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Abstract: Rapeseed meal (RSM) is a by-product of rapeseed oil extraction and is a rich source of
bioactive compounds, including proteins and antioxidants. This study compared two methods for
extracting antioxidants from RSM: conventional ethanol Soxhlet extraction and supercritical CO2

extraction. These procedures were applied to both native RSM and RSM after protein removal
to evaluate their bio-compound composition and potential applications. HPLC-DAD, NMR, and
GC/MS analyses revealed a rich polyphenolic profile in the extracts, including the presence of sinapic
acid. The concentration of sinapic acid varied depending on the extraction method used. The anti-
radical activity of the extracts was also analysed using the DPPH assay, which confirmed the potential
of RSM as a source of antioxidants for use in cosmetics, food, and pharmaceutical formulations.

Keywords: rapeseed meal; sinapic acid; supercritical fluid extraction; polyphenols; green methods

1. Introduction

In 2020, rapeseed was the second most cultivated oilseed crop in the world, accounting
for 68 million tons, with France, Germany, and Poland being the main producing coun-
tries [1]. As a result, rapeseed meal (RSM), obtained after oil extraction, is also produced in
large quantities worldwide (40 million tonnes/year) and its production reached 12.5 mil-
lion tons in the EU in 2020. In particular, in Europe, RSM is an important feed for the
production of biodiesel, so the transformation of biomass resulting from its processing into
materials and energy with high added value has become a powerful tool to increase the
competitiveness and sustainability of biofuels [2].

RSM is considered a rich protein source, with a global output of 73 million tons in
2017, second best only to soybean products [3]. As a suitable protein source, it represents a
potential energy source in animal feed. Moreover, approximately 35% of RSM dry matter
is composed of carbohydrates, half of which are water-soluble carbohydrates, such as
arabinan, galactomannan, homogalacturonan, rhamnogalacturonan I, type II arabinogalac-
tan, glucuronoxylan, and cellulose. RSM also presents a rich phytocomplex characterised
by interesting minor bio-components such as polyphenols and tocopherols [4,5] with
antioxidant activity.

Indeed, rapeseed contains high levels of phenolic compounds, including phenolic
acids and condensed tannins. These compounds are more abundant in rapeseed products
than in products made from other oilseeds [4]. Phenolic compounds such as free phenolic
acids, sinapines, and condensed tannins can contribute to the bitter taste and astringency of
rapeseed products. They can also form complexes with proteins, reducing the nutritional
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value of the products. To extract these phenolic compounds, various extraction procedures
have been studied. These secondary metabolites and plant phenolic compounds are stored
in the outer layers of oilseeds and can be difficult to extract due to their association with
lipoprotein bilayers and the cell wall [5]. Among the most representative polyphenolic
compounds found in rapeseed are vanillic, ferulic, p-coumaric, chlorogenic, caffeic, and
sinapic acid [6]. In particular, sinapic acid and its derivatives (i.g., sinapin) are the main
phenolic acids present in RSM (about 70%). Therefore, whereas rapeseed oil is mainly
consumed in the human diet, rapeseed meal is a co-product commonly used as a protein
source in animal diets. Since the application of RSM in nutrition is limited due to the
presence of anti-nutritional factors and toxic substances, [2–5] many technologies have
been developed to improve nutrient digestibility aiming at more efficient pig growth [6,7].

As a raw material, RSM presents a protein content between 35% and 40%, which
mainly constitutes arginine, histidine, leucine, lysine, threonine, and valine [7]. The high
content of essential amino acids and, particularly, lysine could be the best parameter that
indicates the protein quality in RSM [8]. Additionally, as RSM represents the by-product of
rapeseed oil extracted via different processing techniques, it can be characterised by a very
different residue of crude fat, ranging between 2 and 15% in content. This content, in fact,
depends on the type of rapeseed, the impurity content, the processing technology, and other
factors. More specifically, significant qualitative differences in fat content were observed.
After storage, the content of butyric, caproic, caprylic, and palmitoleic acids increased,
while the concentration of lauric, stearic, and oleic acids decreased. The proportion of
saturated fatty acids in total fatty acids increased (19.7% vs. 14.3%) and that of unsaturated
fatty acids declined (80.3% vs. 85.7%) [9]. Moreover, RSM is a relatively rich source of
minerals, including calcium, phosphorus, potassium, iron, zinc, and selenium [8,9].

