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A B S T R A C T

An appropriate understanding of the process of measurement and its results rests on the acknowledgment of
the fundamental role played by the models of the object under measurement and of the relevant quantities.
In this paper, we first introduce two strategies – stemming from a classical and a representational tradition
respectively – to understand the information produced by measurement in the form of an equation stating that
a certain value is to be assigned to certain measurand. Then we compare such strategies by discussing their
different ability to take a model-based interpretation of measurement into account. The conclusion is that,
when models enter the picture, the interpretation provided within the classical tradition is more adequate
than the rival interpretation.
. Introduction

A basic equation in measurement is a statement reporting a measure-
ent result, that – by focusing on quantities having a unit and until
easurement uncertainty can be neglected – is of the form

(𝑎) = {𝑄}[𝑄] (1)

n this statement

1. 𝑄(𝑎) is the measurand, i.e., the quantity we intend to measure of
a given object 𝑎;2

2. {𝑄}[𝑄] is a measured value, constituted by a numerical value {𝑄}
and a unit [𝑄] for the relevant kind of quantity 𝑄.

he equation is commonly interpreted as stating that the measurand
s in a certain relation with a measured value, typically up to some
ncertainty. So, if 𝑎 is a certain object, for example a given rod, and
(𝑎) is its length, then a basic equation like 𝐿(𝑎) = 1.25m states that

he length of 𝑎 is 1.25m, where 1.25 is a numerical value in a certain
ange and m is the meter, that is a unit of length.

The key questions we address in the present paper are:

KQ1: what kind of information does a basic equation convey?
KQ2: how should we define its truth conditions?

∗ Corresponding author.
E-mail address: alessandro.giordani@unicatt.it (A. Giordani).

1 The authors contributed equally to the whole manuscript.
2 We use the term ‘‘object’’ to refer to anything that has properties. We assume that quantities are specific properties, characterized by a structure whose

eatures are not important to discuss here (see [1] for a general characterization). Further, we assume the distinction between kind of quantity, or general quantity
like length or temperature) and individual quantities of that kind (like the length and the temperature of a given object). In the following, the term ‘‘quantity’’ is
ften used as a shorthand to designate an individual quantity when no risk of confusion exists. We use ‘‘𝑄’’ for denoting a generic kind of quantity and ‘‘𝑄(⋅)’’
or denoting the function that returns an individual quantity q = 𝑄(𝑎) of kind 𝑄 when applied to an object 𝑎 that has that quantity.

The second question is about the conditions that have to obtain in the
world for the equation to be true. Therefore, in order to provide an
answer to these questions, we should be able to clarify the following
preliminary issues:

• what are entities like 𝑄(𝑎)? that is, what are measurands?
• what are entities like {𝑄}[𝑄]? that is, what are measured values

and, more generally, values of quantities?
• how can measurands and measured values be related to each

other?

We propose that these problems can be answered in the context of
two conceptually competing, though operationally largely compatible,
frameworks, each corresponding to a different tradition.

In the first framework, developed in what we call the classical
tradition, properties, and then in particular quantities, of objects are
assumed to exist. As a consequence, basic equations are interpreted
as actual equations, whose truth is based on the fact that the same
quantity is identified alternatively both as the property of a given object
and as a quantity identified as a function of a unit. We will refer to
this interpretation as equational. In the other framework, developed
in what we call the representational tradition, properties are (or, as
we will discuss, at least can be) dispensed with. As a consequence,
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basic equations are interpreted as convenient statements reporting that,
under appropriate conditions, objects are represented by means of
mathematical entities, usually but not necessarily numbers. We will
refer to this interpretation as representational. The aim of this paper is
to provide evidence supporting the classical interpretation in light of
the fact that it enables us to better account for the role of models in
measurement. This contributes to a foundational issue of measurement
science, and as such can be assumed as preliminary to any theory of
measurement that on the understanding of the basic equation may be
grounded and built.

The structure of the paper is the following. Sections 2 and 3 discuss
the main tenets of the classical and the representational traditions
respectively, and the way they interpret basic equations. Section 4
explores how the models about the entities involved in a measurement
can be understood in each of these traditions. This leads to a compar-
ison of the interpretations of the basic equation in Section 5, which
highlights some of the benefits of the equational interpretation over
the representational one.

The focus of the analysis is on ratio quantities, either physical or
psychosocial ones, but we suggest that it can also be adapted, with
possible modifications, to other types of physical properties, such as
interval or ordinal quantities. It is also worth noting that this analysis
does take neither definitional nor measurement uncertainty into ac-
count. This has no effect on the dialectic of the paper, since a discussion
of these notions would be irrelevant to the main argument we are going
to propose. We acknowledge that the characterization of uncertainty
from a classical and a representational point of view constitutes an
important topic in itself, to be left for some possible further works.

2. The classical tradition

The classical tradition supports a realist interpretation of the notions
of quantity and ratio between quantities. In general, up to a slight
idealization, this tradition followed four main steps in its development:
(𝑖) the characterization of the notion of ratio of mathematical entities;
(𝑖𝑖) the extension of this notion from mathematical to empirical entities;
(𝑖𝑖𝑖) the generalization of the notion of number to include ratios as num-
bers in themselves; (𝑖𝑣) the identification of the empirical conditions
that allow for the use of ratios to characterize empirical entities. Let us
review these steps and discuss the kind of realism that is endorsed by
this tradition.3

( i ) the characterization of the notion of ratio of mathematical entities This
ey step was accomplished in the ancient mathematical tradition and
odified in Book V of Euclid’s Elements [9]. In the Greek tradition,
quantity is characterized as being either a plurality or a magni-

ude,4 where numbers, i.e., positive integers, are viewed as pluralities,
.e., quantities composed by indivisible entities, while magnitudes are
iewed as quantities that are divisible in further entities without limit.
uclid posits three relations between magnitudes:

3 See [2–5] for a historical introduction to the main ancient and medieval
igures in this tradition and [6–8] for an insightful presentation of the key
deas.

4 According to Aristotle, Metaphysics, book 𝛥, 13, ‘‘We call a quantity that
which is divisible into two or more constituent parts of which each is by nature
a one and a ‘this’. A quantity is a plurality if it is numerable, a magnitude if it
is measurable. We call a plurality that which is divisible potentially into non-
continuous parts, a magnitude that which is divisible into continuous parts;
in magnitude, that which is continuous in one dimension is length, in two
breadth, in three depth. Of these, limited plurality is number, limited length is
a line, breadth a surface, depth a solid.’’ It is worth noting here that the ancient
notion of quantity can be applied not only to the quantitative properties, but
also to the objects having such properties. A trace of this general usage is also
present nowadays, for example when the term ‘‘diameter of a circle’’ is referred
both to segments (a circle has an uncountable number of diameters) and to
their length (the diameter of a circle is in a ratio of 𝜋 to its circumference).
2

1. the relation of part, according to which 𝑎 is said to be part of 𝑏
provided that there is a number 𝑛 such that 𝑏 = 𝑛𝑎. If 𝑎 is part
of 𝑏, then 𝑎 is said to measure 𝑏;

2. the relation of parts, according to which 𝑎 is said to be parts of
𝑏 provided that there is a magnitude 𝑥 and there are numbers
𝑚 and 𝑛 such that 𝑎 = 𝑚𝑥 and 𝑏 = 𝑛𝑥. If 𝑎 is parts of 𝑏, then 𝑎
is said to have a common measure with 𝑏, i.e. to be commensurable
with 𝑏;

3. the relation of having a ratio, according to which 𝑎 is said to have
a ratio with respect to 𝑏 provided that each can exceed the other
if multiplied by appropriate numbers. The relation of having a
ratio is an equivalence relation by definition and a property of
positive integers. It is also evident that if 𝑎 is part or parts of 𝑏,
then 𝑎 and 𝑏 have a ratio with respect to each other.

