: for all φ and ψ ∈ Le, if φ �EL ψ , then φ |� ψ .
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Proof K0. Classical logic is sound and complete with respect to loose consequence.
K1. Let φ,ψ ∈ L and assume that φ �AC ψ . By soundness of AC, φ >AC ψ .
Consider an arbitrary w ∈ W such that M, w |� Kφ. Hence, there is a s ∈ S♦, such
that s 	 w and s � Kφ, i.e. |φ|+ � f (s). Since φ >AC ψ , by definition |ψ |+ � |φ|+.
By transitivity of the relation of containment we can conclude |ψ |+ � f (s), which
proves that M, w |� Kψ . K2 follows from Proposition 12. ��

In this section, we will develop the proof of the completeness theorem of EL,
namely that every consistent formula in Le is satisfiable.

Definition 29 For all α, β ∈ Le, we say that α is inconsistent, when it classically
derives a contradiction, i.e. α �CL β ∧ ¬β.

We sometimes abbreviate a classical contradiction with the symbol ⊥. Since for all
α ∈ Le, β ∧ ¬β �CL α, then, α is inconsistent if and only if α is provably equivalent
in CL to β ∧ ¬β. Otherwise it is consistent.

Definition 30 A formula α ∈ Le is satisfiable when there is an epistemic model M
and a world w ∈ M which loosely verifies it, i.e. M, w |� α.

We can summarize the strategy of the proof as follows. We will first show that (i)
every consistent K-formula – call it δ – is satisfiable, and from this it will straightfor-
wardly follow that (ii) every consistent formula α in Le is satisfiable. To prove (i), it
suffices to show that δ has a model, which amounts to showing that there is an epis-
temicmodel with a possible state that exactly verifies δ. Indeed, in an epistemicmodel,
every possible state is part of a possible world. Hence, if a possible state verifies δ,
then there is a possible world that loosely verifies it. In particular, our goal is to build
a syntactic model for δ, which we prove to be indeed an epistemic model (in Section
A.2). In order to accomplish this result, we first bring δ into a specific disjunctive
normal form, which we call Maximal K-form.

A.1 Normal Forms

As mentioned our completeness proof draws on the idea of disjunctive normal forms.
We will proceed in two steps. We first shall identify a suitable class of disjunctive
normal forms inL, namely suitable for the non-epistemic formulas. Secondly, we shall
identify a particular class of disjunctive normal forms for any epistemic formulas. We
call the former the class of closed disjunctive forms, the latter the class of maximal
K-forms.

Definition 31 (Descriptions) A description is a conjunction λ1 ∧ λ2 ∧ ... ∧ λm of
literals. As a limiting case a literal is also considered a description.

Definition 32 (Sub-description) Let φ = λ1 ∧ λ2 ∧ ... ∧ λm and ψ be descriptions,
then ψ is a sub-description of φ, written ψ � φ, if ψ is a conjunction of some of
λ1, λ2, ..., λm .
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Note that the order and the repetition of the literals is not relevant for a conjunction of
literals to be a sub-description of another one. Note also that, given the descriptions
φ and ψ , φ � ψ is equivalent to say that Lit(φ) ⊆ Lit(ψ).

Definition 33 (Disjunctive normal form) A disjunctive normal form is a disjunction
φ1 ∨ φ2 ∨ ... ∨ φm of descriptions φ1, φ2, ..., φm , with m ≥ 0.

Definition 34 (Closed disjunctive form) A disjunctive form φ is closed iff for any set
� of disjuncts in φ, φ includes a disjunct ψ with Lit(ψ) = ⋃{Lit(φi ) | φi ∈ �}.
Lemma 22
1. Any formula φ in L is provably equivalent in AC to a disjunctive normal form.
1. Any disjunctive normal form in L is provable equivalent in AC to a closed dis-

junctive form.

Proof (1) is analogous to a standard result in classical logic. (2) is an adaptation of
lemma 14 in [41, p. 23]. ��

Now that we have a suitable normal form for the non-epistemic formulas, which
are the arguments for the modality K, we shall now introduce the normal form we
need for epistemic formulas.

