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Simple Summary: Thymic epithelial tumours are rare and insidious malignancies. Histologically,
they can be divided into different WHO subtypes and relapse risk classes. Pre-treatment biopsy is not
always feasible or accurate in distinguishing WHO classes. 18FDG PET/CT scan has been reported to
play a remarkable role in the prediction of histology in these tumours (the so-called “non-invasive
biopsy”). The present narrative review would like to summarise current evidence on this topic and
discuss potential applications.

Abstract: Background: The usefulness of 18FDG PET/CT scan in the evaluation of thymic epithelial
tumours (TETs) has been reported by several authors, but data are still limited and its application in
clinical practice is far from being defined. Methods: We performed a narrative review of pertinent
literature in order to clarify the role of 18FDG PET/CT in the prediction of TET histology and to
discuss clinical implications and future perspectives. Results: There is only little evidence that 18FDG
PET/CT scan may distinguish thymic hyperplasia from thymic epithelial tumours. On the other
hand, it seems to discriminate well thymomas from carcinomas and, even more, to predict the grade
of malignancy (WHO classes). To this end, SUVmax and other PET variables (i.e., the ratio between
SUVmax and tumour dimensions) have been adopted, with good results. Finally, however promising,
the future of PET/CT and theranostics in TETs is far from being defined; more robust analysis of
imaging texture on thymic neoplasms, as well as new exploratory studies with “stromal PET tracers,”
are ongoing. Conclusions: PET may play a role in predicting histology in TETs and help physicians
in the management of these insidious malignancies.

Keywords: 18F-FDG PET/CT; thymoma; thymic epithelial tumour; radiometabolic assessment;
WHO; histology

1. Introduction

Thymic epithelial tumours (TETs) are rare tumours occurring in the anterior medi-
astinum, with an estimated incidence of about 1 case per 4 million [1].

The World Health Organization (WHO) histological classification, first issued in 1999
and revised in 2004, is based on morphology and atypia and divides TETs into five types of
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thymomas (type A, AB, B1, B2 and B3) and thymic carcinomas [2,3]. Many authors have
reported that this histological classification represents an independent prognostic factor
in patients with TETs [4,5]. In particular, there is a strong body of evidence suggesting
that carcinoma has a worse prognosis than thymoma [6]. Taking into account histology
and survival outcomes, it is possible to identify a “low-risk class” (including types A,
AB and B1 thymomas) and a “high-risk class” (including B2, B3 thymomas and carcino-
mas) [7]. While this classification is not yet widely accepted, a recent meta-analysis by
Marchevsky et al. [8] suggested dividing thymomas into different prognostic subgroups,
leaving thymic carcinomas (type C) in a separate class with poorer prognosis.

Surgery represents the mainstay of treatment in patients with TETs and is usually
warranted on the sole basis of radiological imaging, without the need for pre-operative
biopsy [4]. However, preoperative identification of the histologic subtype could influence
the therapeutic strategy; for instance, it could suggest neoadjuvant treatment in patients
with locally advanced high-risk TETs [8,9] or rule out minimally invasive surgery (robotic
or VATS) in patients with thymic carcinoma [10].

Computed tomography (CT) and magnetic resonance imaging (MRI) are currently
used to diagnose mediastinal lesions [11,12], but their ability to differentiate histological
subtypes of TETs is limited [13,14]. Over the last decade, interest has emerged in the use
of fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and
PET/CT for the evaluation of TETs [15,16]. PET/CT may indeed provide information using
not only a qualitative (visual) method but also a semi-quantitative method, such as the
calculation of the maximum standardised uptake value (SUVmax). More recently, some
authors have even explored the efficacy of 18F-FDG-PET-based radiomic and deep-learning
features using a machine-learning approach to predict TET histology [17,18].

In this narrative review, the relationship between radiometabolic findings and histo-
logical features in TETs is analysed and discussed. Moreover, an overview is provided of
the current role and future perspectives of PET/CT in TETs thanks to the availability of
new PET tracers and theranostic approaches.

