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Enhancing high‑fidelity nonlinear 
solver with reduced order model
Teeratorn Kadeethum 1, Daniel O’Malley 2, Francesco Ballarin 3, Ida Ang 4, Jan N. Fuhg 4, 
Nikolaos Bouklas 4, Vinicius L. S. Silva 5, Pablo Salinas 5, Claire E. Heaney 5, 
Christopher C. Pain 5, Sanghyun Lee 6, Hari S. Viswanathan 2 & Hongkyu Yoon 1*

We propose the use of reduced order modeling (ROM) to reduce the computational cost and improve 
the convergence rate of nonlinear solvers of full order models (FOM) for solving partial differential 
equations. In this study, a novel ROM-assisted approach is developed to improve the computational 
efficiency of FOM nonlinear solvers by using ROM’s prediction as an initial guess. We hypothesize 
that the nonlinear solver will take fewer steps to the converged solutions with an initial guess 
that is closer to the real solutions. To evaluate our approach, four physical problems with varying 
degrees of nonlinearity in flow and mechanics have been tested: Richards’ equation of water flow in 
heterogeneous porous media, a contact problem in a hyperelastic material, two-phase flow in layered 
porous media, and fracture propagation in a homogeneous material. Overall, our approach maintains 
the FOM’s accuracy while speeding up nonlinear solver by 18–73% (through suitable ROM-assisted 
FOMs). More importantly, the proximity of ROM’s prediction to the solution space leads to the 
improved convergence of FOMs that would have otherwise diverged with default initial guesses. We 
demonstrate that the ROM’s accuracy can impact the computational efficiency with more accurate 
ROM solutions, resulting in a better cost reduction. We also illustrate that this approach could be used 
in many FOM discretizations (e.g., finite volume, finite element, or a combination of those). Since 
our ROMs are data-driven and non-intrusive, the proposed procedure can easily lend itself to any 
nonlinear physics-based problem.

Many natural and engineering processes ranging from subsurface flow and mechanical physics, aerospace engi-
neering to material science are governed by partial differential equations (PDEs)1–6. The PDEs can be solved 
analytically for simple geometries and boundary conditions. For complex problems with non-homogeneous 
boundary and initial conditions, various geometries, and/or material properties, however, numerical approxima-
tions such as finite difference, finite volume, or finite element methods, referred to as full order model (FOM) 
hereafter, are primarily used to solve these governing equations7. Although the FOMs have been widely used, 
they require substantial computational resources, making them not practically suitable for handling large-scale 
inverse problems, optimization, or control, in which an extensive set of simulations must be explored8–10. Besides, 
as PDEs become nonlinear, the solver used to approximate usually takes considerable time to converge or, in the 
worst case, does not converge at all.

Reduced order modeling (ROM) is emerging as an alternative that provides a reasonable accuracy while 
requiring a much lower computational cost compared to the FOM9,11. In this work, ROM is suitable for a param-
eterized problem, where the problem is repeatedly evaluated with a set of parameters µ such as physical proper-
ties, geometric characteristics, or boundary conditions9,12. ROM is generally composed of two stages, the offline 
and online stages. The offline stage begins with the initialization of the set of µ . The FOM is then solved for 
each member of µ . Dimensional reduction techniques are used to compress the data from the previous step to 
produce linear or nonlinear reduced manifolds13 that span a reduced space of very low dimensionality but with 
enough accuracy for a reproduction of the FOM14,15. During the online or prediction phase, ROM can deliver 
an approximation of FOM for any desired value of µ by seeking a latent representation in the reduced manifolds 
and then reconstructing this proxy to the high-fidelity solution space.

There are generally two types of ROM; intrusive and non-intrusive ROM. An intrusive ROM often relies 
on proper orthogonal decomposition (POD) as a linear compression tool. However, nonlinear manifolds have 
recently been incorporated into intrusive ROMs (with specialized linearizations) for PDEs16 and generalized 
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eigenvalue problems17. The reconstruction of FOM from linear reduced manifolds is completed through either 
Galerkin or Petrov-Galerkin projection9,18,19. This approach has the primary advantage of preserving physical 
laws and requiring less training data. The non-intrusive (data-driven) ROM, on the other hand, can straight-
forwardly utilize both linear and nonlinear reduced manifolds constructed by POD or an autoencoder13,20–26 
interchangeably because of no modification to the ROM solution algorithm. The reconstruction operation also 
bypasses an expensive Galerkin or Petrov-Galerkin projection by using any regression model such as Gaussian 
process, radial basis function regression, or artificial neural networks to map between µ and reduced manifolds.

This study utilizes a non-intrusive ROM approach because it does not require any cumbersome modifica-
tions of FOM source codes27,28 and can be applied to any physics-based problems easily. Additionally, the non-
intrusive ROM proposed by Kadeethum et al.29,30 illustrates its capacity to handle high-dimensional input, which 
is extremely difficult for POD-based ROM due to its dependence on a high dimensional reduced basis (i.e., high 
Kolmogorov n-width)29. Another advantage of non-intrusive ROMs for coupled multiphysics processes (i.e., 
many primary variables) is to selectively focus on the quantities of interest31. For instance, if we are interested 
in the saturation field of the two-phase flow problems, we can build our non-intrusive ROM for the saturation 
field without necessarily constructing the ROM for pressure and velocity fields, which could save substantial 
computational resources.

Even though ROM can deliver an acceptable accuracy with a much lower computational cost, it might not be 
suitable for an application in which precision is paramount. In such cases, FOM is still preferable. As mentioned 
previously, FOM’s solver can take a significant amount of computational resources, especially if the system is 
nonlinear. Besides, a solver of nonlinear PDEs relies heavily on the initial guess, preconditioner, or solving 
algorithm32–35. With a non-optimal initial guess, the solver might not converge at all. Hence, using machine 
learning to assist this solver (i.e., by speed up or improved convergence) could alleviate this. Recently, the use 
of machine learning to enhance, accelerate, or assist FOMs’ performance has been proposed. Some examples 
include (1) improving the efficacy of FOMs’ solver36–39, (2) guiding dynamic mesh refinement40, or (3) fine-tuning 
stabilization parameters41,42. Besides, there have also been other endeavors to speed up or stabilize a nonlinear 
solver; for instance, using data-driven modeling to accelerate pressure projection inside multi-grid solver43, 
residual smoothing, which aims to smooth any sharp gradients of Newton iterative steps44, or Krylov subspace 
algorithm, which aims to uses a low-rank least-squares analysis to search for equilibrium state of all degrees of 
freedom45. This paper proposes initializing FOM’s nonlinear solver by using ROM’s prediction. We hypothesize 
that as ROM’s prediction becomes closer to the real or converged solution of FOM, the nonlinear solver would 
require fewer iterations to converge compared to a conventional method of choosing an initial guess, resulting 
in a lower computational cost. Hereafter, we will refer to this technique as ROM-assisted FOM. We note that this 
approach is in line with using optimization algorithms such as genetic algorithm46, Powell’s method47, or chaos 
optimization algorithm48 to locate an optimal location of an initial guess.

