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Abstract
Genetic diseases are medical conditions caused by sequence or structural changes in an individual’s genome. Whole exome 
sequencing (WES) and whole genome sequencing (WGS) are increasingly used for diagnosing suspected genetic condi-
tions in children to reduce the diagnostic delay and accelerating the implementation of appropriate treatments. While more 
information is becoming available on clinical efficacy and economic sustainability of WES, the broad implementation of 
WGS is still hindered by higher complexity and economic issues. The aim of this study is to estimate the cost-effectiveness 
of WGS versus WES and standard testing for pediatric patients with suspected genetic disorders. A Bayesian decision tree 
model was set up. Model parameters were retrieved both from hospital administrative datasets and scientific literature. 
The analysis considered a lifetime time frame and adopted the perspective of the Italian National Health Service (NHS). 
Bayesian inference was performed using the Markov Chain Monte Carlo simulation method. Uncertainty was explored 
through a probabilistic sensitivity analysis (PSA) and a value of information analysis (VOI). The present analysis showed 
that implementing first-line WGS would be a cost-effective strategy, against the majority of the other tested alternatives at 
a threshold of €30,000–50,000, for diagnosing outpatient pediatric patients with suspected genetic disorders. According to 
the sensitivity analyses, the findings were robust to most assumption and parameter uncertainty. Lessons learnt from this 
modeling study reinforces the adoption of first-line WGS, as a cost-effective strategy, depending on actual difficulties for 
the NHS to properly allocate limited resources.
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Introduction

Genetic diseases are medical conditions caused by sequence 
or structural changes in an individual’s genome [1]. Genetic 
pediatric disorders manifest either prenatally or appear at 
birth or in childhood and represent a significant clinical and 
economic burden. These conditions, which often are rare 
diseases (RDs), result in overall health care expenses rang-
ing from $4.6 to 17.5 billion, which accounts for roughly 
12–47% of the national expenditure on inpatient medical 
care for children in the United States of America [2]. In 
2019, the total economic burden of RDs in United States 
was calculated in $966 billion, including $548 billion (57%) 
of indirect and non-medical costs and $418 billion (43%) of 
direct medical costs. Genetic disorders, in particular RDs, 
might be difficult to diagnose due to non-specific or poorly 
characterized clinical manifestations, exacerbating their 
burden [3]. In standard diagnostics, the sequential use of 
single-gene analysis was frequently involved. However, for 
specific highly heterogeneous clinical conditions, multi-gene 
panels and/or genome-wide sequencing approaches are used 
to search for the underlying causative variation(s). Due to 
the high number of disease genes, the different forms of 
pathogenic variations, and heterogeneity of RDs [4], diag-
nosis of RDs is challenging, lengthy, and might involve 
multiple iterations [5]. As a result, patients with suspected 
genetic diseases often experience a diagnostic odyssey, with 
long periods of uncertainty, leading to increased health and 
financial burdens, such as missed opportunities for timely 
intervention, unnecessary procedures, treatments, specialist 
visits, and significant emotional and financial problems for 
their families [6, 7].

Next-generation sequencing (NGS) technologies have 
enabled the diagnosis of genetic diseases by enhancing the 
capacity to sequence larger segments of the genome [8]. 
While NGS technologies can be used to examine individual 
genes or groups of genes, whole exome sequencing (WES) 
allows the analysis of the protein-coding sections of the 
genome, and whole genome sequencing (WGS) of both the 
coding and noncoding regions. WES and WGS are increas-
ingly used for diagnosing suspected genetic conditions in 
children, with the goal of reducing the diagnostic delay and 
accelerating the implementation of appropriate treatments. 
It has been shown that WES and WGS increase effective-
ness in detecting genetic diseases and have higher rates of 
clinical utility [9–11].

While more information is becoming available on clini-
cal efficacy and economic sustainability of WES, the broad 
implementation of WGS is still hindered by higher complex-
ity and economic issues. Economic evaluations could steer 
the decision-making process in providing access to WES and 

WGS to suitable pediatric patients by taking into account the 
associated costs, which is crucial for the health systems sus-
tainability. Nowadays, there are a number of significant stud-
ies that have examined the cost-effectiveness of WES [12]. 
Nonetheless, up to date, only few studies examined the cost-
effectiveness of both WGS and WES in the pediatric popula-
tion with suspected genetic disorders [13–15], highlighting 
promising results. The aim of this study is to estimate the 
cost-effectiveness of WGS versus WES and standard testing 
for pediatric patients with suspected genetic disorders.