Methodology

This narrative review is based on a selective literature search carried out in PubMed
and Cochrane Library in May 2022. The search string was (“Tomography, Emission-
Computed”[Mesh]) AND “Thymus Neoplasms”[Mesh] AND ((humans[Filter]) AND (en-
glish[Filter])) + (pet ct AND (thymoma OR thymic carcinoma OR thymic epithelial tumours
OR thymic hyperplasia) AND ((humans[Filter]) AND (2021/11/1:2022/5/1[pdat]) AND
(english[Filter]))) NOT ((“Tomography, Emission-Computed”[Mesh]) AND “Thymus Neo-
plasms”[Mesh] AND ((humans[Filter]) AND (english[Filter]))) AND ((humans[Filter])
AND (2021/11/1:2022/5/1[pdat]) AND (english[Filter])) AND ((humans[Filter]) AND
(english[Filter])). Overall, our search string identified 193 articles. Two authors (F.L. and
P.M.) independently reviewed the abstracts, while a third author (M.Ch.) was consulted
in case of discrepancies. Articles were divided into two groups according to whether
PET/CT was used to (a) distinguish TETs from thymic hyperplasia or (b) differentiate
histology in TETs. Inclusion criteria were: original article, English language, clinical trials
(randomised, prospective or retrospective); while exclusion criteria were editorials, letters,
case reports, absence of peer review and number of patients included in the series (less
than 10 patients for articles on the ability of PET/CT in distinguishing TETs from thymic
hyperplasia and less than 20 patients for articles on the ability to differentiate histology in
TETs). One hundred and seventy-one articles were excluded after reviewing the abstracts,
and a further 5 were excluded following full examination. Finally, 17 articles were suitable
for our review: 5 investigated the ability of PET/CT to distinguish TETs from thymic
hyperplasia (Table 1) and 12 investigated the ability of PET/CT to differentiate histology
in TETs (Table 2). Selected articles were examined in full, processed and summarised
according to their relevance and adherence to the topic.
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Table 1. PET parameters and thymic pathological findings (hyperplasia vs. tumour) (TLR: tumour to
lung ratio).

Study Year Patients Thymic Pathology and Pet-Findings

Liu
[19] 1995 12 Thymic hyperplasia: TLR 3.4/3.5

Thymoma: TLR 5.7 ±1.7

El-Bawab
[20] 2007 25 Thymic hyperplasia: SUVmax ranging from 0.7 to 2.5 (mean 1.89 ± 0.58)

Thymoma: SUVmax ranging from 3.1 to 6.1 (mean 4.75 ± 0.88)

Kumar
[21] 2009 23

Thymic hyperplasia: mean SUV max 1.1 (0.7–1.8)
Low-risk thymomas: mean SUV max 3 (1.7–3.9),
Thymic carcinoma: mean SUVmax 7 (4.3–9.2).

Watanabe
[22] 2019 70

Thymic hyperplasia: mean SUVmax 1.4 ± 0.7
Thymoma: mean SUVmax 3.7 ± 1.5

Thymic carcinoid: mean SUVmax 7.0 ± 1.5
Thymic cancer: mean SUVmax 11.4 ± 2.6

Travaini
[23] 2008 20

Thymic hyperplasia: SUVmax ranging from 1.7 to 5
Low-grade thymomas: SUVmax ranging from 2.3 to 15.5

High-grade thymomas and thymic carcinomas: SUVmax ranging from 5 to 9

Table 2. Relationship between PET/CT findings and TET histology.

