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Abstract: Prostate cancer (PCa) continues to be the second most common malignant tumour and
the main cause of oncological death in men. Investigating endogenous volatile organic metabolites
(VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive
source of information to establish the volatilomic biosignature of PCa. In this study, headspace solid-
phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME/GC-MS)
was used to establish the urine volatilomic profile of PCa and identify VOMs that can discriminate
between the two investigated groups. This non-invasive approach was applied to oncological patients
(PCa group, n = 26) and cancer-free individuals (control group, n = 30), retrieving a total of 147 VOMs
from various chemical families. This included terpenes, norisoprenoid, sesquiterpenes, phenolic,
sulphur and furanic compounds, ketones, alcohols, esters, aldehydes, carboxylic acid, benzene
and naphthalene derivatives, hydrocarbons, and heterocyclic hydrocarbons. The data matrix was
subjected to multivariate analysis, namely partial least-squares discriminant analysis (PLS-DA).
Accordingly, this analysis showed that the group under study presented different volatomic profiles
and suggested potential PCa biomarkers. Nevertheless, a larger cohort of samples is required to boost
the predictability and accuracy of the statistical models developed.
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1. Introduction

According to the most recent data, prostate cancer (PCa) is the second most common
cancer in men and the fourth most common tumour [1]. PCa occurs mostly after 60 years
old, with an average age at the time of diagnosis of 66 years old [2]. The psychological
and functional states of patients are greatly impacted by PCa and following treatments,
considerably affecting their quality of life [3]. The current diagnostic techniques are aggres-
sive, costly, and uncomfortable for patients. The prostate-specific antigen (PSA) biomarker
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test has a low level of selectivity for diagnosing PCa and tracking cancer development [4],
whereas prostate biopsies can lead to both false-positive and false-negative results [2,5,6].
Consequently, these limitations lead to overdiagnosis and overtreatment of patients [7].
Hence, there is an urgent need to identify specific and noninvasive diagnostic tools for the
detection of PCa.

Volatilomics studies volatile organic metabolites (VOMs), low-molecular-weight or-
ganic chemicals with a high vapour pressure at room temperature [8], corresponding to
the volatile fraction of the metabolome [9]. VOMs are a useful source of information on
the general state of health or disease status since they are produced by the metabolism
of cells. Genetic, protein, and gut microbiota changes directly influence the profile of
VOMs production [10]. Consequently, their production and release may be altered in some
diseases, such as cancer [5,11]. Therefore, VOMs represent a patient’s metabolic fingerprint,
comprising endogenous and exogenous factors, and for these reasons, have been proposed
as a promising class of disease biomarkers (Figure 1) [8,12].

Figure 1. Genetic and epigenetic factors, as well as food, drugs, environment, and habits, influence
the volatomic pattern in the biological fluids most used to establish the volatomic fingerprints.

VOMs have been highlighted in recent studies because of their ease of use and non-
invasiveness, as they can be identified in easily accessible biofluids such as urine, saliva,
and exhaled breath [13,14]. VOMs contain valuable information about the biochemical
metabolization of cancer cells, and each cancer type is thought to have a specific VOM
pattern. Moreover, previous research has shown that VOMs can be used to distinguish
between oncological and healthy individuals (Table 1) [11]. Volatilomic analysis involves
sensitive analytical techniques such as mass spectrometry (MS), electronic nose (e-nose),
or sensor techniques combined with multivariate statistical analysis to characterise the
chemical composition of biological fluids [11,15]. MS techniques identify and quantify the
levels of VOMs, whereas e-nose sensor arrays are linked to pattern recognition algorithms
or chemical sensor systems [10,12].
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Table 1. Recent studies on volatile organic metabolites for the identification of cancer biomarkers found in urine, exhaled breath, and saliva.

Cancer Type Analytical
Approach

Biomarker’s Candidates/
Findings Prediction Model Validation Characteristics Reference

Urine

Pancreatic TD-GC-TOF-MS
GC-IMS

2,6-Dimethyl-octane, nonanal,
4-ethyl-1,2-dimethyl-benzene,

2-pentanone

Repeated
10-Fold

CV
NA [16]

Bladder, prostate GC-TOF-MS and GC-IMS 35 VOMs ROC, Repeated 10-Fold CV

GC-IMS
Sens: 87%
Spec: 92%
AUC: 0.95

[17]

Prostate Urine HS conditioning,
followed by e-nose analysis

The e-nose detected alterations in the
urine volatilome associated with PCa ROC

Sens: 85%
Spec: 79%
AUC: 0.82

[18]

Prostate
Urine HS conditioning,

followed by e-nose analysis
(Cyranose C320)

The e-nose discriminated the urine
smell prints of patients with PCa

from healthy controls

PCA,
ROC

Sens: 83%
Spec: 88%
AUC: 0.90

[19]