The rest of the manuscript is summarized as follows. In “Method” section, we outline our proposed framework 
as well as how to use different ROMs to handle different types of µ . We present our results through four main 
examples, which represent different physics as well as numerical methods (e.g., finite volume, finite element, or 
hybrid methods). Moreover, we also show that our proposed approach could handle both homogeneous and 
heterogeneous µ , followed by the discussion of the reduction of the computational cost with respect to differ-
ent ROMs. We also summarize our findings in “Conclusion”. In the supplementary information, we describe 
the governing equations, problem setting, and solution method for each main example in detail. Furthermore, 
details of all ROMs (both intrusive and non-intrusive approaches) used in this study are presented in the sup-
plementary information.

Methods
The summary of our proposed procedures is shown in Fig. 1. Here, we have a system of parameterized PDEs as

where F(·) corresponds to the system of time dependent PDEs, � ⊂ R
nd ( nd ∈ {1, 2, 3} ) denotes the computa-

tional domain, ∂�D and ∂�N denote the Dirichlet and Neumann boundaries, respectively. f D and f N are pre-
scribed values on ∂�D and ∂�N , respectively. X0 is an initial value of X . The time domain T = (0, τ ] is partitioned 
into Nt subintervals such that 0 =: t0 < t1 < · · · < tN := τ , We denote tn ∈ T as nth time-step, n ∈ [0,N] . X is 
the primary variable. The parameter domain P is discretized by means of M realizations, i.e., µ(1) , µ(2) , . . . , µ(M−1) , 
µ
(M) , and µ(i) represents ith member, where i ∈ [0,M] . In general, µ could correspond to physical properties, 

geometric characteristics, or boundary conditions, and µ could be either a homogeneous or heterogeneous vari-
able. Here, X is an exact solution of F(X; t,µ) , and Xh is an approximation of X obtained from FOM.

Since every nonlinear solver step could be considered computationally expensive, we aim to reduce this 
computational cost by using ROM prediction ( ̂Xh ) as an initial guess (ROM-assisted) for the nonlinear solver. 
Our rationale is as X̂h getting closer to Xh , the nonlinear solver will take less iterations to step toward converged 
solutions. Note that X̂h is an approximation of Xh delivered by ROM. We note that instead of using X̂h approxi-
mated from ROM, one could use X̂h obtained through a solution of a linearized version of nonlinear PDEs as an 
initial guess. This technique has been successfully applied to solve Navier-Stokes49 and magnetohydrodynamic50 
equations using a solution of Stokes equations as an initial guess.

(1)

F(t,µ) = 0 in �,

X = f D on ∂�D ,

−∇X · n = f N on ∂�N .

X = X0 in � at tn = 0,
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Our procedures are as follows: at every solving step of FOM with parameters tn,µ(i) for a transient problem 
or µ(i) for a steady-state problem, we will use a trained ROM-assisted or initial guess for the nonlinear solver 
(i.e., we use X̂h

(
tn,µ(i)

)
 or X̂h

(
µ
(i)
)
 as an initial guess for solving Xh

(
tn,µ(i)

)
 or Xh

(
µ
(i)
)
 ). We note that as a 

default one might use 0 as an initial guess for solving Xh

(
µ
(i)
)
 or Xh

(
tn−1,µ(i)

)
 as an initial guess for Xh

(
tn,µ(i)

)
 . 

We note that, for time-dependent problems, one could also use an extrapolation of a polynomial regression 
of Xh

(
tn−1,µ(i)

)
 , Xh

(
tn−2,µ(i)

)
 , · · · , Xh

(
t1,µ(i)

)
 , 0 as an initial guess51. To clarify, if one uses a polynomial 

regression of Xh

(
tn−1,µ(i)

)
 and Xh

(
tn−2,µ(i)

)
 , we have a linear extrapolation, and a polynomial regression of 

Xh

(
tn−1,µ(i)

)
 , Xh

(
tn−2,µ(i)

)
 , and Xh

(
tn−3,µ(i)

)
 would represent a quadratic extrapolation.

In this study, we generalize µ as either a homogeneous or heterogeneous parameter. For a heterogeneous 
parameter, the parameter is varied throughout a computational domain � , but it is not altered through time (i.e., 
µ(x, y) for a two-dimensional domain). The ROM used to tackle a heterogeneous µ is cGAN-ROM, which is 
discussed in Supplementary sec. 5.1. In short, the cGAN-ROM takes a heterogeneous µ as its input and delivers 
quantities of interest, X̂h . For a homogeneous parameter, the parameter is constant throughout a computational 
domain � as well as the time domain T . We use either BT-ROM (see Supplementary sec. 5.2) or BBT-ROM 
(see Supplementary sec. 5.3) to handle this type of µ . The main difference between BT-ROM and BBT-ROM 
is we apply a boosting algorithm to enhance the BT-ROM25 performance and help it combat imbalanced data 
set. We propose this model because the primary challenge for applying machine learning techniques to the 
physics-based problems with a point source (or Dirac delta distribution); for instance, contact problems or 
subsurface flow with wells is that there might be a very small part of a domain that is altered while the majority 
of it remains constant52,53. All ROMs used in this study are data-driven, or in other words, non-intrusive. Hence, 
the procedures proposed here, Fig. 1, are easily applied to other nonlinear physics-based problems, which rely 
on traditional nonlinear solvers (i.e., Picard’s or Newton’s iteration).

