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Abstract
Purpose  The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with 
Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to 
provide a general overview of the current trends and technical tools to reach this goal.
Methods  A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess 
the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, 
intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients.
Results  A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of 
Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative 
imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and 
SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. 
For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be 
fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain 
biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B).
Conclusions  A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor 
in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral 
functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.

Keywords  Glioma · Extent of resection · Intraoperative neurophysiological monitoring · Surgical planning · Navigated 
transcranial magnetic stimulation (nTMS) · Intraoperative imaging

Introduction

The annual incidence of gliomas is approximately of six 
cases per 100,000 people [1], with a slight prevalence in 
men. While the majority of cases are sporadic, it is estimated 

that about 5% of gliomas show a hereditary component in 
rare tumor predisposition syndromes (Cowden’s Syndrome, 
Turcot’s Syndrome, Lynch’s Syndrome, Li Fraumeni’s Syn-
drome and Neurofibromatosis type I and II) [2–5]. Charac-
teristics of clinical onset are widely variable, including new-
onset epilepsy, focal deficits, neurocognitive impairment, 
and symptoms and signs of increased intracranial pressure. 
Incidental diagnosis is extremely rare [6].

Advances in molecular testing and genomic analy-
sis implies a continuous identification of subgroups with 
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different prognosis. As a result of these advances, the 2021 
WHO Classification gathers as adult Glioma Grade 4 (GG4) 
both the Astrocytomas IDH-mutant Grade 4 and the astro-
cytoma IDH wild-type, which in turn currently defines the 
Glioblastoma (GBM) class [7].

Recent integrative studies showed that patients diagnosed 
with these tumors have variable prognosis influenced not 
only by the molecular profile but also by the resection degree 
achieved [8–11].

In this clinical setting, different prognostic factors have 
been suggested, including age, extent of resection  (EOR), 
size of necrosis, and specific molecular markers [i.e., 
MGMT methylation (O6 -methylguanine-DNA methyl-
transferase)], mutation of IDH1, IDH2 (isocitrate dehydro-
genase) or TERT (telomerase reverse transcriptase), 1p19q 
codeletion, overexpression of EGFR (epidermal growth 
factor receptor), PDGFRA(Platelet-derived growth factor 
receptor alpha) [12, 13].

Compelling evidence, based on objective tumoral volume 
analysis, supports the role of EOR in GG4 patients as one of 
the main predictive survival factors [14–18]. Surgical treat-
ment, however, can rarely be considered as radical, due to 
infiltrating nature, multifocal presentation, and ill-defined 

tumor margins [9]. Despite years of molecular discoveries 
and technological advances surgery, followed by radiother-
apy (RT) and concomitant and adjuvant chemotherapy (CT) 
with temozolomide (TMZ) (Stupp protocol), still represents 
the current standard of care [11, 19].

Contemporary technological and conceptual innovations 
have thus improved the safety of surgical resection, while 
expanding the surgical options and indications for GG4 sur-
gical treatment [20, 21]. Several techniques currently used 
during surgery, such as intraoperative ultrasound (iUS), cor-
tical mapping, sodium fluorescein [22] and 5-ALA fluores-
cence (5-aminolevulinic acid), tend to favor higher rates of 
total resection, with apparent increased survival [17, 18, 23].

Unfortunately, the infiltrative growing, the rapid prolif-
erative rate of malignant cells, and the appearance of treat-
ment-resistant cell clones shortly after initial therapy, tend 
to promote tumor relapse, within 2 cm of resection margins, 
regardless the EOR [24].

Technological advances are thus in continuous develop-
ment to improve surgical tools and methods, with the goal of 
optimizing the EOR beyond the radiological borders, when 
functionally possible. Considering recent technical advan-
tages, the aim of this paper is to provide a general overview 

Fig. 1   GG4 management algorithm proposed by SINch
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of the current trends and technical tools that are available in 
the management of GG4 surgery (Fig. 1).

The advantages and limitations are highlighted and 
discussed in compliance with the maximal safe resection 
principle in glioma surgery. The role of the major treat-
ment modalities of surgery was revised in terms of accu-
racy and safety.

In addition, the preoperative use of antiepileptic and 
steroids are discussed according to the current literature.

Materials and methods

The methods used in this systematic review were pre-
specified and are presented in accordance with the 2020 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines. A literature search 
was performed using the electronic databases of Ovid 
MEDLINE(R) Epub Ahead of Print, In-Process & Other 
Non-Indexed Citations, Ovid MEDLINE(R) Daily and 
Ovid MEDLINE(R) (1946 to Present [September 2022]). 
A top-up search was subsequently performed with the 
same databases: Ovid MEDLINE(R) Epub Ahead of 
Print, In-Process & Other Non-Indexed Citations, Ovid 
MEDLINE(R) Daily and Ovid MEDLINE(R) (1946 to 
September 24, 2022), with a filter for articles published 
from 2018 onwards. Medical Subject Heading (MeSH) 
terms “high grade glioma” “glioblastoma” [MeSH] AND 
“surg*” [MeSH] and free text terms: “extent of resection” 
OR “surgery” OR “survival” OR “outcome” OR “surgical 
planning” OR “preoperative planning” OR “radiotherapy” 
OR “elderly” OR “intraoperative monitoring” OR “IDH 
mutation” OR “1p/19q codeletion” OR “tumor grade” OR 
“MGMT methylation” OR “chemotherapy” OR “adjuvant” 
OR “recurrence”, were used to ensure the search was as 
comprehensive as possible. The search strategy that was 
created, combined the two broad content areas of HGGs, 
evaluating investigation on intraoperative tools and surgi-
cal management.

These two content areas were combined using the 
Boolean operator “and”. Reference lists of identified 
studies were also reviewed to identify additional relevant 
studies.

Inclusion criteria

To be eligible for inclusion in the review, the manuscripts 
identified had to: report primary data; include adult patients 
with GG4; and be published in English language. Although 
the focus of this review is on patients with GG4, the search 
strategy was deliberately broad to include a range of brain 

tumors in order to ensure all studies incorporating patients 
with gliomas, including studies with mixed pathologies (dif-
ferent types of brain tumors). If there was uncertainty about 
whether a manuscript was relevant or not, it was decided to 
include it for full-text review.

Exclusion criteria

The following search results were excluded from this sys-
tematic review:

Review papers, including systematic reviews, meta-anal-
yses, and narrative reviews;
Single patient case reports (case series or case studies 
with more than one patient were included);
Dissertation abstracts;
Book chapters/books;
Studies focusing on children, without a predominantly 
adult population.

Screening process

Manuscript titles were initially screened by 4 authors 
medically qualified specialists in neurosurgery to identify 
potentially relevant articles (F.P., F.B., G.C., T.S.). Then, 
abstracts of screened studies were screened independently 
by (T.I., P.P.P., G.S., S.S.) to identify relevant studies. Where 
ambiguity regarding eligibility persisted, the full article was 
reviewed and disagreements were resolved by consensus.

Data extraction process

Data from studies meeting our inclusion criteria were 
extracted using a standardized data extraction proforma 
and critically appraised. The relevant information extracted 
from the manuscripts included: study setting; study popula-
tion, participant demographics and baseline characteristics; 
details of intervention and control conditions, where appli-
cable; study methodology; recruitment and study completion 
rates; outcomes and times of measurement.

Due to the wide variations in study design and outcome 
measures, it was not possible to perform a meta-analysis.

A total of 352 potentially relevant studies were identified, 
including 299 retrospective studies and 53 reviews/meta-
nalysis (Fig. 2).

The final reference list was then checked by M.M.F., 
F.F.A., G.S. and F.P. All the authors divided papers to assess 
several statements as reported in Table 1 and in particular:

Perioperative drugs Management 3 statements, Imaging 
3 statements, Surgery 4 statements, Intraoperative imag-
ing 6 statements, Intraoperative treatment options 1 steat-
ment, Estimation of extent of tumor resection  3 statements, 
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Surgery at tumor progression 1 statement, Surgery in elderly 
patients 1 statement.

The identification of the statement was performed by 
M.M.F., A.C. and R.R.

Lastly, two group of authors (T.I., P.P.P., F.P., S.S. and 
F.F.A, G.S., F.B., V.E.) classified the class of evidence for 
each statement from Class I to IV, and recommendations 
were graded Level A (established as effective, data from 
multiple RCT (randomized clinical trials) or meta-analyses), 
Level B (probably effective, data from: single RCT or large 
non-randomized studies), and Level C (possibly effective, 
data from consensus of opinion/experts, small studies, ret-
rospective studies, registries).

Where ambiguity regarding evidence or recommendation 
existed, the full process was reviewed and disagreements 
were resolved by consensus.

The evaluation of the evidence and strength of recom-
mendations for surgical management of gliomas are sum-
marized in Table 1.

