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The generalized ratios intrinsic 
dimension estimator
Francesco Denti 1*, Diego Doimo 2, Alessandro Laio 2,3 & Antonietta Mira 4,5*

Modern datasets are characterized by numerous features related by complex dependency structures. 
To deal with these data, dimensionality reduction techniques are essential. Many of these techniques 
rely on the concept of intrinsic dimension (id), a measure of the complexity of the dataset. However, 
the estimation of this quantity is not trivial: often, the id depends rather dramatically on the scale of 
the distances among data points. At short distances, the id can be grossly overestimated due to the 
presence of noise, becoming smaller and approximately scale-independent only at large distances. 
An immediate approach to examining the scale dependence consists in decimating the dataset, which 
unavoidably induces non-negligible statistical errors at large scale. This article introduces a novel 
statistical method, Gride, that allows estimating the id as an explicit function of the scale without 
performing any decimation. Our approach is based on rigorous distributional results that enable the 
quantification of uncertainty of the estimates. Moreover, our method is simple and computationally 
efficient since it relies only on the distances among data points. Through simulation studies, we show 
that Gride is asymptotically unbiased, provides comparable estimates to other state-of-the-art 
methods, and is more robust to short-scale noise than other likelihood-based approaches.

In recent years, we have witnessed an unimaginable growth in data production. From personalized medicine to 
finance, datasets characterized by a large number of features are ubiquitous in modern data analyses. The avail-
ability of these high-dimensional datasets poses novel and engaging challenges for the statistical community, 
called to devise new techniques to extract meaningful information from the data in a limited amount of compu-
tational time and memory. Fortunately, data contained in high-dimensional embeddings can often be described 
by a handful of variables: a subset of the original ones or a combination—not necessarily linear—thereof. In 
other words, one can effectively map the features of a dataset onto spaces of much lower dimension, typically 
nonlinear manifolds1. Estimating the dimensionality of these manifolds is of paramount importance. We will 
call this quantity the intrinsic dimension (id from now on) of a dataset, i.e., the number of relevant coordinates 
needed to describe the data-generating process accurately2.

Many definitions of id have been proposed in the literature since this concept has been investigated in a 
wide range of disciplines ranging from mathematics, physics, and engineering to computer science and statis-
tics. For example, Fukanaga3 expressed the id as the minimum number of parameters needed to describe the 
essential characteristics of a system accurately. For4, the id is the dimension of the subspace in which the data 
are entirely located, without information loss. An alternative definition, that exploits the language of pattern 
recognition, is provided by5. In this framework, a set of points is viewed as a uniform sample obtained from a 
distribution over an unknown smooth (or locally smooth) manifold structure (its support),eventually embedded 
in a higher-dimensional space through a nonlinear smooth mapping. Thus, the id represents the topological 
dimension of the manifold. All these definitions are useful for delineating different aspects of the multi-faceted 
concept that is the id.

The literature on statistical methods for dimensionality reduction and id estimation is extraordinarily vast 
and heterogeneous. We refer to5,6 for comprehensive reviews of state-of-the-art methods, where the strengths 
and weaknesses of numerous methodologies are outlined and compared. Generally, methods for the estimation 
of the id can be divided into two main families: projective methods and geometric methods.

On the one hand, projective methods estimate the low-dimensional embedding of interest through transfor-
mations of the data, which can be linear, such as Principal Component Analysis (PCA)7 and its Probabilistic8, 
Bayesian9, and Sparse10 extensions; or nonlinear, as Local Linear Embedding11, Isomap12, and others13,14. See 
also15 and the references therein.
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On the other hand, geometric methods rely on the topology of a dataset, exploiting the properties of distances 
among data points. Within this family, we can distinguish among fractal methods16, graphical methods17,18, and 
methods based on nearest neighbor distances (e.g., IDEA19) and angles (e.g., DANCo20). We will focus on the latter 
category, which is directly related to our proposal.

Nearest neighbors (NNs) methods rely on the assumption that points close to each other can be considered 
as uniformly drawn from d-dimensional balls (hyperspheres). More formally, consider a generic data point x 
and denote with Bd(x, r) a hypersphere, characterized by a small radius r ∈ R

+ , centered in x . Let ρ(x) be the 
density function of the points in Rd . Intuitively, the proportion of points of a given sample of size n from ρ(x) 
that falls into B(x, r) is approximately ρ(x) times the volume of the ball. This intuition gives rise to the following 
formal relationship: kn ≈ ρ(x) ωd r

d . Here, k is the number of NNs of x within the hypersphere Bd(x, r) , while 
ωd is the volume of the d-dimensional unit hypersphere in Rd . If, in the previous relationship, the density is 
assumed to be constant, one can estimate the id as a function of the average of the distances among the sample 
points and their respective k-th NN21. This type of approach gives rise to the question on how to effectively select 
k, the number of considered NNs.

From a different perspective, various authors adopted model-based frameworks for manifold learning and 
id estimation. One possible approach is to specify a model for the distribution of the distances among the data 
points. Amsaleg et al.22, exploiting results from23, suggested modeling the distances as a Generalized Pareto dis-
tribution since they showed that a (local) id can be recovered, asymptotically, as a function of its parameters. 
In a Bayesian framework, Duan and Dunson24 proposed modeling the pairwise distances among data points to 
coherently estimate a clustering structure. Furthermore, some model-based methods to explore the topology 
of datasets have recently been developed, pioneered by the likelihood approach discussed in1. Mukhopadhyay 
et al.25 used Fisher-Gaussian kernels to estimate densities of data embedded in nonlinear subspaces. Li et al.26 
proposed to learn the structure of latent manifolds by approximating them with spherelets instead of locally linear 
approximation, developing a spherical version of PCA. In the same spirit, Li and Dunson27 applied this idea to 
the classification of data lying on complex, nonlinear, overlapping, and intersecting supports. Similarly, Li and 
Dunson28 proposed to use the spherical PCA to estimate a geodesic distance matrix, which takes into account 
the structure of the latent embedding manifolds, and created a spherical version of the k-medoids algorithm29.

Alternatively, Gomtsyan et al.30 directly extended the maximum likelihood estimator (MLE) by1 proposing a 
geometry-aware estimator to correct the negative bias that often plagues MLE approaches in high dimensions. 
The geometric properties of a dataset are also exploited by the ESS estimator31, which is based on the evaluation 
of simplex volumes spanned by data points. Finally, Serra and Mandjes32 and Qiu et al.33 estimated the id via 
random graph models applied to the adjacency matrices among data points, recovered by connecting observa-
tions whose distances do not exceed a certain threshold.