Definition 35 (Maximal K-form) Amaximal K-form KM (φ) abbreviates the conjunc-
tion

K (φ) ∧ ¬K (ψ1) ∧ ... ∧ ¬K (ψm)

(with 0 ≤ m), where φ = φ1 ∨ ...∨φn is in closed disjunctive form, and each negated
atom ¬K (ψk) (with k ≤ m), is such that ψk = ψk

1 ∨ ... ∨ ψk
mk

is in closed disjunctive
form and:

1. either there is ψk
i (i ≤ mk) such that for all φ j ( j ≤ n) ψk

i 
� φ j ;
2. or there is φ j ( j ≤ n) such that for all ψk

i (i ≤ mk), ψk
i 
� φ j ;

This normal form aims at spelling out the relationship between K-atoms and negated
K-atoms, with respect to their arguments. K-literals are, in fact, limit cases ofMaximal
K-forms: Kφ satisfies vacuously the disjunct (2) of the definition, because m = 0,
namely there are no negated K-atoms; similarly,¬Kψ satisfies vacuously the disjunct
(1), because n = 0.

The following lemmageneralizes the reasoning just applied in theprevious example.

Lemma 23 Each consistent K-formula δ is provably equivalent inEL to a disjunction,
where each disjunct is equivalent to a maximal K-form.

Proof Let δ be an arbitrary consistent K-formula.We firstly put δ in disjunctive normal
form by means of the classical rules of EL, i.e. we obtain a disjunction of conjunctions
of K-literals, then we agglomerate all the K -atoms:

δ ��EL

∨

i≤l

(K (φi
1) ∧ ... ∧ K (φi

n) ∧ ... ∧ ¬K (ψ i
1) ∧ ... ∧ ¬K (ψ i

m)) by CL

��EL

∨

i≤l

(K (φi
1 ∧ ... ∧ φi

n) ∧ ¬K (ψ i
1) ∧ ... ∧ ¬K (ψ i

m)) by K2 and K5
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Since δ is consistent, then there is at least a consistent disjunct δi in δ, which will be
of the form δi = K (φi

1 ∧ ... ∧ φi
n) ∧ ... ∧ ¬K (ψ i

1) ∧ ... ∧ ¬K (ψ i
m).

Let χ i be a closed disjunctive form (Def. 34) such that χ i = χ i
1 ∨ ... ∨ χ i

k ��AC

φi
1 ∧ ... ∧ φi

n (we obtain it by E9 and Lemma 22), and each disjunct in χ i is a
description (def. 3.2). Then K (χ i ) ��EL K (φi

1∧...∧φi
n) byK6 and thus δi is provably

equivalent to a conjunction of K (χ i ) and the negated K-atoms, that is δi ��EL

K (χ i
1 ∨ .. ∨ χ i

k) ∧ ... ∧ ¬K (ψ i
1) ∧ ... ∧ ¬K (ψ i

m).
If δi is equivalent to a formula with only one negated atom ¬K (ψ i ), we will

iterate the reasoning that follows for each negated atom. Therefore, we can suppose
w.l.o.g. that δi is equivalent to a formula with only one negated atom ¬K (ψ i ) and
ψ i = ψ i

1 ∨ ... ∨ ψ i
j is a closed disjunctive form.

It suffices to prove that K (χ i
1 ∨ .. ∨ χ i

k) ∧ ¬K (ψ i ) is a normal K-form. It amounts
to prove that either (1) or (2) in Definition 35 is the case. We assume by contradiction
that both (1) and (2) are false, thus:

1 for all ψ i
h ( with h ≤ j), there is a χ i

l ( with l ≤ k), such that ψ i
h � χ i

l .
2 for all χ i

l ( with l ≤ k), there is a ψ i
h ( with h ≤ j), such that ψ i

h � χ i
l .

Let f be a function such that for each h ≤ j of ψ i , ψ i
h � χ i

f (h). Then by (E14), and
from 1∗, it follows that for all h ≤ j :

χ i
f (1) �AC ψ i

1
...

χ i
f ( j) �AC ψ i

j

Thus, by (E17),χ i
f (1)∨...∨χ i

f ( j) �AC ψ i
1∨...∨ψ i

j ,which isχ
i
f (1)∨...∨χ i

f ( j) �AC ψ i .

