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∆εν υπάρχει καµία µεγάλη ιδιøϕυϊα χωρίζ κάπøια δǿση παραϕρøσύνη

Aristoteles

One may say: ”the eternal mystery of the world is its comprehensibility”.

Albert Einstein, 1936

Someday girl/ I don’t know when/ we’re gonna get to that place

where we really wanna go/ and we’ll walk in the sun/ but till then tramps like us

baby we were born to run.

Bruce Springsteen, 1975
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Chapter 1

General introduction and

theoretical background

Economic systems are characterized by a mutual interaction between the actions of eco-

nomic actors, e.g. individual consumers or firms, and the economic environment in which

these actions are evaluated and realized. This kind of dependance is due to the existence

of a kind of aggregation of all individual choices and, at the same time, individual choices

are affected by the overall economic environment.

Financial markets are an example of this interaction between actions and economic envi-

ronment: the demand of investors for an asset is driven by expected future returns whereas,

at the same time, asset returns are determined by investors’ demand through realized asset

prices. Additionally, in a market of a perishable consumption good, firms have to estab-

lish today how much to produce for tomorrow market supply. In this way firms base their

production decisions upon tomorrow’s expected profits and, conversely, expected profits

depend on the total amount of firms production. Considering these simple examples, the

mutual dependance that links individual decisions and economic environment is related

through a feedback relation between expectations and realizations of economic variables.

This is the reason why we can call these systems expectational feedback systems.

Starting from this assumption, we can state that expectations play a central role in fi-

nancial markets and in every segments of macroeconomics. Indeed individual economic

decisions today depend upon expectations about the future state of the global economy.

Through these decisions, expectations feed back into the actual realizations of economic

variables and therefore any dynamic model depends crucially on its underlying expecta-

tions hypothesis.
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Traditional economic analysis has circumvented the troubles arising through the type of

interaction of many individual actions, by assuming that all agents are rational. Ratio-

nal expectations (RE) have become the leading paradigm on modeling expectations in

economics, starting from the seminal works of Muth (1961), Lucas (1972) and Sargent

(1993). The idea of rational expectations lies on two components: the first considers the

behavior of each individual that can be represented as the outcome of maximizing an ob-

jective function subject to perceived constraints; the second is the mutual consistency of

the constraints perceived by all the individuals that populate the economic environment.

In such a framework, all agents are the same, expectations are model consistent and coin-

cide on average with realizations, without systematic forecasting errors. This would lead

directly to an equilibrium point where choices need not to be revised, unless unanticipated

changes of the exogenous parameters characterizing the environment or the decision mak-

ers, take place. Therefore, if agents were rational, observed changes in economic variables

should come from a response to unexpected changes in some exogenous characteristics, or

fundamentals, of the economy.

However RE models rest on the unrealistic assumption of perfect knowledge of the econ-

omy. Sargent, for example, argues that not only the agents have to be endowed with a

substantial amount of information in order to form RE, but even if perfect knowledge

of the market was available, RE requires too strong computing abilities of the agents to

make decisions such that all predictions and beliefs are consistent with the outcome of all

agents’ choices.

Several tests and empirical analysis have shown that agents’ predictions and beliefs are

often at odds with the requirements of RE, and enlighten that economic variables fluctu-

ate, even when changes in the fundamentals of the economy do not occur. Direct evidence

against rationality consists, for example, in showing that individual responses to simple

economic decisions typically present systematic errors and psychological biases. Indirect

evidence against rationality has been gathered from empirical tests of the predictions of

economic models built under the assumptions of RE, including households consumption

data, survey data on expectations of inflation and other variables, which commonly reject

the unbiased hypothesis of RE and their efficiency in predictions.
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1.1 Bounded rationality and heterogeneous expectations

In this thesis we investigate the possibility that economic fluctuations can be explained

through the interaction of boundedly rational agents, that is, agents are not assumed to

be rational and are not necessarily able to solve the mutual interaction implied by the

expectational feedback.

Generally speaking, a boundedly rational agent is modeled as being able to select what

he perceives as the best alternative in a decision making process, but he does not know

the exact structure of the economic environment. Simon (1955) argues that individuals

are limited in their knowledge and in their computing abilities, they face search costs to

obtain sophisticated information in order to pursue optimal decision rules. These limita-

tions make agents able to use simple behavioral rules and adapt they behavior over time,

switching from time to time to better performing rules. Hence bounded rationality with

agents using simple satisfying rules of thumb for their decisions under uncertainty, could

be a more accurate and realistic description of human behavior than perfect rationality

with fully optimal decision rules.

When predicting future variables, bounded rationality implies that individuals do not

know the true equilibrium distribution of aggregate variables and, as a matter of fact,

ex-ante predictions and ex-post outcomes need not to coincide on average. Moreover a

boundedly rational agent keeps on updating his strategies as he learns about the economic

environment through feedbacks about his past decisions.

The decision whether to model agents as rational or boundedly rational is part of the

assumptions of an economic model. Researchers adopting RE models often argue that ra-

tionality is a useful assumption to describe the equilibrium outcome of the trial-and-error

processes that agents employ. According to this view, the repeated interaction of bound-

edly rational agents leads to the same outcome as if agents were perfectly rational. The

general underlying idea is that agents who are not rational would learn to be rational over

time since incentives to behave rationally, such as higher profits or utility, are constantly

at work. In summary, assuming rationality is often based on the presumption that this

approach offers the equilibrium outcome of repeated interaction.

Convergence to rational behavior has been the topic of investigation of many theoretical

papers on bounded rationality. In macroeconomics, much work has been done on adaptive

learning, see e.g. Sargent (1993) and Evans and Honkapohja (2001) for detailed overview.

Boundedly rational agents do not know the true law of motions of the economy but in-
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stead use time series observations to form expectations based on their own perceived law

of motion, trying to learn the model parameters as more and new observations become

available. Much of these works focused on the stability of RE equilibria and addressed

the possibility of agents learning to form rational expectations. In fact, adaptive learning

may enforce convergence to RE equilibria but it may also lead to non-RE equilibria.

Learnability of RE equilibria depends on the structure of the interaction mechanism be-

tween individual expectations and the economic environment, as the signals received from

the market might be deceptive to agents trying to obtain rational expectations through

learning.

As Bullard (1994) synthesized, some rational expectations equilibria are learnable while

others not. Furthermore, convergence will in general depend on all the economic parame-

ters of the system, including policy parameters.

Although adaptive learning has become increasingly popular as an alternative paradigm

to model private-sector expectations, most models still assume a representative agent who

is learning about the economy.

In deviating from rationality and modeling agents as boundedly rational, it is often as-

sumed that agents are heterogeneous. There are several arguments in support of hetero-

geneous expectations, as summarized by Kirman (1992, 2010) and Hommes (2006). One

commonly referred is the ”no trade” argument, which states that in a world where all

agents are rational and it is common knowledge that everyone is rational, there will be no

trade. However, no trade theorems are in contrast with the high daily trading observed

in real markets, and this reinforces the idea of heterogeneous expectations. Moreover

heterogeneity in individual expectations has been widely documented empirically. For ex-

ample, Frankel and Froot (1990), Allen and Taylor (1990), Taylor and Allen (1992) find

that financial experts use different forecasting strategies to predict exchange rates. More

recently Carrol (2003), Mankiw, Reis and Wolfers (2003), Branch (2004) and Pfajfar and

Santoro (2010) provided supporting evidence for heterogeneous beliefs using survey data

on inflation expectations, while Hommes, Sonnemans, Tuinstra and van de Velden (2005,

2007), Adam (2007), Pfajar and Zakelj (2010) and Hommes (2011) find evidence for het-

erogeneity in learning to forecast laboratory experiments.

Bounded rationality and learning in a complex environment naturally fit with heteroge-

neous expectations, with the economy viewed as complex evolving system composed of

many different, boundedly rational, interacting agents, using different decision strategies.

Hence in this thesis we assume that agents are heterogeneous, in the sense that they choose
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different simple decision rules to address the same decision problem. In general, rules can

differ in terms of sophistication, where the most sophisticated rule correspond to rational-

ity. We also assume that the higher the sophistication of a rule, the higher the deliberation

cost an agent pays in order to use it. Rules can also differ in terms of information they use,

where information can also be costly. Moreover, instead of considering fixed fractions of

agents adopting each rule, we will let them evolve over time as a function of their ”fitness”.

We employ an evolutionary approach: a rule that has performed better according to some

measure, to be defined case by case, is used by a higher fraction of agents. Hence, in gen-

eral, we assume that agents have only knowledge of their objectives and of the constraints

that they face, but they do not have a full economic model of determination of aggregate

variables. Individual decisions are taken optimally on the basis of subjective expectations

of future evolution of endogenous variables. Different agents will generally make different

choices when facing the same economic problem.

The wilderness of bounded rationality in agent-based models leaves many degrees of free-

dom in economic modeling, and it seems far from clear which rules are the most reasonable

out of an infinite class of potential behavioral rules. In model with RE perfect consistency

between beliefs and realizations is assumed. Alternatively, in a bounded rationality re-

search program it is required a reasonable and conceivable form of consistency between

beliefs and realization.

Here we focus on the role of behavioral rationality and heterogeneous expectations within

stylized different models. Behavioral rationality emphasizes the use of simple decision

rules - heuristics - which are not perfect and need not to be optimal. The endogenous evo-

lutionary selection or reinforcement learning among heterogeneous decisions is the form

of learning that we employ to discipline the class of decision heuristics, according to the

switching framework of Brock and Hommes (1997). The main idea is that agents tendo

to switch to rules that have performed better, according to some suitable economic per-

formance measure, in the recent past.

Behavioral rationality and heterogeneous expectations lead to highly nonlinear dynamical

systems, because the fractions attached to the different rules are changing over time. Of-

ten, the evolutionary system does not necessary lead to a rational expectation equilibrium

but it can exhibit complicated dynamics or perpetual fluctuations. As stated by Hommes

(2013), when some rules act as ”far from the steady state stabilizing forces” and other

rules act as ”close to the steady state destabilizing forces”, evolutionary selection of ex-

pectation rules may generate potential instability and chaos in a complex adaptive system
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with behaviorally rational agents.

1.2 Thesis outline

This thesis is built around three main economic frameworks, which are developed in sepa-

rate chapters. Each chapter is self-contained, with its own introduction, conclusion, notes

and appendices as needed. Thus each chapter can be read independently from the others.

This section briefly discusses the main contents of each chapter.

1.2.1 Booms and Busts in a Housing Market with Heterogeneous Agents

In chapter 2 we study the housing market using a partial equilibrium model in which the

rational expectations hypothesis is relaxed in favor of chartist-fundamentalist mechanism

to allow for the endogenous development of bubbles.

Although boom and bust home price cycles have occurred for centuries, the recent boom-

bust development seems to dwarf anything seen before. Since the late 1990s, dramatic

home price rallies have been observed in cities in countries such as Australia, Canada,

China, France, India, Ireland, Italy, Korea, Russia, Spain, the United Kingdom, and the

United States. Some of these price movements can be called spectacular.

It seems impossible to explain this phenomena merely on a rational point of view because

fundamentals such as real rents or construction costs do not match up with this incredible

price boom. The speculative thinking and the use of non rational expectations deriving

from market psychology are elements that play an important role in determining house

prices. In particular Shiller (2005, 2008) was the first who emphasized the role played by

speculative thinking in particular in recent spectacular price movements. He suggested

that the same forces of human psychology in the form of optimism and pessimism, herd

behavior and social contagion of new ideas, and positive feedback dynamics are elements

that play an important role in determining housing prices.