Let (𝑎1, 𝑏1) and (𝑎2, 𝑏2) be pairs of magnitudes and suppose that both
𝑎1, 𝑏1) and (𝑎2, 𝑏2) have a ratio with respect to each other. Then, we can
sk whether (𝑎1, 𝑏1) and (𝑎2, 𝑏2) have the same ratio with respect to each
ther. In order to answer this question the notion of proportionality,
.e., sameness in ratio, has to be defined. The general definition of
roportionality constitutes a crucial achievement of Book V, and runs
s follows:

(𝑎1, 𝑏1) and (𝑎2, 𝑏2) have the same ratio if and only if for every
numbers 𝑚 and 𝑛

– (𝑖) 𝑚𝑎1 < 𝑛𝑏1 if and only if 𝑚𝑎2 < 𝑛𝑏2
– (𝑖𝑖) 𝑚𝑎1 = 𝑛𝑏1 if and only if 𝑚𝑎2 = 𝑛𝑏2
– (𝑖𝑖𝑖) 𝑚𝑎1 > 𝑛𝑏1 if and only if 𝑚𝑎2 > 𝑛𝑏2

n light of this definition, it is evident that, if 𝑎1 measures 𝑏1, so that
1 = 𝑛𝑎1 for a certain 𝑛, then (𝑎1, 𝑏1) and (𝑎2, 𝑏2) have the same ratio
recisely when 𝑏2 = 𝑛𝑎2 for the same 𝑛. Similarly, if 𝑎1 has a common
easure with 𝑏1, so that 𝑎1 = 𝑚𝑥1 and 𝑏1 = 𝑛𝑥1 for certain 𝑚, 𝑛

nd a certain magnitude 𝑥1, then (𝑎1, 𝑏1) and (𝑎2, 𝑏2) have the same
ratio precisely when 𝑎2 = 𝑚𝑥2 and 𝑏2 = 𝑛𝑥2 for the same 𝑚, 𝑛 and
a corresponding magnitude 𝑥2. Still, two pairs of magnitudes can be
characterized by the relation of having the same ratio even if they are
not such that the first element of a pair is part or parts of the second
element. In particular, when 𝑎 measures 𝑏 the ratio between 𝑎 and 𝑏
is the same as the ratio between 1 and 𝑛, where 𝑛 is the number such
that 𝑏 = 𝑛𝑎, and therefore the ratio between 𝑎 and 𝑏 is the same as a
numerical ratio. Similarly, when 𝑎 has a common measure with 𝑏 the
ratio between 𝑎 and 𝑏 is the same as the ratio between 𝑚 and 𝑛, where 𝑚
is the number such that 𝑎 = 𝑚𝑥 and 𝑛 is the number such that 𝑏 = 𝑛𝑥 for
a certain 𝑥, and therefore the ratio between 𝑎 and 𝑏 is again the same
as a numerical ratio. Still, it is possible for two pairs of magnitudes to
be characterized by the relation of having the same ratio even if their
ratio corresponds to no numerical ratio. This implies the possibility of
distinguishing two kinds of ratios:

• rational ratios, that characterize commensurable magnitudes and
correspond to numerical ratios (what we now call rational num-
bers);

• irrational ratios, that characterize incommensurable magnitudes
and do not correspond to numerical ratios (what we now call
irrational numbers).

Hence, any two magnitudes that can exceed each other if multiplied
by appropriate numbers have a ratio, but not all such pairs have a
rational number as their ratio. The definition of the notion of having the
same ratio is crucial for fully appreciating the ontological framework
of the classical tradition. As we will see, this definition allows for
introducing real numbers as ratios, so that real numbers are available
in this tradition as soon as the existence of individual quantities is
acknowledged.
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( ii) the extension of the notion of ratio to empirical entities This key step
was accomplished in the medieval mathematical tradition and codified
in Oresme’s Treatise [3]. In the initial part of the book, he introduces a
general model for studying qualities, i.e., what we now know as kinds
of empirical quantities, having intensities, i.e., what we now know as
individual quantities.

Every measurable thing except numbers is imagined
in the manner of continuous quantity. Therefore, for the
mensuration of such a thing, it is necessary that points,
lines, and surfaces, or their properties, be imagined. For
in them (i.e., the geometrical entities), as the Philosopher
has it, measure or ratio is initially found, while in other
things it is recognized by similarity as they are being
referred by the intellect to them (i.e., to geometrical
entities). Although indivisible points, or lines, are nonex-
istent, still it is necessary to feign them mathematically
for the measures of things and for the understanding of
their ratios. [3, p. 165]

The idea proposed by Oresme is that, if we want to study qualities
having intensities in a systematic way, we can model them in terms
of mathematical quantities, like segments, and then study the relations
between such qualities in light of the corresponding relations between
the mathematical entities we use to model them. For example, to study
a uniformly accelerated motion we draw the intensity of the motion,
i.e., its velocity, as vertical lines on an axis representing time and we
get a configuration whose area represents the distance traveled during
the motion. It can then be shown that the distance traveled during the
motion is the same as the distance traveled during a uniform motion of
half intensity.

𝐴 𝐵

𝐶

𝐴′ 𝐵′

𝐴𝐵𝐶 ≅ 𝐴𝐵𝐵′𝐴′

The notion of knowledge by similarity is then specified by Oresme
s follows:

For whatever ratio is found to exist between intensity
and intensity, in relating intensities of the same kind,
a similar ratio is found to exist between line and line,
and vice versa. For just as one line is commensurable
to another line and incommensurable to still another, so
similarly in regard to intensities certain ones are mutu-
ally commensurable and others incommensurable in any
way because of their continuity. Therefore, the measure
of intensities can be fittingly imagined as the measure
of lines, since an intensity could be imagined as being
infinitely decreased or infinitely increased in the same
way as a line. [3, p. 167]

ence, qualities having intensities are studied in terms of mathematical
uantities by modeling such intensities as having ratios, thus modeling
hem as what we now know as ratio quantities. In summary, in this step
he notion of ratio is extended from mathematical to empirical entities.

iii) the generalization of the notion of number This key step was accom-
lished in the modern mathematical tradition and codified in Newton’s
rithmetic [10].
3

By Number we understand not so much a multitude of
unities, as the abstracted ratio of any Quantity to another
Quantity of the same Kind, which we take for Unity. [10,
p. 2]

The difference between the ancient notion of ratio and the notion in-
troduced by Newton is that ratios between quantities are acknowledged
as entities that exist in themselves. In view of this new characterization
two entities having ratio with each other because they have quantities
which stand with respect to each other in a specific ratio. Accordingly,
we are allowed to say not only that the ratio in length between 𝑎 and
𝑏 is the same as the ratio between 5 and 4, but also that:

1. 𝑎 has a length 𝐿(𝑎) and 𝑏 has a length 𝐿(𝑏);
2. the ratio 𝐿(𝑎) ∶ 𝐿(𝑏) between 𝐿(𝑎) and 𝐿(𝑏) is 1.25.