Results
Data generation and model selection.  Our proposed approach is illustrated in the following sections 
through four types of physics-based nonlinear problems. We have summarized some key points, including our 
findings, in Table 1. We will discuss each point in the table in detail throughout the subsequent sections. We want 
to emphasize that, throughout this study, we generalize µ as either a homogeneous or heterogeneous parameter. 
When heterogeneous (Example 1), the parameters are a function of space, i.e., µ(x, y) for a two-dimensional 
domain. When homogeneous (Examples 2-4), the parameter µ does not depend on space. For all four exam-
ples, the parameters are time-independent, i.e., they are not altered as time progresses. The first problem is 
the steady-state Richards’ equation54,55 with a heterogeneous material ( κ(x, y) ), which represents a water flow 
in unsaturated soils (Supplementary sec. 1). This equation is well-known for a nonlinear profile of the water 
head due to the relative permeability coefficient. With heterogeneous permeability fields, nonlinearity becomes 
a multi-dimensional problem. In this case, we employ reduced order modeling using conditional generative 
adversarial networks (cGAN-ROM) (Supplementary sec. 5.1) because it is suitable to handle high-dimensional 

Figure 1.   FOM nonlinear solver with ROM assisted procedures. We note that X is an exact solution, Xh is 
quantities of interest obtaining from FOM, and X̂h is an approximation of Xh obtaining from ROM. µ is a set of 
parameterized parameters, which could be homogeneous or heterogeneous parameter.
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(i.e., spatially distributed) µ . The second problem is a contact problem over a hyperelastic material, which has a 
wide range of applications from subsurface energy storage to indentation problems in biomedical and material 
engineering (Supplementary sec. 2)56–58. The nonlinearity of this problem arises from two parts. The first one 
is caused by the material property that allows the large deformation problem. The second part is due to enforc-
ing contact constraints. We test reduced order modeling with Barlow Twins (BT-ROM) (Supplementary sec. 
5.2), reduced order modeling with boosting Barlow Twins (BBT-ROM) (Supplementary sec. 5.3), and intrusive 
reduced order modeling through Galerkin projection (in-ROM) (Supplementary sec. 5.4) because we have a 
homogeneous µ.

The third problem is two-phase flow in a layered porous material (Supplementary sec. 3), which is applicable 
to subsurface energy recovery, environmental remediation, or CO2 sequestration59–61. Example 3 is a time-
dependent problem with a homogeneous µ in contrast to steady-state problems in the first and the second 
examples. Example 3 is a well-known nonlinear PDE; the nonlinearity is caused by relative permeability, capillary 
pressure, and an interplay between pressure and saturation. We only use BBT-ROM (Supplementary sec. 5.3) 
because of its superior performance shown in Example 2. The last problem, Example 4, shows our framework 
applicability in enhancing fracture propagation modeling through the phase-field approach62,63. This problem 
can be applied to a material and environmental science64,65. Even though we are working with a linear elasticity 
scheme, the nonlinearity is caused by the energy constraint used to mimic fracture propagation. We represent 
the discontinuity feature with the continuous phase field function. Since we have a time-dependent problem with 
a homogeneous µ as in Example 3, we again apply BBT-ROM (Supplementary sec. 5.3). We have summarized 
each example’s nonlinear solver and how we initialize them in Table 2.

Example 1: Richards’ equation with heterogeneous material.  Example 1 focuses on steady-state 
Richards’ equation with a heterogeneous material; see Supplementary sec. 1 for more details of the problem 
statement and governing equations. We aim to study the impact of ROM initialization (ROM-assisted) on non-
linear solver iterations. The numerical solution of Richards’ equation is challenging due to its nonlinearity as 
well as complexity in relative conductivity and capillary pressure relations54. To introduce further complexities, 
a heterogeneity in subsurface structures could cause a sharp discontinuity resulting in difficulties in solving such 
a nonlinear system. Here, we use a data-driven framework, cGAN-ROM—Supplementary sec. 5.129, to speed up 
a nonlinear solver used for solving Richards’ equation.

We solve the Richards’ equation in a dimensionless setting, see Supplementary sec. 1. The parameters µ in 
this example are the heterogeneous conductivity fields κ . The κ is generated using Normal prior with mean log(κ) 

Table 1.   Summary of main information for each example. Example 1 has heterogeneous parameters, and its 
FOM relies on structured grids - DOF = [DOFx , DOFy] . Examples 2, 3, and 4 have homogeneous parameters, 
and their FOMs use unstructured meshes. Speed up is calculated by the difference between a number of 
nonlinear iterations using ROM-assisted and default initialization, then divided by a number of nonlinear 
iterations of default initialization. neg. represents a case where using ROM-assisted causes an incremental 
cost (i.e., negative affect), default init. is shorted for default initialization, and × represents not applicable. The 
prediction cost of in-ROM is much higher than the rest, which also affects the actual speed up. We discuss 
this effect on the actual cost saving in Example 2. Since we observe a better as well as stable performance of 
BBT-ROM in Example 2, we only apply BBT-ROM to Examples 3 and 4. For steady-state problems (Examples 
1 and 2), we have a training set of Mtrain . For transient problems (Examples 3 and 4),we have a training set of 
NtMtrain . The same goes with validation and testing sets.

Example 1 2.1 2.2 2.3 3 4

Degrees of freedom [128× 128] 3993 3993 70602 2548 5823

Parameters µ κ(x, y) ν, InD InR, InD x, y t, κ top t, F

Training set ( Mtrain) 9000 1600 1600 1600 13600 (NtMtrain) 4509 (NtMtrain)

Validation set ( Mvalidation) 500 5% of Mtrain 5% Mtrain 5% Mtrain 5% NtMtrain 5% NtMtrain

Testing set ( Mtest) 500 100 100 100 1900 ( NtMtest) 1002 ( NtMtest)

Training time (h)

cGAN-ROM 4.00 × × × × ×

BT-ROM × 0.67 0.67 1.0 × ×

BBT-ROM × 0.50 0.50 0.92 0.75 0.45

in-ROM × 1.00 1.00 1.83 × ×

Number of nonlinear itera-
tions (–)

Default init. 15.04 6.10 6.30 6.16 934.68 6986.00

cGAN-ROM 4.12 × × × × ×

BT-ROM × neg. neg. 5.40 × ×

BBT-ROM × 2.62 3.04 4.76 758.57 3412.00

in-ROM × 1.09 1.08 neg. × ×

Speed up (%)

cGAN-ROM 72.63 × × × × ×

BT-ROM × neg. neg. 12.33 × ×

BBT-ROM × 57.05 51.75 22.72 18.84 49.00

in-ROM × 82.12 82.86 neg. × ×
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of 0.0, the log(κ) standard deviation of 0.25, and the correlation length is 10. The state variable or output here is 
pressure head, which represents a height of a water column inside a well. The nonlinear discretized equations are 
solved using the “nlsolve” function from a standard Julia nonlinear solver package66 with the default settings (i.e., 
convergence tolerance of 1× 10−8 ), which uses a Newton iteration with a trust region. We employ a training set 
Mtrain = 9000 , validation set Mvalidation = 500 , and test set Mtest = 500 . Our results are presented in Fig. 2. In 
this figure, (a) and (b) are samples of test dataset results (randomly selected 2 out of 500 test cases). From these 
two figures we can see that, our model can provide reasonable approximations of the FOM results. The point-
wise difference between solutions produced by the FOM and ROM (further referred to as DIFF) is calculated by

Here, Xh is a FOM solution, and X̂h is an approximation of Xh produced by the ROM. Judging from Fig. 2a,b, 
the DIFF values are relatively small.

