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Abstract: Estimating key crop parameters (e.g., phenology, yield prediction) is a prerequisite for
optimizing agrifood supply chains through the use of satellite imagery, but requires timely and
accurate crop mapping. The moment in the season and the number of training sites used are two
main drivers of crop classification performance. The combined effect of these two parameters was
analysed for tomato crop classification, through 125 experiments, using the three main machine
learning (ML) classifiers (neural network, random forest, and support vector machine) using a
response surface methodology (RSM). Crop classification performance between minority (tomato)
and majority (‘other crops’) classes was assessed through two evaluation metrics: Overall Accuracy
(OA) and G-Mean (GM), which were calculated on large independent test sets (over 400,000 fields).
RSM results demonstrated that lead time and the interaction between the number of majority and
minority classes were the two most important drivers for crop classification performance for all
three ML classifiers. The results demonstrate the feasibility of preharvest classification of tomato
with high performance, and that an RSM-based approach enables the identification of simultaneous
effects of several factors on classification performance. SVM achieved the best grading performances
across the three ML classifiers, according to both evaluation metrics. SVM reached highest accuracy
(0.95 of OA and 0.97 of GM) earlier in the season (low lead time) and with less training sites than
the other two classifiers, permitting a reduction in cost and time for ground truth collection through
field campaigns.

Keywords: lead time; Sentinel-2; training set size; RSM; machine learning; agrifood supply chains

1. Introduction

Crop production information is crucial for planning and management of agricultural
markets [1] and has two components: crop area and crop yield. Area estimation is often
thought to be relatively simpler and more straightforward than crop yield estimation.
However, crop mapping can be a particularly challenging task because of the complex
interactions between the numerous parameters to be considered, as reviewed by Craig
and Atkinson [2], implying the need for further investigation of crop mapping in specific
contexts. A timely and accurate crop area estimation is essential to generalize a set of
information, such as the health and growth status of the crops [3,4], and to monitor the
whole production process.

Conventional methods for estimating crop acreage (e.g., methods based on farmers
declarations or using land surveying tools) are time-consuming, expensive, and subject to
human bias. In this context, remote sensing data acquisition from satellite missions (e.g.,
Sentinel-2) designed explicitly for agricultural monitoring [5] is one of the most widely used
tools to support area sampling schemes [6]. Satellite remote sensing using high temporal
and spectral resolution offers the ability to distinguish between different crops with reliable
accuracies and obtain accurate land use and land cover maps.
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In recent years, remote sensing data have found several applications, including moni-
toring crop progress [7,8], phenology [9,10], and crop yield prediction [11,12] of various
crops. In this study, a case study of crop classification of a specific crop, processing tomatoes
(thereafter referred to as tomato), is reported. Tomato is characterized by a multistage
harvesting technique that requires rigorous harvest planning and to develop strong ties
between producers, producer organizations, and industries. Accurate estimates of tomato
acreage enable the organization of the industrial postharvest processes (i.e., transport, stor-
age, transformation) to be optimized, while timely data on processing tomato production
can participate in stabilizing market prices, as the latter can be particularly susceptible to
uncertainties on expected production [13]. Although several factors can influence the crop
type map accuracy (e.g., spatial resolution, classification algorithm, number of phenological
stages considered), the factors influencing it the most are the lead time (i.e., moment of the
season when the crop map is provided) [14] and the training set size (i.e., the number of
training sites) [15,16]. In recent years, the number of training sites has been the focus of
several research efforts: a strong positive relationship has been found between training
set size and classification accuracy for a wide range of classifiers [16–18]. In operational
situations, the size of the training dataset can be limited, especially when ground-based
observations over a large area are required [18]. The map producer may select the machine
learning (ML) classifier depending on the number of training sites available [19]. For
example, when the number of training sites is limited or when there are limitations related
to computational power or lead time (i.e., moment of the season when the crop map is
provided), the choice of the ML classifier is essential to improve classification accuracy.
Indeed, different ML classifiers show different accuracies depending on the training set size
and lead time. Another crucial aspect of the training set is the partition of the classes in-
volved in the classification process, as these classes must be representative of the monitored
site [19]. The lack of a representative definition of the classes can cause an error that may go
unnoticed when evaluating classification accuracy [20]. As reported by Ramezan et al. [16],
most studies that have examined the effects of training set size [15,21,22] have generally
focused on one classifier at a time, making it difficult to compare the dependence of each
machine learning classifier to sample size. If a small number of studies have investigated
the variation in training set size across different classifiers, they mostly considered a narrow
range of sample sizes [23], often focusing on other features of the training set, such as the
class prevalence [24,25] or the dimensionality of the feature set [26]. To bridge the gap
toward the operational use of satellite imagery for crop and land monitoring, additional
studies are required to better understand the simultaneous effects of early crop mapping
(low lead time) and training set size. In order to achieve this, response surface methodology
(RSM) appears as a valuable technique for simultaneously studying multiple dependent
variables’ effect on a response variable. RSM is a statistical methodology for designing
experiments, modelling, and evaluating the effects of two or more experimental factors,
and for identifying the optimal values of these factors [27].