Prostate Urine HS conditioning,
followed by e-nose analysis

The e-nose discriminated patients
with PCa from healthy controls PCA

Sens: 82%
Spec: 87%
AUC: NA

[20]

Pancreatic ductal
adenocarcinoma

HiSorb probes coupled
with GC-TOF-MS

2-Pentanone, hexanal,
3-hexanone, p-cymene PLS-DA AUC: 0.82

CER: 0.18 [21]

Breast
GC-MS analysis of the urine
HS. Sample’s smell print by

the e-nose prototype

The e-nose software discriminated
between early stage breast cancer

and healthy controls

Artificial intelligence-based
algorithm: CNN

Sens: 100%
Spec: 50%

Classification rate: 75%
[22]

Bladder HS-SPME/GCxGC TOF-MS

Butyrolactone, 2-methoxyphenol,
3-methoxy-5-methylphenol,

1-(2,6,6-trimethylcyclohexa-1,3-dien-
1-yl)-2-buten-1-one, nootkatone,

1-(2,6,6-trimethyl-1-cyclohexenyl)
-2-buten-1-one

ANN NA [23]
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Table 1. Cont.

Cancer Type Analytical
Approach

Biomarker’s Candidates/
Findings Prediction Model Validation Characteristics Reference

Lung GC-IMS

2-Pentanone, 2-hexenal, 2-hexen-1-ol,
hept-4-en-2-ol, 2-heptanone,

3-octen-2-one, 4-methylpentanol,
4-methyl-octane

SVM

GC-IMS
Sens: 85%
Spec: 90%
AUC: 0.91

[24]

Exhaled breath

Colorectal Thermal
desorption-GC-TOF-MS

10 VOMs distinguished advanced
adenomas from negative controls.

Colorectal cancer patients and
advanced adenoma combined were

discriminated from controls

RF
Colorectal cancer vs. controls

Sens: 80%
Spec: 70%

[25]

Gastric PTR-TOF-MS Propanal, aceticamide,
isoprene, 1,3-propanediol ROC

Sens: 61%
Spec: 94%

AUC: 0.842
[26]

Breast SIFT-MS 3,7-Dimethyl-2,6-octadien-1-ol,
ethanolamine, ethyl nonanoate

PCA,
MLR

Sens: 86.3%
Spec: 55.6% [27]

Hepatocellular SPME/GC-MS
Phenol 2,2 methylene bis

[6-(1,1-dimethyl ethyl)-4-methyl]
(MBMBP)

PCA NA [28]

Lung HPPI-TOFMS

Isoprene, hexanal, pentanal,
propylcyclohexane, nonanal,

2,2-dimethyldecane,
heptanal, decanal

Hosmer–Lemeshow test

Sens: 86%
Spec: 87.2%
Acc: 86.9%
AUC: 0.931

[29]

Hepatocellular carcinoma HS-SPME/GC-MS
Acetone, 1,4-pentadiene, methylene

chloride, benzene, phenol,
allyl methyl sulfide

SVM
Sens: 44%
Spec: 75%
Acc: 55.4%

[30]



Curr. Oncol. 2023, 30 4908

Table 1. Cont.

Cancer Type Analytical
Approach

Biomarker’s Candidates/
Findings Prediction Model Validation Characteristics Reference

Saliva

Oral HS-SPME/GC-MS

1-Octen-3-ol, hexanoic acid,
E-2-octenal, heptanoic acid, octanoic

acid, E-2-nonenal, nonanoic acid,
2,4-decadienal, 9-undecenoic acid

PCA
Sens: 100%
Spec: 100%

AUC: 1
[31]

Stomach and
colorectal cancer Capillary GC-FID Acetaldehyde, acetone,

2-propanol, ethanol CART Sens: 95.7%
Spec: 90.9% [32]

