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Abstract: Fabry disease (FD) is an X-linked lysosomal storage disorder, causing Gb-3 (globotriaosyl-
ceramide) buildup in cellular lysosomes throughout the body, in particular in blood vessel walls,
neuronal cells, and smooth muscle. The gradual accumulation of this glycosphingolipid in numerous
eye tissues causes conjunctival vascular abnormalities, corneal epithelial opacities (cornea verticil-
lata), lens opacities, and retinal vascular abnormalities. Although a severe vision impairment is
rare, these abnormalities are diagnostic indicators and prognostics for severity. Cornea verticillata is
the most common ophthalmic feature in both hemizygous men and heterozygous females. Vessel
tortuosity has been linked to a faster disease progression and may be useful in predicting systemic
involvement. New technologies such as optical coherence tomography angiography (OCTA) are
useful for monitoring retinal microvasculature alterations in FD patients. Along with OCTA, corneal
topographic analysis, confocal microscopy, and electro-functional examinations, contributed to the
recognition of ocular abnormalities and have been correlated with systemic involvement. We offer
an update regarding FD ocular manifestations, focusing on findings derived from the most recent
imaging modalities, to optimize the management of this pathology.

Keywords: Fabry disease; cornea verticillata; vortex keratopathy; vascular tortuosity; hyper-reflective
foci; foveal avascular zone; focal electroretinography

1. Introduction

Fabry disease (FD) is a rare X-linked lipid storage disorder characterized by a defi-
ciency or absence of the lysosomal enzyme α galactosidase-A (α gal-A), causing progressive
accumulation of globo-triaosylceramide (Gb-3) in cells throughout the body. Before the
availability of hemodialysis and enzyme replacement therapy (ERT), premature death
before 50 years of age often resulted from stroke, heart attack, or renal failure [1].

Ophthalmological manifestations are common in Fabry disease and usually do not
cause significant visual impairment or other ocular symptoms. Some manifestations may
provide information on the progression of the disease. Some studies suggest a correlation
between the severity of the disease and the presence of ocular signs, such as cornea
verticillate, vessel tortuosity, and cataracts [2,3].

Our review focuses on recent findings from several imaging modalities, such as
optical coherence tomography angiography (OCTA), which can highlight correlations and
predictivity with other systemic manifestations.
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2. Epidemiology and Genetics

FD is a pan-ethnic disease with a wide spectrum of heterogeneous clinical phenotypes;
multiple mutations have been documented. In newborn screening studies, a prevalence
of 1:1250 was reported [4]. In Italy, the frequency is reported at approximately 1 in 3100
newborns [5], while in Taiwan, the frequency in newborn males may be as high as 1 in 1500 [6].
In the general population, the incidence ranges from 1 in 40,000 to 1 in 117,000 [7–9].

FD is caused by reduced or absent levels of α gal-A in lysosomes, due to mutations
in the gene GLA. This gene, mapped to the region q22.1 of the X chromosome, encodes a
homodimeric glycoprotein that hydrolyzes the terminal alpha-galactosyl moieties from
glycolipids and glycoproteins. The severity of the disease is proportional to the amount of
α-gal-A activity [10,11], with over 585 documented pathogenic mutations in the GLA gene
causing non-functionality of the enzyme [12,13].

Three distinct phenotypes of FD are recognized:

• Males with no α-gal-A activity. More than 40 mutations of α-gal-A (no α-gal-A activ-
ity) have been correlated with the classic phenotype [11,14–16]. Individuals with this
phenotype develop the full spectrum of clinical signs and symptomatology, with symp-
tom onset in childhood. This mutation occurs in approximately 1 in approximately
37,000 to 60,000 males [15].

• Males with non-classic or atypical FD mutations, resulting in different manifestations.
Some gene mutations result in partial α-gal-A activity. These patients may experience
symptoms in childhood, but they do not manifest the full spectrum of FD. Compared
to the classic phenotype, these variants seem to have more cases of midlife cardiac and
renal disease [11].