Furthermore, the recent fluctuations in housing market have increased the interest of re-

searchers in this field but it is still difficult to explain the large and rapid rise and fall in

housing prices using a purely rational model. Some recent papers use models of learning

to explain the observed phenomena. Adam, Marcet and Kuang (2010) developed a model

which can replicate quantitatively the house price dynamics from 2001 to 2008 in the G7

economies as well as the associated current account, relaxing the rational expectations

hypothesis and allowing households to be uncertain about how house prices are related
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to the economic fundamentals. They use the idea of internal rationality, previously de-

veloped by Adam and Marcet (2010, 2011), where utility maximizer agents do not fully

understand how price are formed, so that their subjective probability distribution about

prices may not exactly be equal to the true equilibrium distribution.

Recurrent boom-bust house price cycles have raised the need to incorporate bounded ra-

tionality into housing market models, (e.g. Schiller 2007a-b, Piazzesi and Schneider 2009,

Disci and Westerhoff 2012-2013, Tomura 2012, Bolt at al. 2011) and to provide endoge-

nous explanations for such phenomena.

The goal of the present work is to develop a simple model of a stylized housing market to

account for these observations. Our approach is inspired by recent work on agent-based

financial market models (see Hommes 2006 and LeBaron 2006 for comprehensive surveys).

In these models, the dynamics of financial markets depends on the expectation formation

of boundedly rational heterogeneous interacting agents. As indicated by a number of em-

pirical papers (summarized in Menkhoff and Taylor 2007), financial market participants

rely on technical and fundamental trading rules when they determine their orders.

The structure of our model reflects the one of Adam, Marcet and Kuang (2010) but it

moves away from it in the type of expectations we adopt. Houses are seen as assets that

can be driven by fundamentals and by animal spirits. Starting from this point, the possi-

bility to predict future changes in house prices and the deviations between housing prices

and fundamentals create opportunity of large gains.

We assume that housing prices adjust with respect to excess demand in the usual way by

an Agent-Based mechanism of chartism and fundamentalism, where agents use adaptive

learning rules and the continuous evaluation of those strategies according to past perfor-

mance: this leads to changes in the size of the different groups and finally to the price

dynamics.

The reason for this choice is that we want to analyze how households beliefs and psycho-

logical variables can influence the housing boom and bust dynamic. As stressed in Piazzesi

and Schneider (2009), who present evidences from the Michigan Survey of Consumers, the

percentage of the households, believing it was a good time to buy a house because price

would be raised further, increased towards the end of the boom. The mechanism of char-

tism and fundamentalism is one of the simplest method to take into account two different

strategies but it is also sufficient to create endogenous movement in house price due to

the different weight that each strategy plays. In particular the interaction between hetero-

geneous agents allows for the behavioral foundation of the expectations, the endogenous
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development of bubbles and contributes to replicate the recent house price dynamics.

Adam, Marcet and Kuang (2010) also discuss the role of the interest rate during this

crisis: the house price boom would be caused by the persistent reductions in the interest

rate. They suggest that for the U.S. economy the boom would have been largely avoided

if the interest rate had fallen by less at the beginning of the 2000’s. Gelain, Lansing and

Mendicino (2013) evaluate various policy actions that might be used to dampen the excess

volatility in a DSGE model where the introduction of simple moving-average forecasting

rules for a subset of agents can significantly magnify the volatility and persistence of house

prices and household debt relative to an otherwise similar model with fully rational ex-

pectations. They find that a debt-to-income type constraint is the most effective tool for

dampening overall excess volatility in the model economy.

We also analyze the effect of a policy that takes into account the deviation and the volatil-

ity of the house price supporting the idea that the Central Bank is able to reduce the price

volatility by connecting the interest rate to the house price dynamic.

1.2.2 Heuristics selection and heterogeneity

In chapter 3 we present evidence that evolutionary selection among different forecasting

heterogeneous heuristics can explain coordination on individual behavior. The model we

develop is able to exhibit either convergence to an equilibrium price or persistent devia-

tions from that, with the appearance of strange dynamics, similar to what it is possible to

observe in reality: indeed asset price fluctuations are characterized by high volatility with

large price changes irregularly interchanged by episodes of low volatility with small price

changes.

Asset markets, involving an extremely large number on investors of different characteris-

tics, are a suitable context for modeling the interaction of heterogenous boundedly rational

agents.The failure of the representative rational agent framework in replicating properties

of asset returns, persistent deviations from fundamental values, explains why most of the

research in the area of bounded rationality and heterogeneity has been pursued in the

context of financial markets. As a matter of facts, the evolution of economic variables,

is affected by expectations of agents operating in the financial and real markets: for this

reason it is possible to think to the market as an expectations feedback system: market

history shapes individual expectations which, in turn, determine current aggregate market

variables and so on.

In this work we present a simple model with evolutionary selection among different simple
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forecasting strategies where the economic environment is seen as a complex evolutionary

system between competing boundedly rational trading strategies. In this work we develop

a simple nonlinear model which is able to exhibit path dependance explaining how both

stable steady states and attracting curves can arise endogenously in the model.

In this multi-agent model, endogenous fluctuations are caused by a generic phenomenon,

that is coexistence of two attractors (a steady state and a periodic or quasi-periodic orbit).

The economic intuition behind these different outcomes (persistent oscillations and con-

vergence) could be explained by the interaction and the evolutionary switching between

trend extrapolation and stabilizing fundamental analysis that may lead to coexistence of

locally stable fundamental steady state and a locally attracting closed curve far from the

steady state. In particular the model presented here is an attempt to generalize the idea

of adapted belief system (ABS) introduced by Brock and Hommes (1997, 1998) and then

developed by Anufriev and Hommes (2012).

Laboratory experiments with human subjects have shown that individuals do not behave

in a full rational way but follow simple heuristics which can account for persistent biases

in taking decisions. This occurrence explains why prices may persistently deviate from

fundamentals in laboratory markets, similarly to what can be observed in real stock mar-

kets. Moreover heterogeneity is crucial to the aim of expounding a number of evocative

findings of the recent learning to forecast experiments. In a typical session, as described

by Hommes et al. (2005, 2007), a limited number of human subjects have to make fore-

casts about the price of an asset for 50 periods, having knowledge of the fundamental

parameters and previous price realization. The data coming from these experiments can

be used as a benchmark for different expectations hypotheses, such as rational expecta-

tions or adaptive learning models. Many sessions of these kind of experiments have been

conducted: some of them exhibited price convergence, others showed that prices can per-

sistently fluctuate and temporary bubbles emerge. Three different patterns in aggregate

price dynamics have been observed in recent learning to forecast experiments: slow mono-

tonic convergence, permanent oscillations and dampened fluctuations.

We present a simple model with evolutionary selection among different simple forecast-

ing heuristics and the economic environment is seen as a complex evolutionary system

between competing boundedly rational trading strategies. The choice of heuristics will

be governed by an evolutionary selection mechanism, based on the principle that more

successful strategies will attract more followers. Furthermore this work tries to give an

explanation to the outcomes observed in the learning to forecast experiments.
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The main achievements of the experiments are:

• human subjects tend to follow simple forecasting predictors and set up their decisions

on past observations;

• participants are able to coordinate on a common prediction strategy even if this can

be different between sessions;

• three different price patterns were observed (slow and almost monotonic convergence,

persistent oscillations with almost constant amplitude, dampening fluctuations);

• realized asset are significantly different from the rational fundamental price in every

sessions.

The model we are showing is able to exhibit either convergence to an equilibrium price or

persistent deviations from it, with the appearance of strange dynamics, similar to what

it’s possible to observe in reality: indeed asset price fluctuations are characterized by high

volatility with large price changes irregularly interchanged by episodes of low volatility

with small price changes. In particular there’s empirical evidence that many ”stylized

facts” observed in financial time series recall the presence of endogenous fluctuations that

cannot be explained uniquely by external factors or by fundamentals. For these reasons,

the purpose of this paper is to show these facts simultaneously by a simple behavioral

model of individual learning. In particular the ABS here considered is a present discounted

value asset pricing model with heterogeneous beliefs: there are two trader types and the

fractions of these types change over time according to evolutionary fitness, as measured

by utility from realized profit. The economic intuition behind these different outcomes

(persistent oscillations and convergence) could be explained by the interaction and the

evolutionary switching between trend extrapolation and stabilizing fundamental analysis

that may lead to coexistence of locally stable fundamental steady state and an attracting

closed curve far from the steady state.

1.2.3 Macroeconomic stability and heterogeneous expectations

In chapter 4 we consider a simple model made up by the standard aggregate demand

function, the New Keynesian Phillips curve and a Taylor rule to deal with different is-

sues, such as the stabilizing effect of different monetary policies in a system populated

by heterogeneous agents. The response of the system depends on the ecology of fore-

casting rules, on agents sensitivity in evaluating the past performances of the predictors
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and on the reaction to inflation. In particular we investigate whether the policy makers

can sharpen macroeconomic stability in the presence of heterogeneous expectations about

future inflation and output gap and how this framework is able to reduce volatility and

distortion in the whole system.

In this work we study the stability properties of a macroeconomic model in which agents

have heterogeneous expectations. We would like to ask to the following questions: How

many stable or unstable equilibria emerge if there are agents predicting future variables

value using different forecasting rules? How stability conditions change in a framework

with heterogeneous expectations? How monetary policy should be designed in order to

guide the system to a stable equilibrium?

We address these questions using the standard three equations system composed by the

IS curve, a New Keynesian Phillips curve and a Taylor rule. According to the benchmark

model of Branch and McGough, our setting has the same functional form as the standard

formulation except for the homogeneous expectation hypothesis which is replaced with a

combination of heterogenous expectations. As a consequence, the dynamic properties of

the model depend crucially on the distribution of agents. Generally most of the mod-

els introducing heterogeneous expectations consider individuals with too many cognitive

skills: they do not fully understand the underlying model due to informational inertia.

For this reasons we consider a parsimonious model with simple rules of thumb which is

able to generate endogenous waves of optimism and pessimism; moreover the analysis of

monetary policy is conducted to investigate the role of inflation and output gap in business

cycle movements.

Some recent examples of macro and financial models with heterogeneous expectations in-

clude the works of Evans and Honkapohja (2003, 2006), Bullard and Mitra (2002), Hommes

(2006), Ascari et al. (2012).

More recently Hommes (2011), Assenza et al. (2011) and some others studies, provided

evidence in favor of heterogeneous expectations using laboratory experiments with human

subjects.

However, the question how to manage expectations when forecasting rules are heteroge-

neous has hardly been addressed. Since agents are assumed to have cognitive limitations,

they only understand small bits of the whole model and use simple rules to guide their

behavior. We introduce rationality in the model through a selection mechanism in which

agents evaluate the performance of the forecasting they are following and decide to change

their strategy depending on how well it performs relative to other ones. In our stylized
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model agents form expectations about the future rate of inflation and output using differ-

ent forecasting principles. We employ the heterogeneous expectations framework of Brock

and Hommes (1997), where the ecology of forecasting rules is disciplined by endogenous,

evolutionary selection of strategies with agents switching between forecasting rules on the

basis of their past performance.

The model can show how the business cycle dynamics depends on the expectations envi-

ronment and the coefficients of an interest rate rule. If the monetary policy reacts weakly

to inflation, a cumulative process of rising inflation and output appears. Signals from the

market lead the economy to non-fundamental steady states, reinforced by self-fulfilling

expectations of high inflation. On the contrary, when the response to inflation is mod-

erate, the heterogeneous expectations can be managed in order to correct past forecast

error and to conduct the economy towards the RE equilibrium. Even with an aggressive

monetary policy, the monetary authority is able to send correct signals to agents and can

induce stable dynamics settling down to the fundamental steady state. It is also worth

to point out that even if the Taylor principle is sufficient to guarantee convergence to the

fundamental steady state, it is no longer enough to avoid multiple equilibria. Indeed the

monetary policy rule must be sufficiently aggressive to guarantee a proximity between the

realized inflation and the RE equilibrium.