Although RSM is mainly exploited for its amino acid content as a valuable protein
source, it is also a rich source of phenolic compounds with nutritional bioavailability and
fibres with sensory and functional properties. These molecules deserve to be valorised for
their high antioxidant, antimicrobial and health-promoting activities [10]. From this point
of view, RSM, could be recycled as a source of nutrients and bioactive molecules to use in
the development of nutraceuticals, cosmetics, and pharmaceuticals, as well as in food and
feed sectors.

The recovery of phenolic compounds from rapeseed can be strongly influenced by
processing conditions such as an elevated temperature and pressure. Indeed, these pa-
rameters can affect the solubility and stability of the phenolic compounds, as well as their
interactions with other components in rapeseed. As a result, it is important to carefully
control the processing conditions in order to optimise the extraction of phenolic compounds
from rapeseed [11].

The aim of the present work was to study rapeseed meal composition and valorise
the bioactive molecule composition through innovative and “green” extraction procedures
such as supercritical CO2 extraction [12–15]. Great attention was paid to the better recovery
of specific polyphenolic compounds, the presence of which was highlighted by means of
NMR, GC/MS, and HPLC-DAD analyses. These analytical techniques, widely used in
the analysis of phenolic compounds in foods, nutraceuticals and medicinal plants, can
provide detailed information on the composition of extracts and are complementary to the
identification of specific classes of compounds [12,13].

2. Materials and Methods
2.1. Chemicals

Ethanol and other HPLC-grade solvents, and standard compounds were purchased
from Merck Science Life (Milan, Italy). Deuterated solvents were purchased from Eurisotop
(Saint-Aubin, France). NaOH pellets and a 37% HCl solution were provided by Carlo Erba
reagents (Cornaredo, Italy). The CO2 gas tank was purchased from Sapio (Monza, Italy).
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2.2. Plant Materials

Rapeseed meal, obtained from a biorefinery plant (ENVIRAL a.s., Leopoldov, Slovak
Republic), was homogenised with a mixer (Bimby® Vormek TM6, Germany, Italy) before
use (R1).

2.3. Protein Removal

Protein removal has been performed in accordance with a slightly modified procedure
in the literature [12].

About 10 g of ground rapeseed meal (R1) was suspended in NaOH 2 N (100 mL),
and was left to be stirred for 16 h at room temperature (25 ◦C). The resulting suspension
was centrifuged (2000× g, 10′), while the supernatant’s aqueous layer and the protein-rich
precipitate (R2) were collected and stored at 4 ◦C. The aqueous layer was acidified dropwise
using 2 N HCl at 5 ◦C to precipitate the proteins that were removed for centrifugation. The
aqueous layer was then neutralised before to be lyophilised (R3) and stored at 4 ◦C. The
proposed workflow is outlined in Figure 1.
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Figure 1. Workflow.

2.4. Ethanol Extraction

About 5 g of R1, R2, and R3 was extracted with 50 mL of ethanol, with a Soxhlet
apparatus for 2 h. The resultant ethanolic solutions were dried over a vacuum at 40 ◦C and
stored at 4 ◦C until subsequent analysis (R1a, R2a, and R3a).

2.5. SFE-CO2 Extraction

About 5 g of R1, R2, and R3 samples was subjected to CO2 supercritical fluid extrac-
tion (SFE-CO2). SFE-CO2 extraction was performed using a supercritical CO2 apparatus
provided by Jasco Europe (Cremella, Italy). The system consists of a pump (scCO2 Jasco-
PU-4347), a controlled temperature extraction oven with a stainless steel filtering set (Jasco
CO-4065), and a back-pressure regulator (Jasco CO2-BP-4390). Extraction was thus per-
formed using ethanol as a co-solvent (CO2/EtOH 90/10 v/v), at a flow rate of 5 mL/min,
for 2 h at 40 ◦C and at 10 MPa. The resultant ethanolic solutions were dried under a vacuum
at 40 ◦C and stored at 4 ◦C until subsequent analyses (R1b, R2b, and R3b).