• Female carriers exhibit a variety of manifestations. Although they were once con-
sidered carriers only, females are now recognized as being affected with variable
penetrance [11]. The phenotypic variation seen in heterozygotes is caused by random
X-inactivation, or lyonization, allowing traits of the mutated X chromosome to be
expressed to varying degrees [17–20].

Males are hemizygotes because they inherit one mutated X-chromosome from their moth-
ers. Females are known as heterozygotes because they inherit the mutated X-chromosome
from either parent.

3. Pathophysiology

Fabry disease causes Gb-3 accumulation in many cell types, with lysosomal storage of
Gb-3 beginning in utero and increasing over time [21–23]. Nonetheless, as little as 5–10%
of residual enzyme activity is sufficient to prevent clinically significant accumulation of
Gb-3 [24].

The progressive storage of these molecules leads to cellular dysfunction and secondary
inflammation or fibrosis. The vascular endothelium is one of the main tissues involved in
the disease, causing poor perfusion and tissue damage in organs with high vascularity, such
as kidneys, heart, nervous system, eye structures, and skin alone or in combination [24,25].

4. Conjunctival Manifestations

The most characteristic ocular manifestations in FD are increased vessel tortuosity,
venous vascular aneurysmal dilation, and ‘sludging’ of the blood in the small blood vessels
of the conjunctiva. These changes can be seen in any conjunctival area, but they are most
commonly located in the inferior bulbar region. Vessel tortuosity is more common in males
than in females and has a significant correlation with the disease severity score (greater
impairment of renal and cardiac function); Sodi et al. showed a tortuosity in 22% cases in
females and 49% in males [2,26].

Several studies have highlighted that the histopathological abnormalities are caused
by abnormal storage of Gb-3 in the endothelial cells, pericytes, and smooth muscle cells
of the conjunctival vessel walls, leading to degenerative changes responsible for the weak
mechanical resistance of the vessel walls to blood pressure and causing, over time, the
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anomalies in the blood vessel architecture. Similar deposits have been reported in all layers
of the conjunctival epithelial cells, including the goblet cells [27–30].

Conjunctival varicosities appear between the second and third decades of life and are
observed in nearly 100% of hemizygous males and about 50% of heterozygous females,
in addition to those reported in the retina of those individuals [2,12,31]. The parallelism
between conjunctival and retinal alterations suggests abnormal blood flow in vessels
throughout the body and, therefore, highlights the usefulness of predictors of more severe
systemic involvement such as loss of sympathetic tone (a dysautonomic manifestation of
FD) or occlusion vasculopathy [26,32–35].

Importantly, Mastropasqua and colleagues, and Falke and coworkers, found that
conjunctival lymphangiectasia (CL) represents a common but under-recognized ocular
manifestation of FD, observed in almost 80% of cases despite long-term enzyme replace-
ment therapy [36,37]. Clinical presentations included single cysts, beaded dilatations, and
areas of conjunctival oedema, with lesions located within 6 mm of the corneal limbus. Those
abnormalities are often accompanied by peripheral lymphoedema, dry eye syndrome, and
conjunctival chemosis [38,39].

In vivo confocal microscopy (IVCM) studies showed an irregular epithelial mor-
phology, with poorly distinguishable cell borders and the presence of reflective non-
homogeneous material, widely distributed or interspersed between areas of normal cellular
architecture among less reflective epithelium [40,41]. The tarsal conjunctival epithelium
was visualized in all patients and was the most evident pathologic finding. The presence
of roundish hyper-reflective intracellular structures involving most of the cells was the
main observed feature [36,37]. In studies by Mastropasqua and Falke, the tarsal conjunc-
tiva showed two different types of round hyper-reflective intracellular structures in most
cells. The two types were papillary and columnar distribution, following the conjunctival
epithelial folding, and were the same in both males and females [36,37].

5. Corneal Manifestations

Vortex keratopathy (VK), also known as cornea verticillata, the most typical ocular
sign in Fabry disease, was first described by Fleischer and colleagues in 1910 [42], while in
1925, Weicksel and colleagues recognized VK as being related to FD [43]. In 1968, while
studying a family with FD and various cases of VK, Franceschetti described an X-linked
recessive model of inheritance [44].

