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Abstract

Goal of this paper is to study the asymptotic behaviour of the solutions of the following
doubly nonlocal equation

(−∆)su+ µu = (Iα ∗ F (u))f(u) on RN

where s ∈ (0, 1), N ≥ 2, α ∈ (0, N), µ > 0, Iα denotes the Riesz potential and F (t) =� t

0
f(τ)dτ is a general nonlinearity with a sublinear growth in the origin. The found decay

is of polynomial type, with a rate possibly slower than ∼ 1
|x|N+2s . The result is new even

for homogeneous functions f(u) = |u|r−2u, r ∈ [N+α
N , 2), and it complements the decays

obtained in the linear and superlinear cases in [17,21]. Di�erently from the local case s = 1
in [45], new phenomena arise connected to a new �s-sublinear� threshold that we detect on
the growth of f . To gain the result we in particular prove a Chain Rule type inequality in
the fractional setting, suitable for concave powers.
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1 Introduction

The present paper is devoted to the study of the following doubly nonlocal equation

(−∆)su+ µu =
(
Iα ∗ F (u)

)
f(u) on RN (1.1)

where s ∈ (0, 1), N ≥ 2, α ∈ (0, N), µ > 0, Iα(x) =
CN,α

|x|N−α is the Riesz potential and (−∆)s

denotes the fractional Laplacian. The nonlinearity F (t) =
� t
0 f(τ)dτ is assumed to be quite

general, in the spirit of the papers by Berestycki and Lions [7] and Moroz and Van Schaftingen
[46], but the result is new even for the power case. In particular, we aim to study the asymptotic
behaviour at in�nity of the solutions: qualitative properties of this type have been already
discussed when f is linear or superlinear in [17] by the author, Cingolani and Tanaka, that is
why we will restrict to the case of f sublinear (in the origin).

Physically, this doubly nonlocal model has di�erent applications, in particular in the study
of exotic stars: minimization properties related to (1.1) play indeed a fundamental role in the
mathematical description of the dynamics of pseudo-relativistic boson stars [27] and their grav-
itational collapse [30], as well as the evolution of attractive fermionic systems, such as white
dwarf stars [35]. In fact, the study of the ground states to (1.1) gives information on the size of
the critical initial conditions for the solutions of the corresponding pseudo-relativistic equation:
in particular, when s = 1

2 , N = 3, α = 2 and f is a power, we obtain

√
−∆u+ µu =

(
1

4πr|x|
∗ |u|r

)
|u|r−2u in R3

related to the so called massless boson stars equation [36], where the pseudo-relativistic operator√
−∆+m2 − m collapses to the square root of the Laplacian; we refer to [31] and references

therein for a soft introduction. Other applications can be found in relativistic physics and in
quantum chemistry [4, 22] and in the study of graphene [42].

Mathematically, when s = 1 and f is a power, that is

−∆u+ µu =
(
Iα ∗ |u|r

)
|u|r−2u in RN , (1.2)

Cingolani, Clapp and Secchi in [13, Proposition A.2] obtained an exponential decay of positive
solutions whenever r ≥ 2, which means that the e�ect of the classical Laplacian prevails. After-
wards Moroz and Van Schaftingen in [45] (see also [47] and [12,19]) extended the previous analysis
in the case of ground state solutions to all the possible values of r in the range [N+α

N , N+α
N−2 ], in

particular by �nding a polynomial decay when f is sublinear (i.e., the Choquard term e�ect
prevails). They prove the following result [45, Theorem 4].

Theorem 1.1 ([45]) Let u ∈ H1(RN ) be a nonnegative ground state of (1.2), and r ∈ [N+α
N , N+α

N−2 ].
Assume µ = 1. Then

� if r > 2, then

lim
|x|→+∞

u(x)|x|
N−1

2 e|x| ∈ (0,+∞);

2



� if r = 2, then

lim
|x|→+∞

u(x)|x|
N−1

2 e
� |x|
ν

√
1− νN−α

tN−α dt ∈ (0,+∞)

for some explicit ν = ν(u);

� if r < 2, then

lim
|x|→+∞

u(x)|x|
N−α
2−r = C(N,α, r, u) ∈ (0,+∞)

where
C(N,α, r, u) :=

(
CN,α∥u∥rr

) 1
2−r (1.3)

with CN,α :=
Γ(N−α

2
)

2απN/2Γ(α
2
)
.

Notice that, when µ ̸= 1, the frequency µ in�uences both the limiting constants and � when
r ≥ 2 � the speed of the exponential decays. We refer also to [20, Section 8.2] for some results
on convolution equations with non-variational structure.

The case of the fractional Choquard equation s ∈ (0, 1) with homogeneous f , that is

(−∆)su+ µu =
(
Iα ∗ |u|r

)
|u|r−2u in RN , (1.4)

has been studied by D'Avenia, Siciliano and Squassina in [21] (see also [8,43,58] for other related
results). In this paper the authors gain existence of ground states, multiplicity and qualitative
properties of solutions: in particular they obtain asymptotic decay of solutions whenever the
source is linear or superlinear, that is when r ≥ 2 (see also [6] for the p-fractional Laplacian
counterpart); in this case the rate is polynomial, as one can expect dealing with the fractional
Laplacian. More speci�cally, it does not depend on α, and they prove the following theorem.

Theorem 1.2 ([21]) Let u ∈ Hs(RN ) be a solution of (1.4), and assume r ∈ [2, N+α
N−2s ]. Then

0 < lim inf
|x|→+∞

|u(x)||x|N+2s ≤ lim sup
|x|→+∞

|u(x)||x|N+2s < +∞. (1.5)

In this paper, we aim to study the fractional Choquard case s ∈ (0, 1), α ∈ (0, N), in presence
of general, sublinear nonlinearities. We point out that the arguments in [45] cannot be directly
adapted to the fractional framework: for instance, we see that the explicit computation of the
fractional Laplacian of some comparison function is not possible, and the choice of the compar-
ison functions itself is hindered by some growth condition typical of the fractional framework;
moreover, it is not obvious that all the weak solutions are pointwise solutions, and neither one
can deduce that the concave power of a pointwise solution is indeed a solution (of a di�erent
equation) itself.

We start by presenting the case of homogeneous powers f , which has an interest on its own.
Since in the superlinear case the rate of convergence is of the type ∼ 1

|x|N+2s , in the sublinear

case we generally expect a slower decay. Actually this is what we �nd, as the following theorem
states.

Theorem 1.3 Let u ∈ Hs(RN ), strictly positive, radially symmetric and decreasing, be a weak
solution of (1.4). Let r ∈ [N+α

N , 2) and set

β := min

{
N − α

2− r
,N + 2s

}
∈ [N,N + 2s]. (1.6)
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Then
0 < lim inf

|x|→+∞
u(x)|x|β ≤ lim sup

|x|→+∞
u(x)|x|β < +∞.

Moreover, in the case r ∈ [N+α
N , N+α+4s

N+2s ) (i.e. β < N + 2s), we have the sharp decay

lim
|x|→+∞

u(x)|x|
N−α
2−r =

(
CN,α∥u∥rr

µ

) 1
2−r

. (1.7)

We notice that, if µ = 1, the constant in (1.7) is coherent with (1.3). We refer to Remark 2.4
for some comments and generalizations on the assumptions. This result in particular applies to
ground states solutions (see De�nition 7.3).

Corollary 1.4 Let u be a positive ground state of (1.4). Then the conclusions of Theorem 1.3
hold.

We highlight that the found decay of the ground states might give information, when r < 2,
also on the twice Gateaux di�erentiability of the corresponding functional and on the nonde-
generacy of the ground state solution itself, see [45] (see also [47, Section 3.3.5]). Moreover
this information on the decay may be exploited to study fractional Choquard equations with
potentials V = V (x) approaching, as |x| → +∞, some V∞ > 0 from above or oscillating, in the
spirit of [44]. It might be further used, for example, in the semiclassical analysis of concentration
phenomena, see e.g. [14].

In both the estimates from above and below in Theorem 1.3 we rely on some comparison
principle and the use of some auxiliary function whose fractional Laplacian is related to the
Gauss hypergeometric function. For the estimate from above we succeed in working with the
weak formulation of the problem; on the other hand, in order to deal with the estimate from
below, we �nd the necessity of working with u2−r, where 2 − r ∈ (0, 1): this concave power
of the solution may fail to lie in Hs(RN ), and thus we cannot treat the problem with its weak
formulation. The pointwise formulation seems to arise some problems as well, since the fractional
Laplacian of u2−r needs some restrictive assumption on α, s,N and r in order to be well de�ned.
This is why we work with a viscosity formulation of the problem, obtaining a Córdoba-Córdoba
type inequality for concave functions (see Lemma 6.1). We remark that the estimate from above
may be treated with the viscosity formulation as well.

The paper is organized as follows. In Section 2 we make some comments on the found
results and present some generalizations, in particular for the case of a general nonlinearity
f = f(t) in (1.1). In Section 3.1 we introduce de�nitions and notations, collecting some existence
and comparison results in Appendix A.1. In Section 3.2 we introduce some suitable auxiliary
function (see Appendix A.2 for some related asymptotic property) and establish some asymptotic
behaviour on suitable comparison functions; other preliminary estimates are studied in Section 4.
Then in Section 5 we deal with the estimate from above, by working with the weak formulation,
while in Section 6 we study the asymptotic behaviour from below, by exploiting a viscosity
formulation and proving a fractional Chain Rule, suitable for concave functions. Finally in
Section 7 we conclude the proofs of the main results.

2 Comments and generalizations

Joining the results in Theorem 1.2 and Theorem 1.3 we obtain the following picture of the
asymptotic decay of fractional Choquard equations.
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Corollary 2.1 Let u be a positive ground state of (1.4), with r ∈ [N+α
N , N+α

N−2s ].

� If r ∈ [N+α+4s
N+2s , N+α

N−2s ], then

0 < lim inf
|x|→+∞

u(x)|x|N+2s ≤ lim sup
|x|→+∞

u(x)|x|N+2s < +∞.