2.6. Transesterification Step and GC/MS Analysis

Samples R1a, R1b and R2a were subjected to a transesterification procedure in accor-
dance with a procedure previously reported in the literature [13]. In brief, about 100.0 mg
of the samples was dissolved in 0.2 mL of MeOH. Then, MeONa was added (24.1 mg,
0.9 mmol) and the mixture was stirred for 3 h at room temperature. After this time, the
crude compound was diluted with AcOEt (25 mL) and washed with water (3× 10 mL). The
combined organic layers were dried over Na2SO4, filtered, concentrated under a vacuum
and then were subjected to GC/MS analyses. GC/MS analyses were performed with
QP-2010-Plus Gas Chromatograph Mass Spectrometer (Shimadzu Italia S. r. l., Milan, Italy)



Foods 2023, 12, 3286 4 of 16

using a “silica fusa” Rix®-5ms column (Restel®) (30 m, 0.25 mm ID, 0.25 µm) (Restel S.r.l.,
Cernusco Sul Naviglio, Milan, Italy), with a flow of 1.0 mL/min. The temperature varied
from 100 ◦C to 250 ◦C in 10′.

2.7. 1H NMR Analysis

Samples (in amounts of about 10–15 mg) were dissolved in DMSO-d6 (0.7 mL), CDCl3
(0.7 mL) or MeOD (0.7 mL) and poured into an NMR analysis tube. 1H-NMR (400.13 MHz)
and 13C-NMR (100.6 MHz) analyses were performed using Bruker Avance 400 (Milan,
Italy), equipped with a Nanobay console and Cryoprobe Prodigy probe.

2.8. HPLC Analysis

The extracted samples were weighed and dissolved in HPLC-grade methanol. The
obtained solutions (5 mg/mL) were filtered with a Millex® LG filter (Low Protein Binding
Hydrophilic PTFE 0.20 µM Membrane) (Merck Science Life, S.r.l., Milan, Italy) and then
injected into an HPLC-DAD instrument purchased from Perkin Elmer (Milan, Italy). The
chromatographic analyses were carried out at 280 nm (for the identification of hydroxycin-
namic acids) and 360 nm (for the identification of flavonoids), using a Luna RP-18 3 µ. The
mobile phase consisted of acetonitrile (A) and a formic acid solution at a concentration
of 5% in water (B). The binary gradient used was as follows: from 0% A—100% B to 60%
A–40% B in 45 min. The flow was 0.8 mL/min. The identification and the quantification of
the molecules of interest such as gallic acid (y = 15.51x + 37.06; R2 = 0.9987, in the range
between 3 and 200 µg/mL, at a LOD of 0.09 µg/g and LOQ of 0.3 µg/g of the extract in
dry weight), chlorogenic acid (y = 12.02x − 3.95; R2 = 0.9991, in the range between 8 and
160 µg/mL, at a LOD of 0.07 µg/g and LOQ of 0.2 µg/g of the extract in dry weight), caffeic
acid (y = 35.23x − 28.86; R2 = 0.9989, in the range between 4 and 160 µg/mL, at a LOD of
0.05 µg/g and LOQ of 0.2 µg/g of the extract in dry weight), sinapic acid (y = 11.37x + 9.92;
R2 = 0.9987, in the range between 2 and 100 µg/mL, at a LOD of 0.9 µg/g and LOQ of
3 µg/g of the extract in dry weight) and rutin (y = 13.60x + 33.11; R2 = 0.9994, in the range
between 2 and 200 µg/mL, at a LOD of 0.06 µg/g and LOQ of 0.2 µg/g of the extract in dry
weight) were carried out using external standard calibration curves. The detailed protocol
related to HPLC-DAD analysis is described in the Supplementary Materials section (Table
S1 and Figure S1).

2.9. DPPH Assay

The assay was performed following the literature [14]. In brief, 0.5 mL of isopropanol
was added to 2.5 mL of a 168 µM solution of DPPH in isopropanol. Solutions were stored in
darkness and periodically checked with a UV/VIS spectrophotometer, Lambda25 (Perkin
Elmer, Waltham, MA, USA), at 515 nm to monitor radical stability. Then, to 2.5 mL of
the same DPPH solution, 0.5 mL of an extract solution (0.05 mg/mL) in isopropanol was
added. The resulting absorbance was monitored at 515 nm. The antioxidant activity of the
extracts was then calculated, as gallic acid equivalents, using the calibration curve obtained
in accordance with the literature (y = 0.6473e−378.5x; R2 = 0.9994) [16].