We have also to highlight that, in the case of many beliefs types (a continuum of beliefs),

a monetary policy rule that reacts aggressively to current inflation can fully stabilize the

system. If the policy rule is not aggressive enough and the intensity of choice is large, the

cumulative process of inflation and output appears again.

Finally, to get some policy outcomes, we consider two summary indexes (i.e. volatility and

distortion) that link the impact of the Taylor rule coefficients to distortion and volatility

of the fundamental variables. In this heterogeneous agents framework, policy makers can

reduce volatility and distortion of output and inflation with a sufficient degree of reaction.

If the Central Bank is keen in inflation targeting, there exists a trade-off where lower

inflation variability is obtained at the cost of increased output variability. Moreover some

output stabilization is good because it reduces both output and inflation variability by

preventing too large switches in forecasting behavior.

Depending on the target of the monetary authority, inflation volatility and distortion can

be minimized but also output stabilization can be taken into account. Indeed, if the Cen-

tral Bank shifts its target from inflation to output, results suggest that there exists a

trade-off between inflation and output distortion but, a strong reaction to output is more
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likely to stabilize the economy.

1.3 Computational tools for nonlinear dynamics

In models with bounded rationality and heterogeneity there is an emphasis on dynamics,

and most of these models are nonlinear. As a consequence, the theory of nonlinear dy-

namical systems is an important tool of analysis. Indeed nonlinear dynamics has become

a widely used instrument in recent years.

In this thesis, we model agents’ interaction and decision making taking place at discrete

times and we focus on discrete time dynamical systems. Typically one of our model

equations is the expectational feedback map related to the equilibrium pricing condition,

and the others are the updating rules for the fractions of agents using different decision

strategies. The fact that these fractions are endogenously determined, yields strong non-

linearities. In general we rely on simulations of the deterministic skeletons of the models

but we provide also some analytical results.

We typically proceed as follows: firstly we search for the steady state(s) of the system

which typically corresponds to rational behavior. After a steady state is detected, we use

local stability analysis to specify for which parameter values the interaction and adapta-

tion of boundedly rational agents converges to it. We encompass also the occurrence of

periodic or complicated chaotic fluctuations. The dynamics of nonlinear systems is richer

than linear models because it can be characterized either by convergence to a stable cycle

or by irregular fluctuations.

Since it is often difficult or impossible to characterize the global dynamics analytically, we

have to use computational tools.

A useful numerical tool for detecting changes in the long run dynamics as one or two

parameters of the model change is the bifurcation diagram in which the parameters are

varied and, for a grid of parameter values, the system of equation is simulated and the

resulting long run behavior plotted. In such diagrams one can see that for some parameter

values the state variable converges to an equilibrium value, whereas for other parameter

values the state variable oscillates along a periodic cycle or follows a more complicated

path.

Moreover we consider also the basins of attraction as an important tool to study the dy-

namical properties of the models we develop. A basin of attraction is the set of points in

the space of system variables such that initial conditions chosen in this set dynamically
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evolve to a particular attractor. These dynamic models may have time evolutions that ex-

hibit bounded dynamics which may be periodic, or quasi-periodic or chaotic. In such cases,

a delimitation of a bounded region of the state variables space where the system dynamics

are ultimately trapped, despite of the complexity of the long-run time patterns, may be an

useful information for practical applications. Moreover, in the case of several attractors,

the dynamic process becomes path-dependent, i.e. which kind of long run dynamics is

chosen depends on the starting conditions. This naturally leads to the delimitation of

the basins of attraction and their changes as the parameters of the model vary. These

two problems lead to two different routes to complexity, one related to the complexity of

the attracting sets which characterize the long run time evolution of the dynamic process,

the other one related to the complexity of the boundaries which separate the basins when

several coexisting attractors are present. Both the questions outlined above require an

analysis of the global dynamical properties of the dynamical system.

Therefore nonlinear dynamics, chaos and complex systems have important consequences

for the validity of the rational expectations hypothesis. In a simple, linear and stable econ-

omy with a unique steady state path, it seems natural that agents can learn to have rational

expectations, at least in the long run. A representative, perfectly rational agent model fits

into a linear view of a globally stable and predictable economy. But how could agents have

rational expectations or perfect foresight in a complex, nonlinear world, with prices and

quantities moving irregularly on a strange attractor? A boundedly rational world view

with agents using simple forecasting strategies, perhaps not perfect but at least approxi-

mately right, seems more appropriate within a complex, nonlinear world. Applications of

tools from nonlinear dynamics and complex systems theory have stimulated much work in

heterogeneous agents models, which are almost always highly nonlinear, adaptive systems.



Chapter 2

Booms and Busts in a Housing

Market with Heterogeneous

Agents

2.1 Introduction

Since the late 1990’s a dramatic increase in housing prices has been observed in most of

the countries around the world. For example, London real house prices tripled during the

period 1996-2008, and in the United States the housing prices increased by 85 percent

roughly during the same period.

It seems impossible to explain these phenomena merely from a rational point of view

because fundamentals such as real rents or construction costs do not match up with this

large price boom. Shiller (2005, 2008) was the first to emphasize the role played by spec-

ulative thinking, extrapolative expectations, optimism/pessimism deriving from market

psychology in determining the dynamics of house prices, particularly in the recent spec-

tacular price movements. He suggested that the same forces of human psychology driving

financial markets could also have the potential to affect other markets, especially the hous-

ing market. Recurrent boom-bust house price cycles generate the need for an endogenous

explanation for such phenomena, possibly incorporating bounded rationality into housing

market modeling.

In this paper, we try to take on this challenge. We aim to build a stylized model of

the housing market with no rational expectations able to produce endogenous prolonged

movements in the house prices. In this model the house is an asset that can be collater-
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alized and whose price can be driven both by fundamentals and by animal spirits. More

generally, we want to stress and investigate the importance of the behavioral approach

and bounded rationality. Note that ample empirical evidence exists to show that agents

generally act in a bounded rational way (e.g., Kahneman and Tversky, 1973, Hommes,

2011).

To do so, we build on the model of Adam, Marcet and Kuang (2011) but we modify

it in two ways. First, we introduce a different timing between demand and supply to

account for the fact that it takes time to build new houses. So while households take their

decision daily, the supply is based on a quarterly frequency. Hence the model generates

two different dynamics for the house price at daily and at quarterly frequency, respectively.

Second, we change the way agents form expectations. Instead of using Bayesian learning,

we employ the Agent-Based1 framework of chartism and fundamentalism, where these

two types of agents use different adaptive learning rules to forecast the future house price.

Households are maximizing agents but they can be either chartists, believing the house

price trend will continue, or fundamentalists, expecting mis-pricing will be corrected by

the market. Moreover, they continuously evaluate these two different strategies according

to past performance; this leads to endogenous shifts in the relative shares of the two

groups (chartists vs. fundamentalists). These shifts have large effects on the house price

dynamics. When chartists dominate the market, house price can sharply deviate from

the underlying fundamental value but, if the animal spirits change, the market will be

dominated by fundamentalists and the price will revert towards the fundamental value.

This type of framework have been used in research in financial markets.2 Using it

to model the housing market seems a logical step given the chaotic state of real-estate

markets in the last decade. We thus adapt to the housing market the setup in Lengnick

and Wohltmann (2010) and Westerhoff (2008) and then insert it into our model struc-

ture, derived from Adam, Marcet and Kuang (2011). The mechanism of chartism and

fundamentalism is one of the simplest methods that allow taking into account households’

believes and behavioral factors. As stressed in Piazzesi and Schneider (2009), the percent-

age of the households, believing it was a good time to buy a house because price would

be raised further, increased towards the end of the boom.

We show that such a model is able to generate endogenous boom-and-bust cycles in

1To have a survey on the Agent-Based Computational models visit the Tesfatsion website,

www.econ.iastate.edu/tesfatsi/ace.htm
2See Brock and Hommes (1998), LeBaron (2006) or Westerhoff (2008).
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the house price. The evolutionary selection of the two different forecasting rules by the

agents causes waves in the relative shares of the two groups of agents who amplify and

protract initial shocks. We use the partial equilibrium model of Adam, Marcet and Kuang

(2011), because it allows us to find a closed form solution for the housing demand function

and thus to identify and analyze the relevant feedback and amplification mechanisms in

the model.

Moreover, the model is able to replicate the recent boom-and-bust cycle in the US

house prices. We are able to discuss three determinants that the literature suggests as

potential sources of the recent boom-and-bust cycle in the US house prices. First, the

”Greenspan put” explanation that claims that the house price boom would have been

caused by persistent low levels in the interest rate. Second, an explanation based on an

overall loosening of credit standards that allowed more borrowing from the households,

followed by a sudden freeze of credit at the onset of the crisis (e.g., Favilukis, Ludvigson

and Van Nieuwerburgh, 2010, Mian and Sufi, 2009). Following Justiniano, Primiceri and

Tambalotti (2013) we can call it a ”credit liberalization” cycle narrative. The third,

instead, refers to an explanation not based on fundamentals, but on exogenous forces

modeled as a change in households’ preference and housing demand. Justiniano, Primiceri

and Tambalotti (2013) call it a ”valuation” story; we could also name it a ”behavioral”

story because it is based on a change of behavior of agents unrelated to fundamentals. Our

model identifies the shock to the preference rate for houses as the main driving force behind

the recent behavior of house price in the US. Using the Michigan Survey of Consumers

to calibrate such shock, the model captures quite well the persistence and hump shaped

behavior of the boom and bust in the house price. On the contrary, narratives based on

”fundamentals”, as the interest rate behavior or the credit market liberalization, appear

to be unimportant in explaining the house price movements.

Finally, we also show that an interest rate policy that reacts either to the deviations

of the house price from steady state or to the rate of growth in the house price can

substantially stabilize the house price.

Our paper is mainly related to Adam, Marcet and Kuang (2011) and to Lengnick

and Wohltmann (2010). As said, from the former we take the model setup and from

the latter the Agent-Based part of the model. Another related paper is Lengnick and

Wohltmann (2010), who combine the chartist-fundamentalist model of financial markets

and a standard New Keynesian macroeconomic model to generate endogenous business

cycles and stock price bubble.
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Adam, Marcet and Kuang (2011) develop a model able to replicate quantitatively the

house price dynamics and the associated current account dynamics from 2001 to 2008 in

the G7 economies, relaxing the rational expectations hypothesis and allowing households

to be uncertain about how house prices are related to the economic fundamentals. To reach

this goal, they use the concept of internal rationality, previously developed by Adam and

Marcet (2010, 2011), where utility maximizer agents do not fully understand how price

are formed, so that their subjective probability distribution about prices may not exactly

be equal to the true equilibrium distribution. Contrary to us, they find that the boom in

the housing market in the U.S. economy would have been largely avoided if the interest

rate had fallen by less at the beginning of the 2000’s.

Other works incorporates bounded rationality into housing market.3

Bolt, M. Demertzis, C. Diks, M. van der Leij (2011) develop a behavioral model of

the housing market where agents have heterogenous expectations on the rate of return

of holding a house. Similar to our model, agents are simple optimizers who rely on past

performance to evaluate and revise their beliefs. They show that such a model generates bi-

furcations and multiple equilibria and they investigate to which extent these non-linearities

could help explaining the boom-bust dynamics in the housing market.