� If r ∈ [N+α
N , N+α+4s

N+2s ], then

0 < lim inf
|x|→+∞

u(x)|x|
N−α
2−r ≤ lim sup

|x|→+∞
u(x)|x|

N−α
2−r < +∞;

in particular, N−α
2−r = N in the lower critical case r = N+α

N .

By the previous Corollary we see that the exponent

r∗s,α :=
N + α+ 4s

N + 2s
,

r∗s,α ∈ (N+α
N , 2), separates the cases where the fractional Laplacian in�uences more the rate of

convergence (which does not depend on α), from the cases where the asymptotic behaviour is dic-
tated by the Choquard term (which does not depend on s). This phenomenon seems to highlight
a di�erence between the fractional and the local case, where the separating exponent is r = 2
(see Theorem 1.1): indeed, when r ∈

(
r∗1,α, 2

)
, the arbitrary big (as r → 2) polynomial behaviour

∼ 1

|x|
N−α
2−r

keeps being slower than the exponential decay induced by the classical Laplacian; this

is not the case when compared with the polynomial decay induced by the fractional Laplacian,
and this is why this new phenomenon appears in this range. Thus r∗s,α can ben seen as a kind of
s-subquadratic threshold for the growth of F ; set instead

p∗s,α := r∗s,α − 1 =
α+ 2s

N + 2s
,

it can be seen as a s-sublinear threshold for the growth of f . Notice that

r∗s,α
s→0→ N + α

N
, r∗s,α

α→N→ 2,

while

r∗s,α
s→1→ N + α+ 4

N + 2
∈
(N + α

N
, 2
)
, r∗s,α

α→0→ N + 4s

N + 2s
∈ (1, 2).

It might be interesting to investigate other possible phenomena on fractional Choquard equations
when r is above and below this exponent r∗s,α, or also possible phenomena in (r∗1,α, 2) for the
local Choquard equation. We refer also to the recent paper [33, Theorem 1.4] where asymptotic
decay results are studied in a di�erent framework (still involving the fractional Laplacian and
the Riesz potential); here a threshold di�erent from the classical case s = 1 is detected as well.

Remark 2.2 We notice that, �xed a positive solution u, by setting

ρ := Iα ∗ ur

equation (1.4) can be rewritten as

(−∆)su+ µu = ρ(x)ur−1.
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When µ = 0 and ρ(x) ≤ 1
|x|γ with γ > N , this fractional sublinear equation (r ∈ (0, 2)) has

been studied in [48] (see also [34, Theorem 4.4] where they extend the result to γ > 2s): here the
authors �nd an estimate from above of the asymptotic decay of the solutions, which is strictly
slower than ∼ 1

|x|N . Notice that, in our case, ρ = Iα ∗ ur decays at most as ∼ 1
|x|N−α (see

[34, Lemma 4.6] and [47, page 801]) and we discuss the strict positivity of µ. See also [21, 39]
for more results on the zero mass case.

We pass now to more general nonlinearities, and study (1.1). For the whole paper we assume
the following conditions on f in order to give sense to appearing integrals:

(f1) f ∈ C(R,R), F (t) =
� t
0 f(τ)dτ ;

(f2) f satis�es

i) lim sup
t→0

|tf(t)|
|t|

N+α
N

< +∞, ii) lim sup
|t|→+∞

|tf(t)|

|t|
N+α
N−2s

< +∞,

or equivalently there exists C > 0 such that for every t ∈ R,

|tf(t)| ≤ C
(
|t|

N+α
N + |t|

N+α
N−2s

)
.

In particular, (f2) implies

i) lim sup
t→0

|F (t)|
|t|

N+α
N

< +∞, ii) lim sup
|t|→+∞

|F (t)|

|t|
N+α
N−2s

< +∞, (2.8)

or equivalently that there exists C > 0 such that for every t ∈ R,

|F (t)| ≤ C
(
|t|

N+α
N + |t|

N+α
N−2s

)
.

These conditions have been introduced in [46] for the local case s = 1, extending [7] where the
seminal case of local nonlinearities is treated. These critical exponents have then been adapted
to the fractional case s ∈ (0, 1) in [21], while the general case (f1)-(f2) has been introduced in
[16]. This set of assumptions covers di�erent types of nonlinearities, such as pure powers, both
odd f(u) = |u|r−1u or even f(u) = |u|r, combination of powers f(u) = ur ± uq (standing for

cooperation or competition), asymptotically linear (saturable) nonlinearities ur+1

1+ur (which appear
in nonlinear optics [25]) and many others. Notice that these assumptions include the case of
critical nonlinearities, both in the origin and at in�nity.

In the papers [15�18] (see also [31]) the authors study existence and multiplicity of normalized
solutions and of Pohozaev minima for (1.1), as well as qualitative properties of solutions, such
as regularity, positivity, radial symmetry and Pohozaev identities. In particular in [17] they
extend Theorem 1.2 to the case of general nonlinearities, by proving the polynomial asymptotic
behaviour of solutions whenever f is linear or superlinear in the origin. That is, by assuming
lim supt→0

|f(t)|
|t| < +∞ they gain that every positive weak solution u satis�es (1.5).

In this paper, we further investigate the asymptotic behaviour of the solutions of the fractional
Choquard equation (1.1) when f is sublinear in the origin. Thus we consider the following
additional assumptions:

(f3) there exists r ∈ [N+α
N , 2) such that

lim sup
t→0+

|f(t)|
tr−1

∈ [0,+∞),

i.e., for some C̄ > 0 and δ ∈ (0, 1) we have

|f(t)| ≤ C̄tr−1 for t ∈ (0, δ); (2.9)
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(f4) there exists r ∈ [N+α
N , 2) such that

lim inf
t→0+

f(t)

tr−1
∈ (0,+∞),

i.e., for some C > 0 and δ ∈ (0, 1) we have

f(t) ≥ Ctr−1 for t ∈ (0, δ). (2.10)

A su�cient condition for (f3) is clearly given by

lim sup
t→0+

f(t)

tr−1
= 0 for some r ∈ [N+α

N , 2), (2.11)

which means that C̄ can be taken arbitrary small in (2.9) (up to taking δ su�ciently small); in
particular it includes logarithmic nonlinearities f(t) = t log(t2), where r can be chosen arbitrary
close to 2. A su�cient condition for (f4) is instead given (for example) by a local Ambrosetti-
Rabinowitz condition (f(t)t ≥ rF (t) > 0 for t ∈ (0, δ)). The restriction in (f3) and (f4) to right
neighborhoods of zero is due to the fact we deal with positive solutions.

We eventually come up with the following generalization of Theorem 1.3.

Theorem 2.3 Assume (f1)-(f2), and let u ∈ Hs(RN ), strictly positive, radially symmetric and
decreasing, be a weak solution of (1.1). Let r ∈ [N+α

N , 2) and β as in (1.6).

(i) Assume (f3). Then lim sup|x|→+∞ u(x)|x|β ∈ (0,+∞).

(ii) Assume (f4), f locally Hölder continuous and
�
RN F (u) > 0 (e.g. F ≥ 0 on (0,+∞)).

Then lim inf |x|→+∞ u(x)|x|β ∈ (0,+∞).

If both conditions in (i) and (ii) hold, together with C = C (i.e., f is a power near the origin)
and r ∈ [N+α

N , N+α+4s
N+2s ), then we have the sharp decay

lim
|x|→+∞

u(x)|x|
N−α
2−r =

(
CN,α

(
limt→0+

f(t)
tr−1

) �
RN F (u)

µ

) 1
2−r

(2.12)

where CN,α > 0 is given in (1.3).

Remark 2.4 We highlight that the conclusions of Theorem 2.3 (as well as of Theorem 1.3) hold
in more general cases.

� The case

lim
t→0+

f(t)

t
= +∞

in a non-strict sense (i.e. limt→0
|f(t)|
|t|r−1 = 0 for each r ∈ [N+α

N , 2), for example f(t) ∼
−t log(t2)) is included, and as we expect the decay is of order ∼ 1

|x|N+2s . It is su�cient

to apply the argument of Remark 4.6 (since f(t) ≥ Ct for t small and positive), and the
results in Proposition 5.1 (after having chosen a whatever r ∈ [r∗α,s, 2)).

� The conclusions hold also without assuming radial symmetry and monotonicity of u, but by
assuming a priori that

lim sup
|x|→+∞

|u(x)||x|ω < +∞
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for some ω > N2

N+α : see Remark 4.4. When u ∈ Lq(RN ), q < N+α
N , is radially symmetric

and decreasing, this is the case with ω = N
q (see Remark 4.1); in particular, if q = 1,

we have ω = N . Notice that u is automatically radially symmetric and decreasing when
u ∈ C1,1

loc (R
N ), f(u) = |u|r−2u and ω > α

r−1 thanks to [40, Theorem 1] (see also [56,
Theorem 1.3]).

� In light of the previous remark, we highlight that the estimate from above actually holds
true also for nonnegative solutions u ≥ 0; see Proposition 5.1; moreover, it can be further
extended to |u| in the case of changing sign solutions, by applying a Kato's inequality
[2, Theorem 3.2].

� The conclusions hold also for solutions u ∈ L1(RN )∩C(RN ) in the viscosity sense, without
assuming f Hölder continuous (which is needed in (ii) only to pass from weak to viscosity
solutions): see Section 6.

� When (f4) holds, we actually have F (t) ≥ C tr

r for t ∈ (0, δ); thus, being also u ∈ L∞(RN ),
the condition

�
RN F (u) > 0 means that F is not too negative in [δ, ∥u∥∞]. We highlight

that the energy term
�
RN

(
Iα ∗ F (u)

)
F (u) is always positive (see e.g. [18]).