2.10. Statistical Analysis

Each assay was replicated at least three times. Data are expressed as mean ± sd and
statistical significance was determined using the XLStat software (version XLSTAT 2021,
New York, NY, USA).

3. Results and Discussion
3.1. Extraction Yields

As reported, RSM is currently used as a source of proteins in animal feed. It has
also been studied as a source of amino acids for diverse applications [2,7,9] with a lack of
studies focusing on its antioxidant components. As part of our interest in the valorisation
of industrial byproducts [15,17] and in to the pursuit of fully reusing such a precious waste,
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we decided to focus on its antioxidant content. To start our investigation, we evaluated
native RSM (R1) as a source of sinapic acid, and then we focused on the residues after
protein removal (R2 and R3). pH control in the process of alkaline extraction and acid
precipitation was an effective strategy with which to isolate proteins from industrial defat-
ted meal. Alkaline extraction at pH 9.0 and subsequent acid precipitation at pH 4.5 were
found to be the best process parameters with which to obtain structurally intact, safe and
bioavailable rapeseed protein with a maximum yield and lower amount of anti-nutritional
compounds [18]. This procedure allowed the purification of the crude compound from the
protein, making the antioxidant compounds available to subsequent extraction steps. Con-
ventional extraction procedures with organic solvents have been applied to the extraction of
antioxidant compounds from canola. In particular, different Soxhlet extraction procedures
using 80% (v/v) methanol in a ratio of 1:10 to 1:100 (w/v), at 50–80 ◦C for 1–6 h, ethyl
acetate and/or n-hexane solvents at 50 ◦C for 4–6 h are reported [4,19,20]. These methods
could have undesirable effects on the environment and on food components; moreover,
the use of high temperatures and long extraction times also cause energy efficiency issues.
Additionally, in a study by Nandasiri et al., the effect of temperature (140, 160, and 180 ◦C)
and pressure (1.500 psi) on the extraction and yield of phenolic compounds from canola
meal as well as the solvent type (ethanol and methanol) and concentration (30%, 40%,
60%, and 70% v/v) were evaluated. Hence, to study the relative differences between R1,
R2, and R3, extraction with the conventional ethanolic solvent and that with supercritical
CO2were optimised and compared, Refs. [19,20] with the main purpose being to develop a
zero-impact process for the valorisation of all the feedstock, reducing the production of
waste as much as possible. The gravimetric data obtained via the two different applied
methodologies are reported in Table 1.

Table 1. Gravimetric data a.

Residue Yield (%)

Ethanol
extraction

R1a 11.6
R2a 9.0
R3a 35

SFE-
CO2

R1b 0.65
R2b 1.5
R3b 3.6

a Extractions were performed for 5.0 g of each residue.

In particular, the extraction of RSM at 60–80 ◦C with alcoholic solvents (especially
methanol) in a ratio of 1:100 is reported to provide a recovery of 20–80% of total phenolic
compounds, which is particularly composed of sinapic acid [19]. On the other hand,
regarding extraction in supercritical CO2, no promising extraction methods are reported
in the literature. However, interesting results have been reported for supercritical water
extraction, achieving a recovery of about 30% of phenolic compounds [20]. Based on
this evidence, initially, in our work, an ethanolic extraction procedure was optimised,
obtaining variable yields between 9% (R2) and 35% (R3), which not only correspond to the
polyphenolic content (representing about the 5% of the extracted material) but correlated
with the higher extraction of sugars and fatty acids contained in the analysed matrix (as
further shown via NMR analysis). For this reason, to achieve a better recovery of the
polyphenolic component, CO2 extraction was optimised, using ethanol as a cosolvent. In
fact, despite the lower extraction yields (0.7–4%), a recovery of polyphenols of between
13 and 45% was reached (as further shown via HPLC-DAD and NMR analysis),making it
possible for them to be better used as nutraceuticals, cosmetics, or dietary supplements.
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3.2. 1H-NMR Analysis and GC/MS

NMR analyses were performed on the extracts obtained from R1, R2, and R3 through
the two main methodologies previously described. The presence of antioxidant compounds
was observed in all the extracts except for R1b.

