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Abstract: Previous investigations have reported on the motor benefits and safety of chronic extradural
motor cortex stimulation (EMCS) for patients with Parkinson’s disease (PD), but studies addressing
the long-term clinical outcome are still lacking. In this study, nine consecutive PD patients who
underwent EMCS were prospectively recruited, with a mean follow-up time of 5.1 ± 2.5 years. As
compared to the preoperatory baseline, the Unified Parkinson’s Disease Rating Scale (UPDRS)-III
in the off-medication condition significantly decreased by 13.8% at 12 months, 16.1% at 18 months,
18.4% at 24 months, 21% at 36 months, 15.6% at 60 months, and 8.6% at 72 months. The UPDRS-IV
decreased by 30.8% at 12 months, 22.1% at 24 months, 25% at 60 months, and 36.5% at 72 months.
Dopaminergic therapy showed a progressive reduction, significant at 60 months (11.8%). Quality of
life improved by 18.0% at 12 months, and 22.4% at 60 months. No surgical complication, cognitive or
behavioral change occurred. The only adverse event reported was an infection of the implantable
pulse generator pocket. Even in the long-term follow-up, EMCS was shown to be a safe and effective
treatment option in PD patients, resulting in improvements in motor symptoms and quality of life,
and reductions in motor complications and dopaminergic therapy.

Keywords: motor cortex stimulation; Parkinson’s disease; movement disorders; neuromodulation

1. Introduction

Chronic motor cortex stimulation by implanted extradural electrodes (EMCS) is a
minimally invasive therapy proposed as an alternative surgical treatment for Parkinson’s
disease (PD) patients who are not eligible for deep brain stimulation (DBS) [1,2]. The
pathophysiological rationale for EMCS in PD derives from several clinical and experimental
observations. The primary motor cortex (M1) and lateral premotor cortex are hyperactive
in advanced parkinsonism, with increased excitability of corticospinal projections at rest,
concomitant with or resulting from reduced intracortical inhibition (ICI) [3]. EMCS may
restore normal ICI by acting on small inhibitory interneurons within M1 [4]. Indeed, it may

Brain Sci. 2021, 11, 416. https://doi.org/10.3390/brainsci11040416 https://www.mdpi.com/journal/brainsci

https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0001-5346-0180
https://orcid.org/0000-0001-6365-1458
https://doi.org/10.3390/brainsci11040416
https://doi.org/10.3390/brainsci11040416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/brainsci11040416
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/2076-3425/11/4/416?type=check_update&version=1


Brain Sci. 2021, 11, 416 2 of 12

act by desynchronizing pathological oscillations in the beta-band between the basal ganglia
and cortical neurons, influencing the electrical activity of subcortical structures in primate
models [5]. Moreover, functional neuroimaging studies suggest that EMCS might restore
the activity of cortical areas that are hypoactive in PD (e.g., the supplementary motor area,
SMA) [6].

Initial reports suggesting effectiveness of EMCS in treatment of PD motor symptoms
date back almost 20 years [7]. To date, over 100 PD patients have been treated by EMCS,
although the available studies concern small samples with a short-term follow-up [2,8–13].
Differences among various centers in terms of patient selection criteria, electrode placement
and stimulation parameters may explain the inconsistent findings reported so far [13].
Although several Authors have reported that EMCS is safe and may improve PD motor
symptoms, studies addressing the long-term outcomes are still lacking [14,15]. Recently, for
selected patients, spinal cord stimulation has emerged as an alternative neuromodulation
procedure to DBS, emphasizing the need for less-invasive surgical options for PD and
effective treatments for axial symptoms [16].

This prospective, single center, open-label study was aimed at assessing the efficacy
and safety of EMCS in PD patients with long-term follow-up, up to eight years after
surgery. In particular, the following outcomes were investigated: efficacy of EMCS on PD
motor symptoms and motor complications (motor fluctuations and dyskinesias); reduction
in dopaminergic therapy after surgery; impact of EMCS on daily living activities (DLA)
and quality of life (QoL); cognitive and behavioral safety of the stimulation, peri- or
post-operative adverse events (AEs).