Methods

Framing the model

Target population

The present modeling study was based on a cohort of 
870 pediatric patients with suspected genetic disorders. 
The standard of care (SOC) option involved a group of 
300 patients while WES and WGS a group of 480 and 90 
patients, respectively.

The target population consisted of undiagnosed pediatric 
patients facing potentially life-threatening illnesses. This 
cohort included only patients whose first access to the hospi-
tal was in an outpatient setting, and who received monitoring 
and evaluation as part of their outpatient care. These patients 
were a matter of significant concern due to their vulner-
ability to potentially fatal complications, even if they were 
not hospitalized during the time of data collection. Clinical 
presentations and medical histories were heterogeneous, 
but typically included encephalopathies, epilepsies, neuro-
muscular disorders, intellectual disability with dysmorphic 
features, and other non-specific presentations of suspected 
genetic origin.

The model excluded patients with genetic conditions 
diagnosed through prenatal (e.g., trisomy 21) or newborn 
screening (e.g., cystic fibrosis) and disorders for which clear 
clinical criteria were established and single-gene testing was 
preferred (e.g., neurofibromatosis).

The selected population reflects the one enrolled in one 
of the largest pediatric hospitals in Europe, recognized for 
all subspecialties.

Study perspective, setting, and location

The cost-effectiveness analysis was conducted according to 
the Italian National Health Service’s (NHS) perspective.
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Intervention and comparators

The cost-effectiveness analysis involved the comparison 
between WGS and other four comparators in line with 
the testing strategies available today. The comparators 
were SOC testing only; first-line WES; SOC followed 
by WES; and SOC followed by WGS. For the purposes 
of this study, SOC refers to the combination of stand-
ard genetic tests and diagnostic investigations, typically 
included in routine clinical practice, involving single-
gene panels, multi-gene panels, chromosomal microarray 
(CMA), and karyotype while WES is not included as part 
of the standard diagnostic workup. The intervention was 
based on the WGS.

Time horizon, discount rate, and threshold

A lifetime time horizon was set. In line with the NICE 
recommendations [16], we hypothesized that the chosen 
time horizon is adequate to assess the benefits of the 
intervention. Both costs and effects were discounted by a 
3% yearly rate. In relation to the threshold choice, it was 
necessary to steer the decision-making process on which 
alternative to support, the Eurozone threshold, ranging 
from €30,000 to €50,000, was adopted.

Model structure

Type of model

A Bayesian decision tree model was set up. As depicted in 
Fig. 1, the model included five arms, one for each strategy.

After the patient’s taking charge by a clinical geneticist, they 
undergo the arm-specific genetic sequencing test. After this 
stage, the patient could achieve a definitive diagnosis or not 
based on determined probabilities. In case of a multi-step pro-
cess, in absence of diagnosis, the patient undergoes a second 
genetic test. Lastly, when a diagnosis is achieved, the patient 
may experience or not a change in clinical management.

A Bayesian model defines a full probability distribution of 
a bivariate outcome, � = (c, e) comprising possible combina-
tions of costs and effects, to allow researchers to: (i) perform 
the decision analysis on average values, and (ii) perform the 
probabilistic sensitivity analysis to understand the uncertainty 
surrounding the decision. According to the Bayes theorem, 
we can write:

p(�|D) is the posterior, i.e., the credibility of parameters 
given the available data ( D ); p(�) is the prior for the param-
eter � , i.e., the credibility of the � values without observing 

p(�|D) =
p(D|�)p(�)

p(D)