Oral squamous cell
carcinoma

Thin-film microextraction
based on a ZSM-5/

polydimethylsiloxane hybrid
film coupled with GC-MS

12 VOMs PCA Sens: 95.8%
Spec: 94% [33]

Legend: Acc: accuracy; ANN: artificial neural networks; AUC: area under the receiver operating characteristic (ROC) curve; CART: classification and regression tree; CER: classification
error rate; CNN: convolutional neural network; CV: cross-validation; GC-IMS: gas chromatography–ion migration spectroscopy; GC-MS: gas chromatography–mass spectrometry;
GC-TOF-MS: gas chromatography coupled to time-of-flight mass spectrometry; HPPI-TOFMS: high-pressure photon ionization time-of-flight mass spectrometry; HS: headspace;
HS-SPME: headspace solid-phase microextraction; MLR: multiple logistic regression; NA: not analyzed; PCa: prostate cancer; PCA: principal component analysis; PLS-DA: partial
least-squares discriminant analysis; PTR-TOF-MS: proton-transfer-reaction time-of-flight mass spectrometry; RF: random forest; ROC: receiver operating characteristic; Sens: sensitivity;
SIFT-MS: selected ion flow tube–mass spectrometry; Spec: specificity; SVM: support vector machine; TD-GC-MS: thermal desorption gas chromatography–mass spectrometry;
TD-GC-TOF-MS: two-dimensional gas chromatography with time-of-flight mass spectrometer.
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Owing to the enrichment of volatile compounds, ranging in polarity and complexity,
urine is the preferred biological fluid for volatilomic research. In addition to its repro-
ducibility and patient acceptability, urine has fewer interfering proteins or lipids [12,34,35].
Taverna et al. [18], Filianoti et al. [19], and Capelli et al. [20] proposed different e-noses
for PCa diagnosis through urinary volatilomic profiling (Table 1). The e-noses developed
were able to detect alterations in the urine volatilome associated with PCa and thereby
discriminated oncological patients from healthy controls, with sensitivity and specificity
superior to 81% and 79%, respectively. Wen and collaborators [21] developed an extraction
technique using HiSorb sorptive extraction combined with gas chromatography coupled
to time-of-flight mass spectrometry (GC-TOF-MS) for urine analysis of PCa patients. The
authors identified four candidate urinary biomarkers, 2-pentanone, hexanal, 3-hexanone,
and p-cymene, which were able to discriminate patients with pancreatic ductal adenocar-
cinoma from non-cancer individuals. Benet et al. [22] implemented an e-nose to detect
breast cancer in urine samples, which was tested using an artificial intelligence-based
classification algorithm after GC-MS analysis, resulting in a sensitivity of 100% and a
specificity of 50%. Exhaled breath reflects the status and condition of the metabolism.
It is an acceptable approach, and its sampling is easy to use via simple hand-held de-
vices [12,34,35]. Cheng et al. [25] proposed a prospective study consisting of the analysis
of the exhaled breath of colorectal cancer patients. The samples were analysed using ther-
mal desorption-GC-MS (TD-GC-MS), and the data were examined with machine learning
techniques. The results revealed ten discriminatory VOMs in which advanced adenomas
could be distinguished from negative controls with a sensitivity and specificity of 79%
and 70%, respectively. Combined cancer patients and advanced adenomas could be dis-
criminated from controls with a sensitivity and specificity of 77% and 70%, respectively.
Patients with colorectal cancer were also discriminated from controls with a sensitivity of
80% and a specificity of 70%. Jung and collaborators [26] aimed to identify specific VOMs
related to gastric cancer by PTR-TOF-MS. Four VOMs, propanal, aceticamide, isoprene and
1,3-propanediol, showed gradual increases as the tumour advanced, from controlled to
early or advanced gastric cancer. Sukaram et al. [30] investigated the VOMs profile in
the exhaled breath of hepatocellular carcinoma patients through headspace solid-phase
microextraction (HS-SPME) combined with GC-MS and Support Vector Machine algo-
rithm. A panel of six VOMs consisting of acetone, 1,4-pentadiene, methylene chloride,
benzene, phenol, and allyl methyl sulfide, was correlated with the hepatocellular carcinoma
stages, exhibiting an increased distance from the classification boundary when the stage
advanced. Saliva collection is the easiest method for sampling biofluids. [12,34,35]. Its
volatile composition reflects the oral composition, allowing relevant metabolic informa-
tion [12,34,35]. Bel’skaya et al. [32] determined the volatilomic composition of saliva in
stomach and colorectal cancer patients. The samples were analysed using capillary GC and
showed that acetaldehyde, acetone, 2-propanol, and ethanol could discriminate between
cancer and control groups with a sensitivity and specificity of 95.7 and 90.9%, respectively.
Shigeyama et al. [33] established the salivary profile of patients with oral squamous cell
carcinoma to investigate VOMs as potential biomarkers in the diagnosis of oral cancer.
The authors combined thin-film microextraction based on a ZSM-5/polydimethylsiloxane
hybrid film coupled with GC-MS and identified twelve discriminatory VOMs.

The analysis of the volatilome of PCa is still relatively recent when compared to
other malignancies. Most research is based on the chemical characterisation of a biofluid
or its headspace for the detection and quantification of putative PCa biomarkers through
comparative analysis of samples from PCa patients and healthy controls (as reviewed
by Berenguer et al. [11]). HS-SPME, developed by Arthur and Pawliszyn [36,37], com-
bined with GC-MS, has been widely used for VOMs analysis. It is a simple, solvent-free,
and sensitive extraction method that does not require a concentration step before anal-
ysis, thereby reducing the risk of interference generation [38]. Therefore, this study
aimed to comprehensively characterise the urine volatilome of PCa patients by using
HS-SPME/GC-MS to identify and define a set of molecular biomarkers for the diagnosis
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of PCa. Chromatographic data were then submitted to advanced statistical tools as a
powerful way to define a pool of potential PCa biomarkers which can be used after
validation for PCa diagnosis.