Particularly, the 1H-NMR spectrum of the residue obtained from the ground rapeseed
meal through ethanol Soxhlet extraction (R1a) showed the characteristic signals of sinapic
acid (1H NMR (400.13 MHz) (DMSO-d6), with δ = selected signals, these being 7.62 (d, 1H,
J = 15.9 Hz, Ar-CH=CH), 7.04 (s, 2H, Ar-H), 6.55 (d, 1H, J = 15.9 Hz, Ar-CH=CH), and 3.81
(s, 6H, OCH3) [17], which in this case, is very likely in the form of a glycoside (Figure 2A). In
addition, traces of unsaturated fatty acids were also evident. These results were confirmed
via the GC/MS analysis carried out for R1a, after a transesterification step (Supplementary
Materials, Figures S2–S6). In particular, sample R1a presented fatty acid methyl esters along
with sinapic acid in the form of methyl-3-(3,4,5-tri methoxyphenyl)acrylate (Figure 2B).
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Conversely, the same analysis carried out for the residue obtained via CO2/ethanol 9:1
extraction (R1b) revealed only the presence of triglycerides and free fatty acids (Figure 3,
panel A).
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Analysing R1b, after transesterification, via GC/MS, the presence of fatty acid methyl
esters was confirmed with a prevalence of C18:1 isomers (Figure 3, panel B).

Probably, the poor extraction of sinapic acid observed with supercritical CO2 extraction
(SFE-CO2) was due to the lack of an alkaline treatment which, in the subsequent cases,
made the active compounds easier to extract under the milder extractive conditions typical
of SFE-CO2.

The 1H NMR spectrum of R2a showed the main presence of free fatty acids and traces
of sinapic acid (Figure 4, panel A).
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Even in this case, the data were confirmed via GC/MS analyses carried out after a
transesterification step (Figures S7–S11). The data indicated the presence of a high amount
of C18:1 fatty acid isomers (Figure 4, panel B), in accordance with the literature [16,19].

Notably, in the 1H-NMR spectrum of residue R2b, the presence of sinapic acid in
larger amounts than that in the previously analysed residue (R2a) was detected even if the
mixture appeared to be mainly composed of fatty acids (Figure 5).
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Switching to the 1H NMR analysis of R3a and b, the NMR analysis revealed great
similarity in terms of the composition between the two residues. Particularly, both spec-
tra showed the presence aromatic protons of between 7.33 and 7.59 ppm, which, ac-
cording to the literature, may indicate the presence of benzoic acid derivatives [19,21]
(Figures 6 and 7).
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Figure 7. 1H NMR analysis of residue R3b in DMSO d6.

In addition, in R3b the typical signals of sinapic acid are evident (Figure 7, showing
expansion between 9 and 6 ppm), confirming that, even in this case, extraction using
supercritical CO2 allows the obtention of residues most enriched in this component.

Results highlighted from the NMR analysis are in line with the data obtained by means
of HPLC-DAD and DPPH analyses.

3.3. HPLC-DAD Analysis

The different extracts (R1, R2, and R3) were subjected to HPLC-DAD analysis, for
the identification of benzoic and hydroxycinnamic acids, and of flavonols. The example
chromatograms are reported in Figures 8–11. In Table 2, the data related to the quantification
of bioactive compounds are reported. As reported in the literature, sinapine, the most
abundant molecule in RSM, can be hydrolysed into sinapic acid and other derivatives
which represent bioactive compounds, improving the health potential correlated to a food’s
nutritional quality, such as the content of vanillic, caffeic, and coumaric acids, and flavonols
such as quercetin, rutin, and kaempferol as esters and glucosides [20,22]. As shown in
Table 2, sinapic acid was the main extracted bioactive compound. In particular, it was
present in an amount of about 20 µg/g of the dried extract in R2b, whereas it more than
halved in the other samples. Sample R2b appeared the richest extract in terms of bioactive
compounds compared with R1 (a and b) and R3 (a and b). In fact, in addition to sinapic
acid, other molecules were identified such as benzoic acid, identified only in the R2b and
R3 (a and b) samples (expressed as gallic acid equivalents), chlorogenic acid, caffeic acid,
identified only in R2b, and different flavonols which were expressed as rutin equivalents.
These data confirm that the phytocomplex can be better extracted if extraction is performed
after protein precipitation. Large differences between the ethanolic and CO2 extract were
not observed, except in R1b. In fact, R1b did not show a polyphenolic profile, as confirmed
via NMR analyses, which mainly highlighted the presence of free fatty acids. Probably,
CO2 extraction in the ground rapeseed meal does not perform well in terms of extracting
polyphenolic compounds. No particular differences are noted between samples R3a and
R3b. Considering the CO2 extraction yields (1–4% vs. 10–35%), there was approximately
an eight-fold concentration of the latter.
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Table 2. HPLC-DAD data expressed in µg/g dried extract.