Fig. 1   Decision tree model structure
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the data (D) ; p(D|�) is called likelihood, i.e., the probability 
that data (D) are generated by the model with parameter 
value � ; p(D) is called evidence (or marginal likelihood), 
i.e., the overall probability of the data according to the 
model, determined by averaging across all possible param-
eters values weighted by the strength of belief in those 
parameters. Generally, researchers have knowledge about 
likelihood and prior distributions and want to estimate the 
posterior distribution, which represents an update of prior 
beliefs about parameters’ credibility once new information 
is available. One problem with this strategy is that, to obtain 
the posterior distribution of � , one has to compute the mar-
ginal likelihood, which in the case of continuous variables 
corresponds to estimating a very complicated integral, which 
could be impossible to solve analytically. A possible solu-
tion to this problem is to use the Markov Chain Monte Carlo 
(MCMC), i.e., a class of algorithms for sampling from a 
generic (unknown) probability distribution. To approximate 
the posterior distribution of interest, the MCMC strategy 
requires to know only the prior and the likelihood probabil-
ity density functions, without evaluating the difficult inte-
gral at the denominator of the Bayes’ formula. In this paper, 
we decided to use the popular Gibbs algorithm to produce 
an approximation of the posterior distribution p(�|D) , by 
drawing a large sample of � values. By applying the MCMC 
procedure with a number of simulations S → ∞ , the simu-
lated posterior distribution converges to the real one with 
probability one. However, we need some diagnostic tools to 
assess the representativeness, accuracy, and efficacy of the 
MCMC procedure. In this sense, we will present graphical 
evidence using standard diagnostic tools like the trace plot, 
the density plot, the Gelman–Rubin statistics, and the chain’s 
autocorrelation functions. Trace plot and the Gelman–Rubin 
statistics (i.e., shrink factor) allow the investigation of the 
MCMC representativeness and convergence. The former 
depicts multiple superimposed chains, which, if overlapped, 
imply the representation of the same posterior distribution. 
The latter quantitatively assesses the convergence of mul-
tiple chains comparing the within-chain variability to the 
between-chain variability; if the chains have converged, the 
within-chain variability should be similar to the between-
chain variability, resulting in a value close to 1. A value 
greater than 1 suggests lack of convergence, indicating that 
the chains have not yet adequately explored the target dis-
tribution. MCMC accuracy was tested using a measure of 
autocorrelation reporting the Effective Sample Size (ESS). 
The ESS is a metric that takes into account the autocorrela-
tion within the MCMC chain and provides an estimate of 
the effective number of independent samples. It represents 
the number of uncorrelated samples that would contain the 
same amount of information as the original autocorrelated 
samples. An ESS amounting to 10.000 is generally recom-
mended for stable 95% higher density intervals.

Model inputs

Probabilities of diagnosis were obtained by the medical 
records of the patients enrolled in the clinical and research 
programs of the pediatric hospital. The probability of having 
a change in the clinical management was instead retrieved 
by the scientific literature. Change in clinical management 
refers to alterations or adjustments made in the medical care 
and treatment of a patient based on the results of a genetic 
test. This change is typically driven by the information 
obtained from the genetic test, which can provide valuable 
insights into an individual’s genetic makeup and its potential 
impact on their health.

The model included only direct costs according to the 
chosen perspective. All investigations, procedures, and 
outpatient assessments were retrospectively collected and 
revised by experienced pediatricians and geneticists, based 
on the pediatric hospital informative system. Exclusively 
diagnostic evaluations/procedures as well as management 
and therapeutic procedures’ costs were retained (i.e., costs of 
taking charge of patients). These cost items were estimated 
considering the different amount and type of consumables 
used, the diagnostic procedures performed before genetic/
genomic tests, the personnel required and their working 
hours dedicated to the clinical discussion of each case (i.e., 
WES and WGS cases required wider multidisciplinary 
assessments).

Costs of testing were estimated according to the Italian 
NHS tariffs. The differences across these costs are due to 
the cost of consumables and the number of samples that 
can be analyzed simultaneously with the same equipment 
(e.g., sequencing chip). Specifically, the same analysis chip 
can be used for 96 samples in the case of SOC analysis, 24 
samples in the case of WES analysis, and a single sample in 
the case of WGS analysis. Furthermore, there is a difference 
in the costs of data analysis, which was quantified economi-
cally as personnel costs (i.e., man-hours for each analysis). 
In conclusion, another driver of difference concerns the 
training costs of the staff involved for the genomic analysis. 
After -WES or -WGS testing costs were obtained from the 
scientific literature. Using historical foreign exchange rates 
and the Consumer Price Index, we expressed costs in 2022 
Euros.