Burnside, Eichenbaum and Rebelo (2011) build an ”epidemiological” model in which

agents have heterogeneous expectations about long-run fundamentals, but they can infect

each other by social interaction. Social dynamics can then generate waves of infectious

optimism that vanishes as soon as people become more certain about fundamentals.

Tomura (2012) presents a business cycle model capturing the stylized features of hous-

ing market boom-bust cycle in developed countries. In particular, he focuses on the role

of over-optimism and the role of monetary easing in generating strong booms in housing

market. Over-optimism of mortgage borrowers can cause boom-bust cycles, if mortgage

borrowers are credit-constrained and savers who supply mortgage loans do not share the

over-optimism of mortgage borrowers. In the presence of price stickiness, the model gen-

erates a low policy interest rate during a housing boom as an endogenous reaction through

the Taylor rule to a low inflation rate.

Gelain, Lansing and Mendicino (2012) evaluate various policy actions that might be

used to dampen the excess volatility in house prices in a DSGE model where the intro-

duction of simple moving-average forecast rules for a subset of agents can significantly

magnify the volatility and persistence of house prices and household debt, relative to an

3See also Schiller (2007a,b) and Piazzesi and Schneider (2009).
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otherwise similar model with fully rational expectations. They find that macroprudential

policies that modify the borrowing constraint are the most effective tool for dampening

overall excess volatility in the model economy.

Dieci and Westerhoff (2013) investigate the impact of speculative behavior on house

price dynamics. Their approach is inspired by recent work on Agent-Based financial mar-

ket models. Speculative demand for housing is modeled through expectation formation

mechanisms and behavioral rules of boundedly rational heterogeneous interacting agents.

Real and speculative forces determine excess demand in each period and house price

adjustments. The speculative behavior of heterogenous market participants repeatedly

destabilize the housing market and endogenous switches between bullish and bearish mar-

kets may occur, possibly leading to bifurcations and multiple equilibria. These dynamics

imply lasting and significant price swings around the fundamental steady state.

Iacoviello (2005) is the seminal contribution in the rational expectation DSGE lit-

erature. He develops a New-Keynesian business cycle model with two types of agents:

borrowers and lenders. Borrowers receive nominal loans, but they are subject to a bor-

rowing constraint where houses can be used as collateral. A recent refinement of such a

model is proposed by Justiniano, Primiceri and Tambalotti (2013).4

The paper is constructed as follows. Section 2 presents the first building block of our

model based on Adam, Marcet and Kuang (2011). Section 3 explains the Agent-Based

block of our model and the chartists and fundamentalists behavioral rules. Section 4 shows

the results of simulations and comprises a thorough investigation of the model mechanics

via sensitivity analysis. Section 5 investigates the ability of the model to replicate the

recent house price dynamics taking into consideration the real interest rate dynamics, the

credit tightness and a preference shock for housing demand. Section 5 analyzes the role

of policy in dampening house price volatility. Section 6 concludes.

2.2 The Model

The structure of the dynamic partial equilibrium model is based on Adam, Marcet and

Kuang (2011). This framework is very convenient because it allows us to find a closed

form solution for housing demand.

We differ from Adam, Marcet and Kuang (2011) in two respects. First, we adopt a differ-

ent framework for expectation formation, assuming a chartist-fundamentalist mechanism

4See also Iacoviello and Neri (2010) and Kiyotaki et al. (2010).
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with endogenous selection of forecasting strategies. Considering house as an asset, we

rely on a classical and simple framework in the Agent-Based analysis of the financial mar-

kets to describe the dynamics of house price and the process of expectations formation.

Households belong to two different groups: chartists expect that the trend on the house

price will continue in the next periods, while fundamentalists expect that the price will

revert towards its perceived fundamental value. Moreover, the size of the two groups is

not fixed but it changes across time according to the relative past performance of these

two differing strategies. The model is thus able to generate endogenous waves of chartism

and fundamentalism that could move the price away from its fundamental value.

Second, another important difference with respect to Adam, Marcet and Kuang (2011)

is the timing of actions and decisions. Households solve their problem daily, which we

suppose to be the smallest fraction of time for the real economy. House builders, instead,

are assumed to operate on a quarterly basis, reflecting a time-to-build effect due to the

necessary time that elapses for the construction of a house. They thus will base their

production decision on the average of the house price in the past quarter.

From the last assumption it follows that demand and supply are not simultaneous.

The house price thus does not emerge from the equality between supply and demand, but

its dynamics is driven by excess demand/supply. In this sense, this is a model of dis-

equilibrium, the price reacts to the difference between demand and supply by increasing

(decreasing) when demand is larger (lower) than supply.

2.2.1 The Household problem

The economy is populated by a unit mass of households with identical preferences but

potentially different and not rational believes, indicated by Ẽt(·), that we will specify

later in Section 2.3.1 when we will introduce the distinction between chartists and funda-

mentalists. Households take daily decisions (t stands for days) and their preferences are

described by the following intertemporal quasi-linear utility function:

Ẽt

∞∑
t=0

δt(ct + jt log ht), (2.1)

where ct > 0 is the daily consumption of goods, ht is the daily consumption of housing

services, δ ∈ (0, 1) is the discount factor, and jt is a preference shock for housing demand.

The household period-by-period budget constraint is:

ct + [ht − (1− d̃)ht−1]Qt +Rtbt−1 + kt = yt + bt + kt−1pt, (2.2)
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where Qt is the house price at time t, d̃ ∈ [0, 1) is the daily depreciation rate of a house,

bt is the household new loans, Rt is the gross real interest rate on loans and yt is income,

which is exogenous.5 The capital stock, kt, is owned by the households who rent it to house

builders for production. Capital fully depreciates in one period and its remuneration is pt.

As in Kiyotaki and Moore (1997), households are allowed to borrow from banks subject

to a borrowing constraint:

bt ≤ θ
Qt
Rt
ht. (2.3)

The parameter θ represents the share of assets that can be collateralized. It is fixed and

cannot exceed the house value after the depreciation: hence θ ∈ (0, 1 − d̃]. Kiyotaki and

Moore (1997) interprets a value of θ lower than one as reflecting the cost the lenders suffer

in case of default. A growing house price relaxes the collateral constraint, implying that

the households will have greater access to credit.

Households maximize their utility function (2.1) subject to the sequence of budget and

borrowing constraints (3.8-3.9):

max
ct,ht,bt,kt

Ẽt

∞∑
t=0

δt


(ct + jt ln (ht)) +

−λt
(
ct +

(
ht −

(
1− d̃

)
ht−1

)
Qt +Rtbt−1 + kt − yt − bt − kt−1pt

)
+

+γt (θQtht −Rtbt) + µtct + κkt


(2.4)

where p0, k−1, b−1 are given initial conditions.

The first order conditions with respect to ct, ht, bt and kt are:6

(∂ct) : 1− λt + µt = 0 (µt ≥ 0; µtct = 0) , (2.5)

(∂ht) :
jt
ht
− λtQt + (1− d̃)δẼtλt+1Qt+1 + γtθQt = 0, (2.6)

(∂bt) : λt −RtδẼtλt+1 − γtRt = 0 (γt ≥ 0; γt(θQtht −Rtbt) = 0) , (2.7)

(∂kt) : −λt + κt + δẼtλt+1pt+1 = 0 (κt ≥ 0; κtkt = 0) . (2.8)

Assuming that the non-negativity of consumption holds (µt = 0) and Rtδ < 1, households

will borrow as much as possible: hence the borrowing constraint is binding, so bt = θQtht
Rt

5We can assume income follows an exogenous stochastic process. In any case, the only role played by

income is to pin down consumption (see equation (2.11)), which is not relevant for the analysis in the

paper which focuses on house price dynamics.
6The utility function is linear in consumption as in Adam, Marcet and Kuang (2010). As them, we

assume that the utility from consumption is bounded for high level of c. The first order conditions are

thus necessary and sufficient for a maximum due to the linearity of the constraint and the concavity of the

objective function in the households’ choice variable.
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and γt > 0. From equation (2.5) λt = 1; thus from (2.7): γt = 1
Rt
− δ > 0. Using these

results, it is possible to derive the households’ demand for housing services from equation

(2.6):

hdt = jt

[(
1 + δθ − θ

Rt

)
Qt −

(
1− d̃

)
δẼtQt+1

]−1

. (2.9)

The capital rented by the consumers to house builders should satisfy:

(1− δpt+1)kt = 0, (2.10)

so that either pt = δ−1 or kt = 0. Given the non-negativity constraint on capital, the

quasi-linear utility function implies that at that price capital and consumption are not

uniquely determined and agents are indifferent between increasing slightly the capital sold

to firms at time t in exchange for δ−1 more units of consumption at t + 1. The capital

supply offered by consumers is thus perfectly elastic, so that kt is determined by firm’s

demand at the market price of pt = 1
δ .

Finally consumption can be obtained residually using the flow budget constraint:

ct = yt + bt −
(
ht − (1− d̃)ht−1

)
Qt − bt−1Rt − kt − kt−1δ

−1. (2.11)

Housing Supply

As said above, we assume that house builders operate quarterly (q). The difference in the

timing of the action among households and house builders reflects the time that elapses

in creating new houses. The house builders borrow capital from the households in a

competitive market and employ it as input in a simple decreasing return to scale production

function:

Shq = (αδ)−1kαq . (2.12)

kq is the sum over a quarter of the daily capital received from households and α ∈ (0, 1).

The market for input is always in equilibrium and the price for capital is pt = δ−1 ∀t, q.
The firm chooses kq to maximize its profits, i.e., max

kq≥0
Ẽq
(
ShqQq+1 − δ−1kq

)
, where

Qq+1 is the quarterly house price in the next quarter.7 The first order condition is:

kq =
(
ẼqQq+1

) 1
1−α

. (2.13)

In maximizing profits, house builders need to form expectations about the next quarter

house price. We assume house builders have static expectations, so that: Ẽq[Qq+1] = Qq.

7The quarterly house price is defined as an average of the daily prices over the quarter.
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The profit-maximizing input demand therefore becomes:

kq = (Qq)
1

1−α , (2.14)

and substituting it into the production function we obtain the quarterly supply of new

houses:

Shq = (αδ)−1Q
α

1−α
q . (2.15)

The housing stock evolves according to:

hq = (1− d)hq−1 + Shq . (2.16)

Note that this is an end-of-period definition of the housing stock. The stock of houses at

the end of quarter q, thus available for consumption in the next quarter q+ 1, depends on

the existing stock in the previous quarter, hq−1, net of depreciation, plus the production of

new houses in the quarter.8 It follows that the stock of houses available for consumption

in quarter q is equal to the stock at the beginning of quarter q, that is, hq−1.

2.2.2 The Log-Linearized Model

In this part we log-linearize the model around its steady state, where the variables are

constant. In our case this implies that the timing of actions does not matter (e.g., if

Qt = Q ∀t then Qq = Q) and we equalize demand and supply in a timeless fashion. The

main steady state equations for our purposes are:

hd =
j

Q
(

1 + δθ − θ
R −

(
1− d̃

)
δ
) , (2.17)

Sh =
1

αδ
Q

α
1−α , (2.18)

dh = Sh.