Author Year Patients Male/Female Age Histology
(Number)

PET/CT
Parameters

Cut-off Value
AUC

Sung
[24] 2006 33 15/18 54.6

LR (8)
HR (9)
CA (16)

SUVmax

NR
4.0

5.6

10.5

Endo
[25] 2008 36 21/15 59.1

LR (15)
HR (10)
CA (11)

T/M SUV

NR
2.64

4.29

8.90

Fukumoto
[26] 2012 58 31/27 62

LR (23)
HR (21)
CA (14)

SUVmax

NR
3.6

4.1

7.2

Lococo
[16] 2013 47 25/22 60.9

Thymoma (40)
CA (7)

SUVmax NR

3.63
0.955

10.3

SUVmax/T NR

0.92
0.927

1.93

Bertolaccini
[27] 2014 23 14/9 52

LR (17)
HR (6)

T/M SUV NR

1.91 ± 0.45

3.73 ± 0.95

MTV NR
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Table 2. Cont.

Author Year Patients Male/Female Age Histology (Number) PET/CT
Parameters

Cut-off Value
AUC

5.51 ± 2.73

9.92 ± 2.23

TGV 383

99.12 ±
125.98

645.83 ±
159.87

Benveniste
[14] 2014 51 30/21 59.4

Thymoma (37)
CA (12) + Carcinoid (2)

SUVmax

NR

6.27

11.09

SUVpeak

5.53

9.38

SUVmean

3.85

6.72

TTV_SUV45%

176.31

153.71

TTV_SUV3.5

139.29

203.01

Park
[28] 2016 61 24/37 50.2

LR (22)
HR (32)
CA (7)

SUVmax 5.05

3.43

0.9164.42

8.23

SUVmax/T NR

0.65

0.8860.91

1.77

MTV NR

90.74

0.51280.82

90.63

TLG NR

229.36

0.521233.93

390.94
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Table 2. Cont.

Author Year Patients Male/Female Age Histology (Number) PET/CT
Parameters

Cut-off Value
AUC

Purandare
[29] 2016 52 37/15 49

LR (28)
HR (11)
CA (13)

SUVmax 6.5

4.2

0.966.0

15.2

Shinja
[30] 2017 56 32/24 NR

LR (27)
HR (14)
CA (15)

ˆDTP T/M

2.39
T/M (early)

2.20 ± 0.86

2.02 ± 0.77

3.57 ± 1.23

T/M
(delayed)

2.29 ± 0.98

2.962.15 ± 0.95

3.84 ± 1.55

Korst
[31] 2017 154 37/15 49

LR (74)
HR (44)
CA (23)

others (13)

SUVmax 5.55

NR 0.79

Tomita
[32] 2018 73 37/36 63

LR (41)
HR (25)
CA (7)

SUVmax NR

NR

SUVmax/T NR

NR

Zhao
[33] 2020 81 43/38 55.6

LR (24)
HR (29)
CA (28)

SUVmax 5.34

4.52

0.825.30

9.74

SUVmax/T NR

0.11

0.6910.13

0.17

Ito
[34] 2021 56 32/24 61.3

LR (26)
HR (18)
CA (12)

SUVmax 7.40

4.06
SE 0.84
SP 0.736.01

9.09

Han
[35] 2022 114 52/62 56.3

LR (52)
HR (33)
CA (29)

SUVmax 6.4

NR 0.94

MTV 81.3

NR 0.84

TLG 117.7

NR 0.86

LR = Low-Risk; HR = High-Risk; CA = Thymic Carcinoma; T/M SUV = Tumour/Mediastinum SUV
ratio; MTV = metabolic tumour volume; TGV = total glycolytic volume; DTP = Dual-Time Point scan; TLG = total
lesion glycolysis.
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2. 18F-FDG PET/CT for Predicting Histology in Thymic Epithelial Tumours
2.1. PET/CT to Distinguish Thymic Hyperplasia from Thymic Epithelial Tumours

Although current guidelines do not recommend pre-operative biopsy in cases of
suspected thymoma [36], a distinction between benign conditions (such as hyperplasia)
and TETs can alter the therapeutic strategy significantly. Metabolic parameters may prove
to be a useful adjunct in the investigation of lesions in the upper anterior mediastinum
(Figure 1).
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Figure 1. PET CT scan shows absence of uptake in a case of Thymic Hyperplasia ((a–c), with red
circle) [18] compared with mild focused uptake in an A-Thymoma ((d–f), yellow circle) [36].