This paper introduces a likelihood-based approach to derive a novel id estimator. Our result stems from the 
geometrical probabilistic properties of the NNs distances. Specifically, we build on the two nearest neighbors 
(TWO-NN) estimator, recently introduced by2. Similarly to1,34, the TWO-NN is a model-based id estimator derived 
from the properties of a Poisson point process, whose realizations occur on a manifold of dimension d. Facco 
et al.2 proved that the ratio of distances between the second and first NNs of a given point is Pareto distributed 
with unitary scale parameter and shape parameter precisely equal to d. To estimate the id, they suggested fitting 
a Pareto distribution to a proper transformation of the data. Their result holds under mild assumptions on the 
data-generating process, which we will discuss in detail.

We extend the TWO-NN theoretical framework by deriving closed-form distributions for the product of 
consecutive ratios of distances and, more importantly, for the ratio of distances among NNs of generic order.

These theoretical derivations have relevant practical consequences. By leveraging our distributional results, we 
attain an estimator that is more robust to the noise present in a dataset, as we will show with various simulation 
studies. Moreover, the new estimator allows the investigation of the id evolution as a function of the distances 
among NNs. Monitoring this evolution is beneficial for two reasons. First, it is a way to examine how the id 
depends on the size of the neighborhood at hand. Second, as the size of the neighborhood increases, our estima-
tor can reduce the bias induced by potential measurement noise. Finally, the principled derivation of our results 
enables the immediate specification of methods to perform uncertainty estimation.

The article is organized as follows. Section “Likelihood-based TWO-NN estimators” briefly introduces the 
TWO-NN modeling framework developed by2 and discusses the MLE and Bayesian alternatives. In “Gride, the 
generalized ratios intrinsic dimension estimator”, we contribute to the Poisson point process theory by provid-
ing closed-form distributions for functions of distances between a point and its NNs. We exploit these results to 
devise a new estimator for the id of a dataset that we name Gride. Section “Results” presents several numerical 
experiments that illustrate the behavior of Gride. We compare our proposal with other relevant estimators 
in terms of estimated values, robustness to noise, and computational cost. In “Discussion”, we discuss possible 
future research directions. The interested reader is also referred to the Supplementary Material, where we report 
the proofs of our theoretical results, along with extended simulation studies.

Methods
Likelihood‑based TWO‑NN estimators.  In this section, we briefly introduce the modeling framework 
that led to the development of the TWO-NN estimator, propose a maximum likelihood and Bayesian counter-
parts, and discuss its shortcomings when applied to noisy datasets. More details about this estimator and its 
assumptions are deferred to the Supplementary Material.

Consider a dataset X = {xi}ni=1 composed of n observations measured over D distinct features, i.e., xi ∈ R
D , 

for i = 1, . . . , n . Denote with � : RD × R
D → R

+ a generic distance function between pairs of elements in 
R
D . We assume that the dataset X is a particular realization of a Poisson point process characterized by density 
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function (that is, normalized intensity function) ρ(x) . We also suppose that the density of the considered sto-
chastic process has its support on a manifold of unknown intrinsic dimension d ≤ D . We expect, generally, that 
d << D.

For any fixed point xi , we sort the remaining n− 1 observations according to their distance from xi by increas-
ing order. Let us denote with x(i,l) the l-th NN of xi and with ri,l = �(xi , x(i,l)) their distance, with l = 1, . . . , n− 1 . 
For notation purposes, we define xi,0 ≡ xi and ri,0 = 0.

A crucial quantity in this context is the volume of the hyperspherical shell enclosed between two successive 
neighbors of xi , defined as

where d is the dimension of the space in which the points are embedded (the id) and ωd is the volume of the 
d-dimensional sphere with unitary radius. We also assume that the density function ρ is constant. Under these 
premises, we have vi,l ∼ Exp(ρ) , for l = 1, . . . , n− 1, and i = 1, . . . , n.

Theorem 2.1  2 Consider a distance function � taking values in R+ defined among the data points {xi}ni=1 , which 
are a realization of a Poisson point process with constant density ρ . Let ri,l be the value of this distance between 
observation i and its l-th NN. Then,

An alternative proof for this result is reported in the Supplementary Material.
We remark that, while the theorem can be proven only if the density ρ is constant, the result and the id esti-

mator are empirically valid as long as the density is approximately constant on the scale defined by the distance 
of the second NN ri,2 . We refer to this weakened assumption as local homogeneity.

The TWO-NN estimator treats the ratios in µ = {µi}ni=1 as independent, i = 1, . . . , n , and estimates the global 
id employing a least-squares approach. In detail, Facco et al.2 proposed to consider the cumulative distribution 
function (c.d.f.) of each ratio µi given by F(µi) = (1− µ−d

i ) , and to linearize it into log(1− F(µi)) = −d log(µi) . 
Then, a linear regression with no intercept is fitted to the pairs {− log(1− F̃(µ(i))), log(µ(i))}ni=1 , where F̃(µ(i)) 
denotes the empirical c.d.f. of the sample µ sorted by increasing order. To improve the estimation, the authors 
also suggested discarding the ratios µi ’s that fall above a given high percentile (e.g., 90%), usually generated 
by observations that fail to comply with the local homogeneity assumption. Since it is based on a simple linear 
regression, the TWO-NN estimator provides a fast and accurate estimation of the id , even when the sample size 
is large. Nonetheless, from (2) we can immediately derive the corresponding maximum likelihood estimator 
(MLE) and the posterior distribution of d within a Bayesian setting. First, let us discuss the MLE and the rela-
tive confidence intervals (CI). For the shape parameter of a Pareto distribution, the (unbiased) MLE is given by:

Moreover, d̂/d ∼ IG(n, (n− 1)) , where IG denotes an Inverse-Gamma distribution. Therefore, the corre-
sponding confidence interval (CI) of level 1− α is given by

where qα/2IG  denotes the quantile of order α/2 of an Inverse-Gamma distribution.
Alternatively, to carry out inference under the Bayesian approach we specify a prior distribution on the 

parameter d. The most convenient prior choice is d ∼ Gamma(a, b) because of its conjugacy property. In this 
case, it is immediate to derive the posterior distribution of the id:

Under the Bayesian paradigm, we obtain the credible intervals by taking the relevant quantiles of the posterior 
distribution. Moreover, one can immediately derive the posterior predictive distribution

where a∗ = a+ n and b∗ = b+
∑n

i=1 log(µi) . The posterior predictive distribution is useful to assess the model’s 
goodness of fit. For example, one can compute the discrepancy between synthetic data generated from the dis-
tribution in (6) and the dataset at hand to assess the validity of the assumed data-generating mechanism35. From 
Eq. (6), it can be easily shown that the posterior predictive law for log(µ̃) follows a Lomax(a∗, b∗) distribution, 
for which samplers are readily available.