VK consists of bilateral whorl-like opacities with a vortex pattern located in the
superficial corneal layers, most commonly in the inferior corneal area. These opacities are
typically cream-colored, ranging from whitish to golden-brown. In the early stages, the
opacities may form fine horizontal lines, but they later develop into curving lines, radiating
from a point below the center of the cornea, forming small whorls, before becoming almost
straight at the periphery. The pattern and location of these corneal deposits may be related
to the influence of ocular hydrodynamics, periodic blinking, ocular magnetic fields, and/or
the centripetal movement of the renewing epithelial cells from the periphery toward the
center of the cornea [45–47] (Figure 1).

VK is evident in most hemizygous males (73%) and heterozygous females (77%) [2].
Hence, they are usually considered to be the most reliable ophthalmological marker of
Fabry disease. Occasional patients with a genetic diagnosis of Fabry disease do not exhibit
the corneal changes. Moiseev and colleagues found that VK was not associated with the
severity of the disease [48]. Furthermore, Pitz and coworkers studied VK and specific
genetic mutations; they found null mutation (male, 77%; female, 65%), missense mutation
(male, 79%; female, 67%), mild missense mutation (male, 17%; female, 23%) and the
p.N215S mutation (male, 15%; female, 16%) [3].
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Figure 1. Picture of a typical form of cornea verticillate in a patient affected.

Some reports of a sub-epithelial corneal haze have been described, in addition to
the more typical whorl-like opacities [49]. In most of these patients, this brownish haze,
or more rarely grey or whitish haze, is diffuse and involves the entire cornea, but in
some individuals, it is limited to the central or limbal corneal area. Rahman and Orssaud
postulated that the haze is an early manifestation of FD, and/or a natural evolution of the
vortex opacities [49,50].

5.1. Histopatological Findings

Histopathological studies showed the presence of intra-epithelial deposits, consisting
of dense laminated cytoplasmic inclusions, both membrane-bound and lying freely in the
cytoplasm, in both hemizygous and heterozygous FD patients [51–55]. In a study of the
cornea of a woman with FD, Weingeist and Blodi suggested that the diffuse accumulation
of sphingolipids in the corneal epithelium might be responsible for the diffuse corneal haze,
and the whorl-like pattern might be determined by a series of sub-epithelial ridges [56].
Recent ultrastructural investigations revealed a disruption of the normal pattern of the
basement membrane without re-duplication of the basal lamina [55]. A possible corneal
endothelium involvement in FD was suggested by the finding of pigment and corneal
guttae on the endothelium in sporadic cases, but this has not been confirmed by other
investigators [57].

5.2. Corneal Biomechanics

Biomechanical studies have provided evidence that the accumulation of sphingolipids
in the cornea affects static and dynamic responses, in eyes with VK. Cankurtaran et al., using
corneal tomography, demonstrated that FD patients have statistically significant higher
corneal densitometry values in all corneal concentric zones and layers, except the posterior
0–2 mm and posterior 2–6 mm zones, as compared to healthy eyes; thus, VK is associated
with increased light backscattering and reduced corneal transparency [58]. Moreover,
corneal biomechanical analysis conducted with Corvis ST (Oculus Optikgerate Gmbh,
Wetzlar, Germany) showed increased corneal stiffness in VK, probably due to the stromal
accumulation of sphingolipids [58]. Koh et al., through the use of quantitative contrast
sensitivity evaluations, found clear functional deficits in contrast sensitivity measurements,
despite normal visual acuities, in patients with VK [59].

5.3. In Vivo Confocal Microscopy

IVCM was studied in FD patients by Leonardi and colleagues, who found epithelial
deposits in 89% of FD patients’ eyes, compared to 32% visualization with slit-lamp exami-
nation [60]. Moreover, a substantial decrease in the length, quantity, and density of corneal
subepithelial nerve fibers, as well as an elevated grade of tortuosity, was reported [60–62],
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confirming the existence of an FD-related corneal neuropathy in addition to systemic
small fiber neuropathy [63]. When compared to healthy subjects, an assessment of ocular
symptoms in 75 patients with FD indicated a statistically significant higher incidence of
dryness, blurry/dim vision, and halos around lights [64]. A decrease in corneal sensitivity
was found using a contact corneal esthesiometer (Cochet-Bonnet; Luneau, France), vali-
dating the suspicion of corneal nerve involvement in FD and a probable link to tear film
malfunction [65].