2. Materials and Methods

Consecutive PD patients who underwent EMCS implantation at Fondazione Policlin-
ico Universitario Agostino Gemelli IRCCS in Rome between 2003 and 2007 were included
after local ethics committee approval (#400-A763). All patients signed a detailed informed
consent form.

All enrolled patients had completed at least a 24-month follow-up and fulfilled the
following inclusion criteria: PD diagnosis according to United Kingdom PD Brain Bank
criteria [17]; disease duration longer than 5 years; dopaminergic responsiveness confirmed
by a pharmacological test showing at least a 33% decrease in the Unified Parkinson’s Dis-
ease Rating Scale (UPDRS) motor score [18]; unsatisfactory pharmacological management
of fluctuations; lack of eligibility for DBS (i.e., not accepted by patients or contraindicated
according to Core Assessment Program for Surgical Interventional Therapies in PD [19]);
ability to give informed consent; stable drug regimen and motor condition for at least 3
months preoperatively.

Exclusion criteria included: history of epilepsy or epileptic activity on electroen-
cephalography; alcohol or drug abuse; previous brain surgery; severe psychiatric symptoms
(e.g., psychosis, major depression); moderate or severe cognitive impairment (score < 24
on the Mini-Mental State Examination [20]); diagnosis of dementia according to the Diag-
nostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) [21]; medical
condition contraindicating a surgical procedure under general anesthesia.

2.1. Surgical Technique

The surgical procedure was performed with patients under total intravenous anesthe-
sia: a quadripolar electrode strip (model Resume; Medtronic Inc, Minneapolis, Minnesota)
was epidurally placed over M1 (through a burr hole over, contralateral to the most af-
fected body side in three patients and bilaterally in remaining patients) and connected
to a Soletra or Kinetra (Medtronic Inc) implantable pulse generator (IPG) located in the
subclavian region. In all patients, contacts were oriented along the craniocaudal axis of
the precentral gyrus: contact 3 was 2 to 3 cm from midline, contact 0 was 4 cm more
lateral (Figure 1). Implantation site was preoperatively defined (using magnetic resonance
imaging and neuronavigation) and verified by means of motor-evoked potentials and by
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identifying N20-P20 phase reversal of somatosensory evoked potentials obtained from con-
tralateral median nerve stimulation [22]. Patients postoperatively underwent a computed
tomography scan to confirm that the electrode paddle was correctly placed and to rule out
surgical complications.
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MRI. (b) Postoperative brain CT scan. (c) Postoperative skull X-ray. R = right; L = left.

2.2. Parameter and Medication Adjustments

Parameter setting was performed in the weeks following surgery. In all patients,
stimulation was unilateral (namely, contralateral to the body side with more severe motor
impairment) for the first 12 months, and afterwards was bilateral for six patients with
electrodes over both hemispheres. Stimulation was continuously delivered through the
two most distant contacts of the electrode paddle under the bipolar setting. Stimulation pa-
rameters were: biphasic wave of 120 µs duration and 80 Hz frequency; voltage maintained
at 50% of threshold intensity for any movement or sensation (between 3 and 5 V). EMCS
parameters were stable during the first 24 months of follow-up, to evaluate the chronic
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effects of stimulation with constant parameters. Additional parameter adjustments (volt-
age increasing or reduction) were attempted according to clinical response and electrode
impedances, after 24-month follow-up. Antiparkinsonian medications were gradually
decreased according to individual clinical condition.