(1)vi,l = ωd

(

rdi,l − rdi,l−1

)

, for l = 1, . . . , n− 1, and i = 1, . . . , n,

(2)µi =
ri,2

ri,1
∼ Pareto(1, d), µi ∈ (1,+∞).

(3)d̂ = n− 1
∑n

i log(µi)
.

(4)CI(d, 1− α) =





d̂

q
1−α/2
IGn,(n−1)

; d̂

q
α/2
IGn,(n−1)



,

(5)d|µ ∼ Gamma

(

a+ n, b+
n

∑

i=1

log(µi)

)

.

(6)p(µ̃|µ) = a∗

b∗ µ̃

(

1+ log(µ̃)

b∗

)−a∗−1

, with µ̃ ∈ (1,+∞),
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The derivations in (3)–(5) lead to alternative ways to estimate—by point or confidence/credible intervals—the 
id within the TWO-NN model enabling immediate uncertainty quantification, an aspect that was not developed 
in detail in2.

The TWO-NN modeling framework presents a potential shortcoming: it does not account for the presence of 
noise in the data. Measurement errors can significantly impact the estimates since the id estimators are sensitive 
to different sizes of the considered neighborhood. As an example, consider a dataset of n observations measured 
in R3 created as follows. The first two coordinates are obtained from the spiral defined by the parametric equa-
tions x = u cos(u+ 2π) and y = u sin(u+ 2π) , where u = 2π

√
u0 and u0 is attained from an evenly-spaced grid 

of n points over the support 
[

1
4π , S̄

]

 . The third coordinate is defined as a function of the previous two, z = x2 + y2 . 
Gaussian random noise (with standard deviations σx , σy , and σz ) is added to all three coordinates. We simulated 
a first Spiral dataset setting n = 5000 , S̄ = 1 , σx = σy = 0.5 , and σz = 1 . A three-dimensional depiction of the 
resulting dataset is reported in the left part of Fig. 1. The value of the id estimated with the TWO-NN model is 
2.99. However, u0 is the only free variable since the three coordinates are deterministic functions of u0 . Therefore, 
only one degree of freedom is used in the data generating process. In other words, the true id is 1, and the noise 
at short scale misleads the TWO-NN estimator. For a visual example of how the id may change with the size of 
the considered neighborhood, see the right part of Fig. 1. As a strategy to mitigate the local noise effect, Facco 
et al.2 proposed to subsample the dataset at hand and consider only a fraction c of the points. By doing this, we 
effectively extend the average size of the neighborhood considered by the estimator. Although this decimation 
strategy helps understand how the TWO-NN is affected by the resolution of the considered neighborhood, it 
comes at a critical cost in terms of statistical power. As the value of c decreases, this procedure discards the major-
ity of the data points. Moreover, little heuristic on how to fix an optimal value is available. Facco et al.2 proposed 
to monitor the id evolution as a function of c, looking for a plateau in the estimates. Thus, the best value for c 
would be the highest proportion such that the id is close to the plateau values.

In the next section, we will introduce the Gride, which is based on ratios of NNs distances of order higher 
than the second. Let us denote the orders of the considered NNs with n1 and n2 , respectively. This novel estima-
tor can go beyond the local reach of the TWO-NN, effectively reducing the impact of noise on the id estimate. 
Moreover, by increasing the order of the considered NNs, we can monitor how the id estimate changes as a 
function of the neighborhood size without discarding any data point. As a preliminary result, we compare the 
performance of Gride with the decimated TWO-NN on the Spiral dataset. We report in Table 1 the point 
estimates (obtained via MLE) and confidence intervals, along with the corresponding bias and interval width. 
The first four columns show the results for the TWO-NN estimator applied to a fraction c ∈ {1; 0.20; 0.01; 0.001} 
of the original dataset. The remaining four columns contain the results for Gride with different NN orders: 
(n1, n2) ∈ {(2, 4); (100, 200); (250, 500); (750, 1500)} . We aim to monitor the evolution of the estimate as a 
function of the NN orders to assess the model’s sensitivity to the noise.

On the one hand, the TWO-NN estimator applied to a decimated dataset leads to reasonable point estimates 
when minimal values of c are considered. However, this comes at the price of greater uncertainty, which is 

Figure 1.   Three-dimensional Spiral dataset, with n = 5000 , S̄ = 1 , σ 2
x = σ 2

y = 0.5 , and σ 2
z = 1 . The 

resulting data points are displayed on the left. On the right, we show how observing the data at different scales 
can produce different insights regarding the dimensionality of the dataset.
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reflected by the wider confidence intervals. Gride, on the other hand, escapes the positive bias induced by the 
noise for large values of n1 and n2 while maintaining narrow confidence intervals. Note that low values of c and 
high values of n2 induce the TWO-NN and Gride, respectively, to cover broader neighborhoods. However, the 
smaller uncertainty of Gride highlights that our method does not have to discard any information to reach this 
goal. This preliminary result suggests that, by extending the orders of NNs distances that we consider, Gride can 
escape the short, “local reach” of the TWO-NN model, which is extremely sensitive to data noise. Thus, extending 
the neighborhood of a point to further NNs allows extracting meaningful information about the topology and 
the dataset’s structure at different distance resolutions.
Gride, the generalized ratios intrinsic dimension estimator.  In this section, we develop novel theo-
retical results that contribute to the Poisson point processes theory. We will then exploit these results to devise a 
better estimator for d. In detail, we first extend the distributional results of “Likelihood-based TWO-NN estima-
tors” providing closed-form distributions for vectors of consecutive ratios of distances. Then, building upon that, 
we move a step further and derive the closed-form expression for the distribution of ratios of NNs of generic 
order.

Distribution of consecutive ratios, generic ratios, and related estimators.  Consider the same setting introduced 
in the previous section and define Vi,l = ωd r

d
i,l as the volume of the hypersphere centered in xi with radius equal 

to the distance between xi and its l-th NN. Because of their definitions, for l = 2, . . . , L , we have that vi,l and 
Vi,l−1 = vi,1 + · · · + vi,l−1 are independent. Moreover, Vi,l ∼ Erlang(1, l − 1) . Then, we can write

which can be re-expressed as

Given these premises, the following theorem holds.

Theorem 2.2  Consider a distance � taking values in R+ defined among the data points {xi}ni=1 , which are realiza‑
tions of a Poisson point process with constant density ρ . Let ri,l be the value of the distance between observation i 
and its l-th NN. Define µi,l = ri,l/ri,l−1 . It follows that

Moreover, the elements of the vector µi,L = {µi,l}Ll=2 are jointly independent.