Utilities were not adopted since quality-adjusted life-year 
(QALY) estimation requires specific data seldom available 
for genomic technologies. Of note, international agencies 
[17, 18] recommend the use of QALY, when possible, since, 
being a standardized measure, eases the broad comparison 
of medical technologies and the consequent allocation of 
resources.

Notwithstanding, QALY is characterized by several pit-
falls and usually is not used in the economic evaluation of 
genomic technologies [19]. In fact, it does not account for 
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non-health related outcomes such as personal utility (e.g., 
increased sense of control, better self-awareness, and future 
planning) and family spillover effects [20–22]. In addition, 
estimating QALYs gained through genome-wide sequencing 
is challenging because it does not directly impact long-term 
outcomes but rather affects subsequent clinical manage-
ment. Moreover, the patient population and care pathways 
are highly diverse, making it difficult to determine if early 
diagnosis leads to better health outcomes or longer survival 
at the population level. Diagnostic yield was used instead 
of QALYs as main outcome parameter since it is the most 
common [10, 12] outcome measure in clinical and economic 
studies of genome-wide sequencing [15, 23]. This choice 
was also supported by the lack of robust and reliable data to 
compute QALYs from changes in clinical management [24].

The study did not include the effectiveness outcomes 
related to parents or other family members, although the 
cost of WES and WGS did cover standard confirmatory test-
ing and trio testing with biological parents. Table 1 lists the 
parameters, for each study arm, adopted in the base-case 
analysis.

Model outcomes

The main outcomes of the model include the number of 
diagnoses and the expected costs. To estimate the expected 
cost for each decision tree arm, each cost is multiplied by 
the amount of resources required for the patient during the 
time in a particular health state and study arm.

Model analyses

To address uncertainty regarding the estimated mean out-
comes, a probabilistic sensitivity analysis (PSA) was con-
ducted. Each parameter was assigned a specific distribution 
based on its characteristics. For diagnostic yields and change 
in clinical management, a beta distribution was used. The 
costs were parameterized by a log-normal distribution.

Table 1 shows the expanded list of model parameters with 
ranges used in the probabilistic sensitivity analyses.

For the PSA, 100,000 MCMC simulations were run 
using the Gibbs algorithm. The PSA involved randomly 
drawing sets of parameter values from probability distri-
butions associated with each model parameter, and calcu-
lating incremental costs, incremental effectiveness, and 
ICERs for each set. The results were plotted using a cost-
effectiveness plane (CEP), cost-effectiveness acceptability 

Table 1   Summary of 
intervention-specific parameters 
adopted in the economic model

a Diagnostic yield for SOC, WES, and WGS was computed on a cohort of 300, 480, and 90 pediatric 
patients, respectively
b Costs include those accrued for consumables, personnel, and diagnostic investigations
c Costs associated with testing strategies are assumed to include labor, supplies, bioinformatics, and equip-
ment
All estimates are computed on an annual basis. Log-normal distributions are specified by lower and upper 
limits of the 95% confidence intervals
Dx diagnosis, WES whole exome sequencing, WGS whole genome sequencing

Model parameters Base estimate Distribution References

Probability of diagnosis following testing strategy 
 First-line SOC 0.43a Beta Hospital administrative data
 First-line WES 0.58a Beta Hospital administrative data
 First-line WGS 0.64a Beta Hospital administrative data
 Change in clinical management SOC 0.06 Beta [10]
 Change in clinical management WES 0.17 Beta [10]
 Change in clinical management WGS 0.27 Beta [10]

Testing costs
 Taking charge SOC €29,870b Log-normal Hospital administrative data
 Taking charge WES €61,704b Log-normal Hospital administrative data
 Taking charge WGS €79,170b Log-normal Hospital administrative data
 SOC testing €450c Log-normal Hospital administrative data
 WES testing €1,800c Log-normal Hospital administrative data
 WGS testing €3,700c Log-normal Hospital administrative data
 After WES or WGS, testing costs with Dx €92 Log-normal [13]
 After WES or WGS, testing costs without Dx €162 Log-normal [13]
 Diagnostic odyssey €2,375 Log-normal [25]



	 M. C. Nurchis et al.

1 3

curves (CEAC), and the cost-effectiveness acceptability 
frontier (CEAF), as recommended by the International 
Society for Pharmacoeconomics and Outcomes Research 
(ISPOR) guideline [26] and the Second Panel on Cost-
effectiveness in Health and Medicine [27]. The CEAC 
illustrates the probability that each intervention would be 
considered the optimal choice at various thresholds, while 
the CEAF displays the net monetary benefit at each will-
ingness-to-pay (WTP) level and the level of uncertainty 
surrounding the optimal choice.