Perioperative drugs management

The GG4 clinical onset is extremely variable with subacute 
presentation, with neurological signs and symptoms pro-
gressing over days or weeks. A sudden onset is less common 

and associated to epileptic seizure or neurological deficit for 
intralesional haemorrhage.

The most common presenting symptoms include non-
specific symptoms as progressive, fatigue or headache, 
new-onset epilepsy, focal neurologic signs and mental status 
alterations in combination with signs of increased intracra-
nial pressure [100]. These symptoms are related to differ-
ent factors: (1) Tumoral invasion of eloquent brain areas; 
(2) mass effect by the tumor itself; (3) surrounding tumoral 
edema [101].

Perioperative medical treatment with steroids, antiepilep-
tic drugs, and antithrombotic prophylaxis is indicated for 
symptoms relief and prevention of complications. Regard-
ing the antithrombotic prophylaxis the treatment is indicated 
only in the early postoperative period) [102–109].

Treatment of acute venous thromboembolism (VTE) 
should follow the same protocol as in non-brain tumors, 
although in high grade gliomas anticoagulant therapy seems 
to increase by three-fold the risk of hemorrhage, but only 
with 1% of fatal hemorrhages [110].

Steroid treatment

Tumoral edema is generated by local blood–brain barrier 
disruption and increased permeability caused by neoangio-
genesis [32]. The extent of edema on neuroimaging must 
be interpreted alongside clinical symptoms, as it not always 
requires symptomatic treatment. Symptoms related to pro-
gressive edema tend to progress with subacute onset and 
gradual worsening. Systemic glucocorticoids should be con-
sidered in all patients who have symptomatic peritumoral 
edema. The mechanism of action of glucocorticoids for 
control of vasogenic edema is not fully understood: they are 
supposed to downregulate the vascular endothelial growth 
factor (VEGF) and also inhibit production of interleukin 
1 (IL-1) [111]. Dexamethasone is considered the standard 
agent due to its effectiveness and relative lack of mineralo-
corticoid activity with low potential for fluid retention [30, 
112]. In addition, it can be administered orally or intrave-
nously with a 1:1 conversion ratio [113, 114].

The anti-edema effect of dexamethasone is dose-
dependent. The starting dose should be individualized 
based according to edema degree, severity of symptoms 
and patient weight [112, 115, 116], to optimize the balance 
between the maximal efficacy and minimum dose-related 
side effects 32. Clinical response, rather than radiographic 
changes, should guide treatments. Most patients improve 
symptomatically within hours and achieve a maximum ben-
efit from within 24 to 72 h [32]. In general, headache tend 
to respond better and more quickly than focal deficits. Once 
patients have responded and stabilized clinically on a given 
dose, a gradual taper should be attempted [112]. Dose should 
be reduced every 3–4 days while assessing its efficacy to 

Fig. 2   Flowchart of study search and selection
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Table 1   Summary of Class of Evidence and Strength of Recommendation

Statement Class of 
Evidence

Level of 
Recom-
mendation

Perioperative drugs management
Glioma patients who never suffered seizures should not be treated with primary prophylaxis with antiseizure medica-

tions (ASMs)  [25–29]
I A

Dexamethasone is considered the standard agent due to its high potency and relative lack of mineralocorticoid activity 
reduce the potential for fluid retention  [30–32]

I A

Anticoagulation with low molecular weight heparin or direct oral anticoagulants for established venous tromboembo-
lism is recommended in patients with primary brain tumors  [33]

II B

Imaging
The standard protocol includes anatomical, two-dimensional T2-weighted and FLAIR sequences (slice thick-

ness ≤ 4 mm), FLAIR sequences (three-dimensional FLAIR is suggested as an alternative to 2D FLAIR) and three-
dimensional T1-weighted images acquired pre- and post-contrast administration [34–36]

II C

An early postoperative MRI is strongly suggested and should be performed within 48 to 72 hours after surgery, includ-
ing DWI sequences [37]

II B

Advanced techniques, such as diffusion MRI (dMRI), perfusion-weighted imaging (PWI), proton magnetic resonance 
spectroscopy (1HMRS) and positron emission tomography (PET) can provide a visual depiction and quantitative 
measurement of the pathophysiologic characteristics of the tumor  [38, 39]

PET-CT can provide information about biology, differential diagnosis, delineation of tumor extent for surgical or RT 
planning, which can be also usefull in post-treatment surveillance (progression vs pseudoprogression)  [237]

III C

Surgery
The extent of surgical resection (EOR) is a strongest independent risk factor for both overall survival (OS) and tumor 

recurrence  [40–43]
II B

Intraoperative neurophysiological monitoring is associated with lower risk of permanent postoperative deficits and a 
higher EOR of tumors in eloquent areas [44, 45]

II B

Cortico-subcortical mapping is the most sensitive and specific technique for the identification of critical cortical hubs 
and white matter bundles  [46, 47]

III C

Awake surgery can be considered an option, mainly in young patients with lesions in the dominant hemisphere involv-
ing language, motor and somato-sensory areas [47–50]

III C

Intraoperative imaging
NN: neuro-navigation systems represent the most used intraoperative tool used by neurosurgeons during tumor exci-

sion. Based on preoperative imaging, and overlap with FMRI-DTI, neuro-navigation allows preoperative identifica-
tion of eloquent regions and guides the surgeon during intraoperative mapping and tumor resection [51–56]

III C

iCT: iCT helped to verify EOR and to identify and resect pathological tissue. iCT represents a feasible and effective 
alternative for intraoperative updates of the neuro-navigation system [11, 57]

III C

iUS: iUS is a real-time, accurate and inexpensive imaging method for optimizing the EOR in neurosurgical interven-
tions

Despite being an operator-dependent method, iUS is associated with a greater EOR and improved PFS and OS in 
glioma patients [58–60]

III C

iMRI: iMRI was found to be associated with higher resection rates compared to the neuro-navigated procedures,
Unfortunately, the high cost and the need for structural changes in the operating room have limited, to date, the spread 

of intraoperative MRI [59–64]

III C

5-ALA: 5-ALA is a metabolic tracer that allows the intraoperative distinction of the boundaries between healthy tissue 
and tumor near the infiltration zones, thus guiding the glioma resection

with an improved intraoperative enhancing vision [65–72]

II B

Fluorescence: sodium fluorescein (FLCN): The intraoperative guidance determined by FLCN allows to predict his-
topathological alterations both in areas with contrast enhancement and in the margins of infiltration of the cerebral 
parenchyma that do not present a neuroimaging contrast [60, 70, 73–76]

III C

Intraoperative treatment options
In newly diagnosed HGGs, CWs implantations should not be considered as first-line therapeutic option [77–81] II B
Estimation of extent of tumor resection 
The objective estimation of the extent of tumor resection is fundamental in planning postoperative adjuvant treatments, 

stratifying patients’ prognosis and monitoring tumor evolution over time in response to adjuvant treatments [37, 41, 
43, 82, 83]

II B

The volumetric analysis can be carried out by manual segmentation of the areas of interest or by using the so-called 
ellipsoid volume technique or software with automatic or manual segmentation [82, 84]

III C
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control symptoms [117]. Slower tapering is necessary after 
2–3 weeks of treatment in order to reduce the risk of hypoad-
renalism due to hypothalamic axis suppression [32]. Despite 
their beneficial effect, glucocorticoids are associated with a 
large number of well- known side effects [113, 118]. Three 
complications are of particular concern: gastrointestinal 
complications, steroid myopathy, and opportunistic infec-
tions such as Pneumocystis pneumonia. In addition, retro-
spective studies have suggested that the use of steroids may 
be correlated with decreased overall survival (OS) in glioma 
patients, independent of potential confounding factors such 
as tumor size and performance status [32, 119]. If allowed 
clinically, a maintenance Dexamethasone dose of less than 
4 mg per day should be employed [32]. Patients who have 
undergone only biopsy might need a prolongation of steroids 
administration in particular when starting of radiotherapy.

Antiseizure medications (ASMs)

Although GG4 are less epileptogenic than lower-grade glio-
mas, seizures are usually more difficult to control with com-
mon ASMs and drug resistance reported in 20% of cases 
[120–122].

Epileptogenesis in GG4is partially related to increased 
intracranial pressure, edema, hypoperfusion, and neoangio-
genesis. In addition structural and functional changes in the 
peritumoral cortex, increased concentrations of cytokines, 
chemokines, and growth factors contribute both to epilep-
togenesis and tumor invasiveness [123]. It remains still 
unclear how the same mechanisms that control tumor behav-
ior may regulate epileptogenesis and how they may influence 
each other.