Solving for Q we obtain the steady state value for the house price:

Q =

 djαδ

1 + θδ − θ
R −

(
1− d̃

)
δ

1−α

. (2.19)

The log-linearized equations thus are:

ĥdt = ĵt +
Qhd

j

[(
1− d̃

)
δẼtQ̂t+1 −

(
1 + δθ − θ

R

)
Q̂t −

θ

R
R̂t

]
, (2.20)

8Note that d is the quarterly depreciation rate, so that: 1 − d = (1 − d̃)64.
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Ŝhq =
α

1− α
Q̂q. (2.21)

The demand function in (2.20) depends positively from the preference for houses and from

the expected future price, while negatively from the current price9 and from the interest

rate. The housing supply is a positive function of the quarterly price.

Finally, log-linearizing (2.16) yields:

ĥq = (1− d)hqĥq−1 + ShŜhq . (2.22)

2.3 An Agent-Based Approach to House Price

In this Section we present the Agent-Based part of our model, where we adapt the Agent-

Based framework in Lengnick and Wohltmann (2010) and Westerhoff (2008) to the housing

market.

2.3.1 Expectations

Adam, Marcet and Kuang (2011) conclude that it is difficult to account for the U.S.

house price dynamics assuming rational expectations. The empirical evidence on house

price behavior, which alternates periods of persistently increasing and decreasing prices

motivates the relaxation of the rational expectation hypothesis regarding beliefs on house

prices. As Adam, Marcet and Kuang (2011), in order to concentrate on the effects of

the Agent-Based part of the model on the housing market dynamics, we assume that

households have correct beliefs (i.e., rational expectations) about all variables affecting

their demand for housing services, except for the house price. Regarding the latter, they

hold non rational beliefs.

More precisely, they can be either chartists Ẽct (·) or fundamentalists Ẽft (·). Chartists

expect the price trend will continue, so their forecasting rule is given by:

Ẽct [Q̂t+1] = Q̂t + lc(Q̂t − Q̂t−1), (2.23)

where Q̂t is the percentage deviation of house price from its steady state value at t and

the parameter lc > 0 represents the degree of ”persistence” or trend-chasing in the house

price expected by the chartists.

Fundamentalists, instead, believe that a fraction of the actual mis-pricing will be cor-

rected in the future, so their forecasting rule is given by:

Ẽft [Q̂t+1] = Q̂t + lf (Q̂fdt − Q̂t), (2.24)

9Given our calibration 1 + δθ − θ
R
> 0.
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where the parameter lf > 0 represents the fraction of the mis-pricing that fundamentalists

expect to be corrected in the next period, and Q̂fdt is the perceived fundamental value,

that we need to define.

Economic theory would suggest that the value of a house, as that of any asset, should

be equal to the present discounted value of the expected returns from holding that asset.

In our model, for fundamentalists this could be captured by equation (2.6):

Qt =

(
jt

hd,ft
+ γtθQt

)
+ (1− d̃)δẼft Qt+1, (2.25)

that has the usual asset pricing interpretation: the value of the asset is given by the

dividend today plus the expected capital gain/loss tomorrow. The benefit today of holding

the house is equal to the marginal utility provided by the housing services plus the utility

deriving from the relaxation of the borrowing constraint, that is,
(
jt
ht

+ γtθQt

)
, while the

capital gain tomorrow net of depreciation and discounting is (1 − d̃)δẼft Qt+1. One could

then think of iterating forward equation (2.25) and find a value of the asset that depends

on future expected ”fundamentals”, as one would do in a rational expectation framework.

However, in our Agent-Based context it would not make sense to iterate this equation

forward, simply because Ẽft Qt+1 does not obey rational expectations. So we can not use

equation (2.25) to calculate Ẽft Qt+1 and then to substitute it iteratively forward in the

same equation. In our Agent-Based framework, Ẽft Q̂t+1 is defined by the forecasting rule

of the fundamentalists, equation (2.24). Instead, equation (2.25) pins down the demand

given the particular forecasting rule of the agent.

So we need to find another route that it is coherent with the irrational beliefs of our

agent based framework, where agents do not know the correct (and complex) determinants

of house price dynamics. In addition, even expert economists in the real world rarely agree

on the actual mechanism linking fundamentals to house prices. Hence, we assume that

households can not identify the true fundamental price. In (2.24), fundamentalists thus

use a perceived fundamental price. Similarly to Lengnick and Wohltmann (2010), that

link the perceived steady state of the financial market to the aggregate economic activity,

we link the fundamentalists’ perceived fundamental price to the sectoral output, that

is, to the supply of housing services. The idea is that fundamentalists understand that

house supply depends on the expected price (see equation (2.21) in the previous Section).

Hence, an increase in housing supply will then be interpreted by fundamentalists as a

signal of the house builders reaction to an expected increase in the fundamental house
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price.10 Therefore, we assume that the fundamental price perceived by fundamentalists

at the beginning of each quarter is proportional to the amount of construction works that

they observe. The latest available observation to fundamentalists at the beginning of each

quarter is the new housing built during the previous quarter, Shq−1. Hence:

Qfdt = const ∗ Shq−1 q = floor

(
t− 1

64

)
(2.26)

The function floor(·) simply rounds its argument to the nearest integers less than or equal

to the argument itself, and it is used to divide the daily time scale into quarters, mapping

the days t into the respective quarters q. Note that Qfdt is ”fundamental” in the sense that

both it depends on ”fundamentals” and it moves at low frequency in the model, because

it is constant over the quarter, being Q̂fdt = Q̂fdq . In log-deviations, (2.26) simply becomes

Q̂fdt = Ŝhq . (2.27)

Inserting (2.23) and (2.24) into (2.20) yields the chartists’ demand function:

ĥd,ct = ĵt +
Qhd

j

[(
1− d̃

)
δ
(
Q̂t + lc(Q̂t − Q̂t−1)

)
−
(

1 + δθ − θ

R

)
Q̂t −

θ

R
R̂t

]
, (2.28)

and the fundamentalists’ one:

ĥd,ft = ĵt +
Qhd

j

[(
1− d̃

)
δ
(
Q̂t + lf (Q̂fdt − Q̂t)

)
−
(

1 + δθ − θ

R

)
Q̂t −

θ

R
R̂t

]
. (2.29)

The relative shares of chartists and fundamentalists are endogenously determined.

Households learn about the past, and they change their believes according to the past

performances of the two forecasting rules. Following Lengnick and Wolthmann (2010),

each group evaluates the attractiveness, Ait, of each forecasting rule on the basis of the

following equation11:

Ait = [exp(Q̂t)− exp(Q̂t−1)]ĥd,it−2 + ηAit−1 i = c, f. (2.30)

The attractiveness is thus partly related to the recent performance of the rule, measured by

the term [exp(Q̂t)− exp(Q̂t−1)]ĥd,it−2, and partly by its past attractiveness, where η ∈ [0, 1]

is the memory parameter which defines the strength with which agents discount past

performances.

10One can also argue that fundamentalists assume that house producers have superior information on

the housing market, so they link Qfd to the observed Sh.
11Recall that Q̂t is the logarithm of house price. In order to calculate nominal performance, it has to be

delogarithmized.
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The fraction of agents that adopts a particular strategy (W i
t ) then is updated every day

thanks to the Gibbs Probability, as in the framework of adaptive belief system proposed

by Brock and Hommes (1997, 1998):

W i
t =

exp(eAit−1)∑
i exp(eAt−1)

i = c, f. (2.31)

The more attractive is a strategy, the higher is the fraction of agents using it. The

parameter e is called the rationality parameter: other things equal, the higher is e, the

larger will be the number of agents that switches towards the strategy with the highest

attractiveness.

2.3.2 House Price Dynamics

The deviation of the house price from its steady state, Q̂t, evolves according to:

Q̂t+1 = Q̂t + a(W c
t ĥ

d,c
t +W f

t ĥ
d,f
t − ĥq−1) + εQt . (2.32)

(3.4) states that the change in the house price (Q̂t+1− Q̂t) reacts to the excess of demand

over supply in the housing market. This is given by the difference between the sum of

the demand deviations of chartists ĥd,ct and fundamentalists ĥd,ft from the relative steady

state, weighted by their relative shares (W c
t and W f

t given by (3.11)), and the available

supply of housing services, ĥt−1.12 a measures the responsiveness of the house price to

excess demand in the housing market. The noise term εQt is an i.i.d. normally distributed

shock with standard deviation σ2
Q. It captures the idea that the two strategies are not the

only possible strategies that exist into the market.

The quantity actually exchanged in the market obeys to the short side of the market, so

it is given by the minimum between the sum of the chartists and fundamentalists demand

in the correspondent quarter and the relative existing stock:

G = min


64q∑

t=64(q−1)+1

(
W f
t ĥ

d,f
t +W c

t ĥ
d,c
t

)
; ĥt−1

 (2.33)

The actions of households and house builders are not synchronized, because demand

and supply run on a different time scale. We assume that a quarter is composed by 64

days. Hence, within one increment on house supply’s time index q, households perform

64 times their maximization problem generating their daily demand for houses. Therefore

12Recall that the housing stock is constant over the quarter, because it changes only at quarterly fre-

quencies. So: ht = hq where q = floor
(
t−1
64

)
.
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the model is implemented as follows: i) we run the daily demand for a quarter, given the

shocks that hit the model; ii) then the quarterly price is equal to the mean of the daily

price over that quarter; iii) we insert it into the supply equation to find the reaction of

house builders and the new fundamental price; iv) we iterate.

A quarter is defined to contain days 64(q − 1) + 1, ..., 64q, for q = 1, 2, ... :

Q̂q =
1

64

64q∑
t=64(q−1)+1

Q̂t. (2.34)

2.4 The Model Simulation

In this part of the paper we analyze the performance of the model. First, we use numerical

simulations to investigate the ability of the model to generate fluctuations in the house

price driven by endogenous waves of chartism and fundamentalism. Second, we inspect

the transmission mechanism of the model by means of sensitivity analysis.

2.4.1 Calibration

The parameter calibration is reported in Table 1. As in Adam, Marcet and Kuang (2011),

the annual discount factor δ is fixed at 0.96 and the annual depreciation rate at 3%, imply-

ing: d = 0.0076 and d̃ = 1, 19 ·10−4. α = 0.65 implies decreasing returns in production and

captures the fact that housing is a capital-intensive sector. Parameter θ in the borrowing

constraint is calibrated as in Iacoviello (2005). η, lc and lc are set as in Lengnick and

Wohltmann (2010). The value of a and e are particularly problematic since we have no

much guidance on how to calibrate them. We calibrate the rational parameter (intensity of

choice) e in a way of minimizing the distance between the real data and the model gener-

ated time series in the simulation exercise in the next Section. The implied value is lower

than in Lengnick and Wohltmann (2010), but we think this is consistent on our paper

focusing on the housing market rather than the financial market. While the financial mar-

ket can be thought as a system populated mostly by institutional, professional, or at least

educated, investors, the housing market comprises a bigger class of participants which is

consistent with a lower rationality parameter. Following a similar logic, the parameter a in

equation (3.4) is set to a lower value than in Lengnick and Wohltmann (2010). a measures

the elasticity of the daily house price to the daily excess demand in the housing market.

We argue that price elasticity to excess demand is much less in the housing market with

respect to the financial market, because the house price is much more inertial and less
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volatile than asset prices in the financial market, especially on a daily basis. We calibrate

the variance of the shock to the evolution of the house price in equation (3.4), σ2
Q, so that

the variance of the simulated quarterly price is the same as the variance of real quarterly

price, collected by Federal Housing Finance Agency (http://www.fhfa.gov/).