This FOM employs a 128× 128 structured mesh, therefore the number of degrees of freedom is 16,384. A 
number of nonlinear iterations are presented in Fig. 2d. We summarize our finding in Table 1. On average, using 
the FOM’s default initialization, i.e. zero-vector initialization, the nonlinear solver takes 15.04 iterations, while 
the nonlinear solver with cGAN-ROM-assisted takes 4.12 iterations. These comparisons illustrate that using the 
cGAN-ROM-assisted decreases a number of nonlinear iterations (speed up) by 72.63%. For a wall time com-
parison, for each test case using Intel(R) Core(TM) i9-9960X, solving a steady-state Richards’ equation using 
FOM default initialization requires about 3.89 s while using cGAN-ROM-assisted each test case takes, on aver-
age, approximately 2.06 s. We note that each cGAN-ROM prediction takes only 0.001 s, which is insignificant 
compared to the FOM solver. Hence, the cGAN-ROM-assisted speeds up a calculation by 46.98%. The training 
time of the cGAN-ROM through NVIDIA Quadro RTX 5000 Mobile Max-Q is about 4 h (650,000 steps).

The relative error results are presented in Fig. 2c for the validation set and Fig. 2e for the test set. The relative 
error is calculated by

where || · || denotes the L2 norm. From Fig. 2c in general, we observe that as the training progresses (i.e., larger 
steps), the relative error is reduced. We picked the model at the 650,000th step for the test set, as it performs the 
best (average relative error of 0.13%) against the validation set. From Fig. 2e, the model delivers approximately 
the same level of accuracy as it performs for the validation set (i.e., the average relative error is about 0.13%).

Example 2: Contact problems with hyperelastic material.  Example 2 focuses on steady-state con-
tact problems, where a rigid spherical indenter achieves frictionless contact on a hyperelastic domain. Details 
of problem statement and governing equation can be found in Supplementary sec. 2. Similar to Example 1, 
we aim to investigate an effect of ROM-assisted on nonlinear solver iterations. However, unlike the previous 
example, the media is homogeneous, but the parameters or µ could take their values in a certain range. We use 
the model developed by Kadeethum et  al.25, see Supplementary sec. 5.2, and its improved version discussed 
in Supplementary sec. 5.3 as our ROM. Throughout this example, we have three test scenarios corresponding 
to using (1) Poisson’s ratio and indentation depth as parameters—µ = [ν, InD] (see Fig. 3a), (2) indentation 
radius and indentation depth as parameters - µ = [InR, InD] (see Fig.  3b), and (3) indentation location is a 
parameter - µ = [x, y] (see Fig. 3c). For all three scenarios, we have a training set Mtrain = 1600 , validation set 
Mvalidation = 5% of Mtrain (randomly selected—see Supplementary sec. 5.2 and Supplementary sec. 5.3 for more 
detail), and test set Mtest = 100.

Throughout Example 2, we will compare a number of nonlinear iterations used to solve each test case (i.e., 
different values of µ ). We illustrate the impacts of using ROM to initialize the nonlinear solver (i.e., initial guess). 
We use three types of ROMs; (1) BT-ROM—see Supplementary sec. 5.2, (2) BBT-ROM—see Supplementary 
sec. 5.3, and (3) in-ROM—see Supplementary sec. 5.4. For BBT-ROM, we use Nen = 5 and a sub-sample of a 
quarter of the total training data. We use PETSc SNES as a nonlinear solver and MUMPS as a linear solver67, 
and set absolute and relative tolerances of 1× 10−6 and 1× 10−16 , respectively. We utilize a backtracking line 
search with slope descent parameter of 1× 10−4 , initial step length of 1.0, and quadratic order of the approxima-
tion. To present our findings, we focus on two quantities: (1) a number of nonlinear iterations in which we use 
zero-vector initialization, or FOM default initialization, as a base case; and subsequently, compare the base case 

(2)DIFF(X) =
∣∣∣Xh − X̂h

∣∣∣.

(3)relative error =
||Xh − X̂h||

||Xh||
,

Table 2.   Summary of each example’s nonlinear solver scheme and initialization.

Example 1 Example 2 Example 3 Example 4

Nonlinear solver Newton iteration PETSc SNES Picard iteration Newton iteration

Linear solver Direct solver MUMPS GMRES with multigrid Direct solver

Time characteristic Steady-state Steady-state Transient Transient

Default initialization 0 0 Xh

(
tn−1,µ(i)

)
Xh

(
tn−1,µ(i)

)

ROM-assisted X̂h

(
µ
(i)
)

X̂h

(
µ
(i)
)

X̂h

(
tn ,µ(i)

)
X̂h

(
tn ,µ(i)

)
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Figure 2.   Example 1—results: (a,b) are samples of test case results. We have an heterogeneous conductivity as 
a parameter µ . The FOM and ROM results shown here are pressure head. Both conductivity field and pressure 
head shown here are dimensionless (see Supplementary sec. 1). (c) relative error results of validation set as a 
function of training steps—we note that each step refers to each time we perform back-propagation, including 
updating both generator and discriminator’s parameters. The blue text represents a mean value. (d) Number 
of nonlinear iterations: using FOM default initialization, zero-vector initialization, (black square) and using 
cGAN-ROM-assisted (green cross) and (e) relative error of test dataset (red dot). The relative error (see Eq. 3) is 
calculated between FOM with default initialization (black square) and cGAN-ROM (green cross).



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20229  | https://doi.org/10.1038/s41598-022-22407-6

www.nature.com/scientificreports/

Figure 3.   Example 2 - results: samples of test dataset results where (a) ν and InD are parameters, (b) InR and InD 
are parameters, and (c) indentation location ( 

(
x, y

)
 ) is a parameter. (d) Number of nonlinear iterations and (e) 

relative error of test dataset results where ν and InD are parameters, (f) number of nonlinear iterations and (g) 
relative error of test dataset results where InR and InD are parameters, and (h) number of nonlinear iterations 
and (i) relative error of test dataset results where indentation location ( 

(
x, y

)
 ) is a parameter. The nonlinear 

solver iteration using default FOM initialization, zero-vector initialization, is shown with a black square, 
BT-ROM-assisted is shown with a red dot, BBT-ROM-assisted is illustrated with a green cross, and in-ROM-
assisted is presented with a blue plus. The relative error (see Eq. 3) is calculated between each ROM (BT-ROM 
(red dot), BBT-ROM (green cross), or in-ROM (blue plus) and FOM (black square).
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with a number of nonlinear iterations using predictions from BT-ROM-, BBT-ROM-, or in-ROM-assisted FOM 
and (2) relative error calculated by Eq. (3) (i.e., how accurate each ROM model is at mimicking FOM results).