� We �nd some estimates on the asymptotic constants, which are coherent, when r ∈ [N+α
N , r∗s,α),

with the one found in Theorem 1.1 and Theorem 2.3: see Propositions 5.1 and 6.3. We
notice that (1.4) is obtained by (1.1) formally choosing f(t) =

√
r|t|r−2t. In the paper � up

to well posedness and regularity � we do not use that F is the primitive of f : in particular,
we do not apply (f3) and (f4) to F . Thus we can arbitrary move constants from f to F in
our arguments to adjust � for example � the value of C, and this allows to gain the result
for every µ > 0.

Our results apply in particular to Pohozaev minima of the equation (see De�nition 7.3),
whenever some symmetric assumption is assumed on f , that is

(f5) f is odd or even, with constant sign on (0,+∞) and locally Hölder continuous.

We refer to [15] for discussions on the assumption (f5). We notice that, since every Pohozaev
minimum has strict constant sign [15], it is not restrictive to assume a priori the sign of u.

Corollary 2.5 Assume (f1)-(f2) and (f5). Let u be a (positive) Pohozaev minimum of (1.1).
Then the conclusions of Theorem 2.3 hold.

We �nally want to highlight that our results may be adapted to the local case s = 1, extend-
ing Theorem 1.1 to general nonlinearities, studied in [46]. We leave the details to the reader,
observing that in this case the rate of decaying is simply given by β = N−α

2−r , since, as already
observed, the solutions of the homogeneous linear (associated) equation decay exponentially.

Theorem 2.6 Let s = 1, and assume (f1)-(f2) (where the upper critical exponent is substituted
by N+α

N−2 ). Let u ∈ H1(RN ), strictly positive, radially symmetric and decreasing, be a solution of

−∆u+ µu =
(
Iα ∗ F (u)

)
f(u) on RN ;

in particular, u may be a ground state. Let r ∈ [N+α
N , 2).

(i) Assume (f3). Then lim sup|x|→+∞ u(x)|x|
N−α
2−r ∈ (0,+∞).

(ii) Assume (f4) and
�
RN F (u) > 0. Then lim inf |x|→+∞ u(x)|x|

N−α
2−r ∈ (0,+∞).

If both conditions (i) and (ii) hold, together with C = C, then (2.12) holds.
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3 Preliminaries

3.1 De�nitions and notations

Let s ∈ (0, 1) and α ∈ (0, N), where N ≥ 2. We will denote by Ck,σ(RN ) the space of the
functions in Ck(RN ) with σ-Hölderian k-derivatives, and more brie�y we will write Cγ(RN ) :=
C [γ],γ−[γ](RN ) for any γ > 0. The same notations apply to the local case Cγ

loc(R
N ). Moreover

we write ∥ · ∥p = ∥ · ∥Lp(RN ) for the classical L
p norm in the entire space, p ∈ [1,+∞], and we

will use also the following notation

∥f∥∞,θ := ∥f(·)(1 + | · |θ)∥∞

for any θ > 0. Finally by f ∼ g as |x| → +∞ we mean that lim|x|→+∞
f(x)
g(x) = 1.

Let the fractional Laplacian be de�ned via Fourier transform [24]

(−∆)su = F−1(|ξ|2sF(u)),

while, when u is regular enough, we can write [24, Proposition 3.3]

(−∆)su(x) = CN,s

�
RN

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN

where CN,s :=
4sΓ(N+2s

2
)

πN/2|Γ(−s)| > 0 and the integral is in the principal value sense. A su�cient

condition in order to have (−∆)su well de�ned pointwise is given by [53, Proposition 2.4] (see
also [32, Proposition 2.15] and [18, Proposition 2.1]).

Proposition 3.1 (Pointwise well posedness) Let x0 ∈ RN . Then, if u ∈ Lp(RN ) ∩ Cγ(U)
for some p ∈ [1,+∞], γ > 2s and U open neighborhood of x0, then (−∆)su(x0) is well de�ned.
Moreover, (−∆)su ∈ C(U).

We introduce, for any Ω ⊂ RN and s ∈ (0, 1),

Hs(Ω) :=

{
u ∈ L2(Ω) | [u]2Hs(Ω) :=

�
Ω

�
Ω

|u(x)− u(y)|2

|x− y|N+2s
dy < +∞

}
,

endowed with
∥u∥2Hs(Ω) := ∥u∥2L2(Ω) + [u]2Hs(Ω).

We recall that [24, Theorem 5.4 and 6.7], when Ω is for example an open set with C0,1 bounded
boundary, we have Hs(Ω) ↪→ L2(Ω) ∩ L2∗s (Ω), where 2∗s :=

2N
N−2s . Moreover we set

Hs
loc(RN ) :=

{
u : RN → R | u ∈ Hs(Ω) for each Ω ⊂⊂ RN

}
and [55, Section 4.3.2]

Xs
0(Ω) :=

{
w ∈ Hs(RN ) | w = 0 on Ωc

}
.

In the case Ω = RN we also have the following relation [24, Proposition 3.6]

∥(−∆)s/2u∥2L2(RN ) =
1
2CN,s[u]

2
Hs(RN )

which leads to the following formulation via Fourier transform

Hs(RN ) =
{
u ∈ L2(RN ) | |ξ|sû ∈ L2(RN )

}
;
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this de�nition extends also to every s > 0 [28].
We further recall the Riesz potential

Iα(x) =
CN,α

|x|N−α
, x ∈ RN \ {0} (3.13)

where CN,α :=
Γ(N−α

2
)

2απN/2Γ(α
2
)
> 0: by the Hardy-Littlewood-Sobolev inequality we have

f ∈ Lr(RN ) 7→ Iα ∗ f ∈ Lh(RN )

continuous whenever r, h ∈ (1,+∞) satisfy 1
r −

1
h = α

N .

Remark 3.2 Arguing as in [17, Proposition 4.5] we see that Iα ∗F (u) ∈ C0(RN ) (and thus it is

well de�ned pointwise) if F (u) lies in L
N
α
−ε(RN )∩L

N
α
+ε(RN ) for some ε > 0. Assuming (f1)-(f2)

on f , we need to assume that u ∈ L
N+α

α
−ε(RN ) ∩ L

N
α

N+α
N−2s

+ε(RN ) for some ε > 0; in particular,

the convolution is well de�ned if u ∈ L2(RN )∩L
N
α

2N
N−2s (RN ), and thus if u ∈ L1(RN )∩L∞(RN ).

We recall now the de�nitions of weak solution, and of viscosity solution (see for instance
[51, page 136] or [11, De�nition 2.1]).

De�nition 3.3 (Weak solution) Let Ω ⊆ RN and g : Ω → R be measurable. We say that
u ∈ Hs(Ω) is a weak subsolution [supersolution] of

(−∆)su = g(x) in Ω

if
�
RN

(−∆)s/2u(−∆)s/2φdx+ µ

�
RN

uφdx ≤
�
RN

g(x)φdx (3.14)[ �
RN

(−∆)s/2u(−∆)s/2φdx+ µ

�
RN

uφdx ≥
�
RN

g(x)φdx
]

is well de�ned and holds for each nonnegative φ ∈ Xs
0(Ω). We say that u is a weak solution if it

is both a weak subsolution and a weak supersolution, i.e. if it satis�es the equality in (3.14) for
every φ ∈ Xs

0(Ω). Notice that, when Ω = RN , we have Xs
0(RN ) ≡ Hs(RN ).

De�nition 3.4 (Viscosity solution) Let Ω ⊆ RN and g : Ω → R. We say that u ∈ C(RN ) is
a viscosity subsolution [supersolution] of

(−∆)su = g(x) in Ω

if, for any x0 ∈ Ω, every U ⊂ Ω open neighborhood of x0, and every ϕ ∈ C2(U) such that

ϕ(x0) = u(x0), ϕ ≥ u [ϕ ≤ u] in U

set v := ϕχU + uχUc we have

(−∆)sv(x0) ≤ g(x0) (3.15)[
(−∆)sv(x0) ≥ g(x0)

]
.

We say that u is a viscosity solution if it is both a viscosity subsolution and a viscosity superso-
lution.
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We observe that, generally, the function v appearing in the de�nition of viscosity solution
might be discontinuous. More generally, this de�nition involves lower and upper semicontinuity
of u (see for instance [9, De�nition 2.2]). Furthermore, one can easily check that every (con-
tinuous) classical solution is a viscosity solution, that the sum of two subsolutions is still a
subsolution (with source the sum of the sources), and that the notion of subsolution is conserved
on subdomains Ω′ ⊂ Ω.

We refer to [50, Remark 2.11] and [51, Theorem 1] for some discussions on the relation
between classical, weak and viscosity solutions on bounded domains.

The above de�nitions apply, mutatis mutandis, to equation depending on u, i.e. where the
right hand side is of the form hu(x); in this case (�xed u) the de�nition applies to g(x) := hu(x).
In particular this adapts to our nonlocal equation

(−∆)su+ µu = (Iα ∗ F (u))f(u) on RN (3.16)

by substituting (3.14) with

�
RN

(−∆)s/2u(−∆)s/2φdx+ µ

�
RN

uφdx ≤
�
RN

(
Iα ∗ F (u)

)
f(u)φdx,

where we implicitly assume (f1)-(f2) to give sense to the integrals, and substitute (3.15) with

(−∆)sv(x0) ≤
(
Iα ∗ F (u)

)
(x0)f(u(x0));

in this last case, we need some assumptions on f and u to have Iα ∗F (u) well de�ned pointwise,
see Remark 3.2.

In Appendix A.1 we collect some standard lemmas on existence results and comparison
principles, both for weak and viscosity solutions.