Seizure tend to start as focal and may either remain 
focal or secondarily generalize. Epilepsy should not be 
considered barely a symptom: it is an important source of 
morbidity and mortality in patients with brain tumors, and 
the risk of recurrence is high [124]. Therefore, treatment 
with a first-line ASM monotherapy at the lowest effective 

dose (monitoring serum intervals, if available) is needed. 
ASMs with no or minimal hepatic enzyme-inducing or 
-inhibiting properties, such as levetiracetam, pregabalin, 
lamotrigine, lacosamide, topiramate, are generally pre-
ferred, since these agents have a more favourable safety 
profile [125–130]. Levetiracetam is generally well toler-
ated but can cause neuropsychiatric side effects, including 
irritability, agitation, and anxiety especially in patients 
with frontal lobe tumors [131]. Use of valproate may be 
associated with a higher rate of hematologic toxicity, lead-
ing to CT treatment delays in glioma patients [132]. The 
initial use of multidrug regimens should be avoided as it 
decreases the likelihood of compliance, provides a nar-
rower therapeutic window, and is less cost effective. Single 
ASM treatment has fewer side effects also because drug 
interactions are avoided. Approximately 50% of patients 
respond adequately to a single ASM [120]. In case of 
recurrent seizures after initiation of therapy, doses of the 
initial agent should be escalated (monitoring serum con-
centrations) before switching drugs or adding a second 
agent. If adequate seizure control is not achieved, an alter-
native or adjunctive ASM should be prescribed. Lacosa-
mide has been increasingly studied as a complementary 
ASM for HGGs with refractory epilepsy and is generally 
well tolerated [127, 133].

Twenty-four percent of glioma patients, treated with 
ASMs, experience side effects that need a change in or 
discontinuation of antiseizure drug therapy [134], includ-
ing: rash (especially during RT [135]), drug interactions 
(e.g., cytochrome P450 induction, increase or decrease of 
metabolic enzymes for steroids or CT agents).

Prophylactic ASMs are generally not recommended in 
glioma patients without a history of seizure [25, 26, 136]. 
Nevertheless, ASM prophylaxis for patients undergoing 
surgery is advocated by some authors, especially in case 
of surgery planned with brain mapping. This approach is 
based on data from observational studies and a limited 
number of small randomized trials leading to conflicting 
results [137–146]. The incidence of postoperative seizures 

Table 1   (continued)

Statement Class of 
Evidence

Level of 
Recom-
mendation

Stereotactic image-guided brain biopsy is the procedure of choice when an extensive surgical resection is not feasible, 
as in deep-seated or multifocal tumors, or if the patient has considerable comorbidities increasing the risk of periop-
erative morbidity or even mortality  [85–87]

II B

Surgery at tumor progression
The role of second surgery at recurrence is not definitively validated and should be evaluated on individual basis  

[88–96]
III C

Surgery in elderly patients
Thorough evaluation and surgical selection of elderly glioma patients may lead to favorable survival benefit  [97–99] III C
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is low (8%) even without prophylactic ASMs, and the 
incidence of clinically significant seizures is even lower 
(3%). In contrast, routine administration of ASMs may be 
associated with significant side effects [142, 143]. If post-
operative seizure prophylaxis is employed, ASMs should 
be gradually tapered beginning one to two weeks after 
surgery, and then discontinued in patients who remain 
seizure-free [134].

Antithrombotic treatment

VTE is a common complication in patients with primary 
brain tumors, with up to 20% of patients per year having a 
VTE event. Risk factors include patient-related, treatment-
related, tumor-related factors, laboratory parameters, and 
hemostatic biomarkers [147]. Regarding tumor histology, 
vaso-occlusive and prothrombotic contributions in high-
grade gliomas could be underlying necrosis and hypoxia. 
Indeed, tumor cells pseudo-palisades suggest that this mor-
phologic phenomenon is created by a tumor cell popula-
tion actively migrating away from a central hypoxic region 
due to vaso-occlusion caused by intravascular thrombosis. 
Both vascular endothelial growth factor-induced vascular 
permeability to plasma coagulation factors and the increased 
neoplastic expression of tissue factor likely contribute to a 
prothrombotic state favoring intravascular thrombosis [148]. 
Furthermore, mutations in the IDH-1 gene correlate with a 
low incidence of VTE compared to IDH-wild type tumors. 
In addition, expression of the glycoprotein podoplanin (a 
platelet activator) on brain tumors was associated with both 
intratumoral thrombi and a high risk of VTE [147].

Patient-related factors include older age, obesity, depend-
ent functional status (dependency for activities of daily liv-
ing, and limb paresis. Treatment-related factors include 
surgery (especially biopsies), subtotal resection, use of cor-
ticosteroids, and anti-VEGF therapy. Laboratory parameters 
and hemostatic biomarkers correlated with a higher risk of 
VTE are high white blood cell count, low platelet count, 
high soluble P-selectin levels, elevated coagulation factor 
VIII activity, and increased D-dimer levels [147, 149].

In other studies, no association between the presence or 
size of enhancing tumor was not a contraindication for anti-
coagulation as no difference was found in patients with or 
without intracerebral hemorrage (ICH), as well as no corre-
lation between the EOR and the incidence of ICH incidence 
was found [149].

From a clinical point of view, the management of patients 
with primary brain tumors and VTE is challenging. Antico-
agulation is required to treat patients; however, it is asso-
ciated with an increased risk of intracranial haemorrhage 
[147]. For the general cancer population, pharmacological 
thromboprophylaxis with low-molecular-weight heparin 
(LMWH) is recommended in hospitalized patients and in 

the perioperative setting [150]. As the risk of VTE remains 
high throughout the course of the disease, a phase III rand-
omized placebo-controlled trial (the PRODIGE study) aimed 
at evaluating the efficacy and safety of primary thrombo-
prophylaxis with LMWH for up to 12 months in patients 
with malignant glioma, but the study was terminated early 
without being able to draw significant conclusions. A trend 
toward a reduced risk of VTE with heparin (hazard ratio 
[HR] 0.51, 95% confidence interval [CI]: 0.19–1.4, p = 0.29) 
was seen; however, a trend toward increased risk of major 
bleeding after 12 months was observed with heparin (HR 
4.2, 95% CI: 0.48–36, p = 0.22), and all major bleeds were 
ICH [102]. Mortality after 12 months was not different 
between groups. In a meta-analysis involving 539 antico-
agulated patients, the authors found that the overall risk for 
ICH in patients with glioblastoma was more than three-fold 
higher when receiving anticoagulation in comparison to 
those who were not receiving anticoagulation; neverthe-
less, the overall incidence of fatal ICH in this meta-analysis 
was less than 1% [110]. In the absence of high-quality data, 
primary pharmacological thromboprophylaxis cannot be rec-
ommended for patients with malignant glioma beyond the 
postoperative period [151]. Another study by Le Rhun et al., 
including more than 1,000 patients with newly diagnosed 
glioblastoma, showed that patients with anticoagulants while 
on radio/chemotherapy had worse survival than patients who 
did not use them; but patients under anticoagulant therapy 
mainly used them because of prior VTE events [152]. A 
meta-analysis of ten randomized controlled studies including 
1263 patients with primary brain tumors undergoing crani-
otomy reported that patients receiving unfractionated hepa-
rin alone had a stronger risk reduction in VTE than patients 
receiving placebo (RR = 0.27; 95% CI 0.1–0.73) and heparin 
with mechanical prophylaxis together showed a lower VTE 
risk than mechanical prophylaxis alone (RR = 0.61; 95% CI 
0.46–0.82) [109, 149].

Therefore, based on currently available evidence, in the 
2019 updated international clinical practice guidelines for 
the treatment and prophylaxis of VTE in cancer patients, the 
use of heparin commenced postoperatively for the preven-
tion of VTE in patients with cancer and undergoing neuro-
surgery is recommended; primary pharmacological prophy-
laxis is not recommended for patients with brain tumors not 
undergoing neurosurgery [33]. This is consistent with the 
clinical guidance from the International Society on Throm-
bosis and Hemostasis where no pharmacological prophy-
laxis is recommended for outpatients with brain tumors 
[153]. The European Society of Anesthesiology recom-
mends for patients undergoing craniotomy with a high risk 
of VTE including malignancy, the initiation of mechanical 
thromboprophylaxis with intermittent pneumatic compres-
sion preoperatively in addition to heparin postoperatively as 
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soon as the bleeding risk is decreased; the thromboprophy-
laxis is recommended to be continued until discharge [154].