5.4. Stromal and Endothelial Disfunction

Corneal endothelial cell abnormalities have been documented by Bitirgen et al. and
correlated with disease severity as measured with the Mainz Severity Score Index (MSSI).
In addition, this study demonstrated an increased density of dendritic cells in the central
cornea [65]. Moreover, a flow cytometry analysis in FD patients showed a reduction in
circulating dendritic cells in peripheral blood samples, suggestive of increased extravasation
and migration to peripheral tissues, such as the central cornea. This mechanism, described
for FD, is common in various neuropathies and during inflammation [66].

5.5. Differential Diagnosis of Vortex Keratopathy

VK is often associated with multiple myeloma [67], monoclonal gammopathy of unde-
termined significance (MGUS) [41], and long-term therapy with any of the following drugs:
amiodarone [68], chloroquine [69], subconjunctival gentamicin, gold, non-steroidal anti-
inflammatory drugs (NSAID) such as indomethacin, naproxen, ibuprofen, phenothiazines,
tamoxifen, and monobenzone (topical skin ointment).

The IVCM revealed hyper-reflective intracellular inclusions in basal epithelial cells in
both amiodarone-induced and FD’s VK. While these two conditions cannot be distinguished
with conventional slit-lamp microscopy, confocal laser-scanning microscopy allowed the
differentiation between the two etiologies and revealed corneal changes before slit-lamp
microscopy in several studies [37,40,70].

In amiodarone-induced keratopathy, deposits were more reflective and of different
sizes with increasing time on therapy [70]. The highly reflective epithelial cells were initially
found at the center of the cornea and subsequently spread to the periphery. However, even
after the keratopathy had progressed, the highly reflective epithelial cells were not visible
at the limbus, implying that during their centripetal movement, ocular epithelial cells
endocytosed amiodarone from the tear film [40]. This assessment was supported by the
delayed observation of microdots in the stroma and endothelial cells, after being detected
in epithelial cells, and may be due to the fact that penetration of the tear fluids through the
stroma and endothelium required more time, compared to the epithelium; in vivo confocal
microscopy was able to detect the endocytosed amiodarone as the highly reflective material
into the corneal epithelial cells only after 1 to 3 months of therapy [68,71,72].

In FD, the highly reflective epithelial cells were consistently observed extending from
the limbus to the central cornea. This suggested that Gb-3 is deposited in the lysosomes
of limbal epithelial stem cells and that the limbal epithelial stem cells with Gb-3 deposits
moved toward the cornea’s center [40].

Eventually, microdot changes in the anterior stroma were more prevalent in patients
receiving amiodarone, but do not correlate with the simultaneous presence of cornea
verticillate [37,70].

6. Lens Manifestations

FD cataracts are found more frequently in males than in females and strongly correlate
with disease severity, arising in the second decade of life (up to 70% of males) [2,31,50]
(Figure 2). The two most common symptoms of lens opacities are radial posterior subcap-
sular cataract and anterior capsular or subcapsular cataract, which are often bilateral and
wedge-shaped [73,74].
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Figure 2. Picture of a typical form of cataract in a patient affected.

Lens opacification is caused by Gb-3 deposits in the lens epithelium and are best seen
in retroillumination [27,31,75]. Two subtypes of cataracts have been identified, with differ-
ent characteristics: (1) The posterior subcapsular cataracts represent the most frequent type
and have been reported to be specific for the disease (also called “classic Fabry cataracts”),
causing the most detrimental effects on visual function and often requiring surgical inter-
vention. It consists of off-axis or dendritic whitish opacities along the posterior lens sutures
near the posterior capsule, with a spoke-like appearance [31,75]. The next subtype—(2) the
anterior capsular and subcapsular opacities, so-called ‘propeller’ cataracts—are generally
bilateral and wedge-shaped, with a radial distribution from the equator to the center of the
anterior capsule [76].