Calibration

α = 0.65 a = 0.001

δ = 0.96 lc = 0.04

θ = 0.55 lf = 0.04

d = 0.0076 η = 0.975

e = 100 σ2
Q = 0.011

Table 1: Calibration of the model

2.4.2 Waves of Chartism and Fundamentalism

Following Lengnick and Wohltmann (2010), we simulate a representative run for a period

of 40 quarters to show how the model works. We have two different sources of shocks

in the model: the noise term on the house price equation (3.4), εQt , and a shock to the

preference for housing services in the utility function, jt. In this part of the paper, we

analyze only the response of the system to repeated draw realizations of the noise term εQt ,

while keeping ̂t fixed at zero. The aim is to investigate how our Agent-Based framework

interacts with the more standard partial dynamic model of households’ choice.

Figure 1.1 shows the dynamics of the relevant variables: the top left panel displays

the quarterly house prices; the top right shows the evolution of housing stock. The two

middle panels display: i) daily house price along with the perceived fundamental value;

ii) waves of chartism (black) and fundamentalism (white), labelled animal spirits. Finally

the bottom left panel shows the quantity actually exchanged on the housing market and

the bottom right panel shows the supply, Ŝhq , and total demand, W c
t ĥ

d,c
t + W f

t ĥ
d,f
t . The

model is able to generate endogenous waves of chartism and fundamentalism, that in turn

cause fluctuations in both the house price and quantity. The continuous evaluation of

past relative performance induces an endogenous competition between the two forecast-

ing strategies that assures that none dominates forever. While fundamentalists dominate

for most of the time, in some particular periods the vast majority of agents follows the

chartists’ rule. When chartists prevail, the house price departs from its perceived funda-
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Figure 2.1: Representative run of the relevant variables

mental value. As an example, quarters q = 7 − 10 and q = 26 − 28 exhibit a boom in

the house price driven by chartists, while quarters q = 30− 34 and q = 38− 40 exhibit a

bust. In phases dominated by fundamentalists, on the contrary, the house price tends to

go back to its fundamental value, which is evident for q = 11− 20.

Assume the house price starts trending upward, then the chartists’ rule may outperform

the fundamentalists’ one strengthening and protracting the upward movement in the house

price, and thus creating a boom. However, this sows the seeds for the subsequent bust.

First, the supply of new houses increases with the price, and so does the available stock

of housing. Therefore the excess demand tends to decrease, because the supply has a

standard direct negative effect on the house price through equation (3.4). Second, the

effect on demand of an increase in the house price depends on whether the negative

substitution effect on demand (due to the increase in the current price) is offset by the

positive wealth effect on demand (due to the increase in the expected future price). For

chartists, the increase in the expected future price is due to the extrapolative expectations

(equation (2.23)), while for fundamentalists this is due to the increase in the fundamental

price caused the increase in the supply of new housing (equation (2.26)). Note the twofold

role of an increase in supply: on the one hand, it forces a price decrease by increasing

the stock of available houses, on the other hand it affects fundamentalists’ expectations
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by increasing their perceived fundamental value, and thus their demand. The fact that

demand decreases when the daily house price is higher than its fundamental value, whereas

it decreases otherwise seems to suggest that the substitution effect is prevailing on demand.

Hence, on the one hand, the forces counteracting the lengthening of the boom phase are

standard: the substitution effect on demand and the contribution of the supply of new

houses to excess demand. On the other hand, the Agent-Based mechanisms of expectations

formation both of chartists, who are trend follower on a daily basis, and fundamentalists,

through the perceived fundamental price, contributes to the prolonging of the boom phase.

Note, however, that the fundamentalists expectations tend to stabilize the price at high

frequencies, because they tend to anchor the price to the perceived fundamental one which

is fixed over the quarter. Indeed, Figure 1.1 shows that when fundamentalists dominate,

the price tends to move towards the fundamental value.

It is interesting to note that the two expectation formation mechanisms of our model

tend to reinforce the trend in the house price, but at different frequencies: daily the

chartists, while quarterly the fundamentalists.

Finally, the supply, and thus the evolution of existing houses, are closely influenced by

the path of the quarterly house price. The exchanged quantity is the minimum between

demand and the existing housing stock. When the former is greater than the latter,

the time series is more volatile, on the contrary when supply prevails the time series is

represented by a broken line because this variable changes only at the end of each quarter.

2.4.3 Inspecting the Mechanism

We now perform a sensitivity analysis regarding the parameters of the model. With

respect to our benchmark calibration in Table 1, we then change one parameter at a

time in the log-linearized model, keeping however fixed the particular sequence of the

realizations of the shock εQt that generates Figure 1. The purpose of this exercise is twofold.

First, it is a robustness check on the mechanism of the model just described. Second, it

provides a better understanding of the different effects at work in the model. Table 2

shows how some key statistics of the log-linearized model change with the parameters of

the Agent-Based part of our framework.13 In particular, these statistics are: the standard

deviation of the daily house price, Q̂t, of the stock of houses, ĥq, of the excess demand,(
W c
t ĥ

d,c
t +W f

t ĥ
d,f
t − Ŝht

)
, and of the fundamental price, Q̂fdt , and the average value of

the shares of fundamentalists, W f
t , and chartists, W c

t . The first column shows the results

13We just consider either an increase or a decrease since the effects are symmetric.
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employing the benchmark calibration in Table 1.

Benchmark lc= 0.4 lf= 0.4 a = 0.01 e = 300 α = 0.5

std
(
Q̂t

)
0.1721 0.1729 0.1249 0.0558 0.1812 0.1830

std
(
ĥq

)
0.6151 0.6180 0.4392 0.1681 0.6486 0.3528

std
(
W c
t ĥ

d,c
t +W f

t ĥ
d,f
t − Ŝht

)
0.5052 0.5242 1.4461 0.1537 0.5393 1.4542

std
(
Q̂fdt

)
0.3079 0.3093 0.2199 0.0842 0.3247 0.1766

mean(W f
t ) 0.5173 0.5279 0.9050 0.6175 0.5845 0.6356

mean(W c
t) 0.4827 0.4721 0.0949 0.3825 0.4154 0.3643

Table 2: Sensitivity analysis

An increase in lc in equation (2.23) strengthens the trend following behavior of the

chartist’s expectations of the house price. Not surprisingly, this causes an increase in the

volatility of all the relevant variables. These effects, however, are very minor pointing

to the fact that such a parameter does not play a key role in the model. The share of

fundamentalists increases but only slightly.

The effect of an increase in lf in equation (2.24) instead has quite large stabilizing

effect on the model. The bigger lf , the more the fundamentalists’ expectations react to

the difference between the daily price and the fundamental price. As a consequence, the

daily price is closer to the fundamental value and less volatile. So it is supply and hence

the fundamental price. The fundamentalists’ strategy become more effective, and indeed

the average share of fundamentalists is overwhelming: 90%. Note, however, that the

volatility of the excess demand increases. This is because the fundamentalists’ demand is

more volatile since the expectation of the future price moves substantially to correct the

deviation of the current price from the fundamental price. Therefore, in the case of high

lf is the demand of fundamentalists that plays the stabilizing role on the price through

excess demand.

An increase in the elasticity of the daily house price to the excess demand on the

market, a, in equation (3.4) has a very intuitive stabilizing effect on all the variables: the

price move on a daily basis to clear the excess demand on the market. Intuitively, the

average share of fundamentalists rise to 61.7%, because the market is more stable.

The rationality parameter, e, in equation (3.11) determines the sensitivity of the shares

of the two agents with respect to the relative attractiveness of the two forecasting rules.
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The higher is e, the greater the number of agents selecting the more attractive strategy.

In the extreme case when e = 0, agents do not switch strategy, so the shares of the two

agents are constant. In the other limiting case when e = ∞, all agents have always the

same strategy, because they simply pick the forecasting rule with the best performance in

the previous period. It is quite intuitive therefore that an increase in e amplifies all the

volatilities, even if the quantitative effects are quite minor in our setup.

Finally, it is interesting to analyze also the effects of the return to scale parameter. A

decrease in the return to scale parameter makes marginal costs steeper, and hence supply is

less elastic with respect to the price. As a consequence, the volatility of supply, and thus of

the fundamental price, diminishes. This increases the volatility of excess demand because

supply do not move to counteract the movement in demand, and hence also the volatility

of the daily price level slightly increases. Since the fundamental price is quite stable, on

average the fundamentalists’ strategy outperforms the chartists’ one and fundamentalists

are on average the majority in the market.

2.5 Matching House Price Data

In this Section we ask if the model is able to replicate the recent boom-and-bust house

price dynamics in the US data. The aim is to identify the main driving forces of the

dynamics of the house price according to our model.14

We want to see if our model can match the behavior of the quarterly house price for

the period going from Q1:2004 to Q1:2009. The data, Seasonally Adjusted Purchase-only

Index, are taken from the Federal Housing Finance Agency. We assume that in the initial

period, i.e., Q1:2004, the system is in steady state. We then compute the percentage

deviation of the quarterly house price from its steady state value.

The debates among economists have focused on three main possible causes of the recent

boom and bust in housing prices. The first narrative identifies the so-called ”Greenspan

put” as one possible causes of the crisis, that is a persistent low level of interest rates in-

ducing excessive leveraging on the part of both the households, through debt accumulation

(especially mortgage debt), and the financial intermediaries through excessive risk/taking.

A second narrative points instead to a ”liberalization” cycle as the main cause of the cri-

sis, that is, an overall loosening of lending standards that allows more borrowing from

14Other contributions, based on non-rational expectation, are able to match the data quite well: see, for

example, Adam, Kuang, Marcet (2011).
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Figure 2.2: Percentage deviation of 30-Years Conventional Mortgage Rate

the households for a given value of the collateral, followed by an abrupt increase of credit

tightening at the onset of the financial crisis. A third narrative, instead, considers the

possibility that exogenous and more direct factors drove up the housing price, in the sense

of an exogenous increase in the demand due to a preference shift. Justiniano, Primiceri

and Tambalotti (2013) call the latter the ”valuation” story.15

Our framework can accommodate these three possible explanations through, respec-

tively: i) the exogenous interest rate; ii) a time-varying value of θ in equation (3.9), as a

proxy for credit tightness; iii) the exogenous preference shock, jt, in the utility function.16

In order to evaluate the relative importance of these three possible driving factors in our

model, we feed into it one exogenous path for each of these three variables.17

Regarding the interest rate we use the percentage deviation in 30-Years Conventional

Mortgage Rate from its value in the initial period Q1:2004. As displayed in Figure 1.2,

this percentage deviation decreases steadily and substantially from 2004 to 2006, then it

moves up and then down again, till it sharply increases from the Q2:2008. However, the

15One may call it the ”Bush-push”, in the sense that the demand for housing was surely

strongly promoted by the George W. Bush administration. ”We can put light where there’s

darkness, and hope where there’s despondency in this country. And part of it is working to-

gether as a nation to encourage folks to own their own home.” President George W. Bush,

Oct. 15, 2002. See for example: http://www.nytimes.com/2008/12/21/business/worldbusiness/21iht-

admin.4.18853088.html?pagewanted=all& r=0
16A preference shock for housing services as ours is also present in Iacoviello and Neri (2010), Liu, Wang,

and Zha (2011) and Justiniano, Primiceri and Tambalotti (2013).
17In this Section, shocks to the evolution of the house price, εQt , are muted in performing this impulse

response type of exercise.
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Figure 2.3: Model reaction to interest rate change

change in this variable is rather small. We then fit this series into the demand functions

of the two agents to see the resulting path of the house price. Results are shown in Figure

1.3: the reaction of the model (dashed line) is very small compared with real data (solid

line). Moreover in the small box, where the simulated price series is shown more clearly, it

is possible to note that the series abruptly increases on impact and then decreases slowly;

a pattern not completely in accordance with the data.