Expected incremental benefits (EIB) were also com-
puted for WGS against the other testing strategies. The 
EIB shows the expected average incremental benefit by 
estimating the average incremental benefit of each simula-
tion. The incremental benefit function can be modeled as 
a function of the WTP k:

Using the set of posterior samples S, the EIB is approxi-
mated as follows by

where �s is the realized configuration of the parameters � in 
correspondence of the s-th simulation. For the intervention 
of interest to be cost-effective, the EIB should be greater 
than 0, taking the WTP into account.

In addition, the Expected Value of Perfect Information 
(EVPI) and the Expected Value of Partially Perfect Infor-
mation (EVPPI) were calculated to determine the value of 
collecting further information. The EVPI is computed for 
a specific threshold by calculating the difference between 
the expected value with perfect information (i.e., no uncer-
tainty in model parameters) and the expected value with 
current information (i.e., uncertainty in model parameters 
[28]).

It is a measure to translate uncertainty associated with 
the cost-effectiveness evaluation in the model into an eco-
nomic quantity. It is based on the Opportunity Loss (OL) 
(OL and OL = U* − Uτ), a measure of the potential losses 
caused by choosing the most cost-effective intervention 
on average when it does not result in the intervention 
with max utility in each simulation. U* is the utility level 
associated to the best intervention in simulation S. Uτ is 
the utility level associated to the intervention preferred 
on average in simulation S. In this analysis, EVPI was 
used to estimate the value of future research to reduce 
or eliminate uncertainty in the cost-effectiveness of WGS 
compared to the other strategies in pediatric patients. The 
Expected Value of Partial Perfection Information (EVPPI) 
was also calculated to determine the value of reducing 
uncertainty in specific model parameters and identify 

IB(�) = kΔe − Δc

1

S

∑S

s
IB
(
�s

)
,

which parameters were most important for the estimation 
of cost-effectiveness, thus guiding further research in those 
areas requiring additional information. The information-
rank plot was also charted. For each parameter and value 
of the willingness-to-pay threshold, a bar chart is plotted 
to describe the ratio of EVPPI to EVPI, representing the 
relative importance of each parameter in terms of expected 
value of information.

The study was conducted according to the Consoli-
dated Health Economic Evaluation Reporting Standards 
(CHEERS) Statement [29], and all analyses were carried 
out using R software (R Development Core Team).

Results

Base‑case analysis

SOC testing had both the lowest expected costs and the low-
est expected diagnostic yield for the investigated population.

From the NHS perspective, the base-case findings high-
lighted that, compared with SOC, first-line WES, and sec-
ond-line WES, using first-line WGS yields an incremental 
cost of €25,072, €32,086, and €44,754 per added diagnosis, 
respectively.

First-line WGS was not cost-effective against second-line 
WGS being the ICER (i.e., €67,118 per added diagnosis) 
higher than the threshold.

Table 2 reports the mean discounted costs and outcomes 
as well as the base-case results for the simulated cohort.

Sensitivity analysis

As shown in the cost-effectiveness plan (Fig. 2), the PSA 
confirmed the robustness of the base-case results at a thresh-
old ranging from €30,000 to €50,000 per added diagnosis.

Contour plots, provided in supplementary materials 
(Figs. S1–S4) further highlighted that 66.9% to 99.6% of 
simulated points lie in the north-east quadrant of the cost-
effectiveness plane, in which WGS generates more health 
gains but is more expensive than other testing strategies.

The CEAC and the CEAF, depicted in Figs. S5 and S6, 
showed that SOC had the highest probability of being cost-
effective for a WTP threshold lower than €2,400 per added 
diagnosis, while second-line WES for a WTP threshold 
between €2,400 and €5,400 per added diagnosis. For all 
WTP levels above €5,400/diagnosis, tested up to €50,000/
diagnosis, first-line WGS versus SOC strategy had the high-
est probability of being cost-effective (i.e., 94.1%), followed 
by first-line WGS versus first-line WES (i.e., 61.5%) and 
first-line WGS versus second-line WES (i.e., 57.6%).