The twofold assumption is that entities having quantities are what they
are, i.e., they are entities comparable with respect to a certain kind of
quantity, because they have given quantities, and that quantities are
what they are, i.e., entities comparable with each other, because they
have specific ratios with respect to each other. Hence, this ontology is
rich: besides entities having quantities, it includes both quantities and
ratios. In addition, numbers, as positive integers, can now be viewed
as a kind of ratios in virtue of the fact that any number 𝑛 has a ratio
𝑛 ∶ 1 with the number 1.

iv) the identification of the conditions of comparison by ratio The last key
tep in the classical tradition was the identification of the conditions
or the notion of ratio to be used with respect to empirical quantities.
n step (𝑖𝑖) it was assumed that empirical objects can be modeled
n terms of mathematical objects. In step (𝑖𝑖𝑖) it was assumed that
he comparability of mathematical objects is based on their being
haracterized by quantities having ratios with respect of each other.
o, combining the two steps, we conclude that empirical objects that are
omparable with respect to a certain kind of quantity are so comparable in
irtue of the fact that they are characterized by quantities having a certain
atio with respect to each other. In this sense, for example, two rods are
omparable with respect to length in virtue of the fact that they are
haracterized by certain lengths having a certain ratio with respect of
ach other.

Still, this conclusion, and its underlying assumption that empirical
ntities are like mathematical entities with respect to certain kinds of
uantities, has to be justified. In particular, we have to justify that
ods, like segments, are comparable with respect to length, namely that
t is possible to describe a rod as having one length, like a segment
as. This assumption of similarity can be substantiated in two steps,
y first proving that ratio quantities can be completely specified in
erms of some abstract relations and operations, and then showing
hat corresponding empirical relations and operations can be found in
elation to the system of empirical quantities we want to study. The
irst step was accomplished at the beginning of the last century [11,12].
he second one is left to the specific empirical disciplines that study the
elevant kinds of quantities.

.1. The emergence of the equational interpretation

Within the classical tradition, a simple interpretation of the basic
quation suggests itself. First, quantities are characterized by the fact
hat they are related to each other via well-defined ratios. Second, once

quantity is chosen as the unit, all other quantities are at least in
rinciple determined as ratios with respect to it. Indeed, quantities that
re commensurable to the unit are such that their ratio with respect to
he unit is rational, i.e., a ratio between integer numbers. By contrast,
uantities that are incommensurable to the unit are such that their ratio
ith respect to the unit is irrational, that can be modeled as a sequence
f ratios between integer numbers.

Once a unit [𝑄] is chosen for a given kind of quantity 𝑄, this can
e represented as:
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𝑟−1[𝑄]

↙↙
𝐾𝑄

𝑟[𝑄]

↗↗

where:

• 𝐾𝑄 is a set of quantities of kind 𝑄;
• R+ is the set of non-negative real numbers;
• 𝑟[𝑄] ∶ 𝐾𝑄 → R+ is the function that takes a quantity q ∈ 𝐾𝑄 and

returns its ratio {𝑄} ∈ R+ with the unit [𝑄];
• 𝑟−1[𝑄] ∶ R+ → 𝐾𝑄, the inverse of 𝑟[𝑄], takes a ratio 𝑟 ∈ R+ and

returns the corresponding quantity q ∈ 𝐾𝑄 as identified with
respect to [𝑄].

In this framework, for any q ∈ 𝐾𝑄 it is true that

1. 𝑟[𝑄](q) = 𝑟 ∈ R+ for some 𝑟;
2. 𝑟[𝑄](q) = {𝑄}, since {𝑄} is the ratio between q and [𝑄];
3. q = {𝑄}[𝑄], since q = 𝑟−1[𝑄]({𝑄}) is the quantity whose ratio with

[𝑄] is {𝑄}.

herefore, any quantity q of kind 𝑄 can be presented as a ratio with
ny other, somehow chosen, quantity [𝑄] of the same kind, and this is
recisely the view we find at the end of the classical tradition. To be
ure, in his 1870 lecture notes Clifford, following Newton, says

Every quantity is therefore measured by the ratio
which it bears to some fixed quantity, called the unit.
But between any two ratios is an infinite number of
ratios; it is therefore impossible to tabulate all ratios, or
to give them names. A ratio then can only be described
approximately, as being very near to the ratio of two
numbers, that is, of two quantities which have a common
measure. [13, p. 525]

As mentioned, this means that in the equation q = {𝑄}[𝑄] it
s possible for {𝑄} to be a rational number, when q and [𝑄] are
ommensurable, or to be modeled in terms of sequences of rational
umbers, when q and [𝑄] are not commensurable.

The final move that allows us to get an interpretation of the basic
quation is the idea that the same quantity q can be presented both as
he quantity characterizing a certain object (a presentation by address)
nd as the quantity determined by a certain ratio with a unit (a pre-
entation by value). So, once a unit [𝑄] is chosen, we get the following
iagram:

𝐷𝑄

𝑄[𝑄]

↘↘

𝑄

↘↘

R+

𝑟−1[𝑄]

↙↙
𝐾𝑄

𝑟[𝑄]

↗↗

where
4

• 𝐷𝑄 is a set of objects characterized by quantities in 𝐾𝑄, i.e., of
kind 𝑄
(for example, 𝐷𝑄 could be a set of rods);

• 𝑄 ∶ 𝐷𝑄 → 𝐾𝑄 is the function that takes an object 𝑎 ∈ 𝐷𝑄 and
returns its quantity 𝑄(𝑎) = q ∈ 𝐾𝑄
(for example, 𝑄 could map each rod of the given set to a length
that is presented as the length of that rod);

• 𝑄[𝑄] ∶ 𝐷𝑄 → R+ is the function that takes an object 𝑎 ∈ 𝐷𝑄 and
returns the ratio {𝑄} between 𝑄(𝑎) and the unit [𝑄].

ence, supposing that the length unit [𝑄] is the meter, 𝑄[𝑄] maps each
od of the given set to its length in meters. So, evidently, 𝑄[𝑄] = 𝑟[𝑄]◦𝑄,

so that q = 𝑟−1[𝑄]◦𝑄[𝑄], and we get

1. 𝑄(𝑎) = q
(the length of any rod is a length);

2. q = 𝑟−1[𝑄]{𝑄} = {𝑄}[𝑄]
(a length can be presented as a number times a unit: a value of
length);

3. and so 𝑄(𝑎) = 𝑟−1[𝑄]{𝑄} = {𝑄}[𝑄]
(the length of any object can be presented as a value of length).

Finally, we recover the classical idea:

Every expression of a Quantity consists of two factors
or components. One of these is the name of a certain
known quantity of the same kind as the quantity ex-
pressed, which is taken as a standard of reference. The
other component is the number of times the standard is to
be taken in order to make up the required quantity. [14,
p. 1]

Thus, a basic equation 𝑄(𝑎) = {𝑄}[𝑄] is actually an identity, where
the same individual quantity q is presented both by address, as the
quantity 𝑄(𝑎) characterizing a certain object 𝑎, and by value, as the
quantity determined by a certain ratio {𝑄} with the chosen unit [𝑄]: if
the equation is true, 𝑄(𝑎) and {𝑄}[𝑄] are the same individual quantity
presented in two different ways.

2.2. The ontology underlying the equational interpretation

The ontology behind this picture is such that

• there are objects;
• there are quantities of objects;
• quantities are classified in kinds by their comparability;
• there are numbers, possibly interpreted as ratios of quantities of

the same kind;
• some objects have a quantity of a given kind, so that some

quantities of that kind can be presented as quantities of given
objects;

• a quantity of that kind can be singled out as the unit of the kind,
so that all the quantities of that kind can be presented as ratios
with respect to the unit.