The primary objective of this study was to analyse the combined effect of the training
set size and the lead time on the tomato crop mapping performance. The secondary
objective was finding an optimal trade-off between the lead time and training set size of
different classification algorithms using RSM.

2. Materials and Methods
2.1. Study Area

This study was conducted in the plain of the Emilia-Romagna region, in Northern
Italy (Figure 1; 8.99–12.93◦E, 44.09–45.15◦N). The climate in this region is categorized as
temperate, with hot summers and without dry seasons, and is categorized as “Cfa” in the
Köppen–Geiger climate classification [28]. The rationale behind the choice of area is that
Emilia-Romagna region represents about half of the tomato acreage in Italy and has a high
availability of declared data on cropland use. In this area, the most common crops are
lucerne (26.8% of crop area), orchard (26.0%), winter cereal (21.0%), permanent pasture
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(9.0%), maize (5.7%), sorghum (2.7%), sugar beet (1.7%), tomato (1.3%), sunflower (0.9%),
forage (0.8%), soybean (0.8%), legume (0.7%), potato (0.3%), onion and garlic (0.2%), melon
and watermelon (0.1%), and other crops (2%).
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2.2. Reference Data

The reference dataset was obtained from the “Agenzia regionale per le erogazioni in
agricoltura” (Agrea), the regional organization in charges of redistributing EU’s subsidies of
the Common Agricultural Policy (CAP). The Agrea’s dataset contains detailed information
on crop types at field level, also known as cadastral parcel. Field boundaries delineated
by cadastral parcels were used as the base unit for classification. Crop type information is
declared to the Agrea by producers and landowners in an annual basis. The high spatial
resolution and high reliability (although it is not error-free) makes Agrea’s dataset an
excellent reference source. Reference data from the year 2019 were available for the Emilia-
Romagna region. In this study, the crop mapping was performed as a binary problem by
labelling all crops other than tomato as ‘other crops’. Winter crops (i.e., winter cereal) and
perennial crops (orchard, lucerne, permanent pasture) were dropped to avoid including
excessive proportions of winter cereals and perennial crops in the training set of other
crops, in order to better focus on summer crops.