Moreover, let g be a function such that for each l ≤ k of χ i , ψ i
g(l) � χ i

l . Then by
(E14), and from 2, it follows that for all l ≤ k:

χ i
1 �AC ψ i

g(1)
...

χ i
k �AC ψ i

g(k)

Thus, by (E17),χ i
1∨...∨χ i

k �AC ψ i
g(1)∨...∨ψ i

g(k) which isχ i �AC ψ i
g(1)∨...∨ψ i

g(k).

It follows from χ i
f (1) ∨ ... ∨ χ i

f ( j) �AC ψ i and χ i �AC ψ i
g(1) ∨ ... ∨ ψ i

g(k) by

(E17) and (E4) that χ i �AC ψ i and thus, K (χ i ) �EL K (ψ i ) by K1. Then δi �EL

K (ψ i )∧¬K (ψ i ), against our assumption that δi is consistent. Hence,we can conclude
that either (1) or (2) is true and so K (χ i ) ∧ ¬K (ψ i ) is a maximal K-form. ��

A.2 Syntactic Models and Completeness

In the present section, we will define a ‘canonical model’ in which the states are taken
to be sets of the literals of the language, and we can read the epistemic function off
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an arbitrary consistent K-formula δ. To be precise, the model we are going to built is
not canonical in the sense that it satisfies in a world all the consistent formulas of our
language. On the contrary, we will show that for each formula there is a model which
satisfies it. It is convenient, then, to call it syntactic model, to distinguish it from a
model which verifies all the formulas, because, as mentioned, we will built it up from
the set of literals of our language.

Recall that δ is provably equivalent to a disjunction, each disjunct of which is a
maximal K-form KM (φi ):

δi = K (φi
1 ∨ ... ∨ φi

n) ∧ ¬K (ψ i
1) ∧ ... ∧ ¬K (ψ i

m).

In particular, as it will became apparent soon, the epistemic function is based on the
set of literals in such φ.

Definition 36 (Syntactic EpistemicModel) A syntactic epistemic model for δ isMδ =
(S, S♦,	, f , |.|+, |.|−) where:

• S = P(Lit)
• S♦ = {s ∈ S | {p,¬p} � s, for all p ∈ Prop}
• 	=⊆
• dom( f ) = S♦ and f (s) = {⋃ Lit(φi

j )φi
j∈� | for � a set of disjuncts in φi }, for

each s ∈ S♦.
• |p|+ = {{p}}, |p|− = {{¬p}}, for all p ∈ L.

Note that the value of f is defined in the same way for all the possible states in the
domain. Moreover, it is easy to see that f (s) is the closure under fusion of the sets of
literals Lit(φi

j ) for j ≤ n, i.e. f (s) = {Lit(φi
j ) | for any j ≤ n} f .

Lemma 24 Mδ = (S, S♦,	, f , |.|+, |.|−) is a epistemic model.

Proof Mδ = (S, S♦,	, ) is W-space, see [5, p. 647]. It suffices to show that f is an
epistemic function. It is easy to see that f is a partial function, closed under union
by definition. Also, since it is defined in the same way for all s ∈ S♦, Condition 3.1
holds. Moreover, for the same reason, every possible s is compatible with a state for
which f is defined, namely itself, hence also Condition 3.2 holds. ��
Note that in the syntactic model the valuation functions pick always a singleton for
each propositional letter. On the basis of this definition, we shall prove some results
regarding the valuation functions, which will be useful later on.

Lemma 25 LetMδ be a syntactic model as defined in Def. 36 and λ1, ..., λn be literals
such that {λ1, ..., λn} ∈ S, then |λ1 ∧ ... ∧ λn|+ = {{λ1, ..., λn}}.
Proof Let X be a set of literals, then:

X ∈ |λ1 ∧ ... ∧ λm |+ iff X = ⋃
i≤m Xi and Xi ∈ |λi |+

iff X = ⋃
i≤m Xi and Xi = {λi }

iff X = {λ1} ∪ ... ∪ {λm}
iff X = {λ1, ..., λm}

It follows that |λ1 ∧ ... ∧ λm |+ = {{λ1, ..., λm}}. ��
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Lemma 26 (Lemma 26 [41]) InMδ , for any closed disjunctive form φ = φi ∨ ...∨φn,
|φ|+ = |φ|+f . To unpack the definition, since inMδ ,

⊔
X = ⋃

X, we have that

|φ|+ = {Lit(φ1), ..., Lit(φn)} ∪ {
⋃

ψ∈�

Lit(ψ) | � is a collection of disjuncts in φ}.