The proof is deferred to the Supplementary Material. Theorem 2.2 provides a way to characterize the distribu-
tions of consecutive ratios of distances. Remarkably, given the homogeneity assumption, the different ratios are all 
independent. Building on the previous statements, we can derive more general results about the distances among 
NNs from a Poisson point process realization. The following theorem characterizes the distribution of the ratio of 
distances from two NNs of generic order. It will be the foundation of the estimator that we propose in this paper.

Theorem 2.3  Consider a distance � taking values in R+ defined among the data points {xi}ni=1 , which are realiza‑
tions of a Poisson point process with constant density ρ . Let ri,l be the value of this distance between observation i 
and its l-th NN. Consider two integers 1 ≤ n1 < n2 and define µ̇ = µi,n1,n2 = ri,n2/ri,n1 . The random variable µ̇ is 
characterized by density function

where B(·, ·) denotes the Beta function. Moreover, µ̇ has k-th moment given by

(7)vi,l

Vi,l−1
=

ωd

(

rdi,l − rdi,l−1

)

ωdr
d
i,l−1

=
(

ri,l

ri,l−1

)d

− 1,

(8)µi,l =
ri,l

ri,l−1
=

(

vi,l

Vi,l−1
+ 1

)1/d

.

(9)µi,l ∼ Pareto (1, (l − 1)d), for l = 2, . . . , L.

(10)fµi,n1,n2
(µ̇) = d(µ̇d − 1)n2−n1−1

µ̇(n2−1)d+1B(n2 − n1, n1)
, µ̇ > 1,

Table 1.   MLE point estimates and confidence intervals computed on the Spiral dataset ( d = 1 ) with the 
TWO-NN and Gride estimators. Different levels of decimation c and different NN orders (n1, n2) are presented 
across the columns. The last two rows report the bias in the estimates, d̂ − d , and the width of the CIs.

d = 1 TWO-NN Gride(n1, n2)

c = 1 c = 0.20 c = 0.01 c = 0.001 (2, 4) (100, 200) (250, 500) (750, 1500)

Lower Bound 2.910 2.811 2.682 0.692 2.953 2.688 1.557 0.996

Estimate 2.991 2.990 3.541 1.706 3.014 2.699 1.560 0.997

Upper Bound 3.075 3.182 4.681 4.368 3.074 2.710 1.562 0.998

Bias 1.991 1.990 2.541 0.706 2.014 1.699 0.560 -0.003

CI width 0.165 0.371 1.999 3.676 0.121 0.022 0.005 0.002
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The proof is given in the Supplementary Material. Moreover, we also report a figure with some examples of 
the shapes of the density functions defined in Eq. (10). We now state some important remarks.

Remark 1  Given the expression of the generic moment of µ̇ , we can derive its expected value and variance:

both well-defined when d > 2 . From the first equation, it is straightforward to derive an estimator based on the 
method of moments.

Remark 2  Formula (10) can be specialized to the case where n1 = n0 and n2 = 2n0 . We obtain

Remark 3  The result in Eq. (9) can be derived as a special case of formula (10). Consequently, we can say the 
same for the TWO-NN model in Eq. (2). Specifically, if we set n1 = n0 and n2 = n0 + 1 , we obtain

which is the density of a Pareto(1, n0d) distribution.

Remark 4  Given the previous results, it is also possible to show that, within our theoretical framework, the joint 
density of the random distances between a point and its first L NNs follows a Generalized Gamma distribution. 
We report a formal statement of this result and its proof in the Supplementary Material.

The distributions reported in Eqs. (10) and (13) allow us to devise a novel estimator for the id parameter 
based on the properties of the distances measured between a point and two of its NNs of generic order. We name 
this method the Generalized ratios id estimator (Gride). From Eq. (10), by assuming that the n observations 
are independent, we derive the expression of the log-likelihood:

Following a maximum likelihood approach, we estimate d by finding the root of the following score function:

This equation cannot be solved in closed-form, but the second derivative of the log-likelihood function logL 
for n observations is always negative on the entire parameter space d ∈ [1,+∞):

Therefore, the log-likelihood function is concave, and univariate numerical optimization routines can obtain 
the MLE. Moreover, one can exploit numerical methods for uncertainty quantification: for example, one can 
estimate the confidence intervals with parametric bootstrap36.

A more straightforward alternative estimator can be devised by setting n2 = n1 + 1 and leveraging on the 
consecutive ratios independence result presented in Theorem 2.3. In this specific case, we can derive an estimator 
that is the direct extension of the MLE version of the TWO-NN:

by focusing on the properties of consecutive ratios of distances contained in the vectors µi,L , for i = 1, . . . , n.
The estimator in (16) has variance V

[

d̂L

]

= d2/(n(L− 1)− 2) which is smaller than the variance of the MLE 
estimator in (3), that is recovered when L = 2 . The confidence interval is analogous to (4), with n substituted by 
n(L− 1).

From a Bayesian perspective, we can, as before, specify a conjugate Gamma prior for d, obtaining the pos-
terior distribution

(11)E

[

µ̇k
]

= B(n2 − n1, n1 − k/d)

B(n2 − n1, n1)
.

(12)E[µ̇] = B(n2 − n1, n1 − 1/d)

B(n2 − n1, n1)
and V[µ̇] = B(n2 − n1, n1 − 2/d)

B(n2 − n1, n1)
− B(n2 − n1, n1 − 1/d)2

B(n2 − n1, n1)2
,

(13)fµi,n0,2n0
(µ̇) = (2n0 − 1)!

(n0 − 1)!2 · d(µ̇
d − 1)n0−1

µ̇(2n0−1)d+1
= d(µ̇d − 1)n0−1

B(n0, n0) · µ̇(2n0−1)d+1
, µ̇ > 1.

(14)fµi,n0,n0+1 (µ̇) = n0dµ̇
−n0d−1, µ̇ > 1,

(15)

logL = n log(d)+ (n2 − n1 − 1)
∑

i

log(µ̇d
i − 1)− log(B(n2 − n1, n1))− ((n2 − 1)d + 1)

∑

i

log(µ̇i).

∂ logL

∂d
= n

d
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∑

i

µ̇d
i log(µ̇i)

µ̇d
i − 1

− (n2 − 1)
∑

i

log(µ̇i) = 0.

∂2 logL

∂d2
= − n

d2
− (n2 − n1 − 1)

∑

i

µ̇d
i log(µ̇i)

2

(µ̇d
i − 1)2

< 0.

(16)d̂L = n(L− 1)− 1
∑n

i=1

∑L
l=2(l − 1) log(µi,l)

,
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We note that the expression in (16) is equivalent to the corrected estimator proposed by34 in a famous online 
comment. Thus, we refer to it as MG estimator. We will discuss this equivalence more in detail in “Connection 
with existing likelihood-based methods”. Although the availability of a closed-form expression is appealing, 
in “A comparison of the assumptions behind the TWO-NN, MG, and Gride” we will motivate why Gride is 
preferable to MG.