Example 2.1: Young’s modulus and indentation depth are parameters.  We use µ = [ν, InD] ∈ (0.1, 0.4)× (0.1, 0.3) , 
and the details of the model settings can be found in Supplementary sec. 2.1. An unstructured mesh is used for 
this FOM, with 3993 degrees of freedom, which means there are 1331 degrees of freedom for each displacement 
in x-, y-, and z-directions. One example of the test dataset is presented in Fig. 3a. A number of nonlinear itera-
tions are presented in Fig. 3d. For results of a number of nonlinear iterations, on average, using FOM default 
initialization, zero-vector initialization, the nonlinear solver takes 6.10 iterations. Using BT-ROM-, BBT-ROM-, 
and in-ROM-assisted, the nonlinear solver takes 7.93, 2.62, and 1.09, respectively. These results imply that using 
BT-ROM-assisted increases the computational burden to the system by 30.00%. However, using BBT-ROM- or 
in-ROM-assisted, we achieve speed up by 57.05% or 82.12%, respectively.

We note that one nonlinear iteration takes approximately 10 s (61 s for 6.10 iterations) computed using 
Intel(R) Core(TM) i7-9750H CPU. As a result, the BBT-ROM model saves approximately 35 s per FOM evalua-
tion, and the in-ROM saves approximately 50 s per FOM evaluation. The prediction time of the BBT-ROM model 
takes about 0.001 s, while the in-ROM takes around 8 s (both using the same Intel(R) Core(TM) i7-9750H CPU). 
Hence, the actual wall time saving for the in-ROM is 42 s. The training time of the BBT-ROM through NVIDIA 
Quadro RTX 5000 Mobile Max-Q is about 30 min. The training time of the in-ROM using Intel(R) Core(TM) 
i7-9750H CPU is about 60 min. We disregard discussion of the BT-ROM because it increases the computational 
burden (i.e., using BT-ROM-assisted, the nonlinear solver takes more iterations to coverage).

The relative error results are presented in Fig. 3e. We observe that the error of the BT-ROM is significantly 
higher than those of the BBT-ROM or in-ROM. This could be explained by the fact that the primary challenge for 
applying machine learning techniques to the contact problem is how to deal with imbalanced training data52,53. 
To elaborate, as we have only one point of contact, there is only a small area where the deformation occurs while 
most of the domain remains undeformed. In BBT-ROM we solve this problem by applying a boosting technique 
to the BT-ROM (see Supplementary sec. 5.3). Consequently, the relative error of the BBT-ROM is one to two 
orders of magnitude less than that of the BT-ROM. The in-ROM performs the best in this setting with around 
0.1% relative error.

We observe correlations between a number of nonlinear iterations and relative error. As the accuracy of the 
initial guess increases, a number of nonlinear iterations decrease. This situation happens because as the initial 
guess is closer to an actual solution (FOM solution), fewer iterations of the nonlinear solver are required to 
reach convergence.

Example 2.2: Indentation radius and indentation depth are parameters.  Next, we use µ = [InR, InD] ∈ (0.15, 0.4)
×(0.1, 0.4) , and the details of model settings could be found in Supplementary sec. 2.2. We present one of the test 
dataset in Fig. 3b and a number of nonlinear iterations used by the nonlinear solver in Fig. 3f. From Fig. 3f, on 
average, using FOM default initialization, the solver takes 6.30 iterations. Using BT-ROM-, BBT-ROM-, and in-
ROM-assisted, the solver takes 7.52, 3.04, and 1.08 iterations, respectively. The trend of the number of iterations is 
in line with the previous example, i.e., using BT-ROM-assisted increases the computational burden to the system by 
19.37%, while using BBT-ROM- or in-ROM-assisted achieves speed up by 51.75% or 82.86%.

Similarly to the previous example (the number of degrees of freedom is identical - the total degrees of freedom 
for this FOM, an unstructured mesh, is 3993, which means 1331 for each displacement in x-, y-, and z-direc-
tions.), one nonlinear iteration takes approximately 10 s (63 s for 6.30 iterations) computed through Intel(R) 
Core(TM) i7-9750H CPU. Consequently, the BBT-ROM model saves us around 33 s per FOM evaluation, and 
the in-ROM saves us approximately 52 s per FOM evaluation. The prediction time of the BBT-ROM model takes 
about 0.001 s, while the in-ROM takes around 8 s (both using the same Intel(R) Core(TM) i7-9750H CPU). 
Hence, the actual wall time saving for the in-ROM is 44 s. Again, the training time of the BBT-ROM through 
NVIDIA Quadro RTX 5000 Mobile Max-Q is about 30 min. The training time of the in-ROM using Intel(R) 
Core(TM) i7-9750H CPU is about 60 min.

In line with the previous example, we observe correlations between nonlinear iterations and relative error. To 
elaborate, a ROM that provides a more accurate prediction can assist in reducing a number of nonlinear itera-
tions (i.e., as an initial guess is closer to a FOM solution, the less iteration the nonlinear solver requires to take 
to converge.). The relative error results are presented in Fig. 3g. We observe that the in-ROM delivers the most 
accurate predictions (a relative error on average of 0.1%), the BBT-ROM comes in second (a relative error on 
average of 6.0%), and the BT-ROM has the worst accuracy (a relative error on average of 32.07%). The challenge 
of contact problems, similar to the previous one, also stems from the fact that we have only a small area of contact.

Example 2.3: Indentation location is a parameter.  Lastly, we use the indentation location as our parameter, 
µ = [x, y] ∈ (−0.3, 0.3)× (−0.3, 0.3) . The details of this setting are presented in Supplementary sec. 2.3. The 
number of degrees of freedom for this FOM is 70602, an unstructured mesh, which means 23,534 for each 
displacement in x-, y-, and z-directions. We present one of the test dataset in Fig. 3c and a number of nonlin-
ear iterations in Fig. 3h. On average, using zero-vector initialization, the nonlinear solver takes 6.16 iterations, 
using BT-ROM-, BBT-ROM-, and in-ROM-assisted, the solver takes 5.4, 4.76, and 6.22 iterations, respectively. 
These results are different from the previous two settings, as using in-ROM, the computational cost is increased 
by 0.97%. BT-ROM achieves speed up by 12.33%, and BBT-ROM decreases the computational cost by 22.72%.