7. Retinal Manifestations

FD leads to an increase in vascular tortuosity, in both arteries and veins. Ophthal-
moscopy can detect retinal vascular tortuosity, but diagnostic tools are fundamental to
define its stage and features (Figure 3).
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Figure 3. Posterior pole retinography (A) and OCTA (B) image of a Fabry disease patient, highlighting
marked vascular tortuosity. OCTA image is segmented at the SVP, making FAZ clearly visible.
OCTA = optical coherence tomography angiography, SVP = superficial vascular plexus, FAZ = foveal
avascular zone.

7.1. Retinography

Sodi et al. evaluated the tortuosity using retinography (Retinographs TF 450 Plus,
Carl Zeiss, Dublin, CA, USA) and using three parameters: sum of angles metric (SOAM),
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product of angle distance (PAD), and triangular index (I2e) [26]. They reported that
retinal vascular tortuosity was higher in comparison with the control group and, moreover,
retinal vessel tortuosity and conjunctival tortuosity were not correlated, suggesting the
presence of morphological and physio-pathological distinctions between the two. For all
outcome variables, no differences between males and females were reported [26]. Sher
et al., in contrast with the findings previously reported, showed that hemizygous men had
significantly greater and more severe retinal vascular alterations (70%), compared with 25%
prevalence in the heterozygous females [31].

7.2. Fluorescein and Indocyanine Green Angiography

Ohkubo et al., using fluorescein angiography (FA), showed that the choroidal filling
and intra-retinal circulation times were both delayed [77]. Vascular tortuosity was found in
about 60% of male patients, in which the involvement was usually bilateral and occurred
in both eyes in a symmetrical pattern [50]. Endothelial cells, smooth muscle, and pericytes
are affected by the gradual deposition of non-catabolized glycosphingolipids, resulting in
vessel wall thickening and lumen narrowing [78–80]. These vascular changes have been
linked to optic neuropathy [81,82], retinal ischemia, and central retinal artery occlusion or
thrombotic events [83].

Furthermore, Dantas et al., with the use of indocyanine green angiography (ICGA),
demonstrated that FD patients suffered from a choroidal vasculature impairment, display-
ing a moth-eaten look with regions of hypoperfusion, gaps in vascular continuity, and
vessel looping [84].

7.3. Optical Coherence Tomography and Optical Coherence Tomography Angiography

Structural changes in the macular areas of patients with FD have been analyzed
with the ease of optical coherence tomography (OCT). Atiskova and colleagues found the
presence of inner retinal hyper-reflective foci (HRF) using SD-OCT imaging (Spectralis
OCT, Heidelberg Engineering, Heidelberg, Germany) of the macula. The HRF foci were
primarily in the retinal nerve fiber layer and outer plexiform layer. They hypothesized that
the deposition of endothelial glycosphingolipids could be a potential explanation for the
HRF presence, resulting in a pathologically hyper-reflective capillary plexus of the inner
retina. Nevertheless, the clinical implications of this finding are yet to be defined, since
HRF grading seemed not to correlate with disease severity [85].

Recently, FD retinal features focused on optical coherence tomography angiography
(OCTA) findings, an objective and non-invasive tool for the evaluation of the retinal
microvascular changes [86].

Bacherini et al. investigated changes in retinal microvascularization in affected patients
using an SD 3 × 3 mm OCTA (RS-3000 Advance 2 OCT; NIDEK Co. Ltd., Gamagori, Japan)
and found that the FD group had significantly decreased vascular density in both the
superficial capillary plexus (SCP) and the deep capillary plexus (DCP) [87]. Nevertheless,
the vascular perfusion indexes and foveal avascular zone (FAZ) parameters showed no
significant changes in neither area, perimeter, nor circularity [87].