Connection with existing likelihood‑based methods.  Here, we discuss how our proposals are closely related to 
estimators introduced in the seminal work of1 (LB) and the subsequent comment of34 (MG). This relationship 
is not surprising, since the two estimators were derived within the same theoretical framework. Recall that we 
defined µi,j,k = ri,k/ri,j . Given two integer values q1 < q2 , the LB estimator is defined as

where we exploit the equality 
∑L

l=2(l − 1) log(µi,1,l) =
∑L−1

l=1 log(ri,L/ri,l) to re-express their estimators in terms 
of the µ’s. The estimator proposed in34 considers a different expression for m̂k , that we denote by m̂′

k:

The LB estimator combines the terms contributing to the likelihood through a simple average. These estima-
tors are evaluated for different values of the larger NN order, considered between q1 and q2 , and then averaged 
together again. MacKay and Ghahramani34 noted that the authors should have instead averaged the inverse of 
the contributions to be coherent with the proposed theoretical framework. This correction leads to the expres-
sion in (19), which is equivalent to the MLE for MG, as stated in Equation (16). Although the expressions are the 
same, we believe that our derivation presents an advantage. Indeed, starting from the distributions of the ratios 
of NNs distances, we can effortlessly derive uncertainty quantification estimates, as in (4), by simply exploiting 
well-known properties of the Pareto distribution.

Following the LB strategy, one can pool together different estimates obtained with MG over a set of different 
NN orders L ∈ {L1; . . . ; L2} by considering the value 

∑L2
l=L1

m̂′
l/(L2 − L1 + 1) . Unless otherwise stated, when 

computing the MG estimator in “Results” we will adopt this averaging approach, as implemented in the R pack-
age Rdimtools37.

Among all the discussed estimators, Gride is the genuinely novel contribution of this work, and it is also 
the most general and versatile. Indeed, it relies on a single ratio of distances for each data point (similarly to the 
TWO-NN) while considering information collected on larger neighbors (similarly to MG) and, therefore, is likely 
to be more compliant with the independence assumption.

A comparison of the assumptions behind the TWO‑NN, MG, and Gride.  We now discuss the similarities and 
differences among the three estimators presented so far.

The first point we need to make is that, similarly to Theorem 2.1, Theorems 2.2 and 2.3 can be proved only 
assuming ρ to be constant. However, from a practical perspective, the novel estimators are empirically valid as 
long as the density ρ is approximately constant on the scale defined by the distance of the L-th NN ri,L (MG) and 
the n2-th NN ri,n2 (Gride), respectively. Again, we will refer to this assumption as local homogeneity. In the 
following, when we need to underline the dependence of the introduced families of estimators on specified NN 
orders, we will write MG(L) and Gride(n1, n2).

Both MG and Gride extend the TWO-NN rationale, estimating the id on broader neighborhoods. By con-
sidering the ratio of two NNs of generic order, Gride extracts more information regarding the topology of 
the data configuration. Moreover, monitoring how Gride’s estimates vary for different NNs orders allows the 
investigation of the relationship between the dataset’s id and the scale of the neighborhood. That way, it is pos-
sible to escape the strict, extremely local point of view of the TWON-NN. This property reduces the distortion 
produced by noisy observations in estimating the id.

With its alternative formulation, MG reaches a similar goal exploiting the properties of all the consecutive 
ratios up to the highest NNs order that we consider. MG is appealing, being an intuitive extension of the TWO-NN 
model, and possessing a closed-form expression for its MLE and confidence interval.

However, we are going to show that Gride is more reliable when it comes to real datasets. To support this 
statement, we need to discuss the validity of the assumptions required for deriving these estimators. As mentioned 
in “Likelihood-based TWO-NN estimators”, the main modeling assumptions are two: the local homogeneity of the 
underlying Poisson point process density and the independence among ratios of distances centered in different 
data points. These assumptions affect the three estimators differently. To provide visual intuition, in Fig. 2 we 
display 500 points generated from a bidimensional Uniform distribution over the unit square. Then, we randomly 
select four points (in blue) and highlight (in red) the NNs involved in the computation of the ratios that are used 
by the TWO-NN, MG, and Gride models. We consider MG(40) , and Gride(20, 40).
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(
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n

∑
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For both MG(L) and Gride(n1, n2) , the local homogeneity hypothesis has to hold for larger neighborhoods, 
up to the NN of orders L > 2 and n2 > 2 , respectively. We will empirically show that while MG and Gride are 
more reliable than TWO-NN if used on dense configurations, care should be taken when interpreting the results 
obtained from scarce datasets. Although the stricter local homogeneity assumption affects the two estimators 
similarly, they are not equally impacted by the assumption of independence of the ratios. By comparing the sec-
ond and third panels of Fig. 2, we observe that MG, in its computation, needs to take into account all the distances 
among points and its NNs up to the L-th order. When L is large and the sample size is limited, neighborhoods 
centered in different data points may overlap, inducing dependence across the ratios and violating one of our 
fundamental assumptions. Gride instead uses only two distances, and the probability of shared NNs across 
different data points is lower, especially if large values of n1 and n2 are chosen.

Given the previous points, in the experiments outlined in the next section, we set n2 = 2n1 . Our simulation 
studies showed that this choice is robust to the dimensionality of the dataset and provides a good trade-off 
between the scalability of the algorithm and the careful assessment of the dependence of the id to the scale.

Results
The numerical experiments carried out in this section are based on the functions implemented in the Python 
package DADApy38 (available at the GitHub repository sissa-​data-​scien​ce/​DADApy ) and in the R package 
intRinsic39, unless otherwise stated.

Simulation studies.  Gride is asymptotically unbiased.  First, we empirically show the consistency of 
Gride. This result represents an important gain with respect to the TWO-NN estimator. We sample 10000 obser-
vations from a bivariate Gaussian distribution, and aim at estimating the true id = 2 . To assess the variance of 
the numerical estimator devised from the log-likelihood in (15), we resort to a parametric bootstrap technique. 
We collect 5000 simulations as bootstrap samples under four different scenarios that we report in the panels 
displayed in the top row of Fig. 3. A similar analysis can be performed within the Bayesian setting, studying the 
concentration of the posterior distribution. We display the posterior simulations in the Supplementary Material 
(Fig. S2) . We see that, as the NNs order increases, the bootstrap samples are progressively more concentrated 
around the truth, with minor remaining bias due to the lack of perfect homogeneity in the data generating 
process.