2. Materials and Methods
2.1. Materials and Reagents

Sodium chloride (NaCl, 99.5%) was acquired from Panreac AppliChem ITW Reagents
(Barcelona, Spain) to promote salting-out of the VOMs. Ultrapure water obtained from a
Milli-Q water purification system (Millipore, Bedford, PA, USA) was used to prepare
the solutions hydrochloric acid (HCl, 37%) 5 M and 3-octanol (internal standard (IS),
99%) 2.5 parts per million (ppm), both from Sigma-Aldrich (St. Louis, MO, USA). For
the HS-SPME procedure, the glass vials, SPME holder, and a fused silica fibre coating
partially cross-linked with 50/30 µm Divinylbenzene/Carboxen/Polydimethylsiloxane
(DVB/CAR/PDMS) were purchased from Supelco (Merck KGaA, Darmstadt, Germany).
The DVB/CAR/PDMS fibre was used to extract a wider range of VOMs and was condi-
tioned at 270 ◦C for 30 min before use, according to the manufacturer’s guidelines.

2.2. Subjects

A cohort of 56 men was included in this study: 30 healthy individuals without any
known pathology (control group) and 26 PCa patients (PCa group) (Table 2). The control
group consisted of current non-smokers with no history of prostate malignancy. These
individuals also did not take any medication for age-related comorbidities or metabolic
diseases such as hypertension or diabetes. Urine samples from the control group were
collected during General and Family Medicine consultations at the Centro de Saúde do Bom
Jesus. Urine samples from PCa patients were collected at the Urology Unit of SESARAM,
EPERAM, prior to the confirmatory prostatic biopsy; therefore, before the newly diagnosed
PCa patients enrolled in any kind of treatment or medication. All participants signed an
informed consent form after being fully informed of the study’s objectives and protocol,
which was previously approved by the local ethics committee (CES18/2022). Each urine
sample was aliquoted in 8 mL vials and stored at −20 ◦C until analysis. All data col-
lected from the participants were processed to ensure confidentiality, privacy, and ethical
principles inherent to any research study involving human subjects.

None of the patients in this study were receiving treatment for PCa. The Urology
unit follows the European Association of Urology guidelines that state that the definitive
diagnosis is given by the prostatic biopsy, and no treatment should be initiated before that.
Even in the cases of high-volume disease, the biopsy was taken before systemic treatment
was initiated.

2.3. HS-SPME Procedure

HS-SPME extraction was performed according to previously optimized conditions
for the analysis of the volatilomic composition of urine samples of other malignant
tumours [35,39]. Briefly, 4 mL aliquots of urine sample, adjusted to pH 1–2 with 500 µL
HCl (5 M), were transferred to an 8 mL sampling glass vial with 0.8 g NaCl and 5 µL
3-octanol (2.5 ppm). For the extraction of volatiles, the vial was placed in a thermostat
bath adjusted to 50.0 ± 0.1 ◦C under stirring at 800 rpm for 60 min. After extraction,
the SPME fibre was inserted into the injector port (250 ◦C) of the GC-MS for 6 min to
desorb the analytes. The absence of 3-octanol in the samples of all studied groups was
confirmed before its use as an IS.

2.4. GC-MS Analysis

The GC-MS analysis was performed in an Agilent Technologies 6890N Network
(Palo Alto, CA, USA), equipped with a 30 m × 0.25 mm ID × 0.25 µm film thickness,
BP-20 (SGE, Dortmund, Germany) fused silica column. The oven temperature was fixed
at 35 ◦C for 2 min, increased to 220 ◦C (rate 2.5 ◦C min−1), and held for 5 min, for a total
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run time of 77 min. Helium of purity 5.0 (Air Liquide, Algés, Portugal) was used as the
carrier gas at 1.1 mL min−1. The injection port was heated at 250 ◦C and operated in
splitless mode. The temperatures of the transfer line, quadrupole, and ionisation source
were 270 ◦C, 150 ◦C, and 230 ◦C, respectively. The analysis was performed in scan mode
using a mass range of 30–300 m/z, and the electron impact mass spectra was 70 eV. The
electron multiplier was set to auto-tune procedure, and the ionisation current was 10 mA.
The identification of the VOMs was achieved by manual interpretation of the spectra and
comparison with the Agilent MS ChemStation Software (Palo Alto, CA, USA), equipped
with a NIST05 mass spectral library with a similarity threshold of 480%. The results are
expressed as relative peak areas.

Table 2. Demographic and clinical data of the cancer-free controls and prostate cancer patients
included in this study.