2.3. Satellite Data Acquisition and Processing

The Sentinel-2 (S2) mission of the European Space Agency’s Copernicus program
consists of a pair of satellites (Sentinel-2A and Sentinel-2B), launched in 2015 and 2017,
respectively. Sentinel-2A/B MSI acquire images of the Earth’s surface in 13 spectral bands
at a spatial resolution of 10, 20, and 60 m [29], ranging from visible and near-infrared
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(VNIR) to shortwave infrared (SWIR). A selection of cloud-free Sentinel-2 images at Level
2A and captured from February to mid-September 2019 were downloaded from the Theia
Land Data Center [30]. Figure S1 displays the cloud cover for the entire scene analysed. The
Theia Land Data Center provides a time series of top-canopy surface reflectance, which is
orthorectified, terrain-flattened, and atmospherically corrected using the MACCS-ATCOR
Joint Algorithm (MAJA) [31]. The temporal period (from February to September 2019)
was chosen to represent the tomato-growing season. Sentinel-2 image processing involved
resampling and stacking the 20 m spectral bands to 10 m, performed using Geospatial Data
Abstraction Library (GDAL) [32].

2.4. Feature Set Devolpment

Six vegetation indices (VIs) were calculated from the Sentinel-2 bands (Table 1). Mean
values of each of the six VIs for each image were extracted for each agricultural field (i.e.,
cadastral parcel). The VI time series were interpolated with 10-day intervals to ensure a
consistent and equidistant time series over the entire study area, which is beneficial for
machine learning-based classification methods [33]. Using VIs enables greater discrimina-
tion between certain crop types than using spectral bands alone. In addition, calculating
VIs over time provides additional information on varying crop spectral behaviour and
phenology. A principal component analysis (PCA) was performed, maintaining the prin-
cipal component (PCs) up to 95% explained variance. PCA was applied to avoid the
multicollinearity problem.

Table 1. Vegetation indices adopted for crop mapping.

Vegetation Indices Abbreviation Equation Reference
Normalized Difference Vegetation Indices NDVI (B8 − B4)/(B8 + B4) [34]

Normalized Difference Red-Edge NDRE (B8 − B5)/(B8 + B5) [35]
Normalized Difference Water Index NDWI (B8 − B11)/(B8 + B11) [36]

Green Normalized Difference
Vegetation Index GNDVI (B8 − B3)/(B8 + B3) [37]

Chlorophyll Vegetation Index CVI (B8/B3) ∗ (B4/B3) [38]
Green Wide Dynamic Range

Vegetation Index greenWDRVI (0.1B8 − B3)/(0.1B8 + B3) + (1 − 0.1)/(1 + 0.1) [39]

A comparison of the VIs during the extracted time profiles for different crops during
the growing season is shown in Figure 2. The temporal profiles of the different crops show
similarities during the planting and postharvest periods, but their spectral features were
more distinct during maturity, enabling better discrimination. Tomato, maize, sorghum,
and soybeans are sown in mid-April and harvested in September, so the trait trends for
these four crops are similar. Between DOY 190 and 220, the differences in the values of VIs
between tomato and the other crops are obvious, most peaks were different. During the
harvest period, the characteristics of the three crops also behave differently.

2.5. Experimental Design

Response surface methodology (RSM) procedure [27] was used to analyse the input
variables of a multivariable system, optimizing the evaluated factors and reducing the
number of experiments. The experimental design was a central composite rotational design
(CCRD) and was performed using three factors: the number of tomato training sets, the
number of ‘other crops’ training sets, and the lead time. The response variables of the
experimental design were the classification evaluation metrics (see Section 2.7.2). Each
input variable in this experimental design was studied on five levels (−2.0, −1.0, 0.0,
+1.0 and +2.0), with zero as the central coded value (Table 2). In total, 125 experiments
were conducted from the combination of the five levels with the three factors. Three
machine learning (ML) classifiers were evaluated on an independent dataset (test dataset)
for each experiment. Hyperparameters from each ML classifier were optimized using a
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cross-validation strategy (see Section 2.7.1). From the entire Sentinel-2 dataset acquired
from February to mid-September 2019, the six VIs (per image) were stacked from the first
to the last date of each lead time. Subsequently, a principal component analysis (PCA)
was performed, retaining the principal component (PCs) up to 95% explained variance.
RSM enabled the effects of training set size (number of training sites for tomato and
for ‘other crops’) and lead time (expressed as day of the year—DOY) on tomato crop
mapping performance to be evaluated simultaneously using ML classifiers. Both factors
are considered as quantitative variables in order to interpolate their effect on the response
variables. The optimal values from the RSM were retrieved by solving the quadratic
regression equation and analysing the response surface contour plots. ANOVA with 95%
confidence intervals was used to determine the significance of the effects. The R package
“rsm” [40] was used to perform ANOVA and to determine the regression coefficients.
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Table 2. Experimental ranges and levels of independent variables for central composite rotational
design (CCRD) used in the optimization of tomato crop mapping. The lead time is expressed in day
of the year (DOY).