As a second analysis, we show that high-order Gride estimates are also empirically unbiased when the 
homogeneity assumption of the underlying Poisson process holds. To create a dataset that complies as much 
as possible with the theoretical data-generating mechanism, we start by fixing a pivot point, and we generate a 
sequence of n = 30000 volumes of hyperspherical shells from an exponential distribution under the homogene-
ous Poisson process framework. Let us denote the sequence of these volumes with {vi}ni=1 . Once the volumes are 
collected, we compute the actual distance (radius) from the pivot point by using Eq. (1) with d = 2 and r0 = 0 . 
Thus, we have r1 =

√
v1/ω2 , r2 =

√
(v1 + v2)/ω2 , and so on. Then, we generate the position of the i-th point 

at a distance ri from the pivot by sampling its angular coordinates from a uniform distribution with support 
[0, 2π) for each i.

The panels in the bottom row of Fig. 3 show the id estimates as a function the number of points closest to 
the pivot j ∈ {128; 512; 2048; 8192} . We employ different NN orders keeping the ratio n2/n1 = 2 fixed and we 
increase n1 geometrically from 1 to 256 (x-axis). In this experiment, the id is estimated via MLE on 1000 repeated 
samples. Given the sample of 1000 estimates d̂ we compute its average with its 95% confidence bands. The first 
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Figure 2.   Neighboring points (in red) and distances (dotted lines) involved in the id estimation 
centered in four data points (in blue). Each panel corresponds to one model: TWO-NN, MG(L = 40) , and 
Gride(n1 = 20, n2 = 40) , respectively.

https://github.com/sissa-data-science/DADApy
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three panels show a small but consistent bias for the id estimated with n1 = 1 (TWO-NN) and n1 = 2 . The most 
viable explanation for the behavior of the estimator at small n1 is the statistical correlation: the µ̇ ’s entering in the 
likelihood (see Eq. 10) are computed at nearby points and, as a consequence, they cannot be considered purely 
independent realizations. But, remarkably, this correlation effect is significantly reduced when larger values of 
n1 are considered. Moreover, the slight bias we may observe at large NN orders is likely due to numerical error 
accumulation. Recall that the radii of the produced points are obtained from the sum of l volumes sampled 
from a homogeneous Poisson process. Given the data generating mechanism we used, the statistical error might 
compound across different stages.

Gride performance as the dimensionality grows.  We investigate the evolution of the id estimates produced by 
Gride as we vary the size of the neighborhoods considered in the estimation and the true id . To simultane-
ously assess the variability of our estimates, we generate 50 replicated datasets from a Uniform random variable 
over hypercubes in dimensions d ∈ {2; 4; 6; 8; 10}, with sample size n = 10000. We choose to keep the sample 
size of this experiment relatively low (w.r.t. high id values, such as d = 10 ) to showcase the effect of the negative 
bias that is known to affect many id estimators in large dimensions. For each dataset, we apply a sequence of 
Gride models with varying NN orders, fixing n2 = 2n1 , with n1 ∈ {1; 10; 20; . . . ; n/2− 10} . We average the 
results over the 50 Monte Carlo (MC) replicas and plot them as functions of the ratio n/n1 , along with their MC 
standard errors (shaded areas). We display the results in Fig. 4. Note that plotting the resulting id as a function 
of n/n1 provides an idea of the evolution of the estimates as the considered scale goes from extended neighbor-
hoods ( n/n1 ≈ 2 ) to highly local neighborhoods ( n/n1 = n).
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Figure 3.   Top row: histograms of the Gride parametric bootstrap samples estimated within the frequentist 
framework for different NN orders. Note that the first panel corresponds to the TWO-NN model. Bottom 
row: average Gride MLE obtained over different NN orders. The various panels showcase the different 
neighborhood sizes that are considered for computing the estimates. The error bands display the 95% confidence 
intervals on the average MLE.
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Indeed, this graphical representation allows us to monitor the effect induced by the scale: the negative bias 
becomes more prominent as the sizes of the considered neighborhoods increase, collapsing the estimates towards 
1 as n/n1 → 2 , as expected. Focusing on highly local neighborhoods (i.e., TWO-NN case) produces more accu-
rate estimates on average since the underlying modeling assumptions are more likely to be met. This accuracy is 
achieved at the cost of high dispersion, which is mitigated by the increment of NN orders. In the Supplementary 
Material, we report similar results obtained using smaller sample sizes, n ∈ {500; 5000} to assess how the uncer-
tainty of the id estimates changes as a function of n (Fig. S4).

Comparison of the evolution of likelihood‑based id estimates in the presence of noise.  We present different stud-
ies on the evolution of the estimates of the id applied to datasets contaminated with noise, focusing on the 
comparison of model-based id estimators such as Gride, TWO-NN, LB, and MG. Facco et al.2 showed that a 
scale-dependent analysis of the id is essential to identify the correct number of relevant directions in noisy data. 
In their work, the authors proposed to subsample the dataset to increase the average distance from the second 
NN (and thus the average neighborhood size) involved in the TWO-NN estimate. With the same aim, we instead 
adopt a different approach. Again, we apply a sequence of Gride models on the entire dataset to explore larger 
regions: the higher n1 and n2 are, the larger is the average neighborhood size analyzed.

As a first example, we focus on a second Spiral dataset generated as described in “Likelihood-based TWO-
NN estimators”. We generate a sample of size n = 5000 setting S̄ = 6 , σx = σy = σz = 0.1 . Specifically, we study 
the id as a function of the size of the neighborhood by comparing three estimators: Gride with n2 = 2n1 , MG 
with L = n2 (single estimate, not averaged), and the decimated TWO-NN ( n2 = 2 ). In this simulation, we compute 
the estimates setting n1 ∈ {2j}10j=1 . The results are displayed in the top row of Fig. 5, where the x-axis reports the 
log10 average distance from the furthest nearest neighbor n2 at each step. Gride plateaus around the true id 
value faster than the competitors. Eventually, MG reaches a similar result, but much larger neighborhoods are 
required. Lastly, the decimated TWO-NN shows an id evolution pointed in the right direction, but as the ratio 
of data considered decreases, its performance deteriorates.

As a second experiment devised to investigate the impact of the scale on the id estimates, we simulate 50000 
data points from a two-dimensional Gaussian distribution and perturb them with orthogonal Gaussian white 
noise. We compare the results obtained in two cases: one-dimensional (1D) and twenty-dimensional (20D) noise; 
in both cases, the perturbation variance is set to σ 2 = 0.0001 . The second row of Fig. 5 reports the results of the 
scale analysis done with TWO-NN and Gride with n2,1 = 2 . Following2, we apply the TWO-NN estimator on 
several subsets of the original data and report the average id with its 95% confidence intervals. Both in the case 
of high and low dimensional noise, Gride reaches the true value 2 at smaller scales than the TWO-NN estima-
tor. The left panel also shows that the decimation protocol of TWO-NN can introduce a bias at large scales when 
the size of the replicates becomes small. In our experiment, by halving the sample size at each decimation step, 
we use subsets with 12 data points when r̄ ≈ 0.8 . At a comparable scale, Gride performs much better since it 
always maximizes the likelihood utilizing all of the original 50000 data points.