In the case of a VTE event, more-recently-updated guide-
lines for treating VTE in cancer patients already include the 
data from randomized controlled studies comparing heparin 
and direct oral anticoagulants, with the general consensus 
that anticoagulation should be established with low molec-
ular weight heparin. Anticoagulation should be given for 
6 months. Thereafter an individual evaluation should be car-
ried out for each patient including the risk–benefit ratio and 
tumor activity [33, 155]. Limited data regarding anticoagu-
lation in patients with primary brain tumors leads to uncer-
tainty with regard to which therapy is best for each patient. 
Current guidelines give support in the treatment of VTE in 
cancer patients but rarely offer recommendations, especially 
for brain tumor patients [149]. The American Society of 
Clinical Oncology states in its recently-published guidelines 
that in patients with primary brain tumors and VTE, antico-
agulation should be offered, but uncertainty remains regard-
ing the choice of agent and patients most likely to benefit 
[149, 155]. Furthermore, limited safety data is available for 
the use of direct oral anticoagulants in patients with primary 
brain tumors [155].

In 2019, the international clinical practice guidelines for 
the treatment and prophylaxis of VTE in cancer patients rec-
ommended anticoagulation for established VTE in patients 
with primary brain tumors with LMWH or direct oral anti-
coagulants (grade 2B)33.

Role of surgery and estimation of the EOR

Modern glioma surgery focuses on the optimal balance 
between maximal tumor removal and preservation of qual-
ity of life [156, 157]. To achieve this goal, considering the 
infiltrative tumor growing [158], a detailed and personalized 
anatomo-functional pre-operative planning is fundamental.

Recent investigations have demonstrating the importance 
of the volumetric estimation of EOR as predictor of survival 
[8, 159–164].

To reduce the risk of overestimating a residual tumor in 
consideration of an increased non-specific contrast intake 
EOR estimation is recommended by using postoperative 
MRI obtained within 48 h after surgery (at latest within 
72 h) [165].

Volumetric image analysis using 3-dimensional meas-
urements should be applied to accurately quantify entire 
tumour volumes. The volumetric analysis can be carried out 
by manual segmentation of the areas of interest (ROI, region 
of interest) on MR images with post-contrast T1, FLAIR 
or T2 sequences using the DICOM format. The following 
formula is used to estimate the EOR: “EOR = preoperative 

tumor volume − postoperative tumor volume/preoperative 
tumor volume”.

Alternatively, the so-called ellipsoid volume technique 
or software with automatic or manual segmentation can be 
used [84].

The extent of resection should be assessed within 
24–48 hours of surgery through MRI (or CT if MRI is not 
possible), before and after contrast administration; MRI 
should include diffusion-weighted (DWI) sequences to 
enable the detection of perioperative ischemia, that eventu-
ally enhance after 48 h. If postoperative MRI is performed 
after 48 h, tissue enhancement may be misinterpreted as a 
residual tumor, hampering follow-up evaluations. A lesser 
extent of resection and larger post- surgical residual tumor 
volumes are negative prognostic factors across gliomas of 
all grades and subtypes [23, 43, 157, 160, 166–168]. The 
dilemma regarding the superior predictive value amongst 
these variables is still open in the field of neuro-oncology.

The definition EOR should include reduction of tumor 
volume, as a measurement of surgical efficacy, and residual 
tumor volume (RV), as a measurement of remaining tumor 
burden [169].

Robust retrospective analysis of prospective data from a 
randomized trial yielded level IIB evidence that the EOR, 
maximized by a different combination of intraoperative 
tools, is positively associated with the OS in GG4 patients 
[23, 67, 163, 166, 167, 170–172].

In most papers, resection of a GG4 means resection of the 
contrast-enhancing area. However, nomenclature for defini-
tion of EOR achieved in glioma surgery is not standardized 
yet. A recent review by Karschnia et al. defined six catego-
ries for EOR in supratentorial contrast-enhancing glioma: 
“supramaximal resection”, if beyond contrast-enhancing 
tumor borders (class of evidence III); “complete resection”, 
when EOR corresponds to 100% of contrast-enhancing 
tumor (class of evidence IIB); “near total resection”, if EOR 
is >  = 95% contrast-enhancing tumor and <  = 1 cm3 residual 
contrast-enhancing tumor (class of evidence IV); “subtotal 
resection”, in case of >  = 80% EOR of contrast-enhancing 
tumor and <  = 5 cm3 residual contrast-enhancing tumor 
(class of evidence IV); “partial resection” when EOR is 
between 1 and 79% contrast-enhancing tumor and/or > 5 cm3 
residual contrast-enhancing tumor, for mass effect-related 
symptoms (class of evidence IV); “biopsy”, if there is no 
reduction of tumor volume and performed for tissue-based 
diagnosis (class of evidence IV) [37].

Traditionally gross total resection (GTR) of post-contrast 
T1-weighted MRI tumor has been shown to improve OS 
and progression free survival (PFS) in patients with newly 
diagnosed GBM compared to subtotal resection (STR) or 
biopsy in multiple large population studies [23, 166]. How-
ever, in recent years, an increasing number of studies have 
documented that any increase in EOR is correlated to higher 
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OS and PFS. One of the first papers published by Lacroix on 
a series of patients with GBM showed that a macroscopic 
excision greater than 98% of the total lesion correlated with 
a prolonged survival up to 13 months [23], compared to 
8 months in patients with lower EOR values [161].

The early volumetric retrospective investigations sug-
gested that at least 70–78% of the contrast-enhancing tumor 
volume represented the ideal resection target for survival 
benefit [84, 118, 173].

In 2016, Brown et al. [43] published a systematic litera-
ture review on EOR studies conducted in adult patients with 
newly diagnosed supratentorial GBMs, including 37 studies, 
published over the last four decades, with suitable data for 
meta-analysis (41,117 patients) [43]. Volumetric evaluation 
of residual tumor was not used in most of them, thus patients 
were stratified according to the subjective categories “total 
removal” and “subtotal removal”. Patients who had a GTR, 
based on the absence of contrast-enhancement on post-op 
MRIs, had a 61% chance of survival at 1 year after surgery, 
which was reduced to 19% at 2 years, and were 51% more 
likely to be free from disease progression at 1 year than 
those undergoing STR.

In a later retrospective study, Sanai et al. demonstrated a 
stepwise improvement in OS over 95% (p < 0.0001) [174].

The survival benefit resulting from resection of hyperin-
tense FLAIR tumoral signal represent another relevant and 
debated issue. Recent studies have introduced the concept 
of “supramaximal resection”, which has been more fre-
quently applied for low grade gliomas including resection of 
enhancing tumor together with non-enhancing GBM tissue, 
but the results remain controversial [160, 175]. Altieri et al. 
suggested that FLAIR-guided EOR does not correlate with 
patient survival reporting that an EOR > 96% was signifi-
cantly associated with the prognosis despite a FLAIR-guided 
wide resection [176]. In line with this investigation, Mampre 
et al. [177] showed that postoperative residual FLAIR vol-
ume was not associated with recurrence and/or survival, nei-
ther in patients who underwent GRT of the CE portion of the 
tumor, nor in STR group. They also proved that CE residual 
tumor volume is more important than FLAIR volume in 
terms of recurrence and OS. Conversely, two other studies 
showed an additional survival benefit when at least part of 
the T2/FLAIR-hyperintense abnormality was resected [167, 
170].

Although current literature strongly supports the role 
of EOR as independent predictor of OS, underling differ-
ent survival benefit across the resective categories, recent 
studies evidenced that the absolute residual tumor volume 
might be prognostically more relevant than the proportion 
of removed tumor [37, 160, 169, 178].

That is, a high degree of resection in a large tumor 
could result in a greater residual tumor mass than a low 
degree of resection in a small tumor. In accordance to this 

consideration, the value of EOR achieved it does not express 
a direct measure of the residual disease burden, which in 
turn represents the postsurgical therapeutic target (i.e., radia-
tion therapy and chemotherapy) [160, 169].

In 2022 the international RANO resect group published 
a new classification system for extent of resection in glio-
blastoma based upon both the relative reduction of tumor 
volume (in percentage) and the absolute residual tumor vol-
ume (in cm3) on postoperative MRI.

The author retrospectively analyzed the volumetric 
respective data in more than 1000 patients, founding that 
patients with “maximal CE resection” (class 2) had supe-
rior outcome compared to patients with “submaximal CE 
resection” (class 3) or “biopsy” (class 4). In addition, the 
authors demonstrated that a removal of non-CE tumor (≤ 5 
cm3 residual non-CE tumor) beyond the CE tumor borders 
may translate into additional survival benefit [178].

Whether it is mainly the degree of EOR or glioma genetic 
signature to drive prognosis is yet to be defined. Interactions 
between molecular class and EOR subgroups has been an 
emerging topic of intense interest. Considering the impor-
tance of individual prognostic risk factors and genetic vari-
ability of gliomas, it is important to adopt analytic models 
to establish how these variable hierarchically interact with 
each other and how they impact survival in the complexity 
of clinical setting [8].