The first report of 18F-FDG PET/CT use in TET/hyperplasia was by Liu et al. [19], who
evaluated the ratio between SUVmax in the tumour and in the lung (tumour-to-lung ratio
or TLR), reporting a significant difference between TETs (TLR: 3.4/3.5) and thymoma (TLR:
5.7 ± 1.7). Other small series analysed SUVmax alone, reporting lower metabolic values
in thymic hyperplasia and higher values in TETs. El-Bawab et al. [20] reported SUVmax
from 0.7 to 2.5 in hyperplasia compared to 3.1 to 6.1 in thymoma, while Kumar et al. [21]
reported an SUVmax of 0.7–1.8 in hyperplasia, 1.7–3.9 in low-risk thymomas and 4.3–9.2
in thymic carcinoma. Moreover, Watanabe and colleagues [22] reported a mean SUVmax
of 1.4 ± 0.7 in thymic hyperplasia, 3.7 ± 1.5 in thymoma and 11.4 ± 2.6 in thymic cancer.
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Again, a significant SUVmax difference was present only between hyperplasia and cancer.
Interestingly, in this large series of patients, no case of hyperplastic thymus showed a value
of SUVmax higher than 3.

Given the overlapping values, differentiating hyperplasia and low-grade thymomas
(A, AB histology) on the sole basis of SUVmax can be challenging. This prompted the study
of Travaini et al., who integrated metabolic (i.e., 18F-FDG PET/CT) and anatomical (i.e.,
CT) features [23]. Their study included thymic cysts and found that–despite overlapping
SUVmax values in hyperplasia (1.7–5) and low-risk thymomas (2.3–15.5), the integration
of anatomical features could help identify 100% of benign lesions. Based on these studies,
18F-FDG PET/CT could be an important tool in anterior mass determination and may help
differentiate hyperplasia from high-grade thymomas and thymic carcinomas, considering
that SUVmax in hyperplasia is rarely higher than 3. However, 18F-FDG PET/CT alone
cannot discriminate between hyperplasia and low-risk thymomas, to which end morpho-
logical evaluation is mandatory, as it could guide differential diagnosis. As a matter of
fact, hyperplasia and low-grade thymomas show a distinct CT appearance: V-shape or
triangular in hyperplasia compared to nodule/mass in the case of TETs [18]. A further
factor to take into account is the spatial distribution of the uptake: low and diffuse across
the thymus in hyperplasia, localised in foci or nodules in TETs [18,20].