R1a R1b R2a R2b R3a R3b

Benzoic acid $ - - - 0.26 ± 0.13 0.52 ± 0.12 0.39 ± 0.16
Chlorogenic acid - - - 0.36 ± 0.19 - -

Caffeic acid - - - 0.16 ± 0.07 - -
Sinapic acid 6.59 ± 0.21 - 4.63 ± 0.16 19.38 ± 0.97 4.82 ± 0.21 6.15 ± 0.15
Flavonols * 0.67 ± 0.34 - - 1.20 ± 0.12 - -

$ expressed as gallic acid equivalents; * expressed as rutin equivalents-not detected.

The data obtained are in line with what has been reported in the literature, where
sinapic acid values between 10 and 20 mg/kg are reported and a total phenolics content
of about 20–30 mg/kg dried extract are found [23–25]. These data are confirmed via
NMR analysis.

3.4. DPPH Analysis

The DPPH analysis of the obtained CO2 and ethanolic extracts (R1a, R1b, R2a, R2b,
R3a and R3b) presented a wide range of values between 0.8 and 6 mg/g of gallic acid
equivalents (Table 3), confirming the presence of different antioxidant capacities among
the samples, according to their different polyphenolic composition, with R2b representing
the sample with the highest anti-radical activity. Polyphenolic compounds not only act as
antioxidant compounds but also prevent lipid peroxidation, influencing the antioxidant
activity of the extracts [26]. In fact, in agreement with the NMR and HPLC analyses, the
sample showed a high sinapic acid content, as well as a high content of several polyphenolic
compounds (see Section 3.3).

Table 3. DPPH data related to analysed samples.

mg/g of Gallic Acid Equivalents of Dry Extract

R1a 2.60 ± 0.27
R1b 0.76 ± 0.13
R2a 3.24 ± 0.07
R2b 6.35 ± 0.58
R3a 3.49 ± 0.03
R3b 5.42 ± 0.14

In general, the extracts obtained from CO2 extraction presented higher antioxidant ac-
tivity, except for R1b, which showed the lowest anti-radical activity (see Sections 3.2 and 3.3).
The results obtained also overlap with what has been reported in other works performed
on different food matrices and analysed in our laboratories, such as kiwi, Sulmona red
garlic, sour cherry, etc., functional foods considered to have high health potential [10,22–24]
(Figure 12).
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Figure 12. Radical scavenging activities of different food matrices compared with an average value
of RSM.

4. Conclusions

This study highlights the potential of rapeseed meal as a candidate feedstock for
further valorisation through subsequent biorefining processes. An environmentally sus-
tainable and innovative CO2 extraction procedure has been optimised and validated for
the extraction of bioactive components, proving to be the best procedure in terms of yields
and selectivity. The obtained data showed a rich polyphenolic profile, such as that of
phenolic acids and flavanols. The R2b sample appears to be the most promising in terms
of antioxidant content and antiradical activity. The presence of polyphenols, and in par-
ticular of sinapic acid, indicates high potential for applications in the nutraceutical and
cosmetic sectors and make the development of specific extraction procedures for high-
value-added compounds promising tools in the development of a zero-impact circular
economy approach.
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consistent with the methyl esters of C18:1 (M+, m/z 296), R1a residue; Figure S5: Mass spectrum for
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