Tools and strategies to maximize 
the resection

Over the past two decades, modern pre- and intraoperative 
imaging techniques, along with surgical tools and develop-
ments in monitoring techniques, have improved the potential 
to achieve a maximal safe resection of glioma [157, 175, 
179]. Among neurosurgical centres, different imaging tech-
niques and intraoperative tools are combined, resulting in a 
wide variety of surgical strategy protocols of proven value 
in maximizing the EOR [180]. Appropriate and wise inte-
gration of those techniques reduces intrinsic shortcomings 
combining specific strengths aimed at safe glioma resection.

Surgical planning

Many different noninvasive methods may be used for preop-
erative planning to identify the relationship between glioma 
and eloquent areas, both at cortical and subcortical level 
[181].

Preoperative imaging techniques are useful in surgical 
planning and improve the preoperative communication of 
surgical risk to patients.

Functional Magnetic Resonance Imaging (fMRI) with 
Diffusion Tensor Imaging (DTI), fiber tractography and 
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neuronavigated transcranial magnetic stimulation (nTMS) 
are widely employed for this purpose [182, 183]. In few 
centers, positron emission tomography (PET) and Magne-
toencephalography (MEG) are also used, even though they 
are mostly applied in a research setting [184].

fMRI

Functional magnetic resonance techniques allow to estab-
lish a functional map of the eloquent regions involved in 
patients harboring brain tumors [185]. fMRI assesses brain 
activation by detecting modifications in blood oxygenation 
level by using the blood oxygen level-dependent (BOLD) 
contrast [186]. Task-based fMRI is used to localize non-
invasively eloquent cortical areas [187]. Resting-state-fMRI 
is emerging as pre-surgical tool with automatic software for 
extraction of different networks at the whole brain level 
[188, 189]. In clinical setting, task-based fMRI compares 
BOLD signal changes while performing specific tasks to 
baseline conditions, based on the assumption that increased 
cerebral blood flow reflects neuronal and synaptic activity 
[190]. Its major limitation is that even minor alterations in 
neurovascular coupling, task execution, choice of coefficient 
correlations threshold (IV) or heterogeneity in data pro-
cessing can degrade the quality and reliability of the fMRI 
results [190]. Basically, two groups of tasks and related cor-
tical areas activations are commonly used: motor tasks and 
language-related tasks [186, 191], although paradigms for 
identification of visual [192] and sensory [193] areas have 
also been proposed.

Most studies suggested the feasibility and reliability of 
motor fMRI in presurgical planning [186], whereas the role 
of language fMRI is more debated [185, 194]. Indeed, the 
complexity of network connections related to language func-
tion, and the consequently heterogeneous tasks and post-
processing techniques, may have a significant impact on the 
areas identified in language fMRI studies. This complexity 
and high variability is underlined in the literature report-
ing highly variable concordance rates, with sensitivity and 
specificity ranging from 59 to 100% and 0 to 97%, respec-
tively [195, 196].

In patients affected by brain tumors, preoperative task-
based fMRI has demonstrated to be a valid and highly sen-
sitive tool for localizing eloquent cortical areas. Neverthe-
less, its prognostic role both in terms of reduced morbidity 
and improved oncologic outcome remains not definitively 
addressed and clarified.

nTMS

Navigated Transcranial magnetic stimulation is being 
increasingly used for presurgical planning of brain tumors 
located in eloquent areas [197, 198]. nTMS merges 

neurophysiological information with advanced imaging, thus 
providing a non-invasive preoperative mapping of functional 
cortical areas. nTMS overlaps the eloquent cortical sites to 
a 3D rendering of patient’s brain MRI, based on naviga-
tion, allowing for a customized planning, and anticipating 
the intraoperative responses of direct electrical stimula-
tion [199]. In particular, nTMS consists in the application 
of a coil with an electrically induced magnetic field over 
the patient’s head. The magnetic field induces a modifica-
tion of the neuronal excitability of the cortex, resulting in 
an excitatory or inhibitory effect that can be measured at a 
cortical level or recorded at the peripheral muscles [200]. 
Currently, nTMS excitatory parameters are used for map-
ping the primary motor cortex through its activation and 
the recording of motor evoked potentials at the peripheral 
muscles [201]. Conversely, specific inhibitory stimulation 
paradigms, based on repetitive nTMS, are used to map com-
plex cognitive functions by evoking a “transient focal inhibi-
tion” to the underlying eloquent cortex during a specific task 
(e.g., object naming), hampering its correct execution. This 
result confirms the involvement of the inhibited area in the 
investigated cortical function [201], e.g., language [202]. 
Some evidences suggest its ability to map also other cogni-
tive functions, including visuospatial skills and executive 
functions [203–206].

Several studies demonstrated that nTMS mapping of 
motor and language cortex correlates well with findings 
obtained by intraoperative direct cortical electrical stimu-
lation [207–209], despite a slightly reduced sensitivity for 
language [210]. Moreover, several reports demonstrated that 
nTMS mapping is more reliable than fMRI in the identi-
fication of primary motor cortex [211–213], and that the 
use of nTMS improves motor outcome of patients operated 
for contrast-enhancing glioma in or close to motor cortex 
[214–216]. A recent meta-analysis concluded that nTMS 
motor mapping increases the EOR, improves neurological 
outcome, and enables a tailored surgical approach for motor-
eloquent brain tumors [217].

Finally, nTMS motor mapping can be successfully 
combined with intraoperative sodium-fluoresceine-guided 
glioma resection, resulting in increased EOR compared to 
using fluoresceine alone [218, 219]. Evidences suggest that 
also nTMS-based language mapping may improve clini-
cal outcome for those lesions located close to the language 
areas, especially in those not eligible to awake surgery 
[220–222].

Diffusion imaging with MR tractography

Currently, magnetic resonance tractography represents a 
unique tool to perform an in-vivo depiction of the anatomical 
course of main white matter fascicles. MR tractography is 
based on diffusion MR acquisitions that depict and quantify 
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the anisotropic movement of water along white matter fibers; 
however, the accuracy of MR tractography is strictly corre-
lated to the specific imaging acquisition protocol used [186]. 
In the clinical practice, the most used algorithms for image 
acquisition and reconstruction of white matter bundles are 
based on Diffusion Tensor Imaging (DTI), usually integrated 
in the most of the MR scanner and neuro-navigation sta-
tions. Therefore, tractography is commonly used for preop-
erative planning in order to identify the spatial relationship 
between lesions and surrounding white matter tracts [186, 
223–225]. Nevertheless, tractography algorithms suffer from 
some bias, including the inter-operator variability in select-
ing anatomical landmarks for tract computation, and reduced 
accuracy in identification of crossing and ‘kissing’ WM fib-
ers [226–228]. Therefore, new advanced dMRI models and 
processing algorithms have been developed to solve multiple 
fiber orientations and to capture complex fiber configura-
tions, thus increasing the accuracy of tractography [229, 
230]. In particular, new diffusion MR acquisition protocols 
such as high angular resolution diffusion-weighted imaging 
(HARDI) [231, 232] and new probabilistic algorithms such 
as Constrained Spherical Deconvolution (CSD) and q-ball 
imaging seem to be more accurate than standard DTI and 
DSI tractography for planning [233–236]. However, these 
approaches are less commonly available and require specific 
post-processing skills. Furthermore, nTMS-based seeding of 
the standard DTI reconstruction has been recently described. 
nTMS-based DTI fiber tracking, based on neurophysiologi-
cal mapping of eloquent cortex, reduces inter-operator vari-
ability. Several studies documented a higher accuracy of 
nTMS-based DTI fiber compared to standard DTI tractog-
raphy both for reconstruction of motor [183, 226, 237, 238] 
and language [239–241] tracts. Indeed, the implementation 
of preoperative nTMS-based tractography in brain tumor 
surgery resulted in the improvement of patients’ outcome 
[242–244].

More recently, fMRI-targeted tractography reconstruc-
tions of language tracts have been reported as an useful tool 
to depict the functional subcortical network underlying each 
fMRI task and the “high-risk subsets” of the subcortical 
bundles that should be spared during the surgical procedure 
[245].

Ultimately, by evaluating structural matter changes in 
combination with the preoperative functional and cognitive 
assessment, DTI could potentially represent a feasible pre-
dictive tool for patient counselling and risk assessment prior 
to surgery [246, 247].

Intraoperative imaging

Different intraoperative technologies have emerged in recent 
years with undetermined comparative efficacy in optimiz-
ing EOR. An investigation review by Jenkinson et al. [248] 

provided low- to very low-evidence in single trial analyses 
and synthesis of results was not possible.

The effects of image-guided surgery on OS, PFS, and 
quality of life is demonstrated in large case series [60, 168, 
248–254], but a functional comparison is poorly docu-
mented [251]. Network and traditional meta-analyses are 
generally not possible due to high risk of bias, heterogeneity 
of study population, and variable, not standardized outcome 
evaluation.