Variables
Range and Levels

Coded Variable −2.0 −1.0 0.0 +1.0 +2.0
Number of tomato training sites X1 100 300 500 700 900

Number of ‘other crops’ training sites X2 100 300 500 700 900

Lead time (DOY) X3
168

(17 June)
189

(8 July)
210

(29 July)
231

(19 August)
252

(9 September)
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2.6. Training and Test Samples

After excluding winter cereals and perennial crops for a total of 426,213 agricultural
fields, the entire available dataset was randomly divided into training and test samples to
avoid bias in the evaluated accuracy. The dataset covers the whole study area uniformly.
The test samples were completely separate from training samples. The number of training
sites was changed for each experiment by changing the numerosity of the two classes,
’tomato’ and ‘other crops’, according to the combination that was being evaluated (Table 2).
The ‘other crops’ class was subdivided into subclasses which corresponded to the summer
crops other than tomato (e.g., maize, soybean). The natural proportions of these other
summer crops were maintained constant within the ‘other crops’ class in all 125 experiments
(Table 3).

Table 3. Details of sample proportion of ‘other crops’ class. For all experiments, the proportion
remains the same.

Nr Crops % Nr Crops %
1 Maize 42.99 7 Legume 4.89
2 Sorghum 19.76 8 Potato 2.49
3 Sugar beet 9.22 9 Onion 1.79
4 Sunflower 6.20 10 Melon 0.53
5 Forage 6.16 11 Watermelon 0.29
6 Soybean 5.69

2.7. Machine Learning Workflow
2.7.1. Machine Learning Classifiers

In this study, the three main ML classifiers were selected and compared: random
forest (RF [41], neural networks (NNET [42] and support vector regression with radial
basis function kernels (SVMr [43]). ML classifiers were implemented using the R package
“caret” [44]. Each ML classifier is composed by a set of hyperparameters that must be
tuned. To determine the best hyperparameters, thereby avoiding overfitting issues [45–47],
a repeated k-fold cross-validation was used. The numbers of folds and replications were
both set to five. The range of values tested for each hyperparameter is presented in Table 4.

Table 4. Algorithm hyperparameters tuned, and the range of values tested for each of them. N is the
total number of hyperparameter combinations tested for each algorithm.

Acronym ML Algorithm Hyperparameter Values Tested N

SVMr Support vector machines radial
basis function

Cost function parameter c;
Margin of error tolerance ε

c: From 1 to 10 by step 1;
ε: From 0.005 to 1.5 by step 0.1 150

RF Random forest
Number of variables

available at each
node

2, 3, 5, 10, 20, 30, 50 7

NNET Single-layer perceptron
feedforward neural networks

Number of neurons in the
hidden layer (size) and

decay weight

size: From 2 to 30 by step of 5;
decay: From 0.1 to 20 by step of 0.5 240

2.7.2. Model Evaluation

Two evaluation metrics were derived from confusion matrices to evaluate the perfor-
mance of tomato mapping. Overall Accuracy (OA) was the first metric derived, which
returns the proportion of correctly classified instances. The second metric was the G-
Mean (GM), which provides an assessment of the classifier’s performance for unbalanced
classification [48,49]. These two metrics (OA and GM) taken together provide a synoptic as-
sessment of the accuracy of majority and minority classes [50]. OA and GM were calculated
according to Equations (1) and (2):

OA =
Number of correctly classified instances

Total number of instances classified
(1)
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GM =
√
(Sensitivity × Specificity) (2)

with sensitivity being the proportion of correctly classified positive instances (in this case,
tomato); and specificity being the proportion of correctly classified negative instances
(‘other crops’).