3.2 Fractional auxiliary functions

In order to implement some comparison argument, we search for a function which behaves like
∼ 1

|x|β , β > 0, and which lies in Hs(RN ): in order to handle the presence of a pole in the origin

when β ≥ N , we make the following choice, by considering, for any β > 0,

hβ(x) :=
1

(1 + |x|2)
β
2

;

notice that, when β = N +2s, this function is related to the extremals of the fractional Sobolev
inequality [41] and to the solutions of the zero mass critical fractional Choquard equation [39].
Chosen hβ in this way, we have [38, Table 1 page 168]

(−∆)shβ(x) = Cβ,N,s 2F1

(
N

2
+ s,

β

2
+ s,

N

2
;−|x|2

)
(3.17)

where Cβ,N,s := 22s
Γ
(

N
2
+s
)
Γ
(

β
2
+s
)

Γ
(

N
2

)
Γ
(

β
2

) > 0 and 2F1 denotes the Gauss hypergeometric function

(see also [26, Corollary 2], observed that hβ(x) = 2F1(
N
2 ,

β
2 ,

N
2 ,−|x|2)). Notice that we will be

interested in
β ∈ (0, N + 2s].

In Appendix A.2 we collect some results on Gauss hypergeometric functions and their asymp-
totic behaviour at in�nity. We use now this auxiliary function to study some comparison function.
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Lemma 3.5 (Comparison for weak equation) Let u ∈ C(RN ) be a weak solution of

(−∆)su+ λu = γhβ in RN \Bρ(0) (3.18)

for some λ, γ > 0, ρ > 0 and β ∈
(
N
2 , N + 2s

]
. Then

lim sup
|x|→+∞

u(x)|x|β <∞.

Moreover, if β ∈ (N2 , N + 2s), we have

lim
|x|→+∞

u(x)|x|β =
γ

λ
.

Proof. We start noticing that, since β > N
2 , then the equation is well posed from a weak

point of view. By [14, Lemma A.3] (see also [28, Lemma 4.3]) there exists a continuous function
w ∈ H2s(RN ), such that

(−∆)sw + λw = 0 in RN \Bρ(0)

in the weak sense and pointwise, and moreover, for some C ′′
1 , C

′′
2 > 0,

C ′′
1

|x|N+2s
< w(x) ≤ C ′′

2

|x|N+2s
, for every |x| > ρ.

Let thus de�ne, for some τ, σ ∈ R and θ ∈ [β,N + 2s] to be chosen,

vτ,σ(x) :=
γ

λ
hβ(x) + σhθ(x) + τw(x)

for every x ∈ RN . We have, for |x| > ρ,

(−∆)svτ,σ(x) + λvτ,σ(x) = γhβ(x) +
(γ
λ
(−∆)shβ(x) + σ(−∆)shθ(x) + λσhθ(x)

)
=: γhβ(x) + gσ,θ(x).

By Lemma A.6 we obtain

� if β ∈ (N2 , N) \ {N − 2s},

gσ,θ(x) ∼
γ

λ
C ′
β,N,shβ+2s(x) + σC ′

θ,N,shθ+2s(x) + λσhθ(x) as |x| → +∞;

in this case we assume θ ∈ (β,min{N, β + 2s}) \ {N − 2s};

� if β = N ,

gσ,θ(x) ∼
γ

λ
C ′
N,N,s log(x)hN+2s(x) + σC ′

θ,N,shN+2s(x) + λσhθ(x) as |x| → +∞;

in this case we assume θ ∈ (N,N + 2s);

� otherwise

gσ,θ(x) ∼
γ

λ
C ′
β,N,shN+2s(x) + σC ′

θ,N,shN+2s(x) + λσhθ(x) as |x| → +∞,

and in this case

� if β = N − 2s (possible only if N > 4s), we choose θ ∈ (N,N + 2s);
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� if β ∈ (N,N + 2s), we choose θ ∈ (β,N + 2s);

� if β = N + 2s, we simply assume θ = N + 2s.

Assume �rst β < N + 2s. By the abovementioned choices of θ > β we obtain

gσ,θ(x) ∼ λσhθ(x) as |x| → +∞.

In particular, �xed ε > 0, for some R = Rε(γ, λ, β, θ, σ) ≫ 0 (we may assume R > ρ) we obtain

(1− ε)λσhθ(x) ≤ gσ,θ(x) ≤ (1 + ε)λσhθ(x) for |x| ≥ R

if σ > 0, and
(1 + ε)λσhθ(x) ≤ gσ,θ(x) ≤ (1− ε)λσhθ(x) for |x| ≥ R

if σ < 0. Notice that R does not depend on τ . Thus

(−∆)svτ,σ(x) + λvτ,σ(x) ≥ γhβ(x) + (1− ε)λσhθ(x) ≥ γhβ(x) in RN \BR(0)

by choosing a whatever σ > 0, and

(−∆)svτ,σ(x) + λvτ,σ(x) ≤ γhβ(x) + (1− ε)λσhθ(x) ≤ γhβ(x) in RN \BR(0)

by choosing a whatever σ < 0. Summing up{
(−∆)svτ,σ(x) + λvτ,σ(x) ≥ γhβ(x) in RN \BR(0),

(−∆)svτ,σ(x) + λvτ,σ(x) ≤ γhβ(x) in RN \BR(0).
(3.19)

We choose now τ > 0 such that

vτ ,σ − u ≥ 0 on BR(0).

Indeed, we impose
γ

λ
hβ(x) + σhθ(x) + τw(x) ≥ u(x) on BR(0)

that is
τw(x) ≥ u(x)− γ

λ
hβ(x)− σhθ(x) on BR(0)

which is satis�ed if we impose (recall that σ > 0)

τ min
BR

w ≥ max
BR

u− γ

λ
hβ(R) ≥ u(x)− γ

λ
hβ(x)− σhθ(x) on BR(0)

that is τ ≥ maxBR
u− γ

λ
hβ(R)

minBR
w . Similarly, we choose τ ∈ R such that

vτ ,σ − u ≤ 0 on BR(0),

given by τ ≤ minBR
u− γ

λ
hβ(R)

maxBR
w . We notice that both the minimum and the maximum of w in the

ball are �nite and strictly positive, since w > 0 is continuous. Thus, summing up{
vτ ,σ − u ≥ 0 on BR(0),

vτ ,σ − u ≤ 0 on BR(0).
(3.20)
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By joining (3.19) with the assumption on u, we obtain{
(−∆)s(vτ ,σ − u)(x) + λ(vτ ,σ − u)(x) ≥ 0 in RN \BR(0),

(−∆)s(vτ ,σ − u)(x) + λ(vτ ,σ − u)(x) ≤ 0 in RN \BR(0).
(3.21)

By the weak version of the Comparison Principle (Lemma A.3) we obtain{
vτ ,σ − u ≥ 0 on RN ,

vτ ,σ − u ≤ 0 on RN .

that is
γ

λ
hβ(x) + σhθ(x) + τw(x) ≤ u(x) ≤ γ

λ
hβ(x) + σhθ(x) + τw(x)

and hence, by the assumption on w,

γ

λ
hβ(x) + σhθ(x) + τ

C ′′
1

|x|N+2s
≤ u(x) ≤ γ

λ
hβ(x) + σhθ(x) + τ

C ′′
2

|x|N+2s

for each x ∈ RN , x ̸= 0. Thus

γ

λ

|x|β

(1 + |x|2)
β
2

+σ
|x|β

(1 + |x|2)
θ
2

+τ
C ′′
1

|x|N+2s−β
≤ u(x)|x|β ≤ γ

λ

|x|β

(1 + |x|2)
β
2

+σ
|x|β

(1 + |x|2)
θ
2

+τ
C ′′
2

|x|N+2s−β
,

which gives the claim passing to the limit |x| → +∞, since θ > β and N + 2s > β.

Assume now β = N + 2s, and choose θ = β = N + 2s. Now we have

gσ,θ(x) ∼ CσhN+2s(x) as |x| → +∞

where Cσ := γ
λC

′
N+2s,N,s + σC ′

N+2s,N,s + λσ; recall that C ′
N+2s,N,s < 0. We can choose proper

σ ∈ R such that Cσ < 0, and thus the �rst equation in (3.19) still hold. Since the sign of σ may

be now di�erent, we choose τ ≥ maxBR
u− γ

λ
hβ(R)−min{σ,0}

minBR
w .We come up then with the same proof,

obtaining

lim sup
|x|→+∞

u(x)|x|β ≤ γ

λ
+ σ + τC ′′

2 .

Notice that the appearing constants depend on u, γ, λ, ρ, β,N, s.

Lemma 3.6 (Comparison for pointwise equation) Let u ∈ C(RN ) be a pointwise solution
of (3.18). Then the conclusions of Lemma 3.5 holds.

Proof. The proof goes as the previous Lemma, with the di�erence that at the end we apply the
pointwise version of the Comparison Principle (Lemma A.4).

4 Some preliminary estimates

We start with some observations.

Remark 4.1 Let u ∈ Lq(RN ), for some q ∈ [1,+∞), be continuous and such that |u| is radially
symmetric and decreasing. Then, for every x ∈ RN ,

|u(|x|)|q|x|N = N |u(|x|)|
� |x|

0
tN−1dt = N

� |x|

0
|u(|x|)|qtN−1dt

14



≤ N

� |x|

0
|u(t)|qtN−1dt =

N

ωN−1

�
B|x|(0)

|u(y)|qdy ≤ N

ωN−1
∥u∥q

Lq(RN )

where ωN−1 denotes the area of the N − 1 dimensional sphere. Thus

|u(x)| ≤ C2
u

|x|
N
q

, x ̸= 0

where C2
u := CN∥u∥qq > 0. In particular, if u ∈ L1(RN ), we have

|u(x)| ≤ C2
u

|x|N
, x ̸= 0.

We keep with some preliminary lemmas; see [45, Lemma 6.2] (and [29, Lemma C.3]) for the
�rst.

Lemma 4.2 ([45]) Let g ∈ L∞(RN ) continuous and θ > N be such that

sup
x∈RN

|g(x)||x|θ < +∞.

Then there exists C = C(N,α) > 0 such that∣∣∣∣�
RN

g(y)

|x− y|N−α
dy − 1

|x|N−α

�
RN

g(y)dy

∣∣∣∣ ≤ C∥g∥∞,θ

|x|N−α

(
1

1 + |x|
+

1

1 + |x|θ−N

)
for each x ∈ RN , x ̸= 0, where we recall that ∥g∥∞,θ = ∥g(·)(1 + | · |θ)∥∞.