2.2. PET/CT Parameters to Distinguish Histology in TETs

A simplified histological classification has been proposed to identify different classes of
risk in TETs [5]: types A, AB and B1 = “low-risk” thymic neoplasms; B2 and B3 = “high-risk”
thymic neoplasms; and thymic carcinoma. The scientific community has largely adopted
this simplification and a recent meta-analysis by Marchevsky et al. [6] has confirmed its
prognostic value. If 18F-FDG PET/CT were confirmed to be able to assess the grade of malig-
nancy in TETs, it could play an important role in the management of the disease (Figure 2).
A few studies have shown promising results (see Table 2); most have focused on SUVmax,
supporting the use of this metabolic marker in clinical routines [24,26,28,29,31–35,37]. SU-
Vmax has been reported to be consistently higher in carcinoma than in high- or low-risk
thymoma, with values between 7.2 and 15.2. In addition to the SUVmax value, the pattern
of 18F-FDG uptake can provide useful information, as it appears more homogeneous in
a higher proportion of thymic carcinomas than thymomas (both low- and high-risk) [24].
A few years ago, our group participated in the first multicentric study on the role of 18F-
FDG PET/CT as a predictor of WHO classification in a relatively large cohort of TETs
(n = 47) [16]. SUVmax was found to correlate with WHO malignancy grade (i.e., low vs.
high-risk vs. carcinoma), with a Spearman correlation of 0.56 (p < 0.0001). Furthermore,
we conducted a meta-analysis of 11 studies, which demonstrated a pooled weighted mean
difference (WMD) of SUVmax of 1.2 (95%CI: 0.4–2.0) between high-risk and low-risk thy-
moma, 4.8 (95%CI: 3.4–6.1) between carcinoma and low-risk thymoma and 3.5 (95%CI:
2.7–4.3) between carcinoma and high-risk thymoma [37]. Overall, SUVmax was able to
predict histologic subtypes with good accuracy, expressed by an area under the ROC curve
ranging from 0.82 to 0.96. Most studies included in the meta-analysis divided TETs into
low-risk, high-risk, and carcinoma, except for one that considered only thymoma and
carcinoma [14]. In a retrospective study of 51 patients, Benveniste et al. [14] observed
significantly higher SUVmax in carcinoma (n = 12) and carcinoid (n = 2) than in thymoma.
SUVpeak and SUVmean also significantly increased in carcinoma.
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Figure 2. PET CT scan showing the absence of mild uptake in a case of Type AB-Thymoma (a–c) [18]
compared with intense uptake in a Type B3-Thymoma (d–f) [36].

Readers might have noted that SUVmax values are relatively wide among the above-
mentioned studies. This could be related to different uptake times, patient obesity, blood
glucose levels, different PET/CT scanners or inherent differences among the studied co-
horts. In order to overcome these limitations, other metabolic parameters have been
proposed. The ratio of SUVmax to tumour size (SUVmax/T) reduces the bias related to
tumour dimensions and has been proven to correlate with histologic subtypes of TETs,
with an AUC between 0.69 and 0.93 [16,28,32,33]. Similarly, Endo et al. [25] calculated the
ratio between SUVpeaks of the tumour and mediastinum (T/M ratio) in 36 patients with
histologically proven TETs. Mean T/M ratio differed significantly in low-risk thymoma,
high-risk thymoma, and carcinoma (2.64 vs. 4.29 vs. 8.90, respectively, p = 0.01).

Volumetric PET/CT parameters, such as metabolic tumour volume (MTV) and total
lesion glycolysis (TLG), have been correlated with clinical outcomes in several malignancies.
However, their application in TETs showed contrasting results [27,28,35]: in a retrospective
monocentric study of 23 patients with pathologically proven TETs (17 low-risk, 6 high-
risk, no carcinoma), Bertolaccini and colleagues [27] found that T/M ratio, MTV, and
total glycolytic volume (TGV) were able to discriminate between low- and high-risk TETs.
Statistical correlation with the WHO classification was higher for TGV (rho = 0.897) than
for T/M ratio (rho = 0.873). A TGV cut-off value of 383 seemed to be able to separate
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low- and high-risk TETs, suggesting its use as a potential parameter in pre-treatment
stratification. Volumetric parameters showed higher values in carcinoma than in low- and
high-risk thymoma in a retrospective study by Han et al. on 114 patients with TETs [35].
However, Benveniste et al. [14] observed that the total tumour volume (taking into account
areas with SUV above 3.5) was larger in thymic carcinoma/carcinoid than in thymoma
(p = 0.02). The correlation was found only when the total volume was calculated, taking
into account areas with SUV above 3.5 (the use of volumes with SUV above 45% of SUVmax
failed to show any difference). On the other hand, Park et al. [28] failed to differentiate
thymomas and carcinoma on the basis of MTV and TLG. Recently, new approaches have
been proposed to predict TET histology by means of 18F-FDG PET/CT. Shinya et al. [30]
evaluated metabolic parameters through dual-time-point PET/CT acquisition (i.e., after
90 min and 2 h) in 56 TET patients, suggesting that delayed scanning could improve the
diagnostic capacity for high-risk TETs with an accuracy of 82.9% and an AUC of 0.825.
A pilot study performed by Ozkan and collaborators in 2022 [38] proposed a machine-
learning model and assessed its ability to classify low- and high-risk thymoma on PET/CT
images. SUVmax, SUVmean, SUVpeak, MTV and TLG of primary mediastinal lesions
were calculated in 27 TET patients. First-, second- and higher-order texture features were
also calculated. Among other variables (LDH level and presence of myasthenia gravis),
the SHAPE_Sphericity [only for 3D ROI (nz > 1)] was able to differentiate low- and high-
risk thymoma.