Characteristics Control Prostate Cancer

Number of subjects 30 26
Mean age ± SD (years) 46.21 ± 11.58 66.92 ± 9.14

BMI (kg/m2) ± SD 27.67 ± 3.78 27.34 ± 3.40
Smoking habits

Ever smokers 6 16
Never smokers 19 10

Unknown 5 0
PSA (ng/mL), n (%)

<4 30 (100%) 1 (3.85%)
4–10 - 13 (50.00%)
>10 - 12 (46.15%)

Gleason score, n (%)
≤6 - 4 (15.38%)
7 - 12 (46.15%)
≥8 - 10 (38.46%)

Grade group, n (%)
1 - 4 (15.38%)
2 - 8 (30.77%)
3 - 4 (15.38%)
4 - 9 (34.62%)
5 - 1 (3.85%)

Legend: BMI: body mass index; SD: standard deviation.

2.5. Statistical Analysis

MetaboAnalyst 5.0 [40] was used to perform the statistical analysis. The data matrix
was normalised using a cubic root transformation and mean-centered scaling. Normalised
data were processed using a t-test (p-values < 0.05). Considering the statistically significant
VOMs, multivariate analysis was performed through partial least-squares discriminant
analysis (PLS-DA). A heatmap using Euclidean correlation was used to identify potential
clustering patterns among the significantly altered VOMs in the studied groups. The impor-
tant variables of the PLS-DA model were verified according to the variable importance in
projection (VIP) score and used to validate the PLS-DA models by 10-fold cross-validation
(CV) and permutation tests (1000 random permutations of Y-observations).

3. Results and Discussion
3.1. Characterisation of Urinary Volatile Metabolites

VOMs have been described as a promising class of biomarkers for specific diseases
through the definition of volatilomic biosignatures. These sets of VOMs have the potential
to be used in early detection, as diagnostic tools, and to monitor therapeutic efficacy and
disease follow-up [41,42]. This study aimed to establish a urinary volatilomic profile of
PCa to identify putative biomarkers for PCa diagnosis. The volatile composition of urine
samples from the PCa patients (n = 26) and healthy subjects without any known pathology
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(control group, n = 30) (Table 1) was established using HS-SPME/GC-MS, according to the
experimental procedure described. Following the HS-SPME/GC-MS analysis of the urine
samples of the 56 recruited subjects, different chromatographic profiles were obtained from
the control group and the PCa patients (Figure 2).

Figure 2. Example of typical GC-qMS urinary volatilomic profile of prostate cancer and control sam-
ples. Most important peaks: (1) Dimethyl disulfide; (2) 4-Heptanone; (3) o-Cymene; (4) p-Cymenene;
(5) Dihydromyrcenol; (6) 2-Ethyl-1-hexanol; (7) Menthol; (8) D-Carvone; (9) β-Damascenone;
(10) Phenol; (11) 4-Methyphenol; (12) β-Ionone; (13) 2-Bromophenol. (A) 3-Octanol, internal standard.

Overall, 147 VOMs were identified in the analysed samples, belonging to different
chemical families, which included 13 ketones, five aldehydes, three esters, one alcohol,
three carboxylic acids, seven sulfur compounds, 16 benzene derivatives, five naphtha-
lene derivatives, 11 phenolic compounds, seven furanic compounds, 15 hydrocarbons,
four heterocyclic hydrocarbons, 35 terpenes, 19 norisoprenoids, and three sesquiterpenes
(Table S1, Supplementary Materials).

Detailed analysis of each sample group showed differences in terms of areas for the
different chemical families (Figure 3). As a result of bacterial activity, metabolism, pH
changes, or breakdown of urine constituents, the human urinary profile changes over time.
It is also influenced by external factors, including health status, dietary habits, physical
stress, and environmental exposure, which along with exogenous compounds, contribute
to an individual’s volatilomic profile [11]. Due to these factors, the human metabolism
is very complex, and cancer development and progression make it even more difficult to
understand all the metabolic processes that may contribute to an increase or decrease in
certain metabolites [35,43,44]. Thus, it is crucial to establish a relationship between the
identified VOMs and their potential endogenous origin; however, the origin of many VOMs
has not been clearly defined [8].

Terpenes, phenolic compounds, and norisoprenoids were the chemical families that
contributed the most to the volatilomic pattern of the studied groups (Figure 3). Noriso-
prenoids, phenolic, and terpenic compounds can be easily found in different exogenous
sources such as food [45,46]. Nevertheless, many metabolites belonging to these chem-
ical families originate from endogenous metabolic processes in our organism, namely
p-cymenene, p-cymene, 2-bromophenol, phenol, and p-cresol [47]. Terpenes come from
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the mevalonic acid pathway [35,43] and can also result from the consumption of foods
and beverages [47]. 3,5-Dimethylbenzaldehyde, 2-methoxy-5-methylthiophene (MMT),
1,1,6-trimethyl-1,2-dihydronapththalene (TDN), and 2-ethyl-1-hexanol were the most abun-
dant metabolites in the PCa group. TDN is typically found in liquorice tasting, alcoholic
beverages and fruits [44,47]. 2-Ethyl-1-hexanol is a fatty alcohol in lipid molecules; it can be
found in foods such as different kinds of tea, cereals and cereal products, fats and oils, and
alcoholic beverages [44,47]. Furthermore, 2-ethyl-1-hexanol has been detected in five types
of cancer, namely lung, laryngeal, thyroid, colorectal, and breast [8]. o-Cymene has been
proposed as a putative biomarker of citrus ingestion since this compound is frequently
found in citrus fruits [44,47].