Accordingly, as we saw, a basic equation is interpreted as stating that
the quantity presented in terms of an object (left hand side) is the same
quantity presented in terms of the unit (right hand side).

3. The representational tradition

The representational tradition stems from the idea that measure-
ment with respect to a domain of empirical objects is possible provided
that such a domain can be characterized in terms of some specific
relations and operations, where a measurement is conceived of as a
process producing information that properly represents such relations
and operations, a condition that leads to model such a process as a mor-
phism between the empirical system having that domain as support and
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a given numerical system.5 In a nutshell, the representational tradition
aims at analyzing and generalizing the notion of similarity in regard
to intensities introduced in the ancient and medieval reflection about
the relationship between quantities, at the same time reducing the
emphasis on the role of quantities, or entirely doing without quantities.
In fact, this tradition is typically associated with an antirealist position
about quantities, even if its main results are consistent with a realist
interpretation, and for this reason in the analysis that follows we discuss
representationalism as implying antirealism about quantities, and more
generally properties.6

3.1. The emergence of the representational interpretation

The key points of the representational interpretation can be identi-
fied from the basic problem that a measurement theory is expected to
solve according to representationalism: understanding the conditions
that justify the practice of associating numbers with empirical objects,
so that the assignment reflects the structure of the relations that in some
sense are observed among the objects under measurement. This leads to
positing two fundamental problems (see [19, Chapter 1] for a general,
and classical, introduction to the topic).

The first fundamental problem: possibility of representation The first prob-
lem is known as the problem of representation, and concerns the discov-
ery of the conditions that an empirical system has to satisfy in order to
be represented in terms of a numerical system.7

5 See [15, Part II], [16,17], [18, Chapter 5], for an overview of the way in
hich the representational tradition developed. See [19–25] for a throughout

ntroduction to the general framework and a presentation of the main ideas
nd tools employed in this tradition. Antirealism about properties is well-
ocumented in these references. Some sort of moderate representationalism
s also sometimes endorsed, that allows for the existence of quantities of
bjects while denying that values of quantities are themselves quantities,
hus assuming that quantities of objects are represented by numbers and still
enying that numbers are ratios of quantities. However, this position does not
eserve our consideration here for its lack of basic consistency. Indeed, on the
ne hand it should accept that any measurement unit [𝑄] is a quantity of a

given kind and therefore that numbers, {𝑄}, can be assigned to other quantities
of the same kind by comparing these quantities, 𝑄(𝑎), and the unit by ratio,
{𝑄} = 𝑄(𝑎) ∶ [𝑄]; but, on the other hand, it appears to reject the then obvious
consequence that by inverting such a relation an actual equation is obtained.
In other words, the compromise implied by this moderate representationalism
makes it unable to provide a consistent explanation of a position according to
which, say, the meter is acknowledged to be a length but the concatenation
of two meters, i.e., the value 2m, is not a length in turn, but only a ‘‘symbol’’

whatever this means – that represents a length.
6 It is important to note that, according to the representational interpreta-

ion, properly speaking we do not measure the length of an object, but to an
bject we apply a procedure whose outcome is a length-related representation
f the object. The contrast with the classical tradition on this point is evident:
here for example Campbell characterizes measurement as an assignment
f numbers to represent qualities of objects or events (see [15, p. 267]), in
he representational tradition it is widely assumed that measurement is an
ssignment of numbers to objects or events themselves (see for example Stevens’
osition, [26, p. 667]. So, in what is arguably one of the cornerstone of
his tradition, it is said that ‘‘In measuring length ordinally, we confine our
bservations to comparisons between simple, unconcatenated rods, and we are
oncerned only with assigning numbers 𝜙(𝑎), 𝜙(𝑏), etc. to rods 𝑎, 𝑏, etc. so as

to reflect the results of these comparisons’’. (see [19, section 1.1]). Similarly,
Roberts says that measurement has something to do with assigning numbers
that represent observed relations, so that, for instance, if 𝑎 is less long than 𝑏
then 𝜙(𝑎) < 𝜙(𝑏), making evident that the numbers 𝜙(𝑎) and 𝜙(𝑏) are assigned
to objects, not to their quantities (see [22, section 2.1]). However, we will
maintain here the less cumbersome and more usual phrasing that we measure
quantities of objects, that a representationalist might accept as a linguistic
shorthand.

7 In the following formulation of the problem, a relation of homomorphism
between an empirical system and a numerical system is exploited. A slightly
5

c

The first basic problem of measurement theory is
the representation problem: Given a particular numerical
relational system B, find conditions on an observed rela-
tional system A necessary and sufficient for the existence
of a homomorphism from A into B. The emphasis is on
finding sufficient conditions. If all the conditions in a
collection of sufficient conditions are necessary as well,
that is all the better. [22, p. 54]

The fact that the assignment of numbers to the empirical objects
in a system is constrained by a set of conditions on the empirical
system is crucial, since it prevents the assignment from being purely
conventional.8 The identification of suitable conditions and the proof
that they are sufficient for the existence of a homomorphism is the
content of the representation theorem in a measurement theory. The main
result of a representation theorem is then the possibility of defining a
scale for measuring objects in empirical systems, since a scale is nothing
more than the homomorphism whose existence is to be proved.

The second fundamental problem: uniqueness of representation The second
problem is known as the problem of uniqueness, and concerns the
discovery of the group of transformations that allow us to pass from
a representation to a different but still admissible representation for
the object of a given empirical system.

The second basic problem of measurement theory is
the uniqueness problem: How unique is the homomor-
phism 𝑓? [22, p. 55]

This problem is related to the fact observed above, about ratio
quantities, that the numerical representation of a quantity depends on
the choice of a unit. Thus, different numbers can be used to repre-
sent the same quantity in terms of different units. Still, the possible
representations of a ratio quantity are related by a suitable group of
transformations that allows us to pass from a representation to another.
For example, in the case of ratio quantities the transformations are
similarities, of the form 𝑓 (𝑥) = 𝑐𝑥, where 𝑐 is the ratio between the
nitial unit and the target unit. Hence, if the length of a given object is
epresented by 1.25 in meters, then the same length is represented by
25 in centimeters, since the ratio between the meter and the centime-
er is 𝑐 = 100. The identification of suitable group of transformations
nd the proof that this group completely characterizes the set of scales
or a certain empirical system is the content of the uniqueness theorem
n a measurement theory. The main result of a uniqueness theorem is
hen the possibility of defining a set of scales for measuring empirical
ystems, where any scale in the set can be obtained from any other
iven the group of transformations.

different formulation can be obtained in terms of a relation of isomorphism
by taking the quotient of the empirical system (see, for example [21, p. 4]:
‘‘The most fundamental problem for a theory of representational measurement
is to construct the following representation: Given an empirical structure
satisfying certain properties, to which numerical structures, if any, is it
isomorphic? These numerical structures, thus, represent the empirical one. It is
the existence of such isomorphisms that constitutes the representational claim
that measurement of a fundamental kind has taken place’’).