Lemma 4.3 Let u ∈ L1(RN ) continuous be such that |u| is radially symmetric and decreasing.
Let f satisfy (f1) and (f2,i), and let θ ∈ (N,N + α]. Then there exists C = C(N,α) > 0 such
that ∣∣∣∣(Iα ∗ F (u)

)
(x)− Iα(x)

�
RN

F (u)

∣∣∣∣ ≤ C∥F (u)∥∞,θIα(x)

(
1

1 + |x|
+

1

1 + |x|θ−N

)
for each x ∈ RN , x ̸= 0.

Proof. First notice that u ∈ L∞(RN ), F (u) ∈ L∞(RN ), and that Iα ∗ F (u) and
�
RN F (u) are

�nite and well de�ned. By Remark 4.1 we have

|u(x)| ≤ C2
u

|x|N
→ 0.

Thus
∣∣F (u(x))∣∣|x|θ is bounded on a ball BR (since F (u) is bounded), and it is bounded on the

complement of this ball since∣∣F (u(x))∣∣|x|θ = ∣∣F (u(x))∣∣
|u(x)|

N+α
N

|u(x)|
N+α
N |x|θ ≤

∣∣F (u(x))∣∣
|u(x)|

N+α
N

C

|x|N+α−θ

by considering the growth condition (f2,i) of F in zero (when R ≫ 0, not depending on θ) and
the restriction on θ. Thus supx∈RN

∣∣F (u(x))∣∣|x|θ < +∞ and Lemma 4.2 applies with g(x) :=
F (u(x)), which concludes the proof. We further notice that

∥F (u)∥∞,θ ≤ ∥F (u)∥∞(1 +Rθ) +

(
lim sup

t→0

|F (t)|
|t|

N+α
N

)
1 +Rθ

RN+α

for any θ ∈ (N,N + α] and any R≫ 0 (not depending on θ, but depending on u).
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Remark 4.4 In what follows, for the sake of exposition we will restrict our analysis to the space
of radially symmetric and decreasing functions in L1(RN ), but we highlight that this assumption
is needed only to get the a priori asymptotic decay of Remark 4.1. By the above proof, actually
we see that we may ask only

|u(x)| ≤ C

|x|ω

for some ω such that

ω >
N2

N + α
.

In particular ω = N , obtained in Remark 4.1, �ts this condition. Alternatively, one may assume
this a priori asymptotic decay on u (and adapt the restrictions on θ by θ ∈ (N, N+α

N ω]).

Corollary 4.5 Let u ∈ L1(RN ) continuous be such that |u| is radially symmetric and decreasing.
Let f satisfy (f1) and (f2,i), and let θ ∈ (N,N + α]. Then for any ε > 0, there exists Rε =
Rε(N,α, θ) ≫ 0 such that∣∣∣(Iα ∗ F (u)

)
(x)
∣∣∣ ≤ Iα(x)

(∣∣∣∣�
RN

F (u)

∣∣∣∣+ ε∥F (u)∥∞,θ

)
and (

Iα ∗ F (u)
)
(x) ≥ Iα(x)

(�
RN

F (u)− ε∥F (u)∥∞,θ

)
for each |x| ≥ Rε.

Remark 4.6 In [17] it was showed that the solutions decay as fast as ∼ 1
|x|N+2s when the non-

linearity is linear or superlinear. In the sublinear case, we expect a slower decay. Indeed, assume
(f1), (f2) and (f4), and let u be a strictly positive solution of (3.16). By [17, Lemma 5.3] we have
u(x) → 0 as |x| → +∞, thus there exists R ≫ 0 such that 0 ≤ u(x) ≤ δ < 1 for |x| ≥ R and
hence, by (2.10),

f(u(x)) ≥ Cur−1(x) for |x| ≥ R

together with
ur−1(x) ≥ u(x) for |x| ≥ R.

If we assume (Iα ∗ F (u))(x) ≥ 0 for |x| ≥ R, we gain

(−∆)su+ µu ≥ (Iα ∗ F (u))u on RN \BR(0)

which implies
(−∆)su+ 3

2µu ≥
(
Iα ∗ F (u) + 1

2µ
)
u on RN \BR(0).

By [17, Proposition 4.5] (see also Remark 3.2) we have that (Iα ∗ F (u))(x) → 0 as |x| → +∞,
thus for some R′ ≥ R≫ 0 we have

(−∆)su+ 3
2µu ≥ 0 on RN \BR′(0).

At this point (being u strictly positive) we conclude as in the proof of [17, Theorem 1.3] and
obtain

u(x) ≥ C1
u

|x|N+2s
for |x| ≥ R

for some constant C1
u = CN,α,R,µminBR

u > 0 and some su�ciently large R≫ 0.
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By Remarks 4.6 and 4.1, we obtain that every strictly positive, continuous, radially symmetric
and decreasing solution of (3.16) in L1(RN ) satis�es

C1
u

|x|N+2s
≤ u(x) ≤ C2

u

|x|N
for |x| ≥ R≫ 0, (4.22)

whenever f satis�es (f1)-(f2) and (f4), together with
�
RN F (u) > 0: indeed in this case, by

Lemma 4.3, we have
(
Iα ∗ F (u)

)
(x) ∼ Iα(x)

�
RN F (u) > 0 for |x| large. Thus the goal is to

improve the asymptotic decay (4.22) in the case of sublinear nonlinearities.

We highlight that, by Lemma 3.5, Corollary 4.5, and a bootstrap argument one can give
a �rst qualitative (not rigorous) proof of the main result. We refer to [31, Remark 4.6.22] for
details.

5 Estimate from above

First, we deal with the estimate from above. In this case we succeed in arguing in the weak
sense with no additional assumption on f . In what follows we notice that, when r > N+α

N , we
are actually improving (4.22).

Proposition 5.1 Assume (f1) and (f3). Let u ∈ Hs(RN ) ∩ L1(RN ), continuous, nonnegative,
radially symmetric and decreasing, be a weak solution of (3.16). Assume moreover

µ > (r − 1)C̄
1

r−1 .

Then, set β as in (1.6) we have, for some Cu ≥ 0,

lim sup
|x|→+∞

u(x)|x|β ≤ Cu; (5.23)

if β < N + 2s, the constant Cu depends on u in the following way:

Cu :=
(2− r)

(
CN,α

∣∣�
RN F (u)

∣∣) 1
2−r

µ− (r − 1)C̄
1

r−1

where CN,α > 0 is given in (3.13).

Proof. We start noticing that, by the Young product inequality, we obtain

(Iα ∗ F (u))f(u) ≤ 1

a

∣∣Iα ∗ F (u)
∣∣a + 1

b
|f(u)|b

when a, b > 0, 1
a + 1

b = 1. In particular we choose b = 1
r−1 and thus a = 1

2−r > 0 (possible
thanks to the sublinearity restriction on r); with this choice, by (2.9) and the fact that u(x) → 0
as |x| → +∞, we obtain

(Iα ∗ F (u))f(u) ≤ (2− r)
∣∣Iα ∗ F (u)

∣∣ 1
2−r + (r − 1)C̄

1
r−1u

for |x| ≥ R, where R = R(u) ≫ 0 is su�ciently large. By Corollary 4.5, for a whatever �xed
θ ∈ (N,N + α] and any ε > 0 we obtain

(Iα ∗ F (u))f(u) ≤ (2− r)

(
Iα(x)

(∣∣∣∣�
RN

F (u)

∣∣∣∣+ ε∥F (u)∥∞,θ

)) 1
2−r

+ (r − 1)C̄
1

r−1u
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= (2− r)C
1

2−r

N,α

(∣∣∣∣�
RN

F (u)

∣∣∣∣+ ε∥F (u)∥∞,θ

) 1
2−r 1

|x|
N−α
2−r

+ (r − 1)C̄
1

r−1u

for every |x| ≥ Rε = Rε(u,N, α, θ), thus

(−∆)su+ µu ≤ (2− r)C
1

2−r

N,α

(∣∣∣∣�
RN

F (u)

∣∣∣∣+ ε∥F (u)∥∞,θ

) 1
2−r 1

|x|
N−α
2−r

+ (r − 1)C̄
1

r−1u.

Notice that F (u) ̸≡ 0 (otherwise, by the equation, u ≡ 0 and the claim is trivial), thus we set

γu,ε := (2− r)C
1

2−r

N,α

(∣∣∣∣�
RN

F (u)

∣∣∣∣+ ε∥F (u)∥∞,θ

) 1
2−r

> 0

and λ := µ− (r − 1)C̄
1

r−1 > 0 we obtain

(−∆)su+ λu ≤ γu,ε
|x|β

in RN \BRε(0);

notice that we use the fact that 1

|x|
N−α
2−r

≤ 1
|x|β for |x| large. For each δ > 1 we have 1

|x|β ≤ δhβ(x)

when |x| > Rδ := (δ
2
β − 1)−

1
2 ; we may choose Rδ,ε > max{Rδ, Rε}. Thus

(−∆)su+ λu ≤ δγu,εhβ(x) in RN \BRδ,ε
(0). (5.24)

We have hβ ∈ L2(RN ), since 2N−α
2−r > N . By Lemma A.1, being u ∈ Hs(RN ), there exists

v ∈ Hs(RN ) such that{
(−∆)sv + λv = δγu,εhβ(x) in RN \BRδ,ε

(0),

v = u on BRδ,ε
(0).

Joining the �rst equation with (5.24) we obtain

(−∆)s(u− v) + λ(u− v) ≤ 0 in RN \BRδ,ε
(0)

and thus, by the weak version of the Comparison Principle (Lemma A.3) we obtain

u ≤ v on RN . (5.25)

By Lemma 3.5, if β < N+2s, we can estimate v by lim sup|x|→+∞ v(x)|x|β ≤ δγu,ε
λ . This relation,

combined with (5.25), gives

lim sup
|x|→+∞

u(x)|x|β ≤ δγu,ε
λ

for each δ > 1. In particular, as δ → 1+ and ε → 0+, we obtain the claim. If β = N + 2s, we
argue similarly (without moving δ and ε).