Recall that we proved (Lemma 23) that a conjunction Kφ ∧¬Kψ1 ∧ · · · ∧¬Kψm

is inconsistent in our system if there is a ψi (i ≤ m) such that every disjunct in φ has
a sub-description that is a disjunct in ψi , and every disjunct in ψi is a sub-description
of a disjunct in φ. The next step is to show that the previous conjunction is satisfied
by the syntactic model. The idea of the proof is that, in building the syntactic model,
we picked a possible state s and let f (s) be the set of verifiers of φ, and since the
conjunction is consistent, we can see that no ψi has a set of verifiers analytically
entailed by |φ|+. So the state s verifies Kφ and falsifies each Kψi .

In the proof of following theorem, we will spell out all the details of the strategy
just sketched.

Lemma 27 Every consistent epistemic formulas δ is satisfiable with respect to the
class of epistemic models.

Proof Suppose the K-formula δ is consistent. By Lemma 23, δ is provably equivalent
to a normal K-form δ1∨δ2∨ ...∨δm, form ≥ 1, where each δi is of the form KM (φi ).
The syntactic model for δ is Mδ = (S, S♦,	, f , |.|+, |.|−), defined as in Definition
36. It suffices to show that δi (for some i ≤ m) is true in the model and consequently
so is δ. Let δi = K (φi

1 ∨ ... ∨ φi
n) ∧ ¬K (ψ i

1) ∧ ... ∧ ¬K (ψ i
m).

In what follows, I will drop the superscript i for readability purposes, and I will
consider as before only one negated K-atom, without loss of generality.

Consider an arbitrary state s ∈ S♦. By definition of the syntactic model, that there
is a possible world w, such that s ⊆ w.

We first prove that Mδ, w |� K (φ1 ∨ ... ∨ φn), namely that s � K (φ1 ∨ ... ∨ φn),
i.e. |φ1 ∨ ... ∨ φn|+ � f (s). Given Lemma 26, and the definition of f (s) in Mδ , we
know that |φ1 ∨ ...∨φn|+ = |φ1 ∨ ...∨φn|+f = f (s), proving immediately our claim.

Secondly, we shall prove that Mδ, w |� ¬K (ψ). Recall the definition of maximal
K-form, ¬K (ψ) is such that ψ = ψ1 ∨ ... ∨ ψm is in closed disjunctive form and:

1. either there is ψi (i ≤ m) such that for all φ j , ( j ≤ n) ψi 
� φ j ;
2. or there is φ j ( j ≤ n) such that for all ψi (i ≤ k), ψi 
� φ j ;

Suppose (1) is the case. Since both ψi and φ j are descriptions, and ψi 
� φ j , then
Lit(ψi ) � Lit(φ j ), for all φ j . Since φ is a closed normal form, it includes a disjunct
φl such that Lit(φl) = ⋃{Lit(φ j ) | φ j ∈ �}where� is a set of disjuncts inφ. Hence,
also Lit(ψi ) �

⋃{Lit(φi ) | φi ∈ �}, for any choice of �. Thus, take an arbitrary
L ∈ f (s), it is of the form

⋃{Lit(φi ) | φi ∈ �}. It follows that, Lit(ψi ) � L . Hence,
since L was arbitrary and Lit(ψi ) ∈ |ψ |+ (Lemma 26), we can conclude that for each
L ∈ f (s), there is L ′ ∈ |ψ |+ , such that L ′

� L , i.e. |ψ |+ � f (s).
Suppose (2) is the case. Since both ψi and φ j are descriptions, and ψi 
� φ j , then