2.3. Outcome Measures

Patients were evaluated at preoperative baseline and postoperatively (12, 18, 24,
36, 48, 60, 72, 84 and 96 months after implantation). Evaluations were performed in
the morning, in the practically defined off-medication condition (off-med, at least 12 h
after medication withdrawal) and in the on-med condition, following administration of a
standard liquid levodopa at doses 50% higher than the usual morning dose of dopaminergic
treatment [19]. Postoperative assessments were performed during the on-stimulation
condition since a carryover effect was expected to last several days after switching off pulse
generator [6]. Motor evaluation was video-recorded for independent analysis. Outcome
measures included the UPDRS subscales I, II, III (in off- and on-med), and IV [18]. Arising
from chair, posture, gait, postural stability, body bradykinesia (items 27–31 of UPDRS-III)
were also separately scored and a total axial subscore (range 0–20) was calculated by
addition of these scores. Disease severity was measured by the UPDRS total score (i.e.,
the sum of UPDRS I, II, III (only in off-med condition) and IV). At each evaluation, QoL,
by means of the PD QoL questionnaire (PDQL) [23], and levodopa equivalent daily dose
(LEDD) [24] were assessed.

Cognitive and behavioral assessments were performed at preoperative baseline and
postoperatively (at 12, 18, 36, 60 and 96 months after implantation). Cognitive assessment
was performed by means of a neuropsychological test battery [25], including Mini-Mental
State Examination (MMSE), tasks exploring visuospatial (Corsi Block-Tapping Test) and
verbal (digit span forward and backward) working memory, episodic verbal memory (Rey’s
Auditory Verbal Learning Test, RAVLT), nonverbal abstract reasoning (Raven’s Progressive
Matrices ’47, RPM ’47), phonological and semantic verbal fluency, problem-solving and
set-shifting abilities (modified Wisconsin Card Sorting Test, mWCST), response inhibition
(Stroop test). Tests sensitive to motor speed were not included in neuropsychological
tasks, to minimize the bias due to motor impairment. Behavioral assessments included
Zung’s Self-Rating Depression and Anxiety Scales [26,27], and a clinical interview aimed
at detecting behavioral abnormalities or psychiatric disorders. Cognitive and behavioral
assessments were performed in the on-med condition.

Stimulation- or device-related AEs were collected at each postoperative evaluation.
An electroencephalogram was recorded preoperatively, and postoperatively at 6 and
12 months.

2.4. Statistical Analysis

Data were analyzed for normality of distribution using the Kolmogorov–Smirnov
test of normality. Continuous data (comparisons between preoperative and postoperative
scores at each follow-up visit up to 72 months) were analyzed by means of the Wilcoxon
signed-rank test, and are presented as mean ± standard deviation. Comparisons between
categorical variables were performed by Fisher’s test. Given the explorative nature of our
study, the standard non-corrected significance α level of p < 0.05 was used to reduce the
risk of a type II error. However, considering the risk of a type I error deriving from multiple
comparisons, significant values should be interpreted with cautions when levels are only
marginally lower than 0.05. All statistical computations were two-sided and relied on
Statistical Package for the Social Sciences (SPSS) software, version 15.0 (IBM Co., Armonk,
NY, USA).

3. Results

Nine PD patients were included (Table 1). Mean age at implantation was 64.0 ±
6.4 years and mean disease duration was 14.6 ± 5.9 years. DBS was refused by four
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patients and contraindicated in five patients (in two patients because of multi-infarctual
encephalopathy, in three patients because of age).

Table 1. Patient’s demographic and clinical data at baseline.

Patient Gender Age at
Surgery

UPDRS III
Off-Med

UPDRS III
On-Med

Hoehn and
Yahr Stage UPDRS IV LEDD (mg) Reason DBS Not

Performed

1 F 57 8 55 24 5 13 Patient refusal
2 M 55 16 68 19 5 13 Brain atrophy
3 M 62 9 62 18 4 11 Patient refusal
4 F 57 14 64 24 5 15 Brain atrophy
5 F 66 28 61 35 5 12 Patient refusal
6 F 69 17 59 15 5 12 Age and comorbidities
7 F 70 14 62 17 5 9 Age and comorbidities
8 M 72 11 43 16 3 6 Age and comorbidities
9 M 68 14 40 18 3 3 Patient refusal

Total 4 M/5 F 64.0 ± 6.4 14.6 ± 5.9 57.1 ± 9.5 20.7 ± 6.2 4.4 ± 0.9 10.4 ± 3.8

Abbreviations: UPDRS = Unified Parkinson’s Disease Rating Scale; DBS = deep brain stimulation.