To test for the ”liberalization” story that views the tightness of credit as the main source

of the boom-and-bust behavior of the house price, we construct a path for the parameter

θ in the borrowing constraint in the following way. First, we calibrate this parameter to

be equal to Iacoviello (2005): θ = 0.55. Second, we consider the net percentage of banks

reporting tightening credit standards in the US according to The January 2012 Senior

Loan Officer Opinion Survey on Bank Lending Practices18.

This measure (see Figure 1.4) remains stable from 2004 to the third quarter of 2006,

when access to credit starts tightening quite substantially till the second quarter of 2008.

Finally, we define θt as: θt = 0.55−0.55∗ tight credit, because the credit availability is an

increasing function of θ. The results of feeding this time-varying value of θ in our model

are shown in Figure 1.5. The simulated data do not match the real data both because

the size of the changes in the house price is much smaller and because the shape of the

path is different. The small box reproduces the simulated time series for the house price:

18http://www.federalreserve.gov/boarddocs/snloansurvey/201201/default.htm
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Figure 2.5: Model reaction to credit tightening change
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it increases quite mildly up to 2007 and then continuously decreases more strongly than

the initial increase. The rationale behind this behavior comes from the impact of θ on the

demand equation. When θ decreases, houses are less valuable for the consumer because

they can be less collateralized, so their demand decreases (see equation (2.6), where γt is

positive since the borrowing constraint is binding in our model being 1
Rt
− δ > 0). This

generates a reduction in the house price. It is clear that our model does not suggest this

mechanism as the driving force of house price dynamics.

Finally we consider the shock on house preferences ̂t. To build a time series for ̂t, we

look at the quarterly table showing the Buying Condition for Houses in the Michigan Con-

sumers Surveys. This measure is build from answers to the following question: Generally

speaking, do you think now is a good time or a bad time to buy a house? We focus on

the percentage of positive answers, and we normalized it to generate a series in a way to

have figures in the subset (−1, 1). Figure 1.6 visualizes the resulting path for ̂t. Values

of the series higher than zero mean a positive preference shock, and vice versa. The shock

is thus positive from 2004 to the first half of 2005, when it becomes negative and there

remains till the end of our sample, even if reverts toward zero from the middle of the 2007.

Figure 1.7 shows the response of the model to this path of the exogenous preference shock.

In this case, our model economy is able to replicate quite well the real price dynamics.

The house price increase builds up similarly to the data during the first two years and a

maximum percentage deviation of house price is reached in the first half of 2006. After

that the simulated time series exhibits a constant decline, while the data decrease slightly

and then rise up again to a second maximum before starts decreasing. While the simu-

lated time series is not able to reproduce the mild twin-peaks in the data, the two series

exhibit very similar behavior after mid-2007 and almost coincide at the end of the sample

period. The final exercise consists in putting together all the three effects (see Figure 8).

As evident also from the previous figures, basically all of the dynamics in house price is

generated by the preference shock. Adding the interest rate and the credit tightness has

basically no effects with respect to the case considering only the preference shock. Our

analysis therefore suggests that by far the most important factor in the recent boom-bust

dynamics of the house price in the US is a change in households’ preference and housing

demand. As such our analysis emphasizes the importance of the behavioral approach and

of the selection mechanism among different expectation rules as determinant factors of

the boom and bust cycle in the housing market. On the contrary, narratives based on

”fundamentals” as the interest rate behavior or the credit market liberalization appear to
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Figure 2.6: Preference shock

be unimportant in our framework.

It is interesting to note that our result is consistent with the findings of Justiniano,

Primiceri and Tambalotti (2013)19, that employ a very different modelling strategy: more

structural and less behavioral. Using a quantitative dynamic general equilibrium model

with occasionally binding constraint and an asymmetric borrowing constraint, they find

that the dynamics of house price in the US could be explained by a ”valuation” effect, that

is an exogenous shock to preference for housing. Similarly to our framework, a positive

shock leads to an increase in the demand and then in the price of houses, that are used

as collateral by the households, thereby expanding their ability to borrow, and ultimately

generating a boom. On the contrary, like us, they find little role for the ”liberalization

cycle”.

Finally, as stated in the calibration Section 2.4.1, we set the rational parameter (in-

tensity of choice) e in a way of minimizing the distance between the real data and the

model output in Figure 1.8. However, the results are quite robust as long as the parameter

value increases, as shown by Figure 1.9 and Table 3. The sum of the absolute value of

the difference between real data and the generated time series is minimized for e = 100,

but it is not very sensitive to perturbations of this parameter. Only very low levels of e

noticeably worsen the fit of the model. Recall that the lower is e, the less chartists and

19See also Iacoviello and Neri (2010) and Kiyotaki, Michaelidies, and Nikolov (2010).
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Figure 2.9: Sum of the absolute value of the difference between the data and the model

fundamentalists switch strategy according to their relative attractiveness. Thus, Figure

1.9 suggests that the Agent-Based part of our framework that allows for the endogenous

shift between the two forecasting rule in the model plays an important role in the fit of the

model. The heterogeneous agent framework gives the quite right persistence in the house

price dynamics: the hump shape of the series is given by the self fulfilled mechanism

induced by the backward looking expectation. This type of endogenous inertia due to

agents’ informational problem is typical of boundedly rational models in which agents do

not fully understand the nature of the shock or its transmission mechanism and therefore

they apply trial and error simple learning rules. Despite its simple structure, the model

matches the data quite well, stressing the importance of incorporating behavioral features

in economic models.20

e 1 100 300 400 500 700 900∑
|data− output| .7636 .6815 .6839 .6850 .6859 .6871 .6879

Tab 3: Robustness check of the parameter e

2.6 Leaning against the Wind Policies

In this Section we tackle the following question: ”Could the boom in house price have been

avoided with an appropriate interest rate policy?” This question fosters great discussion in

20For recent critiques to rational expectation hypothesis see Bouchaud (2009), Colander (2009) and

Farmer (2009).



2.6 Leaning against the Wind Policies 41

the policy circles and central banks. Should monetary policy be concerned with financial

stability and thus react to asset price, i.e., ”leaning against the wind”, or should it just

focus on inflation (and possibly output) stabilization?

Here we are more concerned about house prices rather than financial asset. In this

respect, the Adam, Kuang and Marcet (2011) model predicts that the recent house price

dynamics would have been avoided and the current account deficit would have been con-

siderably smaller, if the interest rate had fallen by less at the beginning of the 2000’s.

Gelain, Lansing and Mendicino (2013) develop a DSGE model where simple moving-

average forecast rules for a subset of agents significantly magnify the volatility and per-

sistence of house prices and household debt. In their framework, a direct response of the

central bank’s interest rate rule to either house-price growth or credit growth would have

the important drawback of substantially magnifies the volatility of inflation.21

We would like to ask the same type of question in our framework. To do so, we assume

that the real interest rate (i.e., our policy variable) responds to the house price. We then

solve for the optimal value of this response. Optimal is here defined as minimizing two

different measures of the house price fluctuations: the distortion and the volatility of the

house price.

The distortion measure is the average deviation of the house price from its steady

state:

dis(Q) =
1

T

T∑
t=1

|Q̂t|. (2.35)

The volatility measure is the average change in the time series of the deviation of the

house price from its steady state (which coincides with the average rate of growth of the

house price):22

vol(Q) =
1

T − 1

T∑
t=1

|Q̂t − Q̂t−1|. (2.36)

Moreover, for this exercise, we adopt two policy rules. First, we assume that the real

interest rate responds to the quarterly house price:

R̂q = rqQ̂q. (2.37)

21They show that macroprudential policies that directly affects the borrowing constraint are more effec-

tive tools in reducing the volatilities of house prices and household debt.
22See Lengnick and Wohltmann (2010). For the same reasons as theirs, we do not use the variance of the

simulated series. Our time series shows long deviations from the mean (which we interpret as boom and

busts), so that when calculating the variance, one would not measure the volatility but rather the mean

squared distortion.
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Figure 2.10: House price distortion and volatility with the interest rate reacting at house price.

Second, we modify the target making the interest rate to respond to the rate of growth in

the house price:

R̂q = rq
(
Q̂q − Q̂q−1

)
. (2.38)

Then we set the preference shock in house demands equal to zero. To find the optimal

value of rq, we do a grid search on the set rq ∈ [0, 3]. For each value of rq we simulate 1000

runs of 100 quarters each, drawing different realizations of the shock to the house price εQt

and then we average across runs. The results are shown in Figures 1.10 and 1.11. Figures

1.10 and 1.11 display the distortion and the volatility of the house price as a function of rq

for rule (2.37) and rule (2.38), respectively. In the case of rule (2.37) both the distortion

and the volatility measures are minimized for rq = 1. Hence, policy can minimize both

distortion and volatility, but the reaction of the interest rate should not be too strong,

because a higher than one-to-one response has the opposite effect. Recall that in our

model the real interest rate has a negative effect on demand (see equation (2.20)). It is

thus not so surprising that an overreaction to house prices could lead to increase, rather

than decrease, the instability of the house price dynamics, amplifying our Agent-Based

mechanism of evolutionary selection of expectation rules.

Figure 1.11 shows the results about distortion and volatility using the policy rule

described by (2.38). Now the distortion measure is still minimized for rq = 1 but the

volatility measure exhibits a different behavior with respect to Figure 1.10. A stronger

reaction is needed to minimize such measure. Interestingly, Figure 1.11 exhibits a trade-off

between the two measures for rq > 1.
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Figure 2.11: House price distortion and volatility with the interest rate reacting at the rate of

change in house price.

Admittedly, given the partial equilibrium nature of our model, our policy analysis and

implications should be taken with care. First, we are forced to assume that the real,

rather than the nominal, interest rate is the policy variable. Second, contrary to a general

equilibrium model as in Gelain, Lensing and Mendicino (2013), our framework can not

say anything about the possible deleterious effect of a policy rule on other policy relevant

variables, as inflation, for example. Third, for the same reason, our framework can not

take into account the feedback effects of the fluctuations in the house price on changes

in other variables (as income for example), that are taken as exogenous in our partial

equilibrium structure.

Although we acknowledge the limits of the policy analysis in our context, it seems that

a policy suggestion emerges clearly from the experiments, in line with Adam, Kuang and

Marcet (2011): using the interest rate to influence the house prices, the government could

avoid the movements at the heart of booms and busts in house prices. However, to assess

whether this is an optimal or sound thing to do, a general equilibrium analysis is needed.

2.7 Conclusion

We developed a model to study the housing market starting from an Agent-Based per-

spective. We showed that it is possible to generate an endogenous creation of boom-

and-bust dynamics in the house price by relaxing the rational expectation hypothesis,
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and embedding into the model an Agent-Based mechanism of evolutionary selection of

expectation rules based on backward-looking behavior. The framework is based on the

chartist-fundamentalist mechanism, and, despite its simplicity, it is able to match the

behavior of the US house price quite well. The interaction between chartists and funda-

mentalists is sufficient to create endogenous movements in the house price with a large

influence on the dynamics of the economic system.

The results point to the exogenous preference shock as the main driving force behind

the house price dynamics. On the contrary, the model suggests that other competing

hypothesis, as a prolonged period of low interest rates or the liberalization in credit stan-

dards, have only minor effects on house price dynamics.

Finally, the model provides a rationale for monetary policy to lean against the wind

in order to reduce the fluctuations in house prices.

Our framework can be expanded in several directions. The model is clearly still rather

simple in incorporating a really psychological foundation of expectations. Moreover, our

framework could be embedded into a general equilibrium model. This step would be par-

ticularly welcome to analyze the policy implications of our framework and the robustness

of the results in the last Section.