All the values of the EIB were positive for all the test-
ing strategies, particularly amounting to 52,519 for first-line 
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Table 2   Base-case results over 
lifetime horizon

CI confidence intervals, eff. effectiveness, ICER incremental cost-effectiveness ratio, NMB, net monetary 
benefit

Strategy Costs (€) (95% CI) Δ costs (€) Eff (95% CI) Δ Eff ICER NMB (€)

WGS 898,703,504
(895,703,109–
899,703,898)

– 39,660
(37,506–
43,815)

– Ref. –

SOC 370,492,122
(369,491,97–
371,492,275)

52,821 18,592
(12,438–
20,747)

2.11 25,072 52,679

WES 705,518,737
(704,518,437– 707,519,036)

19,318 33,639
(31,485–
35,794)

0.60 32,086 10,682

SOC + WES 423,002,973
(417,002,819–
426,003,128)

47,570 29,031
(27,877–
34,186)

1.06 44,754 5,430

SOC + WGS 438,705,402
(433,705,247–
445,705,557)

45,999 32,448
(30,293–
36,603)

0.72 63,779 − 9,999

Fig. 2   Cost-effectiveness plane from probabilistic sensitivity analysis
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WGS versus SOC, 10,786 for first-line WGS versus first-
line WES, and 5,576 for first-line WGS versus second-line 
WES, with the exception of first-line WGS versus second-
line WGS, which showed a negative EIB (Fig. S7).

Value of information analysis

From the PSA simulation, the EVPI per patient was esti-
mated to be €8,610 on a WTP threshold of €50,000/diag-
nosis (Fig. X6). The EVPI decreased with a lower WTP 
threshold, amounting to €3,060 on a WTP level of €30,000/
diagnosis (Fig. 3).

Additional examination of the EVPPI is shown in sup-
plementary materials.

EVPPI, for a subset of parameters (i.e., transition prob-
abilities), amounted to €594.8 (Fig. S8). Furthermore, as 
shown in Fig. S9, the cost of taking charge patients related 
to WGS investigations reported the highest ratio, showing 
how large is the expected value of gaining more information 
for this parameter.

MCMC performance

The MCMC analysis was assessed using various diagnos-
tic measures. Table S1, in supplementary materials, lists 
the summary statistics for the analysis. Trace plots showed 
that the chains for the sampled parameters exhibited sta-
ble behavior and overlapped, indicating convergence. Fig-
ures S10 to S18, in supplementary materials, depicts the 
trace plots for each cost parameters. Density plots illustrated 
smooth and unimodal distributions, suggesting well-behaved 
posterior distributions (Figs. S10 to S18).

The Gelman–Rubin statistics resulted in R-hat values 
close to 1 for all the parameters, further supporting the con-
vergence of the chains (Table S1). In addition, ESS revealed 
values relative to the total number of samples close to 10.000 
for most of the parameters, indicating efficient sampling and 
reliable estimation of the posterior distribution (Table S1).

Collectively, these diagnostic measures indicated that the 
MCMC algorithm performed well, with converged chains, 
high effective sample sizes, and well-estimated posterior 
distributions, providing confidence in the validity and reli-
ability of the obtained results.

Fig. 3   Population Expected Value of Perfect Information (EVPI) curve
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Discussion

We assessed the cost-effectiveness of WGS considering 
870 patients with suspected genetic disorders derived 
from the enrolled cohort of a large pediatric hospital in 
Italy. The present analysis showed that implementing first-
line WGS would be a cost-effective strategy, against the 
majority of the other tested alternatives at a threshold of 
€30,000–50,000, for diagnosing infants with suspected 
genetic disorders. According to the sensitivity analyses, 
the findings were robust to most assumption and parameter 
uncertainty.