Notice that, if we assume (2.11), then one can choose every C̄ > 0, and thus in particular
every µ > 0 is allowed (see Remark 7.2). Anyway, in the proof of Theorem 2.3, we will see how
to drop the restriction on µ.

We observe that the previous estimate from above is still valid by considering viscosity solu-
tions u ∈ L1(RN ) ∩ C(RN ), see Section 6. We leave the details to the reader.
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6 Fractional concave Chain Rule and estimate from below

Next, we deal with the estimate from below. We need �rst some preliminary results, in order
to deal with the fractional Laplacian of the concave power of a function: since it might happen
that uθ /∈ Hs(RN ) when u ∈ Hs(RN ) and θ ∈ (0, 1), the weak formulation seems not to be
appropriate. Similarly, (−∆)suθ might be not well de�ned pointwise, even if u is regular enough.
Notice that knowing a priori that u is continuous, radially symmetric and decreasing seems of
no use. The idea is thus to treat the problem via viscosity formulation.

The following lemma is a well known result in the case of convex and Lipschitz functions
(see [10, Theorem 1.1], [32, Theorem 19.1]). We state it here in the case of concave (not globally
Lipschitz) function, in the framework of viscosity solutions. Notice that we do not require u to
be in L2(RN ).

Lemma 6.1 (Córdoba-Córdoba chain rule inequality) Let φ : I → R be a concave func-
tion, I ⊆ R interval, such that φ ∈ C1(I). Let u : RN → I.

� Let Ω ⊂ RN , and assume φ ∈ Lip(u(Ω)). Then

[φ(u)]Hs(Ω) ≤ ∥φ′∥L∞(u(Ω))[u]Hs(Ω).

In particular, if φ ∈ Lip(I) and (−∆)s/2u ∈ L2(RN ), then (−∆)s/2φ(u) ∈ L2(RN ) and

∥(−∆)s/2φ(u)∥2 ≤ ∥φ′∥L∞(I)∥(−∆)s/2u∥2.

� If u is de�ned pointwise, then

(−∆)s(φ(u))(x) ≥ φ′(u(x))(−∆)su(x)

for every x ∈ RN such that (−∆)s(φ(u))(x) and (−∆)su(x) are well de�ned.

� Assume in addition φ invertible, increasing, with φ−1 ∈ C2 increasing. If u is a continuous
viscosity supersolution of

(−∆)su ≥ g in Ω

for some function g and Ω ⊆ RN , then φ(u) is a viscosity supersolution of

(−∆)s(φ(u)) ≥ φ′(u)g in Ω.

Proof. The �rst claim is a direct consequence of the Lipschitz continuity

�
Ω

�
Ω

|φ(u(x))− φ(u(y))|2

|x− y|N+2s
dxdy ≤ ∥φ′∥2L∞(u(Ω))

�
Ω

�
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Secondly, by the concavity of φ, for each t, r ∈ I we have

φ(t)− φ(r) ≥ φ′(t)(t− r)

thus

(−∆)s(φ(u))(x) = CN,s

�
RN

φ(u(x))− φ(u(y))

|x− y|N+2s
dy

≥ CN,s

�
RN

φ′(u(x))
(
u(x)− u(y)

)
|x− y|N+2s

dy = φ′(u(x))(−∆)su(x).
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We move to the third part. Let x0 ∈ U ⊂ Ω and ϕ ∈ C2(U) be such that ϕ(x0) = φ(u(x0))
and ϕ ≤ φ(u) in U , and set v := ϕχU + φ(u)χUc . Let now

ψ := φ−1 ◦ ϕ, w := φ−1 ◦ v = ψχU + uχUc .

By the assumptions on φ−1 we have ψ ∈ C2(U), ψ(x0) = u(x0) and ψ ≤ u in U . Thus

(−∆)sw(x0) ≥ g(x0).

On the other hand, w = ψ ∈ C2 on U and φ(w) = ϕ ∈ C2 on U , hence both the functions
are regular enough in a neighborhood of x0 to state that both the fractional Laplacians are well
de�ned (see Proposition 3.1). Thus we may apply the previous point and obtain

(−∆)s(φ(w))(x0) ≥ φ′(w(x0))(−∆)sw(x0).

Since w(x0) = u(x0), φ(w) = v and φ′ is positive, we obtain, by joining the two previous
inequalities

(−∆)sv(x0) ≥ φ′(u(x0))g(x0)

which is the claim. This concludes the proof.

As a corollary, we obtain the following result.

Corollary 6.2 Let θ ∈ (0, 1), and let u ∈ C(RN ) be strictly positive.

� We have

[uθ]Hs(Ω) ≤
θ

minΩ u1−θ
[u]Hs(Ω)

for each Ω ⊂⊂ RN . In particular, if u ∈ Hs
loc(RN ), then uθ ∈ Hs

loc(RN ). As a consequence,
if u ∈ Hs(RN ), then

[uθ]Hs(Ω) ≤
θ

minΩ u1−θ
∥(−∆)s/2u∥2.

� If (−∆)su is well de�ned pointwise, then

(−∆)suθ(x) ≥ θ

(u(x))1−θ
(−∆)su(x)

for every x ∈ RN such that (−∆)suθ(x) is well de�ned.

� If u is a viscosity supersolution of

(−∆)su ≥ g in Ω

for some function g and Ω ⊆ RN , then uθ is a viscosity supersolution of

(−∆)suθ ≥ θ

u1−θ
g in Ω.

We are now ready the prove the estimate from below.
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Proposition 6.3 Assume (f1)-(f2,i) and the sublinear condition (f4). Let u ∈ L1(RN )∩C(RN ),
strictly positive, radially symmetric and decreasing, be a viscosity solution of (3.16). Assume�
RN F (u) > 0. Then,

lim inf
|x|→+∞

u(x)|x|
N−α
2−r ≥ C ′

u

where

C ′
u :=

(
CCN,α

�
RN F (u)

µ

) 1
2−r

and CN,α > 0 is given in (3.13). Moreover, set β as in (1.6), we have, for some C ′′
u > 0,

lim inf
|x|→+∞

u(x)|x|β ≥ C ′′
u ;

if N−α
2−r ≤ N + 2s (i.e. β = N−α

2−r ), we have C ′′
u := C ′

u, otherwise we have C ′′
u := C1

u (see Remark
4.6).

The result in particular applies to pointwise solutions.

Proof. First notice that, by the assumptions, u ∈ L1(RN ) ∩L∞(RN ) and thus, by Remark 3.2,
Iα ∗ F (u) is pointwise well de�ned. By Corollary 6.2, since 2− r ∈ (0, 1− α

N ] ⊂ (0, 1) we have

(−∆)su2−r ≥ 2− r

ur−1

(
− µu+

(
Iα ∗ F (u))f(u)

)
on RN , in the viscosity sense. Thus

(−∆)su2−r + µ(2− r)u2−r ≥ (2− r)

(
Iα ∗ F (u))f(u)

ur−1
.

For a �xed θ ∈ (N,N + α] and any ε > 0 small, by Corollary 4.5 and (2.10) (since u(x) → 0 as
|x| → +∞, being u decreasing and in L1(RN )) we obtain � we use here that

�
RN F (u) > 0 �

(
Iα ∗ F (u)

)
f(u) ≥ C

(�
RN

F (u)− ε∥F (u)∥∞,θ

)
Iαu

r−1 in RN \BRε(0)

for some Rε ≫ 0, thus

(−∆)su2−r + µ(2− r)u2−r ≥
(
(2− r)C

(�
RN

F (u)− ε∥F (u)∥∞,θ

))
Iα in RN \BRε(0);

that is, exploiting 1
|x|N−α ≥ 1

(1+|x|2)
N−α

2

, we get

(−∆)su2−r + λ′u2−r ≥ γ′u,εhN−α in RN \BRε(0)

in the viscosity sense, where

γ′u,ε := (2− r)CCN,α

(�
RN

F (u)− ε∥F (u)∥∞,θ

)
> 0

and λ′ := µ(2− r). We observe that u2−r ∈ L∞(BR(0)) ∩ C(BRε(0)), while hN−α ∈ L∞(RN ) ∩
Cσ
loc(RN ) (for any σ), thus by Lemma A.2, there exists v ∈ Cω

loc(RN ), for some ω > 2s such that{
(−∆)sv + λ′v = γ′u,εhN−α in RN \BRε(0),

v = u2−r on BRε(0),
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pointwise. Thus
(−∆)s(u2−r − v) + λ′(u2−r − v) ≥ 0 in RN \BRε(0)

in the viscosity sense, with
u2−r − v ≥ 0 on BRε(0).

Observe that, by Lemma 3.6, we have v(x) → 0 as |x| → +∞. Since (ur−2 − v)(x) → 0 as
|x| → +∞, by the viscosity version of the Comparison Principle (Lemma A.4) we obtain

u2−r ≥ v on RN .

By Lemma 3.6 we gain

lim inf
|x|→+∞

v(x)|x|N−α ≥
γ′u,ε
λ′

.

Combining the previous inequalities and sending ε → 0+, we have the �rst claim. We conclude
by adapting Remark 4.6 to the viscosity case (notice that u ∈ L1(RN ) ∩ L∞(RN )).

By the results in [15,17], we gain su�cient conditions in order to state that a weak solution
is a pointwise solution.

Corollary 6.4 Assume (f1)-(f2,i) and the sublinear condition (f4). Let u ∈ Hs(RN )∩L1(RN )∩
C(RN ), strictly positive, radially symmetric and decreasing, be a weak solution of (3.16). Assume
moreover that f ∈ C0,σ

loc (R) for some σ ∈ (0, 1] and
�
RN F (u) > 0. Then u is a classical solution

and the conclusions of Proposition 6.3 hold.

Notice that, by the sublinearity in zero, σ can lie only in (0, r−1]. We conjecture anyway that
the conclusion of Corollary 6.4 holds in more general cases, by assuming f merely continuous.