Mean follow-up time was 5.1 ± 2.5 years (range 2–8 years). Two patients died during
the follow-up period: one of lung cancer and one of heart failure. Four patients were lost
to follow-up for difficulty in reaching our center.

3.1. Motor Efficacy

Compared to baseline, the UPDRS-III score in the off-med condition significantly
decreased by 13.8% at 12 months (p = 0.01), 16.1% at 18 months (p = 0.04), 18.4% at
24 months (p = 0.01), 21% at 36 months (p = 0.02), 15.6% at 60 months (p = 0.04), and
8.6% at 72 months (p = 0.04). Postoperative motor improvement was mostly related to
decreases in the axial subscore: as compared to the baseline, in the off-med condition,
the total axial subscore significantly decreased by 26.7% at 18 months (p = 0.02), 28.1% at
24 months (p = 0.03), 5.9% at 60 months (p = 0.04), with a slight persistent improvement up
to 96 months (Figure 2).
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Compared to the baseline, a progressive motor worsening was observed in the on-
med condition, with a significant increase in the UPDRS-III score of 44.9% at 36 months
(p = 0.04), 68.1% at 48 months (p = 0.03), 60.3% at 60 months (p = 0.04), 89.4% at 72 months
(p = 0.04).

Comparisons between subgroups of patients with bilateral (n = 6) versus unilateral
stimulation (n = 3) were not carried out, because of the small sample size. However, at
the 24-month follow-up stage, we observed a greater improvement of the UPDRS-III score
and total axial subscore in the off-med condition in bilaterally stimulated patients (18.4%
decrease in UPDRS III score from 52.1 ± 9.7 at baseline to 42.5 ± 12.3 at 24 months; 29.2%
decrease in axial subscore from 12.0 ± 5.7 at baseline to 8.5 ± 2.4 at 24 months), as compared
to unilaterally stimulated patients (15.5% decrease in UPDRS-III score from 64.7 ± 3.1 at
baseline to 54.7 ± 4.0 at 24 months; 26.9% decrease in axial subscore from 16.3 ± 2.9 at
baseline to 12.0 ± 1.0 at 24 months).

Compared to the baseline, the UPDRS-IV score (assessing motor fluctuations and dysk-
inesias) was significantly decreased by 30.8% at 12 months (p = 0.03), 22.1% at 24 months
(p = 0.02), 25% at 60 months (p = 0.04), 36.5% at 72 months (p = 0.04). Postoperatively, LEDD
showed a progressive reduction, which was significant at the 60-month follow-up stage
(11.8%, p = 0.04) (Figure 3).
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Figure 3. Efficacy of EMCS on motor complications (a) and reduction in dopaminergic therapy (b) in all patients, evaluated
at different times after the implant. Error bars represent standard deviation. * p < 0.05 at comparisons between preoperative
and postoperative scores, analyzed by means of the Wilcoxon signed-rank test.

All data about motor efficacy of EMCS are reported in Table 2.

Table 2. Efficacy of stimulation in all patients, evaluated at different times after ECMS implant.

Baseline
(n = 9)

12 m
(n = 9)

18 m
(n = 9)

24 m
(n = 9)

36 m
(n = 7)

48 m
(n = 6)

60 m
(n = 5)

72 m
(n = 5)

84 m
(n = 2)

96 m
(n = 2)

UPDRS III med-off 57.1 ± 9.5 49.2 ± 9.4 * 47.9 ± 12.4 * 46.6 ± 11.0 * 45.1 ± 12.7 * 52.3 ± 14.0 48.2 ± 4.0 * 52.2 ± 6.2 * 45.5 ± 13.4 49.5 ± 9.2
UPDRS III axial score med-off 13.6 ± 5.6 11.9 ± 3.8 9.9 ± 3.3 * 9.7 ± 2.6 * 10.7 ± 3.5 13.5 ± 4.0 12.8 ± 3.1 * 14.4 ± 3.7 11.5 ± 4.9 14.0 ± 4.2