8 To illustrate, see [18, pp. 53–55]. Here Carnap shows how to define the
relations 𝐸, of being equal in weight, and 𝐿, of being lighter or less than in
weight, in terms an empirical procedure consisting of taking any pair of objects
and determine how they compare by using a balance scale. Two rules are
introduced: (1) if the two objects balance each other on the scale, they are of
equal weight; (2) if the two objects do not balance, the object on the pan that
goes down is heavier than the object on the pan that goes up. This procedure is
not completely conventional: as 𝐸 is conceived of as an equivalence relation,
the relation of balancing on a balance scale has to be reflexive, symmetric
and transitive; similarly, as 𝐿 is conceived of as a strict partial order, the
elation of being on the pan that goes down has to be irreflexive, asymmetric
nd transitive. Still, nothing ensures us that the empirical relations we use to
efine 𝐸 and 𝐿 actually fulfill these properties: hence, this is an empirical
ondition of the possibility of the definition of 𝐸 and 𝐿.
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The interpretation of the basic equation The interpretation of the basic
equation is now straightforward: since objects are related to numbers
by a scale which is unique up to a specific group of transformations,
measuring on a given scale the quantity of an object coincides with as-
signing a number to the object by identifying the kind-related empirical
relations that hold for the object and mapping the result to numbers
through the scale. So, once a scale based on unit [𝑄] is chosen, we get
the following diagram:

𝐷𝑄

𝑄[𝑄]

↘↘
R+

where

• 𝐷𝑄 is a domain of objects to which a set of relevant empirical
relations can be applied
(for example, 𝐷𝑄 could be again a set of rods);

• 𝑄[𝑄] ∶ 𝐷𝑄 → R+ is the function that takes an object 𝑎 ∈ 𝐷𝑄 and
returns a number in the [𝑄]-related scale.

Hence, we get

• 𝑄[𝑄](𝑎) = 𝑟
(the length in the [𝑄]-related scale of any rod is a number)

where a basic equation 𝑄(𝑎) = {𝑄}[𝑄] is interpreted in this case only
as an idiomatic form of 𝑄[𝑄](𝑎) = {𝑄}, so avoiding any reference to
quantities as independent entities.

3.2. The ontology underlying the representational interpretation

The ontology behind this picture is such that

• there are objects;
• some objects are comparable by some empirical relations;
• there are numbers;
• some objects can be represented by numbers via a morphism

that preserves the empirical relations among objects to relations
among numbers.

Accordingly, a basic equation is interpreted as stating that an object
in the empirical system determined by a set of relations that in some
(usually unspecified) sense defines a kind of quantity (left hand side) is
represented by a number in a scale that in some (usually unspecified)
sense is characterized by a unit (right hand side).

4. The role of models in measurement

While referred to an empirical property, measurement is an informa-
tion production process, not a purely empirical one. Since the outcome
of the transduction performed by the measuring instrument needs to be
interpreted in terms of information entities – for example the voltage
induced on a thermocouple in terms of values of the applied tempera-
ture – a model of the object under measurement is unavoidably, though
sometimes only implicitly, exploited in the production of the measure-
ment result. Accordingly, model-based accounts of measurement have
been developed since the last two decades by studying, in particular,
measurement practices in the sciences.9 If quantities are part of the
framework, as in the classical tradition, three mutually related models
are actually present, about (𝑖) the kind of quantity that is measured
(e.g., temperature), (𝑖𝑖) the object under measurement (the body whose
temperature we are interested in), and (𝑖𝑖𝑖) the individual quantity that

9 For a general presentation of this emergent approach to the study of
easurement, see [27–29]. For a more detailed analysis of the different levels

t which models are exploited in measurement, see [30,31].
6

is intended to be measured (the temperature of the body).10 Let us
hortly discuss about these models before turning our attention to the
ay the basic equation can be interpreted in the light of them.

odels of kinds of quantities Kinds of quantities, and more generally
inds of properties, are modeled in two interdependent ways: with re-
pect to their type, thus along the line of Stevens’ theory of scales [26],
nd with respect to their relations to other kinds of quantities. Taking
emperature as an example, different models can be – and historically
ave been – adopted as to its type, sometimes as only ordinal, when
nly the warmer-than and colder-than relations are assessed, but then
s an interval quantity with thermometric scales, and finally as a
atio quantity when equipped with absolute zero in the context of
hermodynamics. Depending on the adopted type, and then particularly
hen interpreted as a ratio quantity, temperature can be modeled
s functionally related to other kinds of quantities, like volume and
ressure in the case of gases, and voltage in the case of the Seebeck
ffect. In both cases, hypotheses on what physical laws hold about
he concerned kind of quantity play a crucial role: in terms of the
nternal structure of the kind, i.e., what relations can be empirically
bserved among quantities of that kind, and the possible structure of
uch laws, as depending on the type of the quantity; and in terms of
he laws according to which we interpret what the kind is as related
o other kinds. It is typically basing on such models that measuring
nstruments are designed, and their behavior is understood, as in the
ase of the Seebeck effect that explains the transduction performed
y a thermocouple. Thus, the first role of models in measurement is
hat kinds of quantities are modeled based on sets of laws that state
onnections, typically functional relations, among different kinds.

odels of objects under measurement What we measure are quantities of
bjects, and objects under measurement are entities that we usually in-
erpret according to a model. Taking again temperature as an example,
hen we decide to measure the temperature of a given body, we are
odeling the body as something that has one temperature, even if we

now that different parts of the body might have different temperatures
nd that attributing a temperature to sufficiently small parts of the body
s pointless. Hence, in order to attribute one temperature to the body
s a whole, it is necessary to model it as thermally homogeneous. In
iew of this model we are then free to measure the temperature of
ny part of the body and assign the measured value the body as such.
hus, the second role of models in measurement is that objects under
easurement are modeled as entities that have the quantity intended

o be measured.

odels of individual quantities The quantities we measure are individual
uantities, that we usually model in view of the purposes of the mea-
urement and the circumstances in which it is performed. This assumes
he critical distinction between the quantity we intend to measure and
o which the measured value is attributed, i.e., the measurand, and the
uantity that by interacting with the measuring instrument produces
n effect on its state, and therefore that may be called the effective
uantity. Again in the case of the measurement of the temperature of a
ody, while the effective quantity is the temperature of the part of body
ith which the thermometer interacts in the, typically only partially
nown, conditions of the interaction, we could be interested in measur-
ng the temperature of the body in specified conditions, and this would
equire us to model the measurand by identifying the quantities by
hich it is affected, and then either to intervene to control them when
easurement is performed or to correct the obtained measured value.

10 Of course, other models need to be introduced in a more encompassing
treatment of measurement, and in particular a model of the behavior of
the measuring instrument, as provided by the information obtained from its
calibration and the characterization of the conditions of the environment when
the measurement is performed. See [32] for a detailed presentation of such a

model.
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Thus, the third role of models in measurement is that measurands are
modeled based on sets of laws that state the connections, typically some
functional relations, between what we want to measure and the other
quantities that are to be taken into account when the measurement is
performed.

In summary,

• any measuring instrument is designed so as to be sensitive to
quantities of a given kind, and this is an empirical feature of the
instrument, still independent of its calibration and the way the
results of the interaction will be represented, and

• the object under measurement is modeled as having an individual
quantity of that kind, and this involves both modeling the object
and the individual quantity.

Thus, when for example the length of a given rod is measured

• the rod is modeled as something having a length, say as a cylindrical
object;

• this model allows us to design a suitable measurement procedure, say
by stipulating that measuring the distance between two appro-
priate points on the opposite sides of the rod using a meter stick
suffices to get what we want.

till, while the process is made possible due to the model, we know
hat the rod with which the measuring instrument interacts is not a
ylinder, as sufficiently precise measurements would show.