Both Hufendiek and Cakmak found a reduction of vessel density in both the foveal
SCP and DCP, even with different instruments: the first using a 3 × 3 mm OCTA (Spectralis
OCT2, Heidelberg Engineering GmbH, Germany), the latter using a 6 × 6 mm OCTA
(RTVue XR Avanti, Opto-Vue, Inc., Fremont, CA, USA) [88,89]. In addition, Cakmak and
coworkers also reported an enlargement of the FAZ, while showing no differences in the
density of radial peripapillary capillaries when compared to healthy subjects [89].

Finocchio et al. evaluated 13 FD patients using a Spectral Domain 3 × 3 mm OCTA
(RTVue XR Avanti, Optovue, Inc., Freemont, CA, USA), showing a reduction in DCP
vascular density and a reduction in the FAZ area of both the SCP and DCP, when compared
to healthy controls, but no differences in SCP vascular density [90]. Conversely, Cennamo
et al. evaluated 54 patients with FD and 70 controls, showing a reduction in vessel density
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in the SCP but an increase in the DCP, using a 6× 6 mm OCTA (RTVue XR Avanti, Optovue,
Inc., Freemont, CA, USA) [91].

On the other hand, Minnella et al. demonstrated an increase in SCP vascular density
but not in the other layers, and an enlargement of the FAZ area in both the SCP and DCP,
using a swept source 4.5 × 4.5 mm OCTA (Topcon, Tokyo, Japan) [92].

A summary of the reported outcomes in recent years regarding OCTA analysis in
FD patients is available in Table 1, showing contradictory results. The reasons for this
disparity may depend on the fact that a major part of those studies had small sample
sizes and frequently related to various degrees of disease, making these data difficult
to compare. In addition, different OCTA devices with different scan widths were used,
making the findings less comparable and bringing out the need for further studies with
larger cohorts and standardized imaging protocols. In fact, while on one side the presence
of microvascular impairment seems to be obvious in FD patients, both the correlation of this
manifestation with systemic grading and the possible use of OCTA findings as predictors
for disease evolution have still to be determined.

Table 1. Review of recent reports regarding FD outcomes using OCTA.

Study Authors OCTA Devices Scan Width (mm) No. of FD/Controls Findings in
FD Patients

Finocchio et al. (2018) [90] Spectral Domain 3 × 3 13/13
↓ vascular density in
DCP, = SCP;
↓ FAZ of SCP and DCP

Hufendiek et al. (2018) [88] Spectral Domain 3 × 3 10/10
↓ flow density in DCP,
SCP and
choriocapillaris

Baur et al. (2018) [86] Swept Source 3 × 3 14/8 ↓ vascular density in
DCP, = in SCP

Cennamo et al. (2019) [91] Spectral Domain 6 × 6 54/70 ↓ vascular density in
SCP, ↑ in DCP

Minnella et al. (2019) [92] Swept Source 4.5 × 4.5 20/17
↑ vascular density in
SCP, = in DCP
↑ FAZ in SCP and DCP

Cakmak et al. (2020) [89] Spectral Domain Macula: 6 × 6
Disk: 4.5 × 4.5 25/37

↓ vessel density in SCP
and DCP;
↑ FAZ of SCP and DCP
= density of radial
peripapillary capillaries

Dogan et al. (2021) [93] Spectral Domain 6 × 6 38/40

↓ vascular density
in DCP,
= in SCP and
choriocapillaris

Bacherini et al. (2021) [87] Spectral Domain 3 × 3 13/13

↓ vascular density in
SCP and DCP;
= vessel perfusion
and FAZ

OCTA = Optical Coherence Tomography Angiography, FD = Fabry Disease, DCP = Deep Capillary Plexus,
SCP = Superficial Capillary Plexus, FAZ = Foveal Avascular Zone; ↓ = reduction; ↑ = increase.