UPDRS III med-on 20.7 ± 6.2 27.1 ± 8.7 26.0 ± 6.5 26.7 ± 6.2 30.0 ± 7.1 * 34.8 ± 9.9 * 33.2 ± 5.1 * 39.2 ± 9.0 * 37.5 ± 13.4 45.0 ± 9.9
UPDRS IV 10.4 ± 3.8 7.2 ± 3.6 * 8.0 ± 4.0 8.1 ± 3.0 * 9.7 ± 3.3 10.3 ± 2.7 7.8 ± 1.6 * 6.6 ± 2.3 * 7.5 ± 2.1 7.5 ± 2.1

LEDD 1203.0 ± 528.1 1085.8 ± 424.5 1108.0 ± 402.3 1050.8 ± 369.3 962.4 ± 455.6 929.9 ± 401.0 1061.3 ± 286.5 * 1214.2 ± 670.8 905.0 ± 254.6 915.0 ± 268.7
UPDRS II 27.5 ± 10.0 22.4 ± 6.9 * 19.1 ± 6.9 24.7 ± 9.0 27.5 ± 6.1 25.3 ± 8.8 22.6 ± 4.0 * 23.6 ± 3.2 * 25.0 ± 1.4 27.5 ± 2.1

PDQL 83.5 ± 19.1 98.5 ± 20.0 * 96.0 ± 15.0 95.4 ± 15.5 92.7 ± 15.7 91.8 ± 22.1 102.2 ± 19.6 * 99.2 ± 28.3 88.0 ± 15.6 102.5 ± 44.5
UPDRS tot 98.8 ± 24.5 82.3 ± 16.9 * 79.1 ± 21.5 * 83.7 ± 22.1 * 89.3 ± 17.5 92.3 ± 23.8 82.8 ± 5.5 88.0 ± 8.5 83.5 ± 10.6 90.0 ± 8.5

Abbreviations: m = months; UPDRS = Unified Parkinson’s Disease Rating Scale; LEDD = levodopa equivalent daily dose; PDQL =
Parkinson’s disease (PD) quality of life (QoL) questionnaire. * p < 0.05 at comparisons between preoperative and postoperative scores.
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3.2. Disease Severity

Compared to the preoperative baseline, the UPDRS total score decreased by 16.7% at
12 months (p = 0.01), 19.9% at 18 months (p = 0.02), 15.3% at 24 months (p = 0.03). Although
not significant, the improvement was sustained up to 96 months (8.9%) (Table 2).

3.3. DLA and QoL

Compared to the preoperative baseline, difficulties in DLA, assessed by the UPDRS-II,
significantly decreased by 18.5% at 12 months (p = 0.03), 17.8% at 60 months (p = 0.04),
14.2% at 72 months (p = 0.04); QoL, assessed by means of the PDQL, significantly improved
by 18.0% at 12 months (p = 0.02), and 22.4% at 60 months (p = 0.04) (Table 2, Figure 4).
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3.4. Cognitive and Behvioral Outcome

No patients treated by EMCS developed dementia, as diagnosed according to the
DSM-IV diagnostic criteria. No significant postoperative change was observed in terms
of the UPDRS-I score. Postoperatively, no significant behavioral change was detected via
scales assessing mood and anxiety or by clinical interviews. Improvements in MMSE (from
25.3 ± 2.6 to 26.7 ± 3.2, p = 0.04) and two subtests of episodic verbal memory (immediate
and delayed recall of RAVLT, from 35.3 ± 6.8 to 45.9 ± 10.9 (p = 0.03) and from 7.0 ± 2.2 to
9.7 ± 3.0 (p = 0.03), respectively were detected 18 months postoperatively. Interestingly,
a slight non-significant improvement was observed in the verbal phonological fluency
task (from 17.3 ± 8.3 at baseline to 19.5 ± 11.9 at 12 months, 23.0 ± 13.6 at 18 months,
19.2 ± 11.0 at 36 months, 20.7 ± 9.3 at 60 months, 21.0 ± 15.6 at 96 months). No other change
in cognitive performance on neuropsychological tests was detected across postoperative
assessments (Table 3). Anticholinergic medications were not used in this population.
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Table 3. Cognitive and behavioral evaluations in all patients, evaluated at different times after ECMS implant.