Despite encouraging results, the integration of these complex parameters into daily
clinical practice is far from becoming a reality due to uncertain reproducibility. Therefore,
SUVmax remains the most promising parameter for estimating histology in TET patients.

3. Future Perspectives
3.1. PET Advanced Analysis in Thymic Epithelial Tumours

Advanced imaging analysis, such as radiomics or artificial intelligence applications,
could improve the diagnostic and predictive power of PET/CT in thymic tumours and
could be used for the prediction of histology and grading.

In a recent paper, Nakajo et al. [17] examined whether a machine-learning approach
using 18F-FDG PET-based radiomic and deep-learning features could predict the patho-
logical risk subtypes of TETs. Accuracy was significantly higher in the logistic regression
model compared to the three SUV-related parameters (i.e., SUVmax, MTV and TLG) for
predicting thymic carcinomas, as well as in the random forest model compared to MTV
and TLG for predicting high-risk TETs.

The same group previously investigated SUV-related and heterogeneous texture pa-
rameters individually and in combination to differentiate between low- and high-risk TETs.
The diagnostic performance of individual SUV-related and texture parameters was rela-
tively low. However, combining these parameters could increase diagnostic performance
and differentiate between relatively large low- and high-risk TETs [39].

In 2016, Lee et al. found that PET/CT-determined textural heterogeneity indices had
the potential to discern between tumour grades, suggesting that these may be integrated
with SUVmax in differentiating TET subgroups [40].

Furthermore, larger prospective and validated studies are needed to determine the role
of 18F-FDG PET/CT radiomics and artificial intelligence applications in thymic tumours,
with particular regard to histology and grading prediction.

3.2. New “Stromal” Tracers and Other Future Perspectives

No further positron-emitter radiotracer other than 18F-FDG has been introduced in
the standard workup of patients with thymic neoplasms. However, some cases in the
literature described incidental thymic findings during PET/CTs with radiolabelled Choline,
11C-acetate and 68Ga-PSMA [41].

Quinoline-based PET tracers (which act as fibroblast activation protein [FAP] in-
hibitors) can detect areas of overexpressed cancer-associated fibroblasts [42]. In this regard,
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Isik et al. [42] published the case of a 72-year-old woman with metastatic thymic carcinoma
referred for salvage peptide receptor radionuclide therapy with 177Lu-DOTATATE after
completing all treatment options according to current clinical practice guidelines. The pa-
tient, however, was not eligible for 177Lu-DOTATATE peptide receptor radionuclide therapy
and underwent 68Ga-FAPI04 PET/CT to assess the potential application of FAP-targeted
therapy [39].

Further, larger studies are needed to determine the role of new PET tracers to evaluate
the thymic tumour microenvironment, such as radiolabelled FAPI as well as new chemokine
receptor ligands (e.g., CXCR4).

4. Conclusions
18F-FDG PET/CT scan can play a remarkable role in predicting histology in thymic

disorders. While there is no robust evidence regarding the ability to differentiate thymic
hyperplasia from TETs, it can distinguish carcinoma from thymoma and predict the grade of
malignancy (WHO classes) in TETs. In the near future, PET-derived volumetric parameters,
texture analysis and new “stromal PET tracers” could help physicians to better characterise
and treat thymic lesions.
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