Lit(ψi ) � Lit(φ j ), for all ψi . Take an arbitrary L ∈ |ψ |+, which will be of the form
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L = ⋃
i≤n Lit(ψi ). If n = 1, there is a Lit(φ j ) ∈ f (s), such that Lit(ψi ) ∈ |ψ |+

and Lit(ψi ) � Lit(φ j ). Hence, since ψi was arbitrary, |ψ |+ � f (s). If n > 1, it
follows from 2 that

⋃
i≤n Lit(ψi ) � Lit(φ j ), and

⋃
i≤n Lit(ψi ) ∈ |ψ |+, by Lemma

26. Hence for the previous reasoning we can conclude that |ψ |+ � f (s). In both
cases, |ψ |+ � f (s), so we can conclude that Mδ, w 
|� K (ψ). ��

Recall that we called Lit the set of all the propositional letters p and their negation.
Let us now call Litk the set of K-literals, namely all the K-atoms. Given classical
logic, we know that each α in Le is provably equivalent to a formula in disjunctive
normal form, i.e. α ��EL α1∨· · ·∨αn , where each disjunct is a conjunction of literals
either in Lit or in Litk . Moreover, we know from Lemma 23, that a conjunction of K-
literal is provably equivalent to a maximal K-form KM (φ). Let us call the conjunction
of propositional literals �. Hence, we say w.l.o.g. that each α ∈ Le is of the form∨

(� ∧ KM (φ)).

Lemma 28 Every consistent formula α ∈ Le is satisfiable with respect to the class of
epistemic models.

Proof By the previous reasoning α is provably equivalent to a disjunctive normal form.
Since it is consistent, there must be at least a consistent disjunct αi , which is of the
form � ∧ KM (φ). Since αi is consistent then also � and KM (φ) are both consistent.
From Lemma 27 we know that, for each consistent KM (φ) we can build a syntactic
epistemicmodel thatmakes it true, call itMδ . In particular,we know that for all s ∈ S♦,
s � KM (φ). Moreover, there is also a s′ ∈ S♦, that is the set of propositional literals
in αi , i.e. s′ = Lit(�). Accordingly, s′ � � ∧ KM (φ). Since Mδ is an epistemic
model, there is a world w such that s′ ⊆ w. HenceMδ, w |� �∧ KM (φ) and thereby
Mδ, w |� α. ��

Theorem 29 (Completeness) The system EL is complete: for any epistemic modelM
and for any φ ∈ Le, ifM |� φ, then �EL φ.

Proof The proof is a straightforward consequence of the previous lemma. ��

A.3 Convexity

As we have mentioned, the adoption of regular propositions does not entail any differ-
ence on the resulting logic of analytic containment and analytic equivalence, which is
the logicAC. On the other hand, closure under convexity is philosophically interesting,
because it makes analytic containment antisymmetric, which is arguably a desidera-
tum for a natural characterization of analytic containment. Given these considerations,
we might want to consider the introduction of convexity as a closure principle for the
epistemic function as well. In this case, we would need to adapt the completeness
proof to this new feature, in particular the syntactic model.
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The relevant subclass of disjunctive forms in this case is the one that Fine [10] calls
maximal. I will call it the regular disjunctive form, in order to avoid mix-ups with the
maximal K-form of Definition 35.

Definition 37 (Regular disjunctive form) A disjunctive form φ is regular iff for any
disjunct φi in φ and any literal λ occurring as a conjunct in a disjunct of φ, φ contains
a disjunct φ j with Lit(φ j ) = Lit(φi ) ∪ {λ}.
Lemma 30 (Lemma 17 in [10]) Every disjunctive form is provably equivalent, within
AC, to a regular disjunctive form.

Lemma 31 Every consistent K-formula δ is provably equivalent to a normal K-form
δ1 ∨ ... ∨ δm, where each δi is a maximal K-formula, i.e. δi is of the form K M (φ), and
additionally φ is a regular normal form.

Proof By Lemmas 23 and 30. ��
Definition 38 A syntactic regular epistemic model Mδ

R for δ is a syntactic epistemic
model Mδ = (S, S♦,	, f ′, |.|+, |.|−), where f ′(s) = f (s)r , where f (s) is defined
as in Definition 36, i.e. f ′(s) is closed under fusion and convexity.