Baseline
(n = 9)

12 m
(n = 9)

18 m
(n = 9)

36 m
(n = 7)

60 m
(n = 5)

96 m
(n = 2)

MMSE 25.3 ± 2.6 25.9 ± 3.0 26.7 ± 3.2 * 26.5 ± 3.9 25.0 ± 4.6 25.0 ± 2.8
Digit Span forward 4.6 ± 0.7 4.7 ± 1.0 4.4 ± 0.5 4.0 ± 0.6 5.0 ± 0 4.5 ± 0.7

Digit Span backward 3.2 ± 0.7 3.0 ± 0.7 3.0 ± 0.8 3.3 ± 0.8 3.0 ± 0 3.5 ± 0.7
Corsi’s Span forward 4.8 ± 1.3 4.6 ± 1.2 4.4 ± 1.5 4.2 ± 1.2 4.0 ± 0 3.5 ± 0.7

Corsi’s Span backward 3.8 ± 1.0 3.4 ± 1.2 3.1 ± 0.9 4.2 ± 1.5 3.7 ± 0.6 3.0 ± 0
RAVLT immediate recall 35.3 ± 6.8 42.2 ± 12.2 45.9 ± 10.9 * 32.7 ± 5.7 43.7 ± 7.0 23.5 ± 2.1

RAVLT delayed recall 7.0 ± 2.2 8.5 ± 3.7 9.7 ± 3.0 * 6.2 ± 1.2 10.0 ± 4.4 4.0 ± 0
RPM ’47 20.0 ± 7.3 21.5 ± 2.7 21.4 ± 6.9 22.7 ± 8.6 24.0 ± 9.2 19.5 ± 4.9

Phonological verbal fluency 17.3 ± 8.3 19.5 ± 11.9 23.0 ± 13.6 19.2 ± 11.0 20.7 ± 9.3 21.0 ± 15.6
Semantic verbal fluency 14.1 ± 4.0 12.7 ± 4.1 13.9 ± 3.4 14.0 ± 5.1 16.3 ± 6.8 15.0 ± 8.5

mWCST criteria 2.4 ± 1.6 2.6 ± 1.7 3.7 ± 2.1 2.8 ± 1.6 2.3 ± 2.3 1.5 ± 0.7
mWCST total errors 23.4 ± 10.4 20.5 ± 8.7 17.1 ± 11.6 19.8 ± 8.3 24.0 ± 17.6 21.0 ± 1.4

mWCST perseverative errors 8.1 ± 4.9 8.5 ± 5.6 7.0 ± 5.4 6.5 ± 3.3 6.6 ± 7.0 6.5 ± 3.5
Stroop interference time 33.7 ± 32.2 35.2 ± 17.8 35.0 ± 25.1 25.7 ± 14.0 48.3 ±55.2 37.5 ±10.6

Stroop interference errors 1.5 ± 3.9 2.2 ± 3.6 3.1 ± 4.8 2.3 ± 2.1 3.0 ± 3.3 6.0 ± 8.5
Zung Depression Scale 45.6 ± 13.6 46.4 ± 12.5 44.6 ± 8.1 47.3 ± 8.8 47.6 ± 9.3 55.0 ± 1.4

Zung Anxiety Scale 44.9 ± 12.9 47.5 ± 10.0 44.4 ± 8.0 46.8 ± 8.5 43.0 ± 11.5 44.0 ± 0

Abbreviations: m = months; MMSE = Mini-Mental State Examination; RAVLT = Rey’s Auditory Verbal Learning Test; RPM = Raven’s
Progressive Matrices; mWCST = modified Wisconsin Card Sorting Test. * p < 0.05 at comparisons between preoperative and postoperative
scores. m = months.