This study is contributing to the evidence base of cost-
effectiveness specifically comparing WGS and WES pro-
viding evidence from an European health system not yet 
well represented in the scientific literature (i.e., Italy). Our 
results are consistent with those of Lavelle et al., focusing 
on WGS and WES in infants and children with rare and 
undiagnosed diseases, which showed the cost-effectiveness 
of first-line WGS strategy for the target populations with 
an ICER of, respectively, $15,048 and $27,349 per diag-
nosis [13]. Present data broadly support also the study of 
Incerti et al. in the United States, demonstrating the cost-
effectiveness and cost-saving of WGS as a first-line diag-
nostic tool for children and infants with suspected genetic 
disorders. Although these authors adopted a different mod-
eling approach, the cost-effectiveness of WGS (i.e., ICER 
of $15,904) is in line with our results [14].

Another study investigated the economic benefits of 
WGS versus WES, even though not using modeling tools, 
confirming that WGS is the optimal genomic test choice 
for maximal diagnosis in Mendelian disorders [30].

Moreover, as shown by comprehensive systematic 
reviews and meta-analyses, WGS significantly improves 
both accuracy and economic aspects in pediatric patients 
with suspected genetic disorders. In particular, Clarke et al. 
estimated that the pooled diagnostic yield of WGS was 
higher than the diagnostic yield of WES and usual care [10] 
while Nurchis et al. showed the cost-effectiveness of WGS 
over WES by pooling their incremental net benefits [31].

The current study comes at an important time consider-
ing the recent recommendations of the American College of 
Medical Genetics to adopt WES and WGS as tools for diag-
nosing genetic conditions in children [32]. Notwithstanding, 
Italy trails behind other countries concerning the reimburse-
ment for genomic sequencing, especially WGS. Nowadays, 
the adoption of WGS has been more limited, with respect to 
WES, due to higher costs and still limited gains in terms of 
clinical benefit [12]. Particularly, evidence in the scientific 
literature showed that capital, maintenance and storage costs 
of WGS are higher than those associated with WES, contrib-
uting to limit the widespread adoption of WGS.

The principal finding of this analysis provides insights 
for a main implication suggesting that first-line WGS allows 
often an earlier and precise diagnosis. From this perspective, 
implementing WGS as a first-tier strategy has the poten-
tial to bend the cost trajectory of diagnosing and manag-
ing children with suspected genetic disorders [33–35]. The 
study findings also raise policy implications for WGS reim-
bursement in Italy. Following the recent guidelines released 
by international supranational organizations [32, 36] and 
recently published evidence, policy-makers should define a 
tailored diagnosis-related group (DRG) tariff for the reim-
bursement of the inpatient and outpatient health services 
related to this diagnostic test. Developing sound genomic 
policies and specific reimbursement tariffs is of paramount 
importance for guaranteeing healthcare sustainability by 
applying the three core functions of Public Health [37] (i.e., 
assessment, policy development, and assurance) to the deliv-
ery of WGS within the health care services.

Furthermore, beyond informing treatment decisions, 
receiving a genetic diagnosis could significantly impact 
patients and their families on psychosocial levels, alleviat-
ing uncertainty and anxiety, thereby potentially enhancing 
overall well-being. Cascade testing within families, initiated 
by a genetic diagnosis, can lead to early interventions and 
preventive measures, which in the long term may result in 
substantial cost savings by averting disease progression and 
related health care expenses. In addition, genetic diagno-
ses contribute to research and therapeutic development, as 
identified mutations may become targets for drug develop-
ment and personalized treatment strategies, offering hope 
for improved patient outcomes and potentially reducing the 
overall economic burden of the condition.