.1. The role and significance of models on the equational interpretation

Let us go back to the equational interpretation of the basic equation.
n accordance with the diagram

𝐷𝑄

𝑄[𝑄]

↘↘

𝑄

↘↘

R+

𝑟−1[𝑄]

↙↙
𝐾𝑄

𝑟[𝑄]

↗↗

objects 𝑎 ∈ 𝐷𝑄 are characterized by quantities 𝑄(𝑎) = q ∈ 𝐾𝑄 having
ratios with a unit [𝑄]. The previous analysis about the role of models
eads us to introduce, as a new element in the diagram, the set 𝐷∗

𝑄 of
the mathematical models of the objects in the domain 𝐷𝑄. The resulting
picture is

𝐷𝑄 𝑚𝑜𝑑𝑄
→→

𝑄

↘↘

𝑄[𝑄]

↘↘
𝐷∗

𝑄 𝑄∗
[𝑄]

→→

𝑄∗

↓↓

R+

𝑟−1[𝑄]

↙↙
𝐾𝑄

𝑟[𝑄]

↗↗

an instance of which, about the measurement of the length of a rod, is
7

𝑎
𝑚𝑜𝑑𝐿

→→

𝐿

↘↘

𝐿m

↘↘
𝑎∗𝐿 𝐿∗

m

→→

𝐿∗

↓↓

1.25

𝑟−1m

↙↙
𝓁

𝑟m

↗↗

This diagram summarizes the following ideas.

1. For some given purposes, a given rod 𝑎 is considered with respect
to length 𝐿.

2. The rod 𝑎 is modeled as a cylinder 𝑎∗𝐿 = 𝑚𝑜𝑑𝐿(𝑎), that by
definition has a unique length 𝓁 = 𝐿∗(𝑎∗𝐿).

3. The model is assumed to be adequate for the given purposes, and
this justifies attributing that unique length 𝓁 = 𝐿(𝑎) = 𝐿∗(𝑎∗𝐿)
to the rod 𝑎. This corresponds to assume that the lower left
triangle

⟨

𝑎, 𝑎∗𝐿, 𝓁
⟩

in the diagram above commutes, i.e., 𝐿(.) =
𝐿∗◦𝑚𝑜𝑑𝐿(.).

4. The meter, m∈ 𝐾𝐿, is chosen as the unit of length, and 𝐿∗(𝑎∗𝐿)
has a unique ratio 𝐿∗(𝑎∗𝐿) ∶ m = 𝑟m◦𝐿∗(𝑎∗𝐿) with the meter. This
corresponds to assume that the lower right triangle ⟨𝑎, 1.25, 𝓁⟩
in the diagram above commutes, i.e., 𝐿∗

m(.) = 𝑟−1m ◦𝐿∗(.).
5. The definition of the meter is realized by a measurement stan-

dard 𝑠m ∈ 𝐷𝐿, and 𝑎 is compared with 𝑠m with respect to length
according to a suitable procedure. The process of comparison
produces a numerical value 1.25.

6. The hypothesis of adequacy of the model justifies attributing the
numerical value 1.25 to the ratio 𝐿∗(𝑎∗𝐿) ∶ m, and therefore the
value 1.25m to the length 𝐿∗(𝑎∗𝐿) of the cylinder 𝑎∗𝐿. In this case
the hypothesis bridges the empirical side to the mathematical
side, since a numerical value that results from an empirical
comparison is associated to a mathematical entity, namely the
ratio 𝐿∗(𝑎∗𝐿) ∶ m.

7. The hypothesis of adequacy of the model also justifies attributing
the numerical value 1.25 to the ratio 𝐿(𝑎) ∶ m, and therefore
the value 1.25m to the length 𝐿(𝑎) of the rod 𝑎. In this case the
same hypothesis bridges the mathematical side to the empirical
side, since the ratio 𝐿∗(𝑎∗𝐿) ∶ m is identified with the ratio
𝐿(𝑎) ∶ 𝐿(𝑠m), thus justifying the attribution of the numerical
value to this ratio.

Such a process is then a back-and-forth sequence between empirical
objects and their quantities on the one hand and mathematical models
and their quantities on the other hand, with the preliminary condition
that a unit of length is chosen and its definition is realized:

• a numerical value can be attributed to 𝐿(𝑎) only if 𝑎 is adequately
modeled as 𝑎∗𝐿, i.e., only if the equation 𝑎∗𝐿 = 𝑚𝑜𝑑𝐿(𝑎) is adequate;

• the numerical value attributed to 𝐿(𝑎) in the chosen unit is
determined by means of an empirical process involving 𝑎 but
interpreted through the model, so that what the process produces
is 𝐿m(𝑎) = 𝐿∗

m(𝑎∗𝐿).

In summary, in order to measure a rod with respect to length and
relatively to a chosen unit, we model it as having a cylindrical shape,
and so as having a definite unique length. This assumption justifies us
comparing by length the rod with a realization of the definition of the
unit and producing a numerical value as the result. Hence, for a rod
𝑎, a length-related model of which is 𝑎∗𝐿, 𝐿(𝑎) = 𝐿∗(𝑎∗𝐿) = 𝑟−1𝑚 ◦𝐿∗

m(𝑎∗𝐿):
through the model, the length of 𝑎 is taken to be the same as the length
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that is 1.25 times the meter, and therefore the same as the ratio between
𝐿∗(𝑎∗𝐿) and m.

The introduction of the new element 𝑎∗𝐿 in this framework deserves
some comments.

1. The length-related model 𝑎∗𝐿 of the empirical object 𝑎 is an ideal
entity, typically a mathematical entity, that has a definite length
by definition: any cylinder has one length.

2. The rod 𝑎 itself is considered to have a definite length 𝐿(𝑎) only
because it is modeled so: no rod is perfectly cylindrical and at
a certain scale the notion of length of an empirical macroscopic
object is not well-defined.

3. The procedure that specifies how to measure 𝐿(𝑎) is based on
the model of the rod: we measure one distance between two
opposite vertices precisely because the rod is modeled as a
cylinder (where a different model could require for example to
measure the distance between several pairs of points and average
the measured values).

Introducing an element like 𝑎∗𝐿, i.e., a measurand-related mathemati-
cal model of the object under measurement, is well and consistently
understood in the equational interpretation, in which the existence of
mathematical entities characterized by quantities is no surprise. So, the
assumption that empirical objects become measurable provided that
they are modeled by means of mathematical objects can be accepted
with no modifications of the basic ontology sketched in Section 2.2.

In conclusion, we get a response to the key questions proposed in
the introduction.

KQ1: How should we interpret a basic equation?

A basic equation states that the quantity identified as a property of an object
on the basis of an assumed model (left hand side) and the quantity identified
by its ratio with the unit (right hand side) are the same quantity.

KQ2: How should we define its truth conditions?

A basic equation is true provided that the model of the object under
measurement is adequate for the measurement purposes, i.e., provided that
any discrepancy between the model and the object is irrelevant given the
accuracy of the measurement.11

Furthermore, the derived questions are addressed in this way by the
equational interpretation:

• measurands are quantities identified as properties of empirical
objects, i.e., by address;

• measured values are quantities identified in terms of numerical
values and units, i.e., by value;

• the relation holding between a measurand and a measured value
in a basic equation is in principle an identity: a quantity identified
by address and a quantity identified by value are one and the
same quantity.