Figure 3. Chemical family distribution of the peak total area in the PCa (n = 26) and control (CTRL,
n = 30) groups. Ket: Ketones; Ald: Aldehydes; Est: Esters; Alc: Alcohols; CA: Carboxylic Acid;
SC: Sulfur Compounds; BD: Benzene Derivatives; ND: Naphthalene Derivatives; PC: Phenolic
Compounds; FC: Furanic Compounds; Hc: Hydrocarbons; HHc: Heterocyclic Hydrocarbons; Ter:
Terpenes; Nor: Norisoprenoids; Ses: Sesquiterpenes.

According to the literature, ketones are one of the most abundant chemical families
in the volatile profile of urine [43,48]. They are products of different metabolic pathways,
namely carbohydrate metabolism and lipid oxidation processes [49,50]. A few studies
have proposed that a considerable fraction of ketones in urine arises from the action of gut
bacteria, but ketones can also come from exogenous sources, such as food (beverages, foods,
and flavouring ingredients) or environmental pollution [8]. 2-Pentanone, the simplest
ketone identified, has been found in different foods, including fruits, cereals, milk, herbs
and spice, fats, and oils. Moreover, 2-pentanone has been linked to diseases such as
ulcerative colitis, non-alcoholic fatty liver disease, Crohn’s disease, and also to the inborn
metabolic disorder of celiac disease [47]. 4-Heptanone is one of the most common VOMs
in urine; its origin is still unknown, but it may be associated with the β-oxidation of
2-ethylhexanoic acid [8]. In addition to dietary sources, 3-hexanone has been associated
with several diseases, including non-alcoholic fatty liver disease, autism, and inborn
metabolic disorder celiac disease [8].

Similar to ketones, sulfur compounds have been described to possess a high expression
in the human urinary volatilomic profile [35,51]. Most of these metabolites are produced
during the transamination pathway by the incomplete metabolism of methionine and
cysteine [35,52–54]. During transamination, methionine and cysteine are transformed
into methanethiol [55]. Then, methanethiol is easily oxidized to dimethyl disulfide and
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dimethyl trisulfide [53]. It has been described that Gram-negative bacteria may also produce
considerable amounts of methanethiol and dimethyl disulfide [56]. Furthermore, these
compounds can also result from dietary sources since dimethyl disulfide and dimethyl
trisulfide are present in many foods and beverages. MMT is one of the most abundant
sulfur compounds among the PCa group.

Alcohols can originate from different sources, such as the reduction of fatty acids in the
gastrointestinal tract, pyruvate, citrate, or glycolysis pathways [57], or even the metabolism
of hydrocarbons [8]. Similarly, the metabolism of microorganisms such as bacteria can
also be a source of these metabolites [58]. Another source of alcohols is diet through the
ingestion of food and beverages [8]. Dihydromyrcenol was previously detected in the urine
samples of PCa patients [55] and was reported at lower levels than in control subjects [8].

Hydrocarbons are metabolites of great diagnostic interest because they are closely
related to oxidative stress [59]. Alkanes and other methylated hydrocarbons typically
result from the lipid peroxidation of polyunsaturated fatty acids found mainly in cell
membranes [59]. Significant changes in the levels of alkanes and methyl alkanes in cancer
patients may be related to the activity of CYP 450 enzymes [8]. In contrast, unsaturated
hydrocarbons, typically alkenes, are often involved in the mevalonic acid pathway of choles-
terol synthesis [59]. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances
that humans are exposed to in the environment, at certain industrial workplaces, and from
tobacco smoke [59]. Naphthalene is a PAH often associated with cancer development and
is released by industrial, domestic, and natural burning processes, leading to exposure of
the general population [59,60]. However, no metabolic pathway has clearly explained the
origin of naphthalene derivatives in urine. Some researchers have indicated a potential
relationship with steroid metabolism, while others have suggested that these compounds
may come from the environment to which the individual is exposed [59,60].