7 Proofs of the main theorems

We can sum up some of the results of the previous sections in the following.

Corollary 7.1 Assume (f1)-(f2,i) and the sublinear conditions (f3)-(f4), in particular

0 < lim inf
t→0

f(t)

|t|r−1
≤ lim sup

t→0

f(t)

|t|r−1
≤ C̄ < +∞.

Let u ∈ Hs(RN ) ∩ L1(RN ) ∩ C(RN ), strictly positive, radially symmetric and decreasing, be a

weak solution of (3.16). Finally assume µ > (r − 1)C̄
1

r−1 , f ∈ C0,σ(R) for some σ ∈ (0, r − 1],
and

�
RN F (u) > 0. Then we have

0 < lim inf
|x|→+∞

u(x)|x|β ≤ lim sup
|x|→+∞

u(x)|x|β < +∞

where β is de�ned in (1.6).

We can now conclude the proof of the main theorem.

Proof of Theorem 2.3. First, we show how to remove the restriction on µ in Proposition 5.1.
Indeed, for any κ > 0 we can write

(
Iα ∗ F (u)

)
f(u) ≡

(
Iα ∗ Fκ(u)

)
fκ(u), where fκ := 1

κf and
Fκ := κF . We can thus rewrite (f3) as

|fκ(t)| ≤
1

κ
Ctr−1 for t ∈ (0, δ).
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Since in Proposition 5.1 we did not use that F is the primitive of f (in particular, we did not
apply (f3) to F ), �xed a whatever µ > 0 we can choose κ such that

µ > (r − 1)

(
C

κ

) 1
r−1

> 0,

that is a large κ given by κ >
(
r−1
µ

)r−1
C, and obtain

lim sup
|x|→+∞

u(x)|x|β ≤ Cu,κ

where, if β < N + 2s,

Cu,κ :=
(2− r)

(
CN,ακ

∣∣�
RN F (u)

∣∣) 1
2−r

µ− (r − 1)
(
C̄
κ

) 1
r−1

.

We notice, as we expect, that as µ → 0 then κ → +∞ and Cu,κ → +∞, while C ′
u de�ned in

Proposition 6.3 is invariant under κ-transformations.

We show now the sharp decay; indeed, we search for a κ such that Cu,κ = C ′
u. By a

straightforward analysis of g(κ) := Cu,κ −C ′
u, κ >

(
r−1
µ

)r−1
C, we �nd a (unique, explicit) zero

κ∗ (which actually is a point of minimum) if only if C = C, i.e. if f is exactly a power near the
origin.

Now, by the results in [17], we have that every positive solution is bounded, and every
bounded solution is in H2s(RN ) ∩ C(RN ) ∩ L1(RN ). By the previous results we conclude the
proof.

Remark 7.2 We notice that, when r ∈ (N+α
N , 2), by assuming lim supt→0+

f(t)
tr−1 ∈ (0,+∞) we

obtain that lim supt→0+
f(t)

tr−ε−1 = 0 for any ε > 0 (such that r − ε ∈ [N+α
N , 2)). Thus we may

extend the estimate from above of Proposition 5.1 to a whatever µ > 0 also by paying the cost of
a slower decay at in�nity, that is

lim sup
|x|→+∞

u(x)|x|βε ≤ Cu,ε <∞

where βε := min
{

N−α
2−r+ε , N + 2s

}
. If β < N + 2s, Cu,ε :=

(2−r+ε)(CN,α|
�
RN F (u)|)

1
2−r

µ . Clearly,

when condition (2.11) holds, then the above statement holds for ε = 0.

Before concluding the proof of Corollary 2.5, we make clear what we mean by Pohozaev
minimum.

De�nition 7.3 Consider the functional I ∈ C1(Hs(RN ),R) de�ned by

I(u) := 1

2

�
RN

|(−∆)s/2u|2dx+
1

2

�
RN

u2dx− 1

2

�
RN

(
Iα ∗ F (u)

)
F (u)dx;

it is easy to see that weak solutions of (3.16) are critical points of I. We say that u is a Pohozaev
minimum of I if

I(u) = inf
{
I(v) | v ∈ Hs(RN ) \ {0}, P(v) = 0

}
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where

P(u) :=
N − 2s

2

�
RN

|(−∆)s/2u|2dx+
N

2
µ

�
RN

u2dx− N + α

2

�
RN

(
Iα ∗ F (u)

)
F (u)dx.

By [17] we know that every Pohozaev minimum is a critical point of I, and thus every Pohozaev
minimum u satis�es

I(u) = inf
{
I(v) | v ∈ Hs(RN ) \ {0}, P(v) = 0, I ′(v) = 0

}
.

We say instead that u is a ground state for I if

I(u) = inf
{
I(v) | v ∈ Hs(RN ) \ {0}, I ′(v) = 0

}
.

We point out that, by [17], we know that there exists a (radially symmetric) Pohozaev
minimum if we further assume that F is nontrivial and not critical, i.e. the limits in (2.8) are
zero. Moreover, the notion of Pohozaev minimum and ground state coincide whenever all the
critical points satisfy the Pohozaev identity, fact known under some restriction on s, α and f ,
see [18].

Proof of Corollary 2.5. By the results in [15], we have that every Pohozev minimum has
strict constant sign � e.g., strictly positive � (if f is odd or even, and Hölder continuous), and it
is radially symmetric and decreasing (if in addition f has constant sign on (0,+∞)). Thus we
conclude by the previous results.

All the previous theorems particularly apply to homogeneous nonlinearities.

Proof of Theorem 1.3, Corollary 1.4. Theorem 1.3 is a direct consequence of the above
result, where formally f(t) =

√
r|t|r−2t. By [21, Theorems 3.2 and 4.2] we have that every

ground state satis�es all the assumptions of the previous results; thus we have the claim of
Corollary 1.4.

A Appendices

A.1 Existence and comparison results

We collect here some results which are already known in literature, even if the author was not
able to �nd a precise reference. We start with an existence result (see also [52, Corollary 1.15]).

Lemma A.1 (Existence for weak solutions) Let Ω ⊂ RN be of class C0,1 with bounded
boundary1, λ > 0, ψ ∈ Hs(Ωc), and g ∈ Lq(Ω), for some q ∈ [ 2N

N+2s , 2]. Then there exists

a (unique) function v ∈ Hs(RN ) such that{
(−∆)sv + λv = g in Ω,

v = ψ on Ωc,

in the weak sense, that is v ∈ Xs
0(Ω) + ψ and

�
RN

(−∆)s/2v(−∆)s/2φdx+ λ

�
RN

vφdx =

�
RN

gφdx

for every φ ∈ Xs
0(Ω). If moreover g ∈ Lq

loc(R
N ) for some q > N

2s , then v ∈ L∞
loc(RN ). If instead

g ∈ C0,σ
loc (R

N ) for some σ ∈ (0, 1], then v ∈ C2s+σ
loc (RN ).

1The result is still valid in a whatever Ωc
extension domain (see [24]).
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Proof. By [24, Theorem 5.4] we know that there exists ψ̃ ∈ Hs(RN ) such that ψ̃|Ωc ≡ ψ. The
problem is thus equivalent to {

(−∆)sv + λv = g in Ω,

v = ψ̃ on Ωc.

Consider u = v − ψ̃ and rewrite the weak formulation as

�
RN

(−∆)s/2u(−∆)s/2φdx+ λ

�
RN

uφdx =

�
RN

(g − λψ)φdx−
�
RN

(−∆)s/2ψ̃(−∆)s/2φdx.

It is easy to see that the left-hand side is a bilinear, continuous coercive map on Xs
0(Ω), while

φ ∈ Xs
0(Ω) 7→

�
RN

(g − λψ)φdx−
�
RN

(−∆)s/2ψ̃(−∆)s/2φdx

belongs to the dual space (Xs
0)

∗(Ω). By Lax-Milgram theorem, we obtain a solution u ∈ Xs
0(Ω),

which implies that v := u+ ψ̃ is the desired function.
Finally, the regularity results are a consequence of De Giorgi-Nash-Moser estimates [37,

Proposition 2.6] and Schauder estimates [37, Theorem 2.11].

The following existence result can be found in [11, Lemma 2.2 and Remark 4.1] for bounded
domains, and in [54, Theorem A.1] for the homogeneous case ψ ≡ 0.

Lemma A.2 (Existence for viscosity solutions) Let Ω ⊂ RN be a C2 domain, λ > 0, ψ ∈
L∞(Ωc) ∩ C(Ωc), and g ∈ L∞(Ω) ∩ C(Ω). Then there exists a function v ∈ C(RN ) ∩ L∞(RN )
such that {

(−∆)sv + λv = g in Ω,

v = ψ on Ωc,

in the viscosity sense. If g ∈ Cσ
loc(Ω) for some σ ∈ (0, 1), then v ∈ Cγ

loc(Ω), for some γ > 2s is
a pointwise solution. If ψ ≡ 0, we further have v ∈ Cs(RN ) ∩ Cγ

loc(Ω), for some γ > max{1, 2s}
and w

(dist(·,∂Ω))s ∈ C0,θ(Ω) for some θ ∈ (0, 1).

Proof. First notice that, by extension, we may assume g ∈ L∞(RN ) ∩ C(RN ) ∩ Cσ
loc(Ω). Since

Ω is a C2 domain, g ∈ C(RN ) and ψ ∈ C(Ωc) ∩ L∞(Ωc), by [5, Theorem 4] with b ≡ c ≡ 0
we obtain the existence of a (unique) viscosity solution v ∈ C(RN ), satisfying the boundary
condition pointwise (see also [9, page 615]). Since the cited theorem is a corollary of [5, Theorem
1], with F (x, u, p,X, l) ≡ F (x, u, l) = l+λu−g(x), l = I[u] ≡ (−∆)su, dµx(z) =

dz
|z|N+α , one can

notice, looking at the proof, that the found solution is actually bounded (see also [51, Corollary
4]). Thus v is a bounded viscosity solution.