This setting has many more degrees of freedom than the previous two settings resulting in one nonlinear 
iteration computed through Intel(R) Core(TM) i7-9750H CPU taking approximately 35 s (or 215.6 s for 6.16 
iterations). In short, using the in-ROM-assisted takes around 2.10 s more than the FOM default initialization 
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(zero-vector initialization). In contrast, compared with the zero-vector initialization, using the BT-ROM, the 
solver takes 26.60 s less, and using the BBT-ROM, the nonlinear solver takes 49.00 s less. The prediction time 
of the BT-ROM and BBT-ROM models is about 0.001 s (similar to two previous examples). The BT-ROM and 
BBT-ROM training times are approximately 60 and 55 min computed using NVIDIA Quadro RTX 5000 Mobile 
Max-Q, respectively. It is higher than the two previous examples because the number of degrees of freedom is 
substantially larger. The in-ROM takes 11 s per prediction resulting in the actual wall time incremental of 13.10 
s. The training time of the in-ROM using Intel(R) Core(TM) i7-9750H CPU is about 110 min.

Similar to two previous settings, there are correlations between a number of nonlinear iterations and relative 
error, see Fig. 3h-i. To elaborate, we observe that the higher accuracy ROMs provide fewer nonlinear iterations 
(i.e., the nonlinear solver required to converge). As an initial guess is closer to a FOM solution, it is easier for 
the nonlinear solver to step toward converged solutions. The relative error results of this setting are presented 
in Fig. 3i. We observe that the BBT-ROM offers the most accurate prediction and has a relative error on aver-
age of 17.17%. The BT-ROM comes the second and has a relative error on average of 33.67%. In contrast to 
the two previous settings, the in-ROM has the lowest accuracy with a relative error on average of 38.37%. We 
speculate that as the in-ROM relies on POD (linear manifolds), it fails to capture this setting as the problem lies 
within nonlinear manifolds. Please refer to Kadeethum et al.13,25 for detailed discussions on linear and nonlinear 
manifolds. Furthermore, the BT models (BT-ROM and BBT-ROM) outperformed the in-ROM. In line with two 
previous settings, we still have only a small area of contact (imbalanced data problem), resulting in BBT-ROM 
outperforming BT-ROM.

Example 3: Two‑phase flow in layered porous material.  Throughout Example 3, we focus on a 
time-dependent two-phase flow in layered porous media. The details of the problem statement and governing 
equation can be found in Supplementary sec. 3. In this example, we have two state variables, pressure ( ph ) 
and saturation ( sh ), and both variables have the same number of degrees of freedom of 2548. Similar to Exam-
ple 2, our µ is homogeneous and takes values in a certain range. Hence, BT-ROM (Supplementary sec. 5.2) 
and BBT-ROM (Supplementary sec. 5.3) are suitable in this case. As we have illustrated in Example 2, BBT-
ROM performs better than BT-ROM (as well as more stably than in-ROM (Supplementary sec. 5.4)), we use 
only BBT-ROM with Nen = 10 and sub-sample of a quarter of the total training data in this example. We use 
µ = [t, κ top] ∈ (0.0, 100.0)× (1.08× 10−11, 9.97× 10−10)] . Note that our model treats the time domain as one 
of the parameters13,25. We fix the permeability of the bottom layer and set the porosity in the top and bottom 
layers to 0.1 and 0.2, respectively. We inject one phase on the left and produce both phases on the right by 
imposing a fixed pressure on both boundaries. The top and bottom boundaries are closed to flow. The viscosity 
and density of the injected and displaced phases are ( 1.0× 10−3 Pa s , 1.0× 103 kg/m3 ) and ( 5.0× 10−3 Pa s , 
7.0× 102 kg/m3 ), respectively. It is worth mentioning that for defining µ in this example, we use the perme-
ability divided by the viscosity of the injected phase. We have a training set Mtrain = 136 resulting in NtMtrain = 
13,600. To elaborate, we have a training set of Mtrain generated by choosing 136 values of parameters and, for 
each parameter set, we collect solutions for 100 timestamps. We select a validation set NtMvalidation = 5% of 
NtMtrain (randomly selected, see Supplementary sec. 5.3 for more detail), and test set Mtest = 19 resulting in 
NtMtest = 1900 . In contrast to the two previous examples, there are 20 cases that FOMs do not converge using a 
default initialization ( Xh

(
tn−1,µ(i)

)
 as an initial guess for Xh

(
tn,µ(i)

)
).

Our results are presented in Fig. 4. We show one of our test dataset where the FOMs converge in Fig. 4a. The 
relative errors for sh and ph are illustrated in Fig. 4b,c, respectively. From these figures, we observe that the relative 
error of sh field, is 0.79% (average), 0.09% (minimum), and 30.03 % (maximum). We note that the query—a pair 
of tn,µ(i)—which has a relative error that exceeds 5%, is only 0.46% of the total queries ( NtMtest = 1900 ). The 
relative error of ph field is much lower than that of the sh field. The relative error of ph field, is 0.17% (average), 
0.03% (minimum), and 2.89% (maximum).

A number of nonlinear iterations (for parameters for which the FOMs converge) are presented in Fig. 4d. 
We note that a number of nonlinear iterations here are an average over all t - 0 =: t0 < t1 < · · · < tN := τ for 
each µ(i) . The default initialization, Xh

(
tn−1,µ(i)

)
 as an initial guess for Xh

(
tn,µ(i)

)
 , takes 934.68 iterations on 

average. Using BBT-ROM to initialize ph , the average number of nonlinear iterations is 916.41. With ŝh initiali-
zation, the average number of nonlinear iterations is 758.57. Using both ŝh and p̂h initialization, a number of 
nonlinear iterations are 770.91 on average. These results imply that using BBT-ROM-assisted achieves speed up 
by 1.95%, 18.84%, or 17.52% for p̂h initialization, ŝh initialization, or both ŝh and p̂h initialization, respectively. 
In terms of wall time, each nonlinear iteration takes 0.2 s using AMD EPYC 7452. As a result, using p̂h initializa-
tion p̂h initialization, ŝh initialization, or both ŝh and p̂h initialization saves 3.65, 35.22, or 32.75 s, respectively. 
The prediction of BBT-ROM takes about 0.001 s per inquiry, which means 0.01 s for 100 timestamps. This cost 
is much cheaper compared to the FOM solver itself.