An increasing number of new technologies have been rou-
tinely used intraoperatively to enhance tumor visualization 
and guide the resection. Thus, several biomedical engineer-
ing devices aimed at optimizing performance during onco-
logical neurosurgery interventions, such as neuro-navigation 
systems, intraoperative CT (iCT) and MRI (iMRI), and iUS 
are available nowadays [175, 180]. Furthermore, gliomas 
surgery is implemented thanks to the use of fluorophores 
that allow a better distinction of tumoral tissue from healthy 
brain tissue compared to microscopic view under white light. 
The purpose of these methods is to obtain maximal EOR, 
while preserving neurological functions, especially in cases 
of neoplasms located in eloquent areas.

Neuronavigation

Among modern tools for resections, neuronavigation sys-
tems represent the most used intraoperative tool used by 
neurosurgeons. Based on preoperative imaging, generally 
MRI or CT scans, with functional sequences if available, 
neuro-navigation allows preoperative depiction of the lesion 
and surrounding anatomical and eloquent structures and 
guides intraoperative mapping and tumor resection.

Neuronavigation provides intraoperative orientation to 
the surgeon, helps in planning a precise surgical approach 
to the targeted lesion, and defines the surrounding neuro-
vascular structures. It has become a mainstream component 
of the neurosurgical armamentarium and its use leads to 
improved surgical confidence, accurate bone flap placement, 
reduced craniotomy size, and anatomical orientation [51, 
52]. Incorporation of the functional data provided by fMRI, 
MR tractography, magnetoencephalography (MEG), or DES 
atlases with neuronavigation helps to avoid eloquent areas of 
the brain during surgery [21, 255]. Main limitations of this 
device are errors during registration, brain shift and local 
tissue deformation, which reduce the accuracy of real-time 
neuronavigation [256]. Moreover, integration of tractogra-
phy into neuronavigation has still a limited value to identify 
subcortical tracts [159].

Intraoperative MRI

The advantages of using intraoperative MRI (iMRI), 
compared to the guidance provided by conventional 
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neuronavigation systems, were highlighted in a recent 
meta-analysis [62]. iMRI was found to be associated with 
higher GTR rates compared to neuro-navigated procedures, 
whereas a substantial difference between the two techniques 
was not found regarding quality of resection and surgical 
time. With regards to impact on outcome, use of iMRI has 
been associated with increased PFS compared to neuronavi-
gation, although OS was similar in the two groups [62].

Moreover, a recent study verified the implementation of 
the novel Black Blood (BB) imaging technique for intraop-
erative identification of lack/presence of contrast-enhancing 
tumor residuals and better delineation of the boundaries of 
contrast-enhancing malignant tissue. BB imaging is not infe-
rior to conventional turbo field-echo (TFE) imaging for EOR 
assessment, nonetheless it may significantly reduce iMRI 
scanning time, whilst increasing diagnostic confidence. Fur-
thermore, given the better depiction of contrast-enhancing 
tumor residual spread and borders, BB imaging may help 
improving the degree og glioma resection  [61]. Unfortu-
nately, high costs related to structural changes in the operat-
ing room to bear the burden of machinery, capital equipment 
expenses, suite constructions and renovations, and the asso-
ciated personnel and maintenance costs have limited, to date, 
the spread of intraoperative MRI.

Intraoperative CT scan

Shalit et al. first described the use of intraoperative CT (iCT) 
scan for brain tumors in 1979 [257], which represents a fur-
ther technological improvement introduced in neurosurgery. 
Several studies have reported its use, documenting its effec-
tiveness and applicability to neurosurgical interventions for 
different types of lesions [258, 259].

The iCT role in maximizing the EOR has been recently 
investigated [57]. iCT helped to verify EOR, identify and 
resect tumor residue also in multifocal tumors. Compared to 
iMRI, iCT represents a feasible and effective alternative for 
intraoperative update of neuro-navigation system, providing 
real-time images, based on its faster execution times. The 
possibility of contrast administration increases the accuracy 
of definition of pathological tissue.

Intraoperative ultrasounds (iUS)

iUS is a real-time, accurate and inexpensive imaging method 
for optimizing EOR in neurosurgical interventions. The 
main issues of intraoperative iUS use are the choice of the 
appropriate probe and the interpretation of US images in the 
three orthogonal planes (axial, sagittal and coronal plane). 
The difficulties of recognizing regional anatomy can be 
overcome by practice: training on large number of cases is 
important to obtain valuable real-time information [249]. 
Moreover, the possibility of MR and CT-US imaging fusion 

for real-time neuronavigation improves the learning curve 
by help interpreting iUS imaging with the guide of more 
familiar CT and MR images [260].

A meta-analysis conducted on 790 articles published 
from 2005 to 2016 documented how use of iUS with con-
trast administration in glial tumor resection, despite being an 
operator-dependent method, allowed GTR in 77% of cases 
and was associated with increased PFS and OS [253].

There are currently no standardized protocols or vali-
dated quantitative data guiding the use of iUS. A retro-
spective study based on quality of resection of intracranial 
tumors of different types showed that iUS tends to offer 
dynamic imaging able to correct errors due to anatomi-
cal distortion (brain shift and local tissue deformation) 
in real-time, which conversely limits conventional neuro-
navigation systems based on imaging studies performed in 
the pre-operative phase. Contrast administration provides 
useful data for intra-operative diagnosis, tissue differen-
tiation and a real-time evaluation of EOR [58]. Further 
prospective studies are needed to standardize the role of 
iUS in a neurosurgical setting.

Fluorescence: 5‑aminolevulinic acid (5‑ALA)

Fluorescence induced by 5-ALA allows, by using a meta-
bolic tracer, intraoperative distinction between healthy tis-
sue and tumor at infiltration margins, thus guiding glioma 
resection [65, 158, 261, 262].

A multicenter, randomized phase III study on fluo-
rescence guided surgery (FGS) using 5-ALA showed a 
more complete resections of tumors in enhancing-glioma 
patients and better patient outcomes than with conven-
tional microsurgery. Complete resection of the enhanc-
ing portion of newly diagnosed GG4 occurred in 65% of 
patients using 5-ALA versus 36% in those assigned to con-
ventional surgery white light group (difference between 
groups 29% [95% CI 17–40], p < 0·0001). In addition to 
higher rate of complete resections, overall progression-
free survival at 6 months (PFS-6) was also significantly 
greater with 5-ALA FGS (41.0% [32·8–49·2] vs. 21.1% 
[14·0–28·2]; p = 0.0003) [168].

In several studies, it has been shown that tumor resection 
carried out with the aid of 5-ALA fluorescence is associated 
with a greater rate of GTR and an increase in PFS [251, 
254].

Glioma surgery, especially for lesions harboring in or 
close to eloquent areas, should respond to two different 
needs: efficacy in terms of surgical radicality and preser-
vation of neurological function. In a single-center retro-
spective study [263], the influence on survival with 5-ALA 
fluorescence for supratentorial gliomas in eloquent areas 
was evaluated. With the same EOR and OS rates, PFS was 
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significantly longer in 5-ALA group than in the control 
group of patients undergoing the white light procedure.

A multimodal approach conjugating 5-ALA for intraop-
erative visualization of tumor tissue with neurophysiologic 
cortico-subcortical mapping and monitoring of eloquent 
areas with fMRI and fiber tracking integrated in neuronavi-
gation system has proven to be useful in improving safety 
and preserving neurological functions during glioma surgery 
in eloquent areas, overcoming the advantages obtained with 
single methods [53].

In the research setting, intraoperative tissue sampling 
5ALA guided has been recently proven to be useful in pro-
viding insights into the heterogeneity of the spatial glioma 
microenvironment, underlying the importance to extend the 
EOR beyond the fluorescence tumor borders when function-
ally possible [264].

Fluorescence: sodium fluorescein (FLCN)

Recent evidence suggests that intravenous administration of 
FLCN at induction of anesthesia at a dose of 5 mg/kg rep-
resents an important contribution toward maximal resection 
of GBMs [74, 265, 266].

Intraoperative guidance by FLCN allows to predict histo-
pathological alterations both in areas with contrast enhance-
ment and, with a positive predictive greater than 96%, also 
at the infiltration non-enhancing margins [73].

FLCN is an easily, available, bio-safe and cheap fluores-
cein dye FDA approved [65, 267].

The presumed mechanism of action is a passive stain-
ing of the extracellular space in areas with disrupted BBB, 
then it corresponds to gadolinium uptake on magnetic reso-
nance imaging. It implies that the fluorescent area corre-
sponds manly to enhancing nodule seen at pre-operative 
MRI T1 after gadolinium administration. Some investiga-
tions showed that a SF enhancement could extend beyond 
gadolinium contrast-enhancing regions, probably because of 
the smaller molecular weight of SF that allows its diffusion 
trough the damaged BBB.