3.5. Safety

No serious adverse events occurred during the surgical procedure. During follow-up,
no stimulation-related adverse events occurred. No patients presented seizures or epileptic
discharges on postoperative electroencephalograms. In one patient, the whole implant
was removed 36 months after surgery, due to an infection of the IPG pocket. Six battery
replacements were performed, without complications.

4. Discussion

To our knowledge, the present study reports the longest clinical follow-up in PD
patients treated by ECMS. This therapy induced a slight sustained motor improvement,
with benefits to axial symptoms, and a reduction in motor complications and dopaminergic
therapy. Despite its small size, the improvement was clinically meaningful as patients
reported improvements in QoL and DLA. EMCS was safe, without detrimental effects on
cognition and behavior.

In this study, we prospectively assessed the long-term efficacy and safety of EMCS in
nine PD patients, followed-up for at least two years and up to eight years. EMCS showed
beneficial effects on parkinsonian motor symptoms (measured by reductions in the UPDRS
III in the off-medication condition) not only in the short-term, but also in the long-term
follow-up. These findings, consistent with previous studies with a short-term follow-
up [2,8,9,11,13], suggest that beneficial effects on motor symptoms may persist over time.
Likewise, we found a progressive motor improvement up to three years after surgery. The
sustained effect and progressive postoperative motor improvement may reflect processes
of neural plasticity within the motor cortex, modulated by chronic stimulation [9].

Beneficial effects of EMCS were also observed on axial symptoms, which often display
a poor response to levodopa and DBS [28]. This therapeutic role may be explained by
the electrode position and polarity over M1. As demonstrated in 3D-volume conductor
models, in bipolar EMCS, the anode of the dipole gives the largest motor response, exciting
neural elements perpendicular to the electrode surface and corticofugal fibers [29]. The
orientation of the electrode paddle over M1 (contact 3: 2 to 3 cm from the midline; contact
0: 4 cm more laterally) and electrode polarity (contact 3 was the anode, contact 0 was the
cathode) may explain the effects on cortical areas, which are critical for axial motor function.
EMCS may also modulate the activities of the cortical areas related to M1, such as the SMA,
which plays a role in the pathophysiology of bradykinesia and axial symptoms [30]. Since
bilateral activation of the SMA may be induced not only by bilateral but also by unilateral
stimulation [6], both unilateral and bilateral EMCS stimulation may improve the axial
symptoms [13,31].
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As previously described [13], in our study, motor benefits were detectable only in
the off-medication condition, similarly to what is seen in DBS patients. This finding rules
out a synergic effect of EMCS and anti-parkinsonian medication and suggests that EMCS
is able to induce motor improvements. In the on-medication condition, a progressive
worsening of the UPDRS motor score was observed over time which is consistent with
disease progression [32]. The absence of motor benefits detected in the on-medication
condition may be explained by the remarkable effects of levodopa administration on
parkinsonian motor symptoms, which might mask the slight beneficial effects of EMCS
on such symptoms. Importantly, since the levodopa dose administered at each evaluation
was higher than the usual morning levodopa dose, the UPDRS-III score at each evaluation
might not reflect the usual on-medication condition.

In this study, EMCS was also effective in the management of PD motor complica-
tions (motor fluctuations and dyskinesias), as shown by a significant reduction in the
postoperative UPDRS-IV score up to 72 months. The mean daily dose of dopaminergic
drugs (measured by LEDD) showed a slight persistent decrease over time, which became
significant postoperatively after 60 months. The reduction in motor complications might
be explained by the slight postoperative decrease in LEDD and by a direct effect of EMCS
on cortical plasticity, as suggested by transcranial magnetic stimulation studies [33,34].
Indeed, prospective EMCS studies suggested a direct effect of EMCS on dyskinesias [9–11].
In recent studies, the same electrodes have been used on M1 to detect cortical signs that
are useful to close the loop for adaptive DBS, as a cortical narrowband gamma oscillation
related to dyskinesias [35]. A direct effect of EMCS on dyskinesias may be postulated
by the desynchronization of cortical narrowband gamma oscillations between the basal
ganglia and cortical neurons.