It is easy to check thatMδ
R is an epistemic model. Moreover, it can be shown that for

all regular disjunctive forms φ, |φ|+ = |φ|+r (see [41, p. 30]). Then, the proof of the
completeness of the EL system is an adaptation of the previous one.

Appendix B Factivity

In this Appendix we prove the completeness theorem of the logic EL+ with respect
to the class of factive (Theorem 20) epistemic models.

Theorem 32 (Soundness) For all φ,ψ ∈ Le, if φ �EL+ ψ , then φ |� ψ .

Proof K7. The proof is analogous to the right-left direction of Lemma 10. K8. It
derives from K7, because, suppose by contradiction that �EL+ K (φ ∧ ¬φ), then by
K7, K (φ ∧ ¬φ) �EL+ φ ∧ ¬φ, which contradicts classical logics. ��

Now, we just need to adapt the previous results concerning the completeness of EL
to the new extended logic. It turns out that a syntactic model with a reflexive epistemic
function looks quite different from the previous one and we need to build a slightly
more sophisticated structure.

We need to be able to talk of the negations of the literals, both the positive and
negative ones. Therefore, with each literal λ ∈ Lit , we associate a unique shadow λ̄,
which acts as follows: if λ = p, then λ̄ = ¬p; if λ = ¬p, then λ̄ = p.

Lemma 33 Let K M (φ) be a consistent maximal K-form inLe. Since φ = φ1∨ ...∨φn,
there is at least a disjunct φ∗ in φ such that p ∧ ¬p 
� φ∗, for any p ∈ L.
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Proof Suppose by contradiction that for each disjunct φi (i ≤ n) in φ, there is some
pi ∈ Lit , such that pi ∧¬pi � φi . Hence φ1 ∨ ...∨φn �AC (pi ∧¬pi )∨ ...∨ (pn ∧
¬pn), by E14 and E17. Hence, K (φ) �EL+ K ((pi ∧ ¬pi ) ∨ ... ∨ (pn ∧ ¬pn)), by
K1. Therefore,

K (φ) ∧ ¬K (ψ1) ∧ ... ∧ ¬K (ψm) �EL+ K ((pi ∧ ¬pi ) ∨ ... ∨ (pn ∧ ¬pn))

�EL+ (pi ∧ ¬pi ) ∨ ... ∨ (pn ∧ ¬pn)

�EL+ ⊥

which contradicts the fact that KM (φ) is consistent. Hence, there is at least a disjunct
φi in φ which does not have any contradicting atomic letters as sub-description. ��

Since φ∗ is a description, then it follows that Lit(λ ∧ λ̄) � Lit(φ∗), for any λ ∈ Lit
which is equivalent to say that {λ, λ̄} � Lit(φ∗).

Our goal, now, is to read an epistemic syntactic model out of this consistent descrip-
tion φ∗. In particular, the set of possible states of our syntactic model will be based
on the set of literals in φ∗.

A syntactic state space is a tupleS = (S,	), where S = P(Lit) and 	=⊆. Now,
consider the state s = Lit(φ∗). We shall construct a maximally consistent state w(s),
namely a possible world, which contains s as a subset. In other words, we will extend
s to a possible world w(s) and we will adopt it as a basis for the set of possible states
S♦ in our syntactic model.

Definition 39 In a syntactic state spaceS = (S,	), let s be a state in S, s is consistent
when for any λ ∈ Lit , {λ, λ̄} � s. It is inconsistent otherwise.

As we have already discussed, Lemma 33 shows that s = Lit(φ∗) is consistent. From
this consistent state we will build a maximal state, namely a state that, for all atoms
p ∈ Prop, either contains a part which verifies p or contains a part which verifies
¬p. To do so, it is necessary to be able to talk of every literal of the language. Since
they are countable, we can simply enumerate them, by associating them with an index
i ∈ N.