3. Results

A total of 125 experiments of crop classification (replicated five times) were performed
with different combinations of independent variables X1, X2, and X3 (number of tomato
training sites, number of ‘other crops’ training sites, and lead time, respectively), using a
central composite rotational design (CCRD) (Table 2).

3.1. Simulation Results

Figures 3 and 4 display the evolution of OA and GM, respectively, as a function of
the numerosity of tomato and ‘other crops’ training sites, for each of the three algorithms
and for each lead time. In general, OA increases with the number of training sites and
as the growing season progresses. At the beginning of the growing season (i.e., 17 June),
OA increases the most when the number of ‘other crops’ training sites increases from low
starting values, and this increment is even more important at high numbers of tomato
training sites (e.g., 900). In addition, GM also increases with the increasing number of ‘other
crops’ training sites, but only when the number of tomato training sites is high enough.
When the number of tomato training sites is low (e.g., 100), the increment of ‘other crops’
training sites leads to a lowering of GM accuracy (Figure 4). This shows well that GM
accuracy is strongly linked with the proportionality between the two classes. A reduction
in performance is less evident as the growing season progresses and with the NNET and
SVMr algorithms. This result is particularly evident in Figure 5, where the highest G-Mean
performance is obtained when the training dataset has a ratio close to 1:1 between the
majority and minority classes. The importance of the ratio of majority to minority class
declines as the season progresses, and especially for the RF algorithm, which shows a more
pronounced decline in performance as the ratio of the number of training sites to other
crops to the number of tomato training sites increases above 1.

3.2. RSM Models

Multiple regression analysis using response surface methodology (RSM) was imple-
mented to model the crop classification performance as a function of the three selected
variables. The analysis was performed separately for both response variables (OA and GM)
and for all three selected ML classifiers (SVMr, RF, and NNET).

The results of the analysis of variance (ANOVA) for the quadratic model for both
response variables (OA and GM) and for all three ML classifiers (SVMr, RF, and NNET)
are reported in Tables S1–S6. Linear, quadratic, and interaction terms were all highly
statistically significant (p ≤ 0.001). The regression coefficient for linear terms X1, X2,
and X3 were highly significant (p ≤ 0.001) for both response variables and all ML classi-
fiers. Most of the interactions of each linear term were also highly significant (p ≤ 0.001)
for both response variables (Tables S7–S9). The only exception was the interaction be-
tween X2 and X3 for response variable GM that was not significant for all ML classifiers.
Analysing the absolute t-value of the regression coefficients for the response variable GM
(Tables S7–S9; Figure 6), it was observed that the linear term X3 (lead time) was the most
important independent variable in the GM maximization, followed by the interaction term
X1X2 (number of tomato training sites and number of ‘other crops’ training sites, respec-
tively). On the contrary, OA was mainly influenced by X2 followed by X3 (lead time) when
SVMr and NNET were applied and by X1 when RF was applied. The quadratic equation
that best fit the data and the goodness of fit (R2 and Adj. R2) is reported in Table 5. The R2

and Adj. R2 values for all responses are close to 1, showing the reliability and the strength
of the relationship between the independent variable and the response. The Adj. R2 values
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for GM were 0.830, 0.823, and 0.852 for SVMr, RF, and NNET, respectively. Higher adjusted
R2 values were observed for OA than for GM for each ML classifier: 0.916, 0.942, and 0.938
(SVMr, RF, and NNET, respectively). Hence, the multiple regression model was significant
and adequately described response variables.
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Table 5. Best fit of the quadratic equation for each classifier and each response variable. The
independent variables X1, X2, and X3 are the coded values for the number of tomato training sites,
the number of ‘other crops’ training sites, and lead time.