7.4. Adaptive Optics

In 2020, Sodi and colleagues used adaptive optics (rtx1; Imagine Eyes, Orsay, France) to
study retinal vessels in individuals with FD, providing a non-invasive and objective method
of assessing microvascular involvement [94]. They found that 78% of affected patients
had para-vascular punctuate or linear opacities, most likely corresponding to accumulated
sphingolipids, that were limited to the wall of precapillary arterioles in the least-affected
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individuals (discrete 5 to 10 µm spots), while there was widespread opacification of the
wall of capillaries and first-order arteries in the more seriously affected patients. These
deposits sometimes had a striated pattern, suggesting localization with vascular smooth
muscle cells. Sodi et al. hypothesized that sphingolipids accumulation in mural cells may
determine functional changes of the vascular wall, hence making it less resistant to blood
pressure and consequently leading to increased tortuosity [94].

7.5. Electrofunctional Findings

The focal electroretinography (fERG) method was used to investigate the macular
function, focusing on the outer and middle retinal functional activity. Minnella and cowork-
ers found that the fERG amplitude was significantly reduced when compared to the control
group (0.87 ± 0.41 vs. 2.22 ± 0.24 µV; t = −10.647, p < 0.001) [92]. This reduction, combined
with the reported intact fERG phase values, suggests a preclinical dysfunction of the outer
retinal layer that the OCT parameters when a concomitant reduction in the outer nuclear
layer thickness occurs, yielding fERG as a useful method for detecting FD’s subclinical
stages [92].

7.6. Correlation with Systemic Manifestations

In order to assess the clinical implications of retinal findings, Sodi and colleagues
analyzed the correlation between retinal vascular tortuosity and the systemic stage of the
disease, showing the absence of correlation [26]. Their results were in accordance with both
Minnella et al. and Bacherini and coworkers. Minnella et al., evaluated the MSSI score,
and the images obtained using DRI and Triton Swept-Source OCTA device (Topcon, Tokyo,
Japan) [92]. Likewise, Bacherini et al. evaluated indicators of cardiac and renal impairment
attributable to FD (maximum left ventricular wall thickness and glomerular filtration rate),
compared with retinal tortuosity indexes, but did not find significant correlations between
the OCTA and systemic parameters [87].

8. Other Ocular Findings

Pupillary abnormalities were found in FD patients. A study conducted by Bitirgen and
coworkers evaluated light response alterations in FD patients, and correlated them with
the severity of systemic autonomic symptoms (calculated with the Composite Autonomic
Symptom Scale 31, COMPASS 31) [95]. The results highlighted significant reductions in the
amplitude and duration of pupil contraction, and the latency of pupil dilation in patients
with FD compared to control subjects. Moreover, the pupillomotor-weighted sub-score of
the COMPASS 31 inversely correlated with the duration of pupil contraction and latency of
pupil dilation, and directly correlated with the duration of pupil dilation, confirming the
existence of an association between pupillary response abnormalities and the severity of
autonomic symptoms.

FD patients have been reported to be affected, in a lower percentage of cases, from other
craniofacial abnormalities, more commonly evidenced in males: periorbital fullness [96],
prominent supraorbital ridges [96], bushy eyebrows [96], bilateral ptosis [96], broad nasal
base [96], full lips [96], a prominent chin [96], prominent earlobes [96], and posteriorly
rotated ears [97].

Less reported ocular manifestations are chronic uveitis [98], subfoveal choroidal neo-
vascularization [93,99], disc edema, and optic atrophy caused by ischemic optic neuropathy
with enlargement of the blind spot at the visual field [81].

9. Conclusions

FD is rare and manifests in a variety of ways in the early stages; the definite diagnosis
is frequently delayed until the later stages. Fortunately, this condition has become more
well known, and significant progress has been made in both the diagnostic and therapy
options for this genetic condition.
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Thanks to technological advancements in recent years, a more in-depth study of the
ocular clinical consequences of this condition has been possible, providing measurable
and reproducible parameters and offering new possibilities for preclinical recognition of
ocular abnormalities.

Multicenter studies would be required in order to assess a standardized methodology
in the evaluation of FD patients and to fully exploit newly introduced imaging tools, such
as OCTA, for a comprehensive evaluation and management of this condition. Ocular
specialists might significantly shorten diagnostic delays if they were more knowledgeable
about Fabry disease, which would reduce the illness’s morbidity and death.
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