Similar conclusions can be obtained for properties other than ratio
quantities.

4.2. The role and significance of models on the representational interpreta-
tion

In the diagram that captures the tenets of the representational
interpretation

11 This answer is admittedly sketchy. For a more throughout discussion of
his topic, see [33].
8

𝐷𝑄

𝑄[𝑄]

↘↘
R+

objects 𝑎 ∈ 𝐷𝑄 are directly related to numbers 𝑄[𝑄](𝑎) ∈ R+. The fact
that both objects under measurement and objects taken as measure-
ment standards, i.e. objects associated with a numerical value obtained
from a metrological traceability chain, are modeled entities leads us
again to introduce, as a new element in the diagram, the set 𝐷∗

𝑄 of
the mathematical models of objects in 𝐷𝑄. The resulting picture is

𝐷𝑄 𝑚𝑜𝑑𝑄
→→

𝑄[𝑄]

↘↘
𝐷∗

𝑄 𝑄∗
[𝑄]

→→ R+

an instance of which, about the measurement of the length of a rod, is

𝑎
𝑚𝑜𝑑𝐿

→→

𝐿m

↘↘
𝑎∗𝐿 𝐿∗

m

→→ 1.25

This diagram summarizes the following ideas. In order to measure
the length of a rod 𝑎 in 𝐷𝐿, we model the rod as being an element
of an empirical system that satisfies some conditions allowing us to
prove a representation theorem and a uniqueness theorem with respect
to a given numerical system. Since some of the conditions that are
imposed on the empirical system might not be empirically checkable,
this implies some degree of idealization,12 with the (somewhat para-
oxical) consequence that the empirical system is actually made of
odels of the empirical objects under measurement, not empirical

bjects themselves. Therefore, since the model 𝑎∗𝐿 = 𝑚𝑜𝑑𝐿(𝑎) of 𝑎 is
ssumed to be an element of this system, we can assign a number to it
ased on a scale 𝐿∗

m which, in the case of ratio quantities, specifies how
umbers are assigned in compliance with the condition that objects
an be concatenated and compared in length for a given unit. So, since
he length-related model of the rod is assumed to be comparable with
he model 𝑠∗m of some measurement standard that embodies the unit of
ength, we measure its length by comparing it with 𝑠∗m and obtaining

the number 𝐿∗
m(𝑎∗𝐿) as a result. Finally, we attribute the measured value

to the rod. Here 𝑎 is length-represented by 1.25 under 𝐿∗
m◦𝑚𝑜𝑑𝐿, given

he convention that 𝐿∗
m(𝑠∗m) = 1.

The introduction of the new element 𝑎∗𝐿 deserves some comments.

1. The model of the rod is again an ideal entity, both because
the conditions that an empirical system have to satisfy for us
to be able to prove a representation theorem and a uniqueness
theorem are typically ideal and because it is a cylinder.

2. The measurement procedure is again based on the model of the
rod, since also in this case we decide to measure the distance be-
tween two opposite points precisely because the rod is modeled
as a cylinder.

n the representational interpretation, introducing a mathematical ob-
ect like a cylinder poses some problems: in fact, given the underlying
ntirealism, the existence of mathematical entities characterized by
uantities should be suspicious. Hence, the assumption that empirical
bjects become measurable provided that they are modeled by means

12 It is generally assumed that empirical systems for ratio quantities include
a total and transitive ordering relation and an operation of concatenation that
supports infinite divisibility of objects: these are evidently ideal conditions.
See [19,22,34] for a further discussion on this point.
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of mathematical objects can be hardly accepted without modifying the
basic ontology.

In conclusion, we get a response to the key questions proposed in
the introduction.

KQ1: How should we interpret a basic equation?

A basic equation is only an idiomatic form of the actual equation 𝑄[𝑄](𝑎) =
𝑄}, interpreted as stating that the number to be assigned to an object to
epresent it in a given scale (left hand side) is a given number (right hand
ide).

KQ2: How should we define its truth conditions?

basic equation is true provided that the model of the object under
easurement is adequate for the measurement purposes, i.e., provided that
he measurement implements the morphism between the empirical system
ontaining the object and the measurement standard and the corresponding
umerical system.13

Furthermore, the derived questions are addressed in this way by the
epresentational interpretation:

• measurands are elements of a suitable empirical system, since the
mapping between the empirical system and the numerical system
is crucial for identifying what we intend to measure;

• measured values are elements of a suitable numerical system,
since the mapping between the empirical system and the nu-
merical system is again crucial for identifying a number as a
value;

• the relation holding between measurands and measured values
is in principle a representation, and mathematically a mapping
between the empirical system and the numerical system: the
object that we intend to measure is represented by a number
given a unit.

n this case too, similar conclusions can be obtained for properties other
han ratio quantities.

. Comparing the interpretations

The advantages of the representational interpretation (𝑅𝐼) over the
equational interpretation (𝐸𝐼) are evident: provided that the existence
of a mapping 𝑄[𝑄] is provable, under the assumption of the existence
of objects in 𝐷𝑄 and the characterization of their relations, no other
entities – and in particular no properties – are required to interpret a
basic equation. Since the frameworks developed in the two traditions
provide information whose mathematical treatment is basically the
same, 𝑅𝐼 seems preferable to 𝐸𝐼 due to this ontological parsimony.
Moreover, 𝑅𝐼 clearly encompasses 𝐸𝐼 , in the sense that if a value
{𝑄}[𝑄] is actually the same as a quantity 𝑄(𝑎), as claimed by 𝐸𝐼 , then
{𝑄}[𝑄] can be also taken as a representative of 𝑄(𝑎), as claimed by
𝑅𝐼 , whereas in general the represented object is different from the one
that represents it.14 This notwithstanding, we argue that, once an actual
process of measurement is considered and the idealizations implied in
introducing and using models are highlighted, the advantages of 𝐸𝐼
as a basis for a model-based interpretation of measurement become
apparent.

13 This answer is also admittedly sketchy. For a discussion of this topic,
here a distinction between fundamental and derived measurement is at work,

ee [19,22].
14 As a cogent consequence, compare how the two frameworks could de-
cribe the behavior of, say, a thermocouple, that transduces temperature
o voltage. Once a value of voltage is somehow obtained, 𝐸𝐼 considers it

only an intermediate, though necessary, step: under the acknowledgment
that temperatures cannot be measured in volts, it requires the sensor to be
calibrated so as to be able to produce a value of temperature. This condition
is instead plausibly only optional in 𝑅𝐼 , according to which temperatures can
9

be unproblematically represented also by numerical values in volts.
5.1. Interpreting the role of the models

In a model-based version of 𝐸𝐼 , values are primarily attributed to
quantities of the model of the empirical object under measurement, and
then assigned to the quantities characterizing that object based on the
modeling relation 𝑎∗𝑄 = 𝑚𝑜𝑑𝑄(𝑎). Thus, the length of a rod is the length
of the cylinder that models the rod, and it is something comparable,
for example, with the positions of the marks of a measuring tape or
the product of the speed of an electromagnetic wave and the duration
the wave takes to transit back and forth from a certain source. Of
course, according to a different, and more refined, model, a rod is
not interpreted as a cylinder anymore and therefore it does not have
a definite length, but this remains consistent with the possibility of
using one of the described measurement procedures, by then reporting
a non-null definitional uncertainty to take into account the discrepancy
between the empirical object and its model.15