We also present one additional benefit of using BBT-ROM-assisted, namely, cases that diverged using default 
initialization now converge—see Fig. 4e. Using BBT-ROM to initialize ph sees 16 out of 20 cases (80%) converging 
that initially diverged with default initialization. The average number of nonlinear iterations is 1051.23. Using 
BBT-ROM to initialize sh sees 18 out of 20 of those cases (90%) now converging, and the average number of 
nonlinear iterations is 846.57. Using BBT-ROM to initialize sh and ph sees all the cases (100%) converging with 
an average number of nonlinear iterations of 829.39. From these results, by using BBT-ROM-assisted, one can 
reduce computational cost as well as improve convergence. Again, each nonlinear iteration takes 0.2 s calculat-
ing by AMD EPYC 7452. The BBT-ROM training time take approximately 45 min computed using NVIDIA 
Quadro RTX 5000 Mobile Max-Q.
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Example 4: Phase‑field approach for fracture propagation.  We utilize a time-dependent phase-
field modeling to capture fracture propagation for homogeneous material. The details of the problem statement 
and the governing equation can be found in Supplementary sec. 4. In the computational domain as shown in 
Supplementary fig. 7a, the phase-field fracture initiates from the center of the domain and propagates to the left 
end of the boundary. The fracture propagation is due to the quasi-static tension force boundary condition from 
the top of the boundary. The fracture propagation speed and the initiation of the fracture time depend on the 

Figure 4.   Example 3—results: (a) samples of test dataset results of κ top = 2.42× 10−10 m2/Pa s at 50 days, 
(b) pressure ( ph ), (c) saturation ( sh)—relative error (see Eq. 3) of test dataset results, (d) number of nonlinear 
iterations for cases that the FOMs converge and we use BBT-ROM to speed up, and (e) number of nonlinear 
iterations for cases that the FOMs do not converge and we use BBT-ROM to improve the convergence. The 
nonlinear solver iteration using default FOM initialization, Xh

(
tn−1,µ(i)

)
 as an initial guess for Xh

(
tn,µ(i)

)
 , 

is shown with a black square, using BBT-ROM pressure initialization is shown with a red dot, using BBT-
ROM saturation initialization is illustrated with a green cross, using BBT-ROM saturation and pressure 
initialization is presented with a blue plus. A number of nonlinear iterations here are an average over all t - 
0 =: t0 < t1 < · · · < tN := τ for each µ(i) . The relative error (see Eq. 3) is calculated between FOM and BBT-
ROM for each µ - κ top in this case.
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given tension force. In this example, we have two state variables, displacement ( uh ) and phase field ( pfh ). Each 
has a degree of freedom of 11,646 and 5823, respectively. Our µ is force exert to the domain ( F ) and takes values 
in a certain range µ = [t, F] ∈ (0.00005, 0.025)× (0.1, 2.0)] . We here use only BBT-ROM (Supplementary sec. 
5.3) because µ is homogeneous, similar to Examples 2 and 3, and we have shown its performance in Example 2. 
Again, we use Nen = 10 and sub-sample of a quarter of the total training data in this example.

Here, Mtrain = 9 resulting in NtMtrain = 4509 . To elaborate, we have a training set of Mtrain generated by 
choosing 9 values of parameters and, for each parameter set, we collect solutions for 501 timestamps. We select a 
validation set NtMvalidation = 5% of NtMtrain (randomly selected, see Supplementary sec. 5.3 for more detail), and 
test set Mtest = 2 resulting in NtMtest = 1002 . We note that we use only p̂f h as an initial guess of pfh and leave uh 
to a default initialization. This shows another advantage of non-intrusive ROMs for coupled multiphysical pro-
cesses in which we can selectively focus only on the quantities of interest ( pfh in this case or Xh in a general sense) 
without necessarily carrying on the construction of the ROM for uh . We note here that, similar to all previous 
examples, the default initialization represents cases where we use Xh

(
tn−1,µ(i)

)
 as an initial guess for Xh

(
tn,µ(i)

)
 . 

The ROM (BBT-ROM in this case) assists FOM by using X̂h

(
tn,µ(i)

)
 as an initial guess for Xh

(
tn,µ(i)

)
.

Example 4’s results are presented in Fig. 5. One of the test dataset is shown in Fig. 5a, F = 0.4 at t = 0.025 s. 
The relative error (see Eq. 3) for p̂f h as a function of time is shown in Fig. 5b. When the crack is propagated, the 
relative errors are substantially higher, as high as 60%, than those observed in Examples 2 and 3. In contrast, the 
errors are significantly low (less than 5%) before and after the fracture grows. The nonlinear iterations for two test 
cases as a function of time are shown in Fig. 5c. We observe that from the beginning of the simulation to right 
before the fracture propagates, using ROM to assist FOM’s solver has a negative effect as a number of nonlinear 
iterations increase. However, as the fracture starts to propagate, ROM could assist in reducing the nonlinear 
iterations significantly. Toward the late stage of the simulation, this assistance becomes even more pronounced 

Figure 5.   Example 4—results: (a) samples of test dataset results of F = 0.4 N at 0.025 s, (b) relative error (see 
Eq. 3) of test dataset results, and (c) number of nonlinear iterations for test cases as a function of time with and 
without ROM assist. Again, the nonlinear solver iteration using default FOM initialization, Xh

(
tn−1,µ(i)

)
 as 

an initial guess for Xh

(
tn,µ(i)

)
 , is shown with a black solid line and using BBT-ROM pressure initialization is 

shown with a green dashed line. The relative error (see Eq. 3) is calculated between FOM and BBT-ROM for 
each µ—F as a function of time.
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as the nonlinear iterations through default initialization grow larger while using ROM-assisted remains almost 
similar to the trend before the fracture starts to propagate.

The cumulative nonlinear iterations for F = 0.4 are 5615 and 3505 for default initialization and ROM-assisted, 
respectively. This results in a speed up of 38%. For F = 0.6 , the cumulative nonlinear iterations are 8357 and 3319 
for default initialization and ROM-assisted, respectively, resulting in a speed up of 61%. These results illustrate 
that even though the ROM fails to mimic the phase-field modeling for fracture propagation (the relative error is 
as high as 60%), using ROM-assisted could still reduce the computational cost as much as 61%. In terms of wall 
time, each nonlinear iteration takes approximately 0.2 s using a single Intel(R) Xeon(R) CPU E5-2680 v3@2.50 
GHz. As a result, using p̂f h initialization saves approximately 420 s in the nonlinear iterations. The prediction of 
BBT-ROM takes about 0.001 s per inquiry, which means 0.501 s for 501 timestamps. This cost is much cheaper 
compared to the FOM solver itself. The BBT-ROM training time takes approximately 30 min using NVIDIA 
Quadro RTX 5000 Mobile Max-Q.