By [49, Theorem 2.6], since (−∆)sv = −λv+g ∈ L∞(Ω) with v ∈ C(Ω), we have v ∈ Cγ1
loc(R

N )

for some γ1 > 0. Since ψ ∈ L∞(Ωc) and g − λv ∈ C
min{σ,γ1}
loc (Ω), by [49, Theorem 2.5] we have

that v ∈ Cγ
loc(Ω) for some γ > 2s; thus (−∆)sv is pointwise de�ned (actually Hölder continuous).

As observed in [49, Remark 2.3], we conclude that v is a pointwise solution.

We write down the following two lemmas again for the reader's convenience. See [14, Lemma
A.1] for the �rst.
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Lemma A.3 (Maximum Principle (weak)) Let Ω ⊂ RN (possibly unbounded), λ > 0, and
let u ∈ Hs(RN ) be a weak subsolution of

(−∆)su+ λu ≤ 0 in Ω.

Assume moreover that u(x) ≤ 0 on Ωc. Then

u(x) ≤ 0 on RN . (A.26)

Lemma A.4 (Maximum Principle (viscosity)) Let Ω ⊂ RN open (possibly unbounded),
λ > 0, and let u be a viscosity, continuous subsolution of

(−∆)su+ λu ≤ 0 in Ω

such that
lim

|x|→+∞
u(x) ≤ 0.

Assume moreover that u(x) ≤ 0 on Ωc. Then

u(x) ≤ 0 on RN . (A.27)

The result applies, in particular, to pointwise solutions.

Proof. We �rst observe that u ∈ L∞(RN ) and set M := supx∈RN u(x). By contradiction,
assume M > 0. Let (xn)n be a maximizing sequence, i.e. u(xn) → M as n → +∞; we can
assume that xn ∈ Ω. We observe that (xn)n is bounded (up to a subsequence) since, if not, we
would have |xn| → +∞ and thus limn u(xn) ≤ 0, which is an absurd. Thus xn → x0 ∈ Ω, and
by continuity u(x0) = M > 0; since u(x) ≤ 0 on Ωc ⊃ ∂Ω, we have x0 ∈ Ω. In particular, x0 is
a point of maximum for u.

We can thus choose a whatever U ⊂ Ω neighborhood of x0 and set ϕ ≡ u(x0) as contact
function in the de�nition of viscosity solution: indeed ϕ ∈ C2(U), ϕ(x0) = u(x0) and ϕ ≥ u in
U . Hence, set v := ϕχU + uχUc we have

0 ≥ (−∆)sv(x0) + λv(x0) = CN,s

�
RN

u(x0)− v(y)

|x0 − y|N+2s
dy + λu(x0)

= CN,s

�
Uc

M − u(y)

|x0 − y|N+2s
dy + λM > 0,

which is a contradiction. This concludes the proof.

A.2 Decay of fractional auxiliary functions

Recall that, by (3.17),

(−∆)shβ(x) = Cβ,N,s 2F1

(
N

2
+ s,

β

2
+ s,

N

2
;−|x|2

)
(A.28)

where hβ(x) =
1

(1+|x|2)
β
2

, and Cβ,N,s = 22s
Γ
(

N
2
+s
)
Γ
(

β
2
+s
)

Γ
(

N
2

)
Γ
(

β
2

) > 0. We consider now the asymptotic

behaviour at in�nity of the hypergeometric function 2F1 (see [1, pages 559-560], but also [3, pages
78-79, 88] and [57, page 161]). Recall that Γ(z) is well de�ned whenever z ∈ R \ (−N) and
|Γ(z)| → +∞ as z approaches −N (so that the reciprocal Gamma function is well de�ned on −N
and equals zero); moreover we have the symmetry property 2F1(a, b, c;x) = 2F1(b, a, c;x) and
the fact that 2F1(0, b, c;x) = 1 and 2F1(−1, b, c;x) = 1− b

cz.
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Lemma A.5 ([1]) Consider 2F1(a, b, c;x). For the sake of simplicity, assume a priori that
a, b, c > 0 and

a− c ∈ R+ \ N,

a− b ∈ Z ⇐⇒ a− b ∈ N,

b− c ∈ N ⇐⇒ b− c ∈ {0, 1};

in particular a− b and b− c do not lie in Z at the same time. We have the following asymptotic
estimates as x→ −∞.

� If a− b /∈ Z and b− c /∈ N, then

2F1(a, b, c;x) ∼
Γ(c)Γ(b− a)

Γ(c− a)Γ(b)

1

(−x)a
+

Γ(c)Γ(a− b)

Γ(c− b)Γ(a)

1

(−x)b
;

� If b = c (and a− b /∈ Z), then

2F1(a, b, b;x) =
1

(1− x)a
;

� If b = c+ 1 (and a− b /∈ Z), then

2F1(a, b, b− 1;x) = −Γ(b− 1)Γ(b− a)

Γ(b− a− 1)Γ(b)

x

(1− x)a+1
+

1

(1− x)a+1
∼ Γ(b− 1)Γ(b− a)

Γ(b− a− 1)Γ(b)

1

(−x)a
;

� If a = b (and b− c /∈ N), then

2F1(a, a, c;x) ∼
Γ(c)

Γ(a)Γ(c− a)

log(−x)
(−x)a

+
C1

(−x)a
∼ Γ(c)

Γ(a)Γ(c− a)

log(−x)
(−x)a

;

� If a− b ∈ N∗ (and b− c /∈ N), then

2F1(a, b, c;x) ∼
Γ(c)Γ(a− b)

Γ(c− b)Γ(a)

1

(−x)b
+ C2

log(−x)
(−x)a

+
C3

(−x)a
∼ Γ(c)Γ(a− b)

Γ(c− b)Γ(a)

1

(−x)b
.

Here Ci, i = 1, 2, 3, are some strictly positive constants.

Notice that a = N
2 + s, b = β

2 + s, c = N
2 satisfy the assumptions of the previous Lemma,

whenever s ∈ (0, 1) and β ∈ (0, N + 2s]. Thus, exploiting the representation of (−∆)shβ given
in (A.28) and the results on Gauss hypergeometric functions, we come up with the following
estimates.

Lemma A.6 Let β ∈ (0, N + 2s]. Then (−∆)shβ(x) is well-de�ned for every x ̸= 0. Moreover,
we have the following asymptotic behaviours:

� if β ∈ (N,N + 2s], then

(−∆)shβ(x) ∼ C ′
β,N,s

1

|x|N+2s
as |x| → +∞

where C ′
β,N,s := 22s

Γ
(

N
2
+s
)
Γ
(

β
2
−N

2

)
Γ
(

β
2

)
Γ
(
−s
) < 0. This in particular includes the case β = N −

2s + 2 (possible if s > 1/2), with C ′
N−2s+2,N,s = −22s+1 s

N−2s < 0. Notice moreover that

C ′
N+2s,N,s = 22s Γ(s)

Γ(−s) → 0 as s→ 1−.
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� if β = N , then

(−∆)shN (x) ∼ C ′
N,N,s

log(|x|)
|x|N+2s

as |x| → +∞

where C ′
N,N,s := 22s+1 Γ

(
N
2
+s
)

Γ
(

N
2

)
Γ
(
−s
) < 0.

� if β ∈ (N − 2s,N), then

(−∆)shβ(x) ∼ C ′
β,N,s

1

|x|β+2s
as |x| → +∞

where C ′
β,N,s := 22s

Γ
(

β
2
+s
)
Γ
(

N
2
−β

2

)
Γ
(

β
2

)
Γ
(

N
2
−β

2
−s
) < 0.

� if β = N − 2s, then

(−∆)shN−2s(x) = C ′
N−2s,N,shN+2s(x) for x ∈ RN \ {0}

∼ C ′
N−2s,N,s

1

|x|N+2s
as |x| → +∞

where C ′
N−2s,N,s := 22s

Γ
(

N
2
+s
)

Γ
(

N
2
−s
) > 0.

� if β ∈ (0, N − 2s), then

(−∆)shβ(x) ∼ C ′
β,N,s

1

|x|β+2s
as |x| → +∞

where C ′
β,N,s := 22s

Γ
(

β
2
+s
)
Γ
(

N
2
−β

2

)
Γ
(

β
2

)
Γ
(

N
2
−β

2
−s
) > 0. This in particular includes the case β = N − 2k

with k = 1, . . . , [N2 ].

Remark A.7 Notice that, for β ∈ {N−2s}∪[N,+∞), the asymptotic behaviour of |(−∆)shβ(x)|
does not depend on β; on the other hand, the sign and the precise constant depend on β.

In the case β ∈ (0, N) \ {N − 2s}, we may use x 7→ 1
|x|β , whose fractional Laplacian has a

close (simple) representation: (
(−∆)s

1

| · |β

)
(x) = Cβ,N,s

1

|x|β+2s
,

see [38, Table 1 and Theorem 3.1]. In particular

(−∆)shβ(x) ∼
(
(−∆)s

1

| · |β

)
(x) as |x| → +∞.

On the other hand, if β = N − 2s, we obtain, far from the origin, (−∆)s 1
| · |β ≡ 0 (recall that

the Riesz potential 1
|·|N−2s ≡ I2s is a fundamental solution, see e.g. [31, Section 1.3.1]); thus, in

particular, the two functions have di�erent asymptotic behaviours. This is the same reason why,
for hβ, we have a discontinuity on the behaviour at in�nity around β = N − 2s.

Remark A.8 After the publication of [31] and the acceptance of the present paper, we were
noti�ed of the recent paper [23] where the authors obtain the same asymptotic estimate as in
Theorem 1.3, in the noncritical setting r ∈ (N+α

N , 2): di�erently from here, where we employ a

direct approach based on the estimation of (−∆)suθ and (−∆)s(1+ |x|2)−β/2, in [23] the authors
employ an iterative approach, essentially in the spirit of [31, Remark 4.6.22]. Moreover, in
Theorem 1.3 an asymptotic constant is achieved.
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