In contrast, in a model-based version of 𝑅𝐼 the existence of a
morphism to an appropriate numerical system, unique up to a certain
group of transformations, is proved for 𝐷∗

𝑄, not 𝐷𝑄, and therefore for
an idealization of an empirical system of objects, not quantities [35].
This raises problems both about the connection between empirical and
ideal entities and about the identification of what is measured. Indeed,
empirical relations do not characterize ideal objects, such as cylinders.
If ideal relations were admitted instead, either the result would be
a purely mathematical framework, thus disconnected to the actual
practice of measurement,16 or we should ensure that such relations
are defined with respect to the quantity on the basis of which the
model of the object under measurement is constructed. However, this
is not possible in a representational setting, due to its antirealism about
quantities. In addition, the formally provable ideal relations should
be related to something empirical, able to account for the specific
interaction between what is measured and the measuring instrument,
and this is again something modeled by an element of 𝐾𝑄, which
inds no place in 𝑅𝐼 . In sum, in the absence of quantities it is hardly
onceivable how to account for the connection between the empirical
bjects and the ideal objects we use to model them, a connection that
onstitutes a necessary connection for us to develop and implement
easuring instruments and measurement procedures.

Let us review our conclusions by highlighting four points that make
𝐼 more adequate than 𝑅𝐼 to explain the information provided by a
asic equation when models, as discussed in Section 4, are taken into
ccount.

1. Measurement is always measurement of properties of objects,
not of objects as such, and this is consistent with the basic
observation that objects have different modes of interaction with
their environment, which do not depend on the way we measure
or represent them. While the acknowledgment of the existence
of properties is a crucial element of 𝐸𝐼 , it remains hidden in
𝑅𝐼 , in which it appears that properties are only features of
representations, and not entities with causal power.17

15 For a discussion of how the discrepancy between models and modeled
objects can be taken into account in terms of definitional uncertainty, see [33].

16 See [7], where a strong criticism based on this point is proposed against
the way measurement is being conceived in psychology, so later leading
Michell to argue whether psychometrics is ‘‘pathological science’’.

17 This point is stressed in [8, p. 286], where in commenting on the
operationist standpoint Michell wrote that ‘‘its central principle was that the
concepts investigated in science are constituted by the operations used to
measure them, thereby confusing what is measured with how it is measured
and denying the logical independence of what is known from the process
of knowing it’’. On this matter Torgerson was very explicit (in his phrasing
“system” stands for what we have called here “object”): ‘‘While the distinction
between systems and their properties is perhaps obvious, it is nevertheless an
important distinction. It is of special importance here because of the fact that
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2. Measurement relates numbers to empirical objects based on em-
pirical operations. Still, different kinds of empirical operations
can be applied to the same objects, where a given operation can
be applied to a given object precisely because that object has
a given property. In addition, the identification of an empirical
system depends on the identification of the empirical relations
that characterize the objects of the system, and this identifica-
tion is in turn dependent on the assumption that those objects
share a given empirical kind of property. But then again, the
acknowledgment of the existence of kinds of properties and of
their instances, which is pivotal in 𝐸𝐼 , plays no role in 𝑅𝐼 .

3. Measurement relates numerical systems to empirical systems in
virtue of the possibility of constructing a morphism between
them. While 𝐸𝐼 provides a rich and consistent understanding
of numbers as ratios between quantities, and this clarifies both
what numbers are and why numbers can be used in measure-
ment, the success of the representation of an empirical system
by means of a numerical system remains unexplained in 𝑅𝐼 .

4. Measurement relates numbers to empirical objects in virtue of
modeling operations, where models are ideal objects and the
models of the empirical objects that are exploited in measure-
ment are ideal objects having quantities. Still, the existence
and suitability of such models for representing objects remain
unexplained in 𝑅𝐼 . By contrast, in 𝐸𝐼 models are mathematical
objects having quantities, and this clarifies both what models are
and why models can be used in measurement.

In conclusion, the equational vs. representational opposition is an
instance of the explanatory benefits vs. ontological costs trade-off, and
as such a last word about it can be hardly said. However, an antirealist,
quantity-independent, representational characterization seems to be
not sufficiently specific to account for a model-based interpretation of
measurement, which is instead adequately encompassed by a realist,
quantity-based, equational characterization.

5.2. Conclusion

Let us summarize the basic points distinguishing 𝐸𝐼 from 𝑅𝐼 with
espect to both the ontology they support and the tenets related to the
ntities they admit for, and then compare these in light of what we saw
efore.

Ontology 𝐸𝐼 𝑅𝐼

Empirical objects ✓ ✓

Relations on empirical objects ✓ ✓

Properties of empirical objects ✓ –
Mathematical models of objects ✓ ✓

Quantities of mathematical models ✓ –
Relations on quantities of models ✓ –
Ratios between quantities ✓ –
Real numbers ✓ ✓

Tenets of 𝐸𝐼
1. empirical objects have empirical quantities and are modeled as

having quantities;
2. quantities of modeled objects are associated values of quantities,

and then with numbers;
3. relevant numerical relations are relations on modeled quantities;
4. values of quantities are quantities identified via units;

it is always the properties that are measured and not the systems themselves.
Measurement is always measurement of a property and never measurement of
a system’’ [36, p. 14].
10
5. measurement is the attribution of a value to a given empirical
quantity of a given object that makes the related basic equation
true;

6. such an attribution is possible because

(a) empirical objects are assumed to be characterized by em-
pirical quantities since they are modeled as mathematical
objects having quantities;

(b) numerical values of quantities are real numbers, that is
quantity ratios.

enets of 𝑅𝐼
1. empirical objects are modeled as having quantitative relations;
2. modeled objects are associated with numbers;
3. relevant numerical relations represent relations on modeled ob-

jects;
4. numerical values of quantities represent modeled objects identi-

fied via scales;
5. measurement is the attribution of a numerical value to an empir-

ical object that makes the related basic equation consistent with
the available information;

6. such an attribution is possible because

(a) empirical objects are assumed to be characterized by em-
pirical quantities since they are modeled as mathematical
objects in a certain empirical system;

(b) numerical values of quantities are real numbers.

The main argument we have proposed is to the effect that point 6 is
ustified without problem in the equational interpretation, while it is in
eed of justification in the representational interpretation. To be sure,
straightforward justification for the representational interpretation

f point 6 might run as follows: once empirical objects are modeled
ith respect to a kind of quantity, they can be compared as having

ndividual quantities; such comparison allows for the assignment of
uantity values given by numerical values and units. Still, this kind of
ustification is not available for the representationalists, as they do not
dmit for the existence of kinds of quantity and of individual quantities,
nd the addition of such entities to the ontology would render the
epresentational standpoint indistinguishable from the equational one.

While reached about quantities with a unit, the core content of
he analysis proposed in this paper – that the basic equation is more
dequately understood in the specific interpretation of being an actual
quation, instead of the generic interpretation of being a representation
does not depend on any assumption about the algebraic structure

olding on properties (as in 𝐸𝐼) or objects (as in 𝑅𝐼). Indeed, for
ny kind of quantity, a unit can be simply thought of as a quantity
hat through its multiples and submultiples is singled out to induce

classification of the quantities of that kind. Though construed and
onstructed via different strategies, the idea that values of properties
re basically classifiers for properties of objects applies independently
f the type of the property concerned, and thus also to ordinal quan-
ities and nominal properties. Hence, our conclusions may be framed
n the broader, evolutionary picture of metrology encompassing also
on-quantitative properties.
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