ML
Classifier

Response
Variable Equation R2 Adj. R2

SVMr
OA 0.914 − 0.034X1 + 0.049X2 + 0.045X3 + 0.012X1X2 +

0.011X1X3 − 0.013X2X3 + 0.003X1
2 − 0.020X2

2 − 0.016X3
2 0.917 0.916

GM 0.924 + 0.016X1 + 0.008X2 + 0.053X3 + 0.018X1X2 −
0.006X1X3 − 0.0006X2X3 − 0.014X1

2 − 0.010X2
2 − 0.019X3

2 0.833 0.830

RF
OA 0.884 − 0.047X1 + 0.074X2 + 0.036X3 + 0.019X1X2 +

0.009X1X3 − 0.008X2X3 + 0.004X1
2 − 0.029X2

2 − 0.011X3
2 0.943 0.9420

GM 0.891 + 0.027X1 + 0.012X2 + 0.041X3 + 0.029X1X2 −
0.003X1X3 − 0.0005X2X3 − 0.022X1

2 − 0.017X2
2 − 0.014X3

2 0.826 0.823

NNET
OA 0.892 − 0.036X1 + 0.052X2 + 0.040X3 + 0.011X1 X2 + 0.010X1

X3 − 0.011X2X3 + 0.0039X1
2 − 0.020X2

2 − 0.014X3
2 0.935 0.934

GM 0.911 + 0.009X1 + 0.012X2 + 0.047X3 + 0.016X1X2 − 0.004
X1X3 − 0.00002X2X3 − 0.011X1

2 − 0.011X2
2 − 0.017X3

2 0.854 0.852

3.3. Effect of Training Set Size and Lead Time

Response contour plots of GM for each ML classifier (SVMr, NNET and RF) at each
level of lead time (DOY 168, 189, 210, 231, and 252) are presented in Figure 7. In general,
GM increases with the number of training sites, and as the season progresses until DOY 231
(19 August), while performance decreases on the subsequent date (DOY 252, 9 September).
The GM response variable exhibited similar trends for all ML classifiers. The highest GM
was observed near the 1:1 line when the number of training sites of tomato and ‘other crops’
were similar. In more detail, SVMr performed as the best ML classifier, achieving high
levels of accuracy with a smaller number of training sites and a shorter lead time than the
other two ML classifiers. It can be observed from OA contour plots (Figure 8) that SVMr
achieved higher levels of accuracy with a shorter lead time than the other two algorithms
(RF and NNET). However, the trend of OA as a response to the number of tomato and
‘other crops’ training sites is very different from that observed for GM. As observed from
the analysis of the t-value in Figure 6, the number of ‘other crops’ training sites is one of
the independent variables affecting the response variable (OA).

3.4. Optimization Using RSM

The independent variables X1, X2, and X3, were optimized for both response vari-
ables (OA and GM) and all ML classifiers by solving the quadratic regression equation.
Table 6 reports the conditions for which the response variables and the three ML classifiers
are maximized. The best combination of independent variables is slightly different for
each algorithm. In general, all ML classifiers reach their maximum accuracy at the DOY
230–240 interval (18–28 August). At this interval of lead time, SVMr achieves the highest
performance values, both in terms of OA and GM (0.95 and 0.97, respectively), with a
combination of 660 and 721 of the number of tomato training sites and 710 and 756 of the
number of ‘other crops’ training sites, respectively, for OA and GM.
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Table 6. Best condition for Overall Accuracy (OA) and G-Mean (GM) as a function of the number of
tomato training sites (X1), the number of other crop training sites (X2), and the lead time (X3).