Furanic compounds and benzene derivatives can be found in both exogenous and
endogenous sources as metabolic products of food and different processes in the human
organism [45–47]. The thermal degradation and rearrangement of carbohydrates in
natural and processed food is the primary source of furanic compounds [44,46,47].
Furan was proposed as a PCa biomarker by Jiménez-Pacheco et al. [61]. 2-Methyl-
5-(methylthio)furan, a furanic compound found in both the control and PCa groups,
has been found in coffee, garlic, and horseradish. Benzene derivates are often related
to environmental sources, such as air and environmental pollution from industrial
(pesticides, dyes) or natural processes (fires). The major sources of benzene exposure are
automobile service stations and tobacco smoke [48].

3.2. Chemometric Analysis of Urine Samples

MetaboAnalyst 5.0 [40] was used to perform the statistical analysis. The variables
were initially normalised to obtain a homogeneous distribution and generate reliable
and interpretable models. The normalised matrix was subjected to univariate analysis
using a t-test (p < 0.05), in which the p values obtained proved that 7 of the 147 VOMs
identified presented statistically significant differences between the analysed groups, the
healthy subjects (control group), and oncological patients (PCa group) (Table 3). Some
of these metabolites have been previously related to oncological pathologies, according
to the Human Metabolome Database [8]. TDN has been detected in urine samples of
colorectal, leukaemia, and lymphoma cancers, where it was found increasingly expressed
in the samples of oncological patients [8]. About 3,5-dimethylbenzaldehyde, very little
information has been published in the literature, but similar molecules, such as the isomer
2,5-dimethylbenzaldehyde or benzaldehyde, have already been related to prostate [41]
and lung [62] cancers. For many VOMs related to the control group, such as D-carvone,
6-methylphenanthedrine, α-methylcinnamaldehyde, and 2-bromophenol, a significant
decrease in concentration was observed in the PCa group. Although the origin of some of
these metabolites is known, most of them still need more detailed evaluation to establish a
relationship with PCa.
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Table 3. Important features identified using the t-tests.

No. Significant VOMs t-Stat p-Value =−LOG10(p) FDR

1 3,5-Dimethylbenzaldehyde −7.479 6.87 × 10−10 9.1628 3.92 × 10−8

2 TDN −5.7798 3.84 × 10−7 6.4162 1.09 × 10−5

3 D-Carvone 4.363 5.82 × 10−5 4.235 0.001106
4 6-Methylphenanthridine 3.8847 0.000282 3.55 0.004016
5 α-Methylcinnamaldehyde 3.6128 0.000665 3.1772 0.007581
6 2-Bromophenol 3.486 0.000982 3.0079 0.009328
7 TONEA 3.3169 0.001633 2.7871 0.013294

Abbreviations: TDN: 1,1,6-Trimethyl-1,2-dihydronaphthalene; TONEA: 2,5,5,8a-tetramethyl-1,2,3,5,6,7,8,8-
octahydro-1-naphthalenyl ester acetate; FDR: false discovery rate.

PLS-DA multivariate pattern recognition procedures use the information contained
in the VOMs fingerprint as several variables to visualize group trends and clustering
patterns, respectively, according to the separations among sample sets. The resulting
PLS-DA analysis showed two well-separated groups, the PCa and the control groups
(Figure 4a). Besides the significant difference between PCa patients and healthy subjects
(control group) in terms of smoking habits and age, these factors did not contribute
to the differences noted between both groups. When carrying out the discriminant
statistical analysis by age and by smoking habits, it was verified that no cluster was
formed associated with any of the target groups. Hence, it can be deduced that neither
age nor the difference in the number of smokers between both groups influenced the
separation obtained among the PCa cluster and control group cluster. The VIP scores
plot describes the relative contribution of the metabolites to the variance between the
two groups, where TDN and D-carvone showed the most significant contributions to
the PCa and control groups, respectively (Figure 4b). The robustness of the generated
PLS-DA model was evaluated by 10-fold CV (Figure 4c), and to assess the significance
of class discrimination, a permutation test was performed (Figure 4d). The resulting
PLS-DA analysis showed two well-separated groups. The VIP scores plot describes
the relative contribution of the metabolites to the variance between the two groups.
TDN and D-carvone showed the most significant contributions to the PCa and control
groups, respectively.

Hierarchical clustering was performed, resulting in a dendrogram and heatmap
(Figure 5). The heatmap created using Euclidean distance measure with the
15 statistically significant VOMs illustrated the correlations between these VOMs and the
sample groups (Figure 5b). This hierarchical cluster analysis showed that each cluster
of the studied groups was well-defined by a distinct panel of metabolites. For instance,
D-carvone, p-cymenene, and 2-bromophenol p-tert-butylphenol were the metabolites
most associated with the control group, whereas 3,5-dimethylbenzaldehyde, MMT, TDN,
and 2-ethyl-1-hexanol were highly correlated with the PCa group.