One additional point for this example is that most of the computational resources are allocated to states 
before and after fracture propagates for this type of problem. However, what we actually are interested in is (1) 
when the fracture starts to propagate and (2) when it ends. Hence, we believe that, for the future study, one can 
build ROM to approximate the fracture dynamics period (start and stop) and simply neglect the building up of 
energy (before the fracture propagates) period. This way, we can even further save our computational resources.

Discussion
Even though ROM can deliver a reasonable accuracy at a much lower computational cost, it might not be suitable 
for an application where precision is paramount. In this case, FOM or a high-fidelity model is still preferable. 
FOM, however, requires a substantial amount of computational resources, especially in a nonlinear system. 
Besides, it is not trivial to solve this nonlinear system since, with a non-optimal initial guess or solving algorithm, 
your solver might not converge at all. Hence, this work proposes a novel approach to achieve the accuracy of 
FOM performance and improve the convergence of FOM solutions with computational efficiency.

We have illustrated the use of a low-fidelity model (or ROM) as an initial guess (ROM-assisted) to a FOM’s 
nonlinear solver, which can achieve speed up from 18 to 73% (cGAN-ROM for Example 1 and BBT-ROM for 
the rest), see Table 1. Moreover, this proposed procedure achieves convergence in all cases that diverge because 
of the default initial guess (see Example 3), which is a substantial benefit. Since our ROMs are data-driven or 
non-intrusive, the proposed procedure can easily lend themselves to any nonlinear physics-based problems. We 
have also illustrated that this procedure is applicable to discretizations based on finite volume (Example 1), finite 
element (Examples 2 and 4), and hybrid finite volume—finite element (Example 3).

We have summarized the normalized wall time magnitude, normalizing each wall time used by the highest 
wall time (i.e., FOM with default initialization) and the relative error of ROM in Table 3. Here, we present a rela-
tive magnitude of wall time spent for each approach; (1) FOM with default initialization, (2) FOM with ROM 
assists, and (3) ROM. Since using FOM with default initialization takes the highest wall time, it is represented 
by O(100) . For all tested cases with different ROM approaches, ROM-assisted FOM’s nonlinear solver can save 
the wall time by one order of magnitude. We note that the prediction time of ROM is insignificant at a scale of 
O(10−4 ∼ 10−5) compared to FOM’s nonlinear solver. We also show that, even though ROM delivers decent 
accuracy for Examples 1 and 3 with average relative errors less than 1%, it cannot provide a proper prediction 
for Examples 2 and 4 (i.e., Example 2 has an average relative errors more than 5%, and Example 4 has the largest 
relative error of 60%). Hence, using ROM-assisted is essential to obtain a solution which accurate within the 
tolerance prescribed by the stopping criterion of the nonlinear solver with a much cheaper cost.

Another benefit of using ROM-assisted is it can improve the convergence rate. As a system of nonlinear PDEs 
is not straightforward to solve, and the convergence rate highly depends on the initial guess, preconditioner, or 
solving algorithm32–35, we have shown that ROM-assisted can converge all diverged cases (with default initializa-
tion). This characteristic is preferable and beneficial to many engineering applications.

However, there are computational costs associated with the training of these non-intrusive ROMs. The major-
ity of costs is allocated to the generation of the training data itself. We speculate that an adaptive sampling 
technique68–70 or incorporating physical information71,72 could reduce the required number of training data while 

Table 3.   Summary of normalized wall time magnitude and relative error of ROM. ROM uses much less 
computational time (at least four orders of magnitude less) than the FOM nonlinear solver; hence, using ROM 
to assist FOM reduces a computational cost by one order of magnitude. Normalized wall time is calculated by 
normalizing each wall time used by the highest wall time (i.e., FOM with default initialization). For Example 3, 
there are two primary variables, ph and sh ; therefore, we report two relative error values for these two variables, 
respectively.

Example 1 2.1 2.2 2.3 3 4 remark

Normalized wall time

FOM O(100) O(100) O(100) O(100) O(100) O(100) Default initialization

FOM with
ROM assists

O(10−1)
+
O(10−4)

O(10−1)
+
O(10−5)

O(10−1)
+
O(10−5)

O(10−1)
+
O(10−6)

O(10−1)
+
O(10−5)

O(10−1)
+
O(10−5)

≈ O(10−1)

ROM O(10−4) O(10−5) O(10−5) O(10−6) O(10−5) O(10−5)
cGAN-ROM for Ex. 1
BBT-ROM for Ex. 2, 3Average relative error of ROM com-

pared to FOM 0.13% 10.35% 6.17 % 17.17% 0.17%, 0.79% 2.33%
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maintaining similar accuracy. The cost of training of BT-ROM and BBT-ROM ranges from 30 to 45 min using a 
graphic processing unit (GPU), while the training of cGAN-ROM uses a significantly higher cost of 4 h through 
a GPU (see Table 1). We note that without GPU computing, the training time of these models is impractical, 
which might hinder the applicability of these models. It should be noted that our ROMs are trained on a specific 
topology (i.e., fixed degrees of freedom, coordinates, and connectivity) for each problem. As a result, if we alter 
the topology, we need to retrain our ROMs.

Conclusion
Through this work, we have illustrated that by using reduced order modeling (ROM) as an initial guess to a 
nonlinear solver of full order modeling (FOM), we can reduce computation cost (fewer nonlinear iterations) 
and improve the convergence rate. To elaborate on these benefits, we showcase our framework through four dif-
ferent physics problems discretized by different numerical methods (e.g., finite volume or finite element). Our 
results show that our approach speeds up nonlinear solvers by 18–73%. Besides, our framework improves the 
convergence of FOMs that would have otherwise diverged with default initial guesses. We want to emphasize 
that as our ROMs are data-driven and non-intrusive, we can apply them to any nonlinear physics-based problem.

Data availability
Our ROMs and all data generated or analyzed during this study will be available publicly through the Sandia 
National Laboratories software portal—a hub for GitHub-hosted open source projects (https://​github.​com/​sandi​
alabs) with Sandia National lab’s internal review and approval process.
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