Let s be our base case, thus s = s0 and consider the first λ0 of our enumerated
list of literals in Lit . Then, the following state s1 will be s1 = s0 ∪ {λ0}, just in case
λ̄0 /∈ s0, and s1 = s0 otherwise. Indeed, if λ̄0 ∈ s0, we cannot build a new consistent
state s1 by adding λ0 to s0, because we would obtain {λ0, λ̄0} ⊆ s1, i.e. s1 would be
inconsistent.
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We shall replicate the same operation, until we obtain a w(s) = ⋃

n∈N
sn , such

that nothing more can be added without thereby resulting in an impossible state. In
symbols:

s0 = Lit(φ∗)

sn+1 =
{
sn ∪ {λn} if λ̄n /∈ sn
sn, otherwise

w(s) =
⋃

n∈N
sn .

Lemma 34 w(s) is a consistent state.

Proof w(s) is obviously a state, because it is a set of literals. Moreover it is consistent
by construction. ��

In order to check whether w(s) is a possible world (and not just a consistent state), we
need first to define our syntactic W-space. As before, consider δ, which is provably
equivalent to a disjunction, each disjunct of which is a maximal K-form KM (φi ):

δi = K (φi
1 ∨ ... ∨ φi

n) ∧ ¬K (ψ i
1) ∧ ... ∧ ¬K (ψ i

m).

We fix additionally φ∗ to be a consistent disjunct in φi . Recall that we say that X↓ is
the smallest downwards closed set (w.r.t. parthood) containing X .

Definition 40 A syntactic factive epistemic space for δ isSδ
F = (S, S♦,	, f ), where

• (S,	) is a syntactic state space;
• S♦ = {w(s)}↓ ;
• dom( f ) = {s}, where s = Lit(φ∗)
and f (s) = {Lit(φi

j ) | for any j ≤ n} f .

Lemma 35 Sδ
F = (S, S♦,	, f ) is a factive epistemic space.

Proof Thefirst step it to prove that (S, S♦,	) is aW-space. S♦ is a non empty subset of
S and it is closed under parthood by construction. Hence, it suffices to show that w(s)
is a possible world, namely it contains every state with which it is compatible, then,
we shall check that every possible state in S♦ is part of w(s). Consider an arbitrary
t ′ such stat t ′ ∪ w(s) ∈ S♦. Then, by construction of S♦, t ′ ⊆ w(s). This shows that
w(s) contains all its compatible states. Now, suppose t is possible, i.e. t ∈ w(s)↓, then
again t ⊆ w(s) by construction, which completes the proof.

Secondly, we shall check that the function f is indeed an epistemic function. Since
it is defined only on the state s, it vacuously satisfies the Compatibility Condition 3.1.
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Moreover, take an arbitrary t ∈ S♦, it suffices to show that t is compatible with s.
Since t ∈ S♦, then t ⊆ w(s). Since also s ⊂ w(s), then, t ∪ s ⊆ w(s), and so t ∪ s
is in S♦. This shows that every possible state is compatible with a state s such that
s ∈ dom( f ), thus satisfying the definability Condition 3.2. Lastly it is easy to check
that s ∈ f (s) (reflexivity). ��
Definition 41 Asyntactic factive epistemicmodel for δ isMδ

F = (S, S♦,	, |.|+, |.|−)

where:

• (S, S♦,	, f ) is a syntactic factive epistemic space.
• |p|+ = {{p}}, |p|− = {{¬p}}, for all p ∈ L.

Lemma 36 Mδ
F = (S, S♦,	, |.|+, |.|−) is a W-model.

Proof It suffices to show that the evaluation functions satisfy the conditions of exclu-
sivity and exhaustivity and closure.

• Exclusivity. Consider arbitrary t ∈ |p|+ and t ′ ∈ |p|−, which amounts to saying
that t = {p} and t ′ = {¬p}. It suffices to show that t ∪ t ′ /∈ S♦. If it was
{p,¬p} ⊆ w(s), which is contrary to the fact that w(s) is possible.