In our last experiment on simulated data, we compare the performance of the MLEs introduced by1 (LB) 
and modified by34 (MG) with Gride in term of robustness to noise. To compute the first two estimators, we rely 
on the implementation contained in the R package Rdimtools37. As in the previous experiments, we want 
to compare how well the different estimators can escape the overestimation of the id induced by the presence 
of noise in the data. We have already established that Gride can exhibit a plateau around the true id when 
enough signal is available (conveyed both in terms of large sample size and low level of noise). Instead, we 
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Figure 4.   Evolution of the id estimates as a function of the ratio n/n1 (logarithmic scale) computed on 
uniform hypercubes characterized by different sample sizes and increasing true id . Gride is computed setting 
n2 = 2n1 . The horizontal lines highlight the true values of the id.
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now test our estimator in a similar but more challenging context, considering the limited sample size and the 
increasing noise level. Thus, we generate 30 replicas of n ∈ {1000; 5000} observations sampled from a Gaussian 
distribution. We consider two possible values for the intrinsic dimension: d ∈ {2; 5} . Each dataset was then 
embedded in a D = d + 5 dimensional space and contaminated with independent Gaussian noise N(0, σ 2) , 
with σ ∈ {0; 0.1; 0.25; 0.50} , expecting the random noise to induce an incremental positive bias in the id 
estimation. To let the estimators gather information from increasingly wider neighborhoods, we consider the 
relation n2 = 2n1 , with n1 = {2, . . . , 50} . The same range is considered for the averages computed with LB and 
MG. In the Supplementary Material, we report the plots summarizing all the results (Fig. S8). Here, we focus on 
the representative scenario where n = 1000 and σ = 0.1 . The results are shown in Fig. 6.

From the panels in Fig. 6 we observe that the estimators present similar patterns for the two considered id 
values. As expected, the id estimates are inflated by the addition of noise to the data. For small neighborhoods, 
Gride and MG show similar behaviors, while as n1 increases MG tends to perform similarly to LB. Gride 
instead decreases faster than the two competitors. Thus, our proposal is more robust than the two model-based 
competitors when handling noisy datasets.

Comparisons with other estimators.  In the remaining of the paper, we investigate the evolution of the 
id estimates obtained on simulated and real benchmark datasets, comparing Gride and the TWO-NN models 
to three other state-of-the-art estimators: DANCo20, GeoMLE30, and ESS31. In our analyses, we employ both the 
MATLAB package of40 and the R package intrinsicDimension to compute DANCo, the code available at 
the GeoMLE GitHub repository to compute GeoMLE, and again the R package intrinsicDimension41 to 
obtain the ESS values (employed here as a global  id estimator). For each model, we opted the default parameter 
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specifications available in the code, whenever possible. Finally, let us denote the number of observations and the 
number of features with n and D, respectively.

Application to datasets with known id.  To start, we employ four synthetic datasets with known id. The datasets 
we use are generated with (1) the Spiral transform we introduced earlier ( D = 3, id=1), (2) the Swissroll 
mapping11 ( D = 3, id=2), (3) a five-dimensional (id=5) Normally distributed cloud of points embedded in 
dimension D = 7 , and (4) the 10-Möbius dataset17,42 ( D = 3, id=2). In all datasets, we slightly perturb the 
original coordinates with Gaussian random values to assess if the estimators are robust to noise and to study the 
effect of the scale of the considered neighborhoods. We perform the estimations of the ids over 30 replications 
of size n = 1000 , and then we average the results. To monitor the effect of the scale, we decimate the data by 
considering a fraction n/n1 of observations, where n1 = {2j}4j=0 . This procedure holds for all the estimators but 
Gride, for which we change the NN-orders. The results are summarized in Fig. 7. In the Supplementary Mate-
rial, we report an additional figure containing the error bands of the estimates (Fig. S5).

All the competitors behave similarly, returning estimates that decrease as broader neighborhoods are consid-
ered, except for ESS, which remains relatively constant regardless of the dataset size, and GeoMLE. ESS performs 
best on the Gaussian data but tends to slightly inflate the estimates in the Swissroll case. Gride almost 
always outperforms the decimated TWO-NN, successfully overcoming the noise effect. That said, a uniformly 
better estimator does not emerge. For example, DANCo works extremely well for the Swissroll data while 
obtaining worse performance than its competitors in the other datasets, especially when the full datasets, with 
no decimation, are considered ( n/n1 = 1000 ). Nonetheless, we are reassured by the fact that Gride provides 
results that are either better or, at worse, in line with the other state-of-the-art estimators. Furthermore, an 
important feature of Gride appears from Fig. S5 in the Supplementary Material: its uncertainty decreases as 
larger neighborhoods are considered. At the same time, as decimation increases, results become more volatile 
for most of the competitors.

Application to real datasets.  Following20, we consider the MNIST (focusing on the training points represent-
ing digit 1: n = 6742, D = 7797 ) and the Isolet datasets ( n = 784, D = 617 ). Moreover, we consider the 
Isomap faces dataset ( n = 698, D = 4096 ) as in33,43, and the CIFAR-10 dataset as in44 (training data, 
n = 50000, D = 3072).

id estimation as a function of the sample size. We study how the estimates returned by the five considered 
models change when applied to the Isolet, Isomap faces, and MNIST datasets, as we consider different 
sample sizes. For each dataset, we randomly extract six sub-samples of size n/k, where k ∈ {1; 2; 4; 8} , and use 
them to estimate the id . To obtain more robust estimates, each sub-sample of size n/k is replicated k times, and 
the resulting estimates are subsequently averaged. We report the results in Fig. 8. First, we observe that most 
estimators yield heterogeneous results across the data sizes, with the only exception of ESS, which produces 
coherent estimates regardless of the sample size. However, in line with previous studies, the ESS estimator tends 
to struggle when the sample size is limited w.r.t. the number of features. Indeed, as noted in43, from the second 
panel we observe that ESS overestimates the expected value for the id of the Isomap faces dataset. GeoMLE 
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Gride (with n2 = 2n1 ), LB, and MG. Each dataset has 1000 observations. The confidence bands are drawn at ±2 
standard errors. In the left panel the true id is d = 2 , in the right panel the true id is d = 5.
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obtains mixed results: while producing reasonably consistent results on MNIST, it provides widely variable 
estimates on the remaining two datasets. Gride and TWO-NN provide results that are, overall, very close to the 
ones obtained with DANCo. This result is remarkable, especially when considering the high-dimensional nature 
of the datasets. Moreover, albeit our proposal is exclusively based on the information provided by the distances 
among data points (while all the competitors utilize some additional topological features), we do not observe 
any systematic bias or abnormal pattern in the estimates.