EMCS also resulted in a sustained improvement of disease severity, measured by the
total UPDRS score. The reduction in this score was significant up to 24 months, but despite
the underlying disease progression, persisted up to 96 months of follow-up.

Not surprisingly, such beneficial effects of EMCS resulted in significant postoperative
improvement of both activities of DLA (UPDRS-II score decrease) and QoL (PDQL score
increase), which persisted in the long-term follow-up.

We found no detrimental effects on cognition or behavior over the long-term follow-
up. We observed a significant improvement in MMSE and two subtests of episodic verbal
memory only at the 18-month follow-up, which may be at least partially explained by a
practice effect, and a slight (although not significant) improvement in the phonological
fluency task over time, up to eight years after surgery. This latter finding is consistent
with a previous observation of improvements in the fluency task in nine PD patients
treated by EMCS with a 12-month follow-up. In particular, in two patients with unilateral
stimulation of the left cerebral hemisphere, who showed an improvement in such fluency
task at 3- and 12-month postoperative assessments [13]. In contrast, phonological fluency
is consistently impaired after DBS of the subthalamic nucleus [36]. This interesting finding
and other effects of EMCS on cognition should be assessed in future studies. Since EMCS
induced beneficial effects on language in cases of pure akinesia with gait freezing [31] and
improvements in tasks of episodic verbal memory and working memory in two patients
with PD [37], it is possible that EMCS might induce beneficial effects on various cognitive
processes across distinct disorders.

This study also confirms that EMCS is safe in the long-term follow-up, since adverse
events occur very rarely [15]. The only adverse event in our sample was an infection of the
IPG pocket, which required the removal of the whole implant three years postoperatively.

Limitations

This study has several limitations. The first is the open-label study design, which
does not allow us to rule out a placebo effect, which is nevertheless unlikely given the
persistence of beneficial effects over the long-term follow-up. In fact, while it is possible
that a placebo effect would occur in the first few months after the intervention, we found
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a sustained motor effect of EMCS beyond five years after the intervention. Moreover,
this was also the case in patients with neurodegenerative disease, which usually leads to
motor aggravation over the years. Indeed, beneficial effects on specific motor tasks (such
as capability of rising from a chair), that did not occur immediately, but rather several
months after the stimulation being switched on, reduce any potential biases deriving from
the expectations of patients and physicians. Other limitations include the small number
of enrolled patients and the lack of a control group. Few patients were enrolled because
this treatment is intended for a highly selected population of PD patients who are not
eligible for other advanced therapies. As most of the significant p values were marginally
lower than 0.05, due to the small number of cases, they should be interpreted with caution,
considering the risk of a type I error deriving from multiple comparisons. Furthermore, the
availability of other effective treatments for the motor complications of PD, such as DBS
or levodopa/carbidopa intestinal gel, limits the possibility to obtain a control group for
standard medical treatments. Finally, the high percentage of patients lost at follow-up is
an inevitable limit of long-term studies with advanced PD patients, as reported in many
DBS studies. In fact, the high degree of motor disability, which characterizes this stage of
disease, often leads to difficulties in reaching the center, institutionalization, and death.

5. Conclusions

EMCS may be a useful treatment option for advanced PD patients to reduce motor
complications and dopaminergic therapy. It provides a small but sustained effect on motor
symptoms (both appendicular and axial symptoms), with improvements in DLA and QoL.

Although EMCS seems to be less effective on motor symptoms than other advanced
therapies (DBS or levodopa/carbidopa intestinal gel), it may be a safe alternative when
these options are contraindicated or refused by patients.

Prospective controlled studies in larger samples of PD patients, possibly with promi-
nent axial symptoms, evaluated by specific scales for axial motor symptoms and dyskine-
sias, are needed to further define clinical indications for EMCS in PD.
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