SF has, however, no specificity for tumor cells in com-
parison with 5-ALA. Different fluorescence patterns within 
the tumor are not detectable. The identification of tumor 
border is thus more difficult and less precise.

Despite these limitations, evident especially in the early 
use of fluorescein in the FGS, the progressive and extensive 
use of SF in has led to better exploit all its potentials. Neira 
et al. demonstrated indeed that intraoperative SF staining 
correlated with histopathological alteration in both contrast 
enhancing and non-contrast enhancing regions, with a PPV 
greater than 96% in non-contrast-enhancing regions, sug-
gesting that SF can be used as a visual marker for glioma 
resection in both regions of GBM [73].

Brain mapping and neurophysiological monitoring

Although preoperative imaging modalities can facilitate 
surgical planning, direct cortical and subcortical electrical 
stimulation remains the gold standard for localizing brain 
function [268].

More than 50% of GG4 developed near or in eloquent 
areas. Therefore, when resecting GGS the onco-functional 
principle of maximal safe resection has to be pursued. In this 
clinical setting, DES allows the surgeon to prevent damage 
to eloquent cortical and subcortical areas during re-section, 
maximizing the EOR in compliance with quality of life pres-
ervation [47].

There is compelling evidence that glioma resections using 
DES are associated with fewer late severe neurologic deficits 
and more extensive resection [44, 45, 269–271].

Intraoperative neurophysiology offers various stimulation 
modalities, which efficiency is based on the ability to rec-
ognize essential sites with the highest possible resolution.

The bipolar stimulation is the most used technique for 
cortical and subcortical brain mapping [44, 46, 269, 272, 
273]. A growing body of evidence are currently supporting 
the use of high-frequency monopolar stimulation in glioma 
surgery [274–276]. The integration of two stimulation para-
digms have been recently proposed for intraoperative guid-
ance of motor tumors removal: the 60 Hz-technique [low 
frequency (LF)] and the pulse-technique [high frequency-
(HF)], delivered by bipolar or monopolar probe respectively. 
The integration of stimulation modalities with clinical con-
text enhances the extent and safety of resection [272].

In addition, motor evoked potentials (MEPs) can be 
applied to monitor motor function during resection. This 
may be performed transcranially (tcMEP) or by direct corti-
cal stimulation via a grid or strip electrode (dcMEP) [268, 
277].

The above techniques can be used independently or in 
various combinations. Gogos et al. demonstrated that tran-
scranial and direct cortical MEP monitoring combined with 
bipolar and monopolar stimulation resulted in improved 
localization of functional tissue and low rates of transient 
and permanent deficits [277].

Awake surgery

Brain mapping techniques  and awake surgery (AS) repre-
sent the gold standard in low grade glioma (LGG) resec-
tion [278, 279], whereas the value of AS for GG4 is poorly 
investigated [20, 48, 49]. A recent meta-analysis based on 
53 studies, including 9102 patients, demonstrated that AS 
and direct electrical stimulation (DES) resulted in an effec-
tive surgical strategy even for GG4 in eloquent areas. This 
intraoperative technical combination provides OS a lower 
rate of postoperative complications and a higher percentage 
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of cases with gross total resection, which implies a conse-
quent survival benefit [47]. This technique is usually adopted 
in younger patients, with circumscribed lesions. Recent 
volumetric studies demonstrated a negative impact of post-
operative T2/FLAIR residual tumor on GG4 OS   [160, 280, 
281]. Based on these findings, AS may represent an effec-
tive surgical approach to safely maximize resection beyond 
contrast-enhanced tumor area in highly selected cases (col-
laborative patients without preoperative language deficits 
harboring lesions in or close to language areas amenable of 
gross total resection, in the absence of intracranial hyperten-
sion). In addition, AS could be useful in association with 
5-ALA to detect functions in fluorescent tissue  guiding 
a safe resection [48]. Future perspective investigations are 
needed to determine efficacy and outcomes of AS in GG4 
patients.

Intraoperative treatment options

Carmustine wafers (CWs)

In 2003, the intraoperative treatment with Carmustine 
Wafers (CWs) implantation [marketed as Gliadel, biode-
gradable copolymers discs impregnated with the alkylating 
agent (Bis-ChloroethylNitrosoUrea: BCNU)], for newly high 
grade glioma was introduce as a therapeutic bridge between 
the surgical resection and Stupp Protocol onset. The clinical 
rational of its development was based on the possibility to 
locally interfere with the potential tumor re-growth in the 
proximity of the original tumor site [77, 80, 81].

Different studies demonstrated a promising results in 
terms of PFS, without detecting a significant survival advan-
tage [79, 282, 283].

A phase 3 study conducted in 14 countries, including 
the United States, Germany, France, the United Kingdom, 
Scotland, Finland, and Israel, suggested a prolongation OS 
in newly diagnosed patients with malignant glioma who 
received CWs implants. The median OS was 13.9 months 
for the CWs group and 11.6 months for the placebo-control 
group (logrank P = 0.03 stratified by country) [283].

In a later investigation, Pallud et al. designed a largest 
case-matched analyses on CW implantation efficacy, found-
ing a survival advantage of only 2 months in the implanta-
tion group [79].

The elevated costs in addition to the precluded enrol-
ment of patients in subsequent clinical trials, because the 
use of CW could give rise to confounding results, have led 
to a gradual abandon of it use after an initial enthusiasm. In 
addition, in several retrospectives studies reported a serious 
CWs related toxicity, resulting in a delay or precluded Stupp 
protocol [77, 80].

For all the reasons mentioned above, in newly diagnosed 
high grade glioma, CWs implantations should not be con-
sidered as first-line therapeutic option.

Intraoperative radiotherapy

Adjuvant radiotherapy is considered standard of care in 
brain malignant gliomas treatment. Recently, in analogy 
with other cancers, intraoperative radiotherapy (IORT), has 
been proposed with the aim to provide a boost to standard-
of-care external beam radiotherapy (EBRT), in both recur-
rent and newly diagnosed brain gliomas. Some experiences 
with IORT have been published lacking in suggesting sig-
nificative improvement in OS and PFS in both newly diag-
nosed and recurrent gliomas [284, 285]. A Multicenter Ran-
domized Phase III Trial on INTraoperative RAdiotherapy 
in Newly Diagnosed GliOblastoma Multiforme (INTRAGO 
II) is ongoing and will stop recruitment on December 2023. 
Recently, a pooled analysis has been published suggesting 
improved efficacy and safety compared to historical control 
of low energy intraoperative X-ray for newly diagnosed glio-
blastoma [286].

The role of biopsy

Stereotactic image-guided brain biopsy (SB) is the proce-
dure of choice when an oncologically meaningful surgical 
resection is not feasible, as in case of deep-seated or multifo-
cal tumors, or if the patient has considerable comorbidities 
increasing the risk of perioperative morbi-mortality [287, 
288]. In such cases, SB is a safe and effective diagnostic 
technique, with a diagnostic yield of approximately 90% 
[287, 289, 290].

SB could be performed through frame-based or frameless 
techniques. Even though frame-based techniques have been 
considered the “gold standard” for SB as the rigid frame 
provides excellent targeting precision SB by frameless tech-
niques, also conducted with the assistance of robotic devices, 
mainly for brainstem or small deep lesions, has gradually 
replaced the previous one [289, 291]. They showed equal 
diagnostic yield, in addition to significantly shorter surgical 
time and less discomfort reported by patients [292].

It is important to note that the tissue size must be ade-
quate to provide MGMT analysis, which could be useful in 
determining the potential response of chemotherapy treat-
ment, especially in the elderly [293].

Recent coupling with intraoperative MRI systems pro-
vides a real-time feedback on targeting [294]. However, no 
significant differences in diagnostic yield were found com-
pared to neuronavigation on preoperative imaging [290].
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Lately, various strategies have been devised to best tar-
get the significant portions of the lesions, to enhance the 
chances of obtaining a clear diagnosis, merging anatomic 
MRI with multimodal imaging including MRI perfusion and 
spectroscopy [295, 296] and PET-CT [297, 298].

Perfusion-weighted imaging such as dynamic suscepti-
bility contrast (DSC) MRI measures cerebral blood volume 
(CBV), which correlates with microvessel density and area. 
Magnetic resonance spectroscopy (MRS) can detect altera-
tions of metabolite concentrations within the tumor. PET-CT 
can provide information about biology, differential diagno-
sis, delineation of tumor extent for surgical and RT plan-
ning, which can also be useful in post-treatment surveillance 
(progression vs pseudoprogression) [237].