Differences in computational costs. Finally, we investigate the differences in computational costs for vari-
ous estimators. To this end, we consider two versions of the CIFAR-10 dataset, chosen because of its high 
dimensionality in both the numbers of instances and features. On the one hand, to study how the different 
algorithms scale as the considered sample size increases, we utilize the CIFAR-10 (training) dataset. We 
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Figure 7.   Evolution of the estimates of the id of the Spiral, Swissroll, Gaussian, and Möbius 
datasets computed via DANCo, GeoMLE, ESS, TWO-NN, and Gride while varying the considered 
neighborhood size.
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Figure 8.   Evolution of the estimates of the id of the datasets Isolet, Isomap faces, and MNIST (digit 1) 
obtained with DANCo, GeoMLE, ESS, TWO-NN, and Gride varying the considered sample size.
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compute the id estimates after sub-sampling the datasets producing samples of size n/k, with k ∈ {2j}7j=0 , while 
leaving D unaltered and equal to 3072. The results of this experiment are shown in Fig. 9, where we display the 
retrieved id s and the elapsed time in seconds. On the other hand, we also explore how the algorithms scale as 
the number of features increases by employing a subset of the CIFAR-10 dataset, where we focus on n = 5000 
pictures of cats. These images were re-sized (both shrunk and enlarged) to q× q pictures, where q assumes 
values between 8 and 181. Notice that the datasets encode the RGB information for each picture. Therefore, the 
number of features is D = 3q2 , ranging from a minimum of 192 to a maximum of 98283. We defer the results of 
the latter experiment to the Supplementary Material (Fig. S6). In both cases, we observe that GeoMLE presents 
highly varying results, especially when we consider a variable number of features. The other estimators, on the 
contrary, deliver consistent results, with Gride providing similar estimates to DANCo. Moreover, while the id 
estimates are still on par with the competitor, we observe an important gain in computational speed: Gride is 
considerably faster than its competitors, and it is second only to the TWO-NN when dealing with small datasets. 
For example, to run the model on the complete CIFAR-10 (training) dataset, ESS takes 1.43 times the 
seconds needed to run Gride, DANCo 6.66 times, and GeoMLE 21 times.

Discussion
In this paper, we introduced and developed novel distributional results concerning the homogeneous Poisson 
point process related to the estimate of the id, a crucial quantity for many dimensionality reduction techniques. 
The results extend the theoretical framework of the TWO-NN estimator. In detail, we derived closed-form den-
sity functions for the ratios of distances between a point and its nearest neighbors, ranked in increasing order.

The distributional results have a theoretical importance per se but are also useful to improve the model-based 
estimation of the id. Specifically, we have discussed two estimators: MG and Gride. The first one builds on 
the independence of the elements of the vector of consecutive ratios µL , which we exploited to derive a closed-
form estimator with lower variance than the TWO-NN. We showed how this estimator is equivalent to the one 
proposed in34. However, in real cases, considering multiple ratios of distances for each point in the sample can 
violate the assumed independence.

Our main proposal is Gride, an estimator based on NNs of generic order capable of mitigating the issues 
mentioned above. We showed that the latter estimator is also more robust to the presence of noise in the data than 
the other model-based methods. We remark that the inclusion of NNs of higher orders has to be accompanied by 
stronger assumptions on the homogeneity of the density of the data-generating process. Nonetheless, by dedicated 
computational experiments, we have shown that one can weaken the assumption of homogeneity of the Poisson 
point process. Indeed, given a specific point in the configuration, the homogeneity hypothesis should only hold 
up to the scale of the distance of the furthest nearest neighbor entering the estimator.

To summarize, when dealing with real data, we face a complex trade-off among the assumptions of density 
homogeneity, independence of the ratios, and robustness to noise. On the one hand, the TWO-NN is more likely 
to respect the local homogeneity hypothesis but is extremely sensitive to measurement noise since it only involves 
a narrow neighborhood of each point. On the other hand, MG focuses on broader neighborhoods, which makes it 
more robust to noisy data. However, their definition also imposes a more substantial local homogeneity require-
ment. It is also more likely to induce dependencies among different sequences of ratios. We believe that Gride 
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Figure 9.   Trajectories of estimated id s (left panel) and elapsed times in seconds (right panel) obtained on the 
CIFAR-10 (training) dataset with DANCo, GeoMLE, ESS, TWO-NN, and Gride.
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provides a reliable alternative to the previous two maximum likelihood estimators, being both robust to noise 
and more likely to comply with the independence assumptions.

Moreover, we have also compared Gride with other state-of-the-art methodologies, such as DANCo, ESS, 
and GeoMLE, over various simulated and well-known benchmark datasets. We have observed that Gride 
obtained performance on par with its competitors in terms of id estimation, especially similar to DANCo. This 
fact is even more remarkable if we consider that, differently from the competitors, our estimator is exclusively 
based on the information extracted from the distances among data points. Therefore, Gride represents a valu-
able tool, primarily because of its simplicity and computational efficiency.

The results in this paper pave the way for many other possible research avenues. First, we have implicitly 
assumed the existence of a single manifold of constant id. However, it is reasonable to expect that a complex 
dataset can be characterized by multiple latent manifolds with heterogeneous id s. Allegra et al.45 extended the 
TWO-NN model in this direction by proposing Hidalgo, a tailored mixture of Pareto distributions to partition 
the data points into clusters driven by different id values. It would be interesting to combine the Hidalgo 
modeling framework with our results, where the distribution in Eq. (10) can replace the Pareto mixture kernels. 
Second, the estimators derived from the models do not directly consider any source of error in the observed 
sample. Although we showed how one could reduce the bias generated by this shortcoming by considering 
higher-order nearest neighbors that allow escaping the local distortions, we are still investigating how to address 
this issue more broadly. For example, a simple solution would be to model the measurement errors at the level 
of the ratios, accounting for a Gaussian noise that can distort each µi . By focusing directly on the distribution 
of the distances among data points in an ideal, theoretical setting, we can obtain informative insights on how to 
best model the measurement noise.

Data availibility
The script to generate and analyze the datasets discussed in the current study are reported in the GRIDE_repo 
GitHub repository, available at https://​github.​com/​Frade​nti/​GRIDE_​repo. The real datasets utilized in the manu-
script are openly available online at the following links: Isolet, Isomap, MNIST, and CIFAR-​10.
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