• Exhaustivity. Since w(s) is the maximal element in S♦ it is also the only possible
world of the model. Hence, it suffices to check that for all p ∈ L, either there is a
t ⊆ w(s) such that t ∈ |p|+ or there is a t ′ ⊆ w(s) such that t ′ ∈ |p|−. Suppose
this is not the case, by contradiction. Then, there is a p such that, for all t ⊆ w(s),
t /∈ |p|+ and t /∈ |p|−, which means that t 
= {p} and t 
= {¬p}. However, since p
is a literal there must be a number i ∈ N, such that p = λi and ¬p = λ̄i . Hence,
there is a si ⊆ w(s), such that either λi ∈ si+1 or λ̄i ∈ si+1. In the former case,
{λi } ⊆ si+1 ⊆ w(s), in the latter case {λ̄i } ⊆ si+1 ⊆ w(s). In both cases, we
contradict the assumption.

• Closure is trivially true.

��
Lemma 37 Every consistent epistemic formulas δ is satisfiable with respect to the
class of factive epistemic models.

Proof Consider a factive epistemic syntactic modelMδ
F as in Definition 41. It suffices

to check that s is a possible state, but this follows directly from Lemma 33. Thus, there
is a possible world, namely w(s), such that s ⊆ w(s). The proof, then, is analogous
to the one of Theorem 27, hence we can conclude that Mδ

F , w(s) |� KM (φ). ��
As in the previous proof, we need now to make sure that every formula α ∈ Le

is satisfiable with respect to the class of epistemic factive models, and not only the
K-formulas. Since our syntactic factive model consist of only one possible world, it is
less trivial then the previous case to show that there is a possible state for each selection
of literals compatible with each K-formula. In this case we need to build a different
possible world, and thus a different epistemic state space, for each α we consider.
Indeed, recall that we can say w.l.o.g. that each α is of the form of

∨
(� ∧ KM (φ)),
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where � is a certain description (of propositional literals) and KM (φ) is an arbitrary
maximal normal form.

Now, in the construction of the syntactic factive model we need to chose the one
which includes s′ = Lit(�) as a subset. This is a legit choice as long as s′ is compatible
with our initial s0, namely {λ, λ̄} � s ∪ s′ for all λ ∈ Lit . Recall that s0 = Lit(φ∗),
where φ∗ is one of the disjuncts in φ which is consistent. Note that we can assume
for simplicity, without loss of generality, that each φ, contains only one consistent
disjunct. In fact, if there were many (and they excluded each other), we would just
need to construct different possible words, each starting from the state corresponding
to the set of literals of a different consistent φi in φ.

Lemma 38 For all consistent disjunctive normal forms α ∈ Le, there is one of its
disjuncts αi which is consistent and such that, for all λ ∈ Lit , {λ, λ̄} � Lit(�) ∪
Lit(φ∗).

Proof That αi exists follows by classical logic and it implies that � is consistent, and
so is KM (φ). As we showed in Lemma 33, since KM (φ) is a consistent maximal
K-form, then there is at least a disjunct φ∗ in φ such that {λ, λ̄} � Lit(φ∗), for any
λ ∈ Lit . Hence, it suffices to check that it is not the case that there is a λ ∈ Lit(�)

and λ̄ ∈ Lit(φ∗). Suppose by contradiction that this was the case. Then, by E14 and
classical logic, φ∗ ∧ � �EL+ λ ∧ λ̄. Moreover, since we assume that φ∗ is the only
consistent disjunct in φ, by K7 we get KM (φ) �EL+ φ∗. Hence,

KM (φ) ∧ � �EL+ λ ∧ λ̄ �EL+ ⊥,

contradicting our assumption that αi was consistent. Then we can conclude that for
all λ ∈ Lit , {λ, λ̄} � Lit(�) ∪ Lit(φ∗). ��

This lemma shows that, for each formula α there is in fact a selection of literals,
i.e. a state of literals s′, which is compatible with s0 = Lit(φ∗), so that we can build a
possible world up from it and including s′ in a consistent way. The resulting possible
world will make true � and KM (φ), proving immediately the following lemma:

Lemma 39 Every consistent formula α ∈ Le is satisfiable with respect to the class of
factive epistemic models.

Proof The proof is analogous to the one of Lemma 28, given the adequate choice of
syntactic factive model, as discussed above. ��
Theorem 40 (Completeness) The system EL is complete: for any factive epistemic
model MF and for any φ ∈ Le, ifMF |� φ, then �EL+ φ.
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