Despite being rapid and minimally invasive, SB still poses 
some risks. Mortality rates reported from large populations 
studies range from 0.6 to 3.8% [288, 289, 299–302], gener-
ally consequent to brain edema or haemorrhage. Deep-seated 
lesions were found to be associated with higher risk of over-
all post-operative death, whereas frontotemporal lesions and 
lymphomas were associated with an increased probability of 
haemorrhage leading to death [289].

Complications after SB range from 7.4% to 13% and 
include symptomatic haemorrhage, seizures, infections, 
change of mental status, and new neurological deficits [289, 
299, 302]. Diabetes mellitus and deep-seated lesions appear 
to increase the risk [302]. Post-operative haemorrhages, in 
particular, may occur in 7–59.8% of patients; however, only 
3.4–5.9% are symptomatic [303, 304]. Biopsy-related haem-
orrhage risk is higher with hydrocephalus, brain edema, and 
advanced age [305]. Tumor seeding along the course of the 
biopsy needle is a rare complication that has been described 
in the literature [306, 307].

Navigate guided stereotactic systems are recently intro-
duced in routinely neurosurgical practice. Different neuro-
navigated systems, such as intraoperative CT scan, MRI or 
US tools, are progressively applied to a comprehensive range 
of neurosurgical procedures, including brain tumors surgery. 
These systems allow a minimally invasive surgical exposure 
and provides instant and continual navigational information 
during surgery.

Different studies have shown that these navigate guided 
systems can reduce operative time, increasing the neurosur-
geon’s confidence with the anatomic structures of the brain 
and improving the surgical safety of the biopsy [308].

Finally, deep brain biopsies with accurate tumor locali-
zation are made possible by combined use of computerized 
imaging and stereotactic devices [309].

Second surgery at tumor recurrence

When a signal alteration is documented in follow-up MRI 
images post-adjuvant therapy, a differential diagnosis should 
be considered within progression and pseudoprogression. 
Multi-disciplinary discussion and advanced MRI images 
could define the real glioma recurrence [310, 311]. It 
remains unavoidable even if improvements in oncological 
and surgical treatments may delay this event. The indication 
to a second surgical operation for HGGs is controversial, in 
particular regarding selection of patients. In the literature, 
several variables have been considered to support surgical 
decision. Reoperation, especially when associated with a 
favourable preoperative Karnofsky Performance Status 
(KPS) at recurrence, was regarded as statistically signifi-
cant variable for improved survival [90, 92, 312–315]. A 
greater EOR at 1st and 2nd surgery correlate with longer OS 
88–92. Nevertheless, regarding surgical variables, conflict-
ing results have been reported in the literature. Some authors 
found no significant effect of surgery on survival, or no dif-
ference between gross-total resection (GTR) and partial 
resection [316, 317]. However, there are growing evidences 
that EOR > 98% at second surgery greatly improve the OS 
[318, 319]. GTR at second surgery seem to correlate with 
better OS and post-operative KPS [88–92]. Finally, a benefit 
is reported in patients with higher KPS score at diagnosis, a 
greater EOR and initial diagnosis of WHO grade III. About 
one-third of patients with HGG may be eligible for salvage 
surgery at the time of progression [320].

Role of systemic therapies at time of recurrence is still 
debated and standardized protocols are missing, even 
though recently regorafenib has been included in the NCCN 
(National Comprehensive Cancer Network) 2021 guidelines 
as a preferred regimen for recurrent glioblastoma (GB) 
[321]. Despite randomized trials showing that salvage TMZ 
before radiation therapy or anti-PD1 immunotherapy before 
surgery prolong disease-free survival in patients with recur-
rent GG4 [322–324], combination of surgery and adjuvant 
therapies with TMZ, fotemustine, carmustine, irinotecan 
or low-dose fractionated RT has been reported as the best 
treatment strategy in terms of survival [317]. Administering 
neoadjuvant therapy before reoperation seems to correlate 
with poorer KPS, while adjuvant therapy after reoperation 
is associated with a better OS.

Surgery for recurrent HGG should be carefully evaluated 
in case of treatment with anti-angiogenic agents (bevaci-
zumab). As a matter of fact, patients receiving bevacizumab 
are more likely to develop wound complications, CSF leak, 
infection and osteomyelitis. In case of second surgery for 
progression during bevacizumab treatment patients exhibit 
poor prognosis for the in-creased risk of perioperative 
complications [325]. If surgery is considered mandatory, 
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re-operation should be delayed for at least 4 weeks after 
discontinuing bevacizumab [326].

Regarding patient factors, age < 70 at recurrence confirms 
as crucial favourable factor [327–329], correlating with 
OS > 6 months following recurrence. However, KPS at time 
of recurrence appears to be a stronger factor than age [330]. 
Indeed, especially if ≥ 90, it correlates positively with both 
OS and post-op KPS.

Regarding histological factors, IDH1 mutation is associ-
ated with longer survival and improved clinical outcome 
[331–333]. Nevertheless, despite a globally better clinical 
course, it is not clear if a correlation with second surgery 
exists. On the contrary ATRX and PTEN inexpression at 
first surgery correlates with better KPS and PO.

Nevertheless, these evidences require randomized con-
trolled trials to be confirmed and to support the develop-
ment of guidelines on management of GG4 recurrence. 
Surgical indications are still debated, although most stud-
ies report improved survival. An adequate patient selection 
is crucial to achieve the most satisfactory clinical outcome. 
Given the results of our multicentre retrospective study, 
a high KPS at recurrence and a GTR following second 
surgery are pivotal to survival gain and preservation of 
a high-performance status. Another issue to be explored 
is the role of early second-look surgery for patients with 
unintentional incomplete glioblastoma resection detected 
by early postoperative MRI. Scattered evidence exists of 
an increased EOR without additional neurological deficit, 
portending Re-do surgery as a feasible strategy to increase 
the rate of complete resections in glioblastoma patients 
[334].

Surgery in elderly glioma patients

GG4 is the most frequent brain tumor in elderly patients 
(over 70 years), with an incidence rate of 17.5 per 100,000 
[335] a poorer prognosis is associated with older age [336], 
comorbidities, and an intrinsic most aggressive behaviour 
due to clinical and genetic features [337]. The median 
survival of elderly patients is approximately six months 
[338–341], as a result of a debated strategy regarding the 
optimum management.

Although elderly population is constantly increasing, 
because of the frailty of elderly and the well-known unfa-
vourable behaviour of GG4 lesions, many neurosurgeons 
tend to avoid aggressive surgical interventions in this popu-
lation because of an increased risk of perioperative compli-
cations [337, 342].

In recent years, however, there is increasing evidence 
suggesting that advanced age alone should not necessarily 
preclude optimal resection followed by adjuvant RT and CT 
in these patients 337, 342–346.

Standard of care for newly-diagnosed GG4 in elderly 
patients consists, if feasible, in surgical resection followed 
by a short course of RT with concomitant and adjuvant TMZ 
[345].

A latter multicentre investigation demonstrated that sur-
gery can be considered as a first therapeutic option in the 
workflow of elderly patients, especially when the preopera-
tive estimated EOR is greater than 80% [342].

The OS in elderly patients affected by GG4 is simi-
lar to that of younger adults, if factors such as medical 
comorbidities, effects of general anaesthesia, and vulner-
ability to postoperative complications, such as delirium, 
do not overweight the expected clinical benefit. Therefore, 
a tailored surgical treatment should be carefully planned, 
according to tumor size and location, patient comor-
bidities, and preoperative estimation of achievable EOR 
[347–352]. A thorough evaluation and patients selection 
are essential to obtain both a favourable survival and func-
tional benefit [337, 342].

Conclusions and future directions

A growing number of evidences  support the role of EOR 
as independet predictor o OS in GG4 patients. The ongoing 
development of novel  intraoperative techniques and strat-
egies for a precise real-time identification of peritumoral 
functional pathways enables surgeons to maximize EOR 
minimizing the post-operative morbidity.

Extending the resection according to T2 or FLAIR tumor 
boundaries implies that functional areas will be encountered. 
In this clinical setting, DES and brain mapping remain the 
gold standard technique to detect and monitor the functional 
networks both at cortical and subcortical level.

Functional MRI and tractography may support the preop-
erative planning and assist surgeons in selecting the safest 
surgical approach.

Future prospective randomized clinical trials are needed 
to compare the influence of the different intraoperative 
image-guided glioma resection techniques (i.e., NN versus 
iUS, versus iUS combined with 5-ALA and ore intraopera-
tive neurophysiological monitoring).

The 2021 WHO classification has introduced important 
changes in each taxonomic category poorly investigated in 
clinical trials. Future integrative analyses, combining the 
molecular class according to the 2021 WHO classifica-
tion and the degree of resection achieved in different MRI 
sequences, may thus allow a thorough detection of patients 
with different prognosis, implying a redrawing of the current 
investigations.
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