To evaluate the performance of the potential biomarker models, the multivariate
exploratory receiver operating characteristic (ROC) curves were generated by Monte Carlo
cross-validation (MCCV), using 2/3 of the samples to evaluate feature importance, and
the remaining 1/3 were used to validate the created models (Figure 6a,b). The top-ranking
features in terms of importance were used to build the classification models. Figure 6a
shows the ROC curves of a set of six volatiles based on the average cross-validation
performance. The obtained values for the area under the curves (AUC) between 0.867
and 0.968, with a 95% confidence interval, are excellent and represent a good accuracy
in discriminating both groups. Figure 6b shows the plot of the predictive accuracy of
biomarker models with an increasing number of features.
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Figure 4. (a) Partial least-squares discriminant analysis (PLS-DA). (b) Variables of importance in
projection (VIP) scores plot, representing the important features identified by the PLS-DA. The
coloured boxes on the right indicate the relative concentrations of the corresponding metabolites in
each group under study. (c) 10-fold CV performance of the PLS-DA classification using a different
number of components (* means best Q2 value, the best classifier). (d) PLS-DA model validation by
permutation tests based on 1000 permutations of the VOMs obtained by GC-MS of the urine samples
from the groups under study.

Figure 5. Hierarchical cluster analysis of CTRL (control) and Pca (prostate cancer) groups (a) Den-
drogram analysis of the volatomic data, using Euclidean distance measure and Ward’s linkage.
(b) Clustering result shown as heatmap illustrates the concentration of the urinary volatile organic
metabolites identified in each sample. Columns correspond to Pca and CTRL sample groups, respec-
tively, whereas rows correspond to the most relevant VOMs detected. The colour of the cells corresponds
to the normalised peak areas of the compounds (minimum −1, dark blue; maximum +1, dark red).
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Figure 6. (a) ROC curves for the most important features with the highest ability to discriminate
both groups. (b) Plot of the predictive accuracy of biomarker models with an increasing number of
features. The most accurate biomarker model is highlighted with a red dot.

The performance of the classification model was assessed through a confusion matrix
was performed based on the classification method: PLS-DA. The columns represent the
actual classes the outcomes should have been, while the rows represent the predictions we
have made. The number of correct and incorrect predictions is summarized in Figure 7.

Figure 7. Structure of a 2 × 2 confusion matrix to assess the performance of a classification model.

Our model predicted that 10/12 were from control groups when there were 12/12. The
accuracy corresponds to the proportion of predictions that the model classified correctly. In
this case, the accuracy of the model was 91.3% as it predicted that two healthy individuals
belong to the PCa group (two false positives). The precision of the model, related to the
proportion of positive identifications that were correct, was 85%. The sensitivity which
expresses the proportion of actual positives identified correctly was 100%, whereas the
specificity associated with the proportion of actual negatives that are correctly identified
was 83.3%.
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4. Conclusions

A total of 147 VOMs were identified as belonging to different chemical families,
and different chromatographic profiles were retrieved for the groups of subjects re-
cruited. Terpenes, phenolic compounds, and norisoprenoids were the chemical families
that contributed the most to the volatilomic profile of the three studied groups: con-
trol and PCa. The statistical analysis revealed that 7 of the 147 VOMs identified pre-
sented statistically significant differences between the recruited groups, according to the
t-test (p < 0.05). PLS-DA was performed, and the robustness of the generated model
was evaluated using 10-fold CV and permutation tests. PLS-DA showed two well-
separated groups, and the VIP score showed the most relevant metabolites among
the studied groups. Hierarchical cluster analysis, carried out by Euclidean distance
measure and Ward’s linkage, showed that each cluster of the studied groups was well
defined by a distinct panel of metabolites. The metabolites D-carvone, p-cymenene,
2-bromophenol, and p-tert-butylphenol were more strongly associated with the control
group, whereas 3,5-dimethylbenzaldehyde, MMT, TDN, and 2-ethyl-1-hexanol were
highly correlated with the PCa group. A significant increase in the peak area of TDN
and 3,5-dimethylbenzaldehyde was observed in PCa patients. On average, significantly
lower abundances of D-carvone, 6-methylphenanthridine, α-methylcinnamaldehyde,
2-bromophenol, and 2,5,5,8a-tetramethyl-1,2,3,5,6,7,8,8-octahydro-1-naphthalenyl ester
acetate (TONEA) were found in cancer patients. Further validation of the findings in this
study is required using a much larger sample cohort to improve the predictive power and
reliability of the developed statistical models. Likewise, additional research is required
to determine which of the metabolites are of endogenous origin, disease-related, and
which originate from exogenous sources, related to normal metabolic processes and
external contaminations (environment or diet).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/curroncol30050370/s1, Table S1. Identified metabolites in urine
samples of PCa patients and healthy subjects. Retention time (RT) in min, formula, CAS number and
chemical family is reported for each compound. Frequency of occurrence as a percentage (%) and
mean relative peak areas are reported for prostate cancer and control groups (n = 3; RSD <20%).
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