ML
Classifier

Response
Variable Y X1 X2 X3

OA 0.952 660 710 236
SVMr GM 0.970 721 756 234

RF
OA 0.938 684 769 239
GM 0.951 832 854 236
OA 0.931 720 749 237

NNET GM 0.953 702 749 235

4. Discussion

This study evaluates how tomato crop mapping accuracy is affected by the lead time
and by the training set size, namely the number of ‘other crops’ training sites (majority
class) and the number of tomato training sites (minority class). A CCRD and an RSM were
applied to jointly analyse these effects and to fit them with a quadratic model. The analysis
was performed separately for both response variables (OA and GM) and for all the three
selected ML classifiers (SVMr, RF, and NNET). In general, the results confirmed that the
characteristics of the training set (e.g., proportions between classes, size, number of classes)
have a greater impact on performance than the choice of ML classifier [16,17,51].

4.1. Effect of Lead Time

The absolute t-values of the regression coefficients of these models enabled the impor-
tance of the three independent variables to be analysed. In particular, it was observed that
the lead time (X3) had the highest effect on the performance of crop classification for both
evaluation metrics (OA and GM) and all three ML classifiers (SVMr, RF, and NNET). In
mid-June (DOY 168), both evaluation metrics had the lowest values and then progressively
increased during the growing season (Figures 3 and 4). Low levels of early-season accuracy
were also obtained in previous work and were attributed to the high similarity of the
spectral responses of the crops to be classified [14,52]. When crops reach maturation, they
instead develop distinctive properties, providing ML classifiers with more information,
allowing for a more efficient discrimination between crops. In this way, the performances in-
crease dramatically, reaching the maximum of their accuracy when the differences between
vegetation indices are the most marked (i.e., mid-August, DOY 231).

In addition, for example, soybeans start their senescence at beginning of August,
making them easily distinguishable from processing tomato. With the advancement of
the season (i.e., 9 September, DOY 252), there is a general decline in performance (OA
and GM) for all three ML classifiers, likely due to the sudden removal of biomass and to
the scalarity of harvest dates for tomato [52,53]. In fact, the number of hectares harvested
in tomatoes begins to be significant (approximately 50% of the areas) causing substantial
intraclass variability, which results in reduced performance in tomato mapping. Similar
results were reported by Azar and colleagues [14], who studied the trend of OA over time
in a study area very close to the one used in the present work (Lombardy, Northern Italy).
They observed that OA increased by 14–20% from the beginning of the season (13 May)
to the 25 July, when it reached a plateau, and then decreased up to the end of the season
(12 December).

4.2. Effect of Training Set Size

The second most important variable in modelling the GM response variable after
the lead time (X3) for all classifiers was the interaction between X1 and X2 (number of
tomato training sites and number of ‘other crops’ training sites, respectively). This result is
consistent with what the authors of [51] reported, that the algorithms evaluated were more
sensitive to the proportion between classes rather than to the size of the training dataset.
In the present work, GM maximization was achieved when the number of training sites
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of tomato and ‘other crops’ were balanced (1:1 ratio). This contrasts with reports from
other studies, in which the authors argue that a 1:1 ratio between the two classes does not
optimize accuracy unless this 1:1 ratio approaches the actual proportion of the observed
territory [22,51,54]. However, the optimal proportion of the training set is often strongly
influenced by the distance in feature space between the classes analysed [15], the evaluation
metric one attempts to optimize, and the classes considered within the classification. In
general, in this study, GM increased as the overall size of the dataset increased, consistently
with what was reported in other studies [23,55]. Nevertheless, when extreme combinations
of the number of training sites of tomato or ‘other crops’ were employed, even with only
one of the two classes having few training sites (e.g., 100 training sites of tomato and
900 training sites of ‘other crops’ or vice versa), low levels of GM were achieved. This is due
to the algorithm performing better when trained to correctly classify the most abundant
class (either tomato or ‘other crops’) with a high number of training sites in the training
set, reducing errors in this sense and maximizing sensitivity (or specificity). On the other
hand, a ratio close to 1:1 balance sensitivity and sensibility, simultaneously, enables a high
GM to be reached. Furthermore, the OA response variable (evaluation metric) showed a
strong dependence on the ‘other crops’ class (majority class) [51]. This is due to the high
disproportion between tomato and other crop fields within the test dataset (1:15). The
high imbalance entails those high levels of OA are achieved already with a low number of
tomato training sites. However, as the number of tomato training sites increases, classifiers
will also be able to classify tomato fields correctly, and thus OA will increase as well.