The analysis presented herein has several limitations 
and strengths. First, effectiveness was not parametrized as 
QALYs, but as clinical outcomes, such as the number of 
molecular diagnoses and active treatment changes. Given 
the lack of a clear established threshold for budget allocation 
related to the outcomes, it could be challenging to interpret 
the cost-effectiveness findings and compare them with other 
economic analyses of health technologies. Nonetheless, in 
line with available economic studies, we assumed that the 
threshold that the society is willing to pay for a single QALY 
is the same amount of money which is willing to pay for 
one more diagnosis [38–41]. Using the point estimate for 
the change in clinical management parameter, as retrieved 
by the scientific literature, may overestimate the benefits of 
WGS versus WES given the overlapping confidence inter-
vals reported in the meta-analysis. However, this may rep-
resent a bias for the secondary study itself. At the moment, 
it represents the most updated published reference suitable 
with our outpatient cohort. Increasing evidence indicates 
that WES data re-analysis, taking into account new knowl-
edge, has been demonstrated to significantly increase the 
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diagnostic yield [42]. The used Bayesian model, however, 
did not take into account re-analysis because this is not yet 
a regular practice in Italy [43], even though, in Australia, 
re-analysis is included in the reimbursement description of 
the genomic test [44, 45]. This represents a limitation of 
our assessment as the inclusion of re-analysis would lead 
to an increase in costs of WES and WGS with respect to 
standard practices, but potentially cost-effective compared 
to single-analysis WES or WGS. This is given by lower cost 
of re-analysis, and as more is learned about causal variants 
in this patient’s population, it is likely that more diagnoses 
will be identified. Furthermore, model inputs did not include 
capital, maintenance, and storage costs. Van Nimwegen et al. 
[46] found that these costs are higher for WGS than WES, 
thus limiting the benefits of WGS over WES. Furthermore, 
we did not consider the possibility that WGS or WES might 
uncover incidental findings in the child or in a parent. If the 
benefits of returning incidental findings were factored in, 
the estimated cost-effectiveness of WES and WGS would 
likely improve, as previous research, conducted in the USA, 
has shown that while returning incidental findings leads to 
increased costs, it also enhances health benefits [47]. Nev-
ertheless, in publicly funded health systems, there is still 
scarce evidence for clinical benefits from returning inciden-
tal findings [48]. There is still a debate among experts in 
pediatric genetics whether incidental findings in children 
concerning adult-onset conditions should be disclosed to 
parents [49]. Patient selection (i.e., focusing only on outpa-
tients) may have influenced diagnostic yields, thus resulting 
in a structural limitation of the study. However, it is worth 
mentioning that, in Italy, there are currently no specific 
national guidelines on patient selection criteria (i.e., whether 
offering WGS or WES as opposed to SOC to a patient) nei-
ther for pediatric nor for adult population.

Given the lack of primary data, we assumed that changes 
in clinical management occur only in the “diagnosis” arm 
of the decision tree. This represents a model limitation since 
other studies demonstrated that WES or WGS may have clin-
ical utility even in patients not receiving a diagnosis [50].

An additional caveat was the lack of primary data for 
some cost assumptions, from Italy. Therefore, we had to use 
estimates from Canada and United States. Notwithstanding, 
it is commonly believed that the United States has double 
healthcare costs despite presenting comparable utilization 
rates to other high-income countries due to different prac-
tices in rationing services and prices of labor, pharmaceu-
ticals, and administrative costs [51]. Another limitation is 
unavailability of data that could be used to estimate the soci-
etal value of detecting RDs. Recent guidelines have increas-
ingly recognized the significance of societal costs. In 2020, 
the Institute for Clinical and Economics Review empha-
sized the need for a societal co-base case accounting for 
family caregiver costs and productivity impacts, given their 

substantial influence on the estimated cost-effectiveness. The 
Second Panel on Cost Effectiveness in Health and Medicine 
has also called for a dual base case, with one analysis taking 
into account societal impacts. In the near future, incorporat-
ing societal costs and benefits in cost-effectiveness analyses 
will provide more favorable estimates of value for WES and 
WGS because rare and undiagnosed diseases place consid-
erable burdens on families and lead to productivity losses. 
In line with the seminal study of Wu et al. [52] focused on 
WES, further studies should investigate the broader conse-
quences of WGS in children with suspected genetic disor-
ders and their relatives, including family spillover effects, 
healthcare costs, and productivity costs. Other cost-effec-
tiveness analyses should be conducted including additional 
input parameters on maintenance and capital costs and re-
analyses procedures.

Conclusion

NGS-based genome-wide diagnostic methods are becoming 
more prevalent in the clinical settings. The findings provided 
a cost-effectiveness model showing that WGS is, indeed, 
a cost-effective strategy when the model assumption holds 
true. Strong clinical and economic evidence is needed to jus-
tify implementation of WGS to demonstrate its advantages. 
Lessons learnt from this modeling study reinforces the adop-
tion of first-tier WGS, as a cost-effective strategy, depending 
on actual difficulties for the Italian NHS to properly allocate 
limited resources. Of note, this paper tried to fill a gap in 
favor of implementing WGS in a health system (i.e., Italy) 
where there is very little prior evidence.
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