4.3. Tomato Crop Mapping Optimization

Solving the quadratic model describing the response surface as a function of X1, X2,
and X3 enabled the identification of stationary points (local maxima) for each classifier
and for both evaluation metrics (Table 6). SVMr was the best ML classifier, confirming
previous studies [26,51]. SVMr achieved higher OA and GM (0.95 and 0.97, respectively)
using fewer training sites than the other ML classifiers (RF and NNET). According to [56],
the high performance of SVMr can be attributed to SVMr being less sensitive to intraclass
variation. This, in turn, can be attributed to the fact that SVMr only needs a subsample for
the computation of support vectors to define the separation hyperplane. Therefore, only
the samples that lie on the edge of the class distribution in the feature space are needed
to achieve high levels of crop mapping accuracy [56]. In addition, SVMr—as can be seen
from the contour plot in Figure 3—despite reaching its peak performance at 660 (X1) and
710 (X2) for OA and 721 (X1) and 756 (X2) for GM, reaches levels above 0.93 already with
much lower numbers of training sites. In general, all classifiers showed the highest levels of
accuracy between DOY 230–240, the peak performance having been reached in mid-August
(i.e., DOY 231), i.e., approximately 120–140 days after the nominal start of the growing
season, when the maximum vegetation indices are exceeded [57,58].

These results are supposed to be due to the fact that crops reach their maximum
difference in vegetation index trends in mid-August, while low accuracies in tomato
classification are due to vegetation index trends of the crops being in overlap (at the start
of the growing season) and influenced by crop senescence, biomass removal, and tomato
harvest (at the end of the growing season).

5. Conclusions

This study analysed the combined effects of training set size and lead time on the
performance of three ML classifiers (RF, SVMr, and NNET) in tomato classification, by
identifying the optimal trade-off for each of the classifiers. The performance exceeded
0.95 for both evaluation metrics analysed (OA and GM), showing that tomato mapping
provides reliable information that enables a range of field information such as phenology,
health status, and production potential to be derived to better optimize the management of
the tomato supply chain. The results show that lead time is the main factor for maximizing
classification performance according to both evaluation metrics analysed. The second most
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important factor (for GM) is the ratio of the number of tomato and ‘other crops’ training
sites, which maximizes the classification performance when close to 1. These findings
provide useful information for building and planning the tomato classification workflow,
and highlight the need to update the tomato crop mapping up to DOY 230–240 to achieve
maximum performance and to train the classifiers with a balanced number of training sites
between the two classes (tomato and ‘other crops’ classes). In addition, the use of SVMr
is recommended as this classifier reached its peak performance sooner in the season (low
lead time) than the other two. SVMr also needed fewer training sites, allowing for reduced
cost and time for ground truth collection through field expeditions.
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2 Scene (i.e., 32TNQ, 32TPQ and 32TQQ tiles); Table S1: Analysis of variance for response surface
quadratic model regarding G-Mean achieved with SVMr; Table S2: Analysis of variance for response
surface quadratic model regarding G-Mean achieved with RF; Table S3: Analysis of variance for
response surface quadratic model regarding G-Mean achieved with NNET; Table S4: Analysis of
variance for response surface quadratic model regarding Overall Accuracy achieved with SVMr;
Table S5: Analysis of variance for response surface quadratic model regarding Overall Accuracy
achieved with RF; Table S6: Analysis of variance for response surface quadratic model regarding
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