Chapter 3

Heuristics Selection and

Heterogeneity

3.1 Introduction

In the last decades economics and finance has been moving inside an important paradigm

change, from a representative and rational agent approach to a behavioral, agent-based

approach, in which economic environment is populated with boundedly rational, hetero-

geneous agents using rule of thumb strategies. The approach of neoclassical economics,

the rational approach, assumes that the decision maker is able to select the alternative

that maximizes the utility or profit, given his beliefs of other economic factors; moreover

it is assumed that decision maker’s original beliefs are self-fulfilling, in the sense that he

is able to predict exogenous as well as endogenous variables.

The bounded rationality approach (see Sargent, 1993) relies on different requirements be-

cause, from this point of view, what the rational approach requires is too demanding:

generally speaking, a boundedly rational agent is modeled as able to choose what he per-

ceives as the best for himself, but doesn’t own a perfect knowledge of the environment

structure. This behavioral approach fits much better with agent based-simulation models

and challenges the traditional, representative, rational agent framework; but many ideas

of this new approach have a quite long history: Keynes’ view that ”expectations matter”

is related to some elements of the behavioral agent-based model, as well as Simon’s idea

that economic man is ”boundedly rational” and to the view of Kahneman and Tversky

(1973, 1974) in psychology that individual behavior can be best described by judgmental

heuristic-representativeness. By this heuristic, people predict the outcome that appears
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most representative of the evidence.

Indeed the evolution of economic variables, such as stock prices, interest rates, exchange

rates and inflation rates, is affected by expectations of agents operating in the financial

and real markets: for this reason it’s possible to think to the market as an expectations

feedback system: market history shapes individual expectations which, in turn, determine

current aggregate market variables and so on.

Laboratory experiments with human subjects have shown that individuals do not behave

in a full rational way but follow simple heuristics which can account for persistent biases

in taking decisions. This occurrence explains why prices may persistently deviate from

fundamentals in laboratory markets, similarly to what can be observed in real stock mar-

kets. Moreover heterogeneity is crucial to the aim of expounding a number of evocative

findings of the recent learning to forecast experiments.

In this work we develop a simple nonlinear model which is able to exhibit path-dependance

explaining how both stable steady states and attracting curves can arise endogenously in

the model. In particular we present a simple model with evolutionary selection among

different simple forecasting strategies and the economic environment is seen as a com-

plex evolutionary system between competing boundedly rational trading strategies. The

choice of heuristics will be governed by an evolutionary selection mechanism, based on the

principle that more successful strategies will attract more followers. In this multi-agent

model, endogenous fluctuations is caused by a generic phenomenon, that is coexistence

of two attractors (a steady state and a periodic or quasi-periodic orbit). In particular

the model tries to generalize the adapted belief system (ABS) introduced by Brock and

Hommes (1997, 1998) and then developed by Anufriev and Hommes (2012). The ABS here

considered is a present discounted value asset pricing model with heterogeneous beliefs:

there are two trader types and the fractions of these types change over time according to

evolutionary fitness, as measured by utility from realized profit. The economic intuition

behind this different outcomes (persistent oscillations and convergence) could be explained

by the interaction and the evolutionary switching between trend extrapolation and sta-

bilizing fundamental analysis that may lead to coexistence of locally stable fundamental

steady state and an attracting closed curve far from the steady state. Indeed asset price

fluctuations are characterized by high volatility with large price changes irregularly in-

terchanged by episodes of low volatility with small price changes. In particular there’s

empirical evidence that many ”stylized facts” observed in financial time series recall the

presence of endogenous fluctuations that cannot be explained uniquely by external factors
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or by fundamentals. For these reasons, the purpose of this paper is to show these facts

simultaneously by a simple behavioral model of individual learning.

The paper is organized as follows: Section 2 briefly describes laboratory experiments with

human subjects; in Section 3 the evolutionary model is presented along with its assump-

tions; Section 4 is devoted to the stability analysis of the steady state of the model;

simulations are performed in Section 5 and Section 6 concludes.

3.2 Laboratory experiments

A number of computerized learning to forecast experiments have been performed in the

CREED laboratory at the University of Amsterdam. In this work we try to explain the-

oretically and analytically the results described in the works of Hommes et al. (2005,

2007). In each session of the experiments, 6 participants were advisers to large pension

fund and had to submit point forecasts for the price of a risky asset for 50 consecutive

periods. The pension fund can invest money either in a risk-free asset with real interest

rate r per period or in shares of an infinitely lived risky asset. In each period the risky

asset pays uncertain dividend which is a random variable, independent and identically

distributed, with mean ȳ. The price of the risky asset, pt, is determined every period by

a market clearing equation, as an aggregation of individual forecasts of all participants.

The exact functional form of the strategies and the equilibrium equation were unknown

to the participants, but they are informed that the higher their forecasts are, the larger

the demand for the risky asset is. Participants also know the values of the parameters

r = 0.05 and ȳ = 3, and therefore they have enough information to compute the rational

fundamental price of the risky asset pf = ȳ/r = 60.

Every session of the experiment last 51 periods and in every period each of the six par-

ticipants provide a two-period-ahead forecast for the price of the risky asset, given the

available information which consists of past prices (up to two lags) of the risky asset and

own past predictions (up to one lag) made by the participant. The predictions of other

participants are unknown neither how each forecast affects the equilibrium price. When

all six predictions for the price in period t + 1 is submitted, the current market clearing

price can be computed according with a standard mean-variance asset pricing model with

heterogeneous beliefs:

pt =
1

1 + r
((1− nt)p̄et+1 + ntp

f + ȳ + εt) t = 0, ..., 50 (3.1)
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(a) (Almost) monotonic con-

vergence

(b) Persistent oscillations (c) Dampening fluctuations

Figure 3.1: Time series of price (upper part), individual predictions (lower part) and forecasting

errors (inner frame) in laboratory experiments.

where p̄et+1 = 1
6

∑6
i=1 p

e
i,t+1 is the (equally weighted) average of the six individual forecasts,

r is the risk-free interest rate, ȳ is the mean dividend, εt is a stochastic term representing

small demand/supply shocks and nt stands for a small fraction of ”robot” traders who

always submit a fundamental forecast pf . Robot traders were introduced as a stabiliz-

ing force in the experiment to prevent the occurrence of large bubbles. The fraction of

robot traders increased as the price moved away form its fundamental equilibrium level,

according to

nt = 1− exp
(
− 1

200
|pt−1 − pf |

)
(3.2)

At the end of each period every participant h was informed about the realized price and

his/her earnings were defined by a quadratic scoring rule:

et,h = max

(
1300− 1300

49
(pt − pet,h)2, 0

)
(3.3)

The data coming from these experiments can be used as a benchmark for different

expectations hypotheses, such as rational expectations or adaptive learning models. Fur-

thermore the main achievements of the experiments are as follows:

• human subjects tend to follow simple forecasting predictors and set up their decisions

on past observations;

• participants are able to coordinate on a common prediction strategy even if this can

be different between sessions;

• three different price patterns were observed, as Figure 3.1 (slow and almost mono-

tonic convergence, persistent oscillations with almost constant amplitude, dampen-

ing fluctuations);
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Figure 3.2: Coordination in model simulations. Heuristic switching model simulations (Left) and

predictions of the two forecasting heuristic in the evolutionary switching model (Right). Benchmark

parameters are β = 0.4, η = 0.7, δ = 0.9 and m = 0.5. Monotonic convergence is obtained for

g = 0.2, l = 0.1 (top panels), persistent fluctuations for g = 1.1, l = 1 (central panels) and

dampening oscillations for g = 1, l = 0.8 (bottom panels)

• realized asset prices are significantly different from the rational fundamental price

in every sessions.

The evolutionary switching mechanism matches individual forecasting behavior as well as

market outcomes in the experiments. Figure 3.2 shows the simulations of the heuristics-

switching model that we will describe in the next section. Coordination of individual

forecasts explains the three different aggregate market outcomes, i.e. monotonic conver-

gence to the equilibrium, permanent oscillations and oscillatory convergence. Oscillations

are reinforced when the impact of trend followers is relatively large and may be sustained

by the anchoring and adjusting heuristic. Thus, similar to the experiments, in our evo-

lutionary framework agents’ coordination arises and it supports the main outcomes of

learning to forecast laboratory experiments.
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3.3 The evolutionary model

In this section we present the model with evolutionary selection between different simple

forecasting heuristics. There are some reference points that is worth to underline: there

exists a pool of simple forecasting rules (e.g. adaptive or trend-following heuristics) com-

monly available to the agents and they could be either costly or costless; agents will select

rules from this pool. At every time period these heuristics give forecasts for next period’s

price, and the realized market price depends upon these individual forecasts. Moreover the

effects of different forecasting heuristics upon the realized prices are changing over times

because individuals are learning based on evolutionary selection: the better a forecasting

rule performed in the past, the higher its impact will be in determining next period’s price.

For these reasons the realized market price and the impact of the forecasting heuristics

evolve together in a dynamic process with mutual feedback.

Let I denote a set of I heuristics which agents can use for price prediction. In the be-

ginning of period t every rule i ∈ I gives a two period-ahead point prediction for the

price pt+1. This prediction is described by a deterministic function fi of the available

information set:

pei,t+1 = fi(pt−1, pt−2, . . . ; p
e
i,t, p

e
i,t−1, . . .) (3.4)

In the market there are only two types of assets, a risk-free and a risky asset: in each

period the risk-free asset pays a fixed interest rate r, whereas the risky asset pays stochastic

dividends, independently and identically distributed, with mean y. The price in period t

is computed on the basis of these predictions, and it is given by the discounted value of

future cash flow, according to equation 3.1 of the previous section (we recall it for sake of

simplicity:

pt =
1

1 + r

(
(1− nt)pet+1 + ntp

f + y + εt
)

where pet+1 denotes an (equally weighted) average of the individual forecast, pf is the

rational fundamental price, r(= 0.05) is the risk free interest rate, y(= 3) is the mean

dividend and εt is the stochastic term associated with small demand/supply shocks and

nt represents the share of fundamental robot traders as described by equation (3.2). The

fraction of robot traders increases in response to the deviations of the asset price from

its fundamental level: this mechanism reflects the fact that in real market there is more

agreement about over or under evaluation of an asset when the price deviation from the

fundamental level is large. Finally the fundamental price is set to pf = y/r = 3/0.05 = 60.
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The average pet+1 in (3.1) is a population weighted average of the different forecasting rules:

pet+1 =

I∑
i=1

ni,tp
e
i,t+1 (3.5)

The impact of each heuristics, ni,t, evolves over time and depends on the past relative

performance of all I heuristics, and more successful heuristics attract more followers. The

performance measure of a forecasting heuristic in a given period is based on its squared

forecasting error (see Anufriev et al. 2012): this means that the performance measure of

heuristic i up to (and including) time t− 1 is

Ui,t−1 = −(pt−1 − pei,t−1)2 + ηUi,t−2 (3.6)

The parameter η represents the memory of the agents, measuring the relative weight that

each agent gives to past errors of heuristic i: if η = 0, the impact of each heuristic is

completely determined by the most recent forecast error and for 0 < η ≤ 1 all past

prediction errors affect the impact of heuristic i, with exponentially declining weights.

Given the performance measure, the fraction of agents using heuristic i or the impact

of heuristic i in computing pet+1, is updated according to a discrete choice model with

a-synchronous updating (see Hommes et al. 2005 and Diks et al. 2005)

ni,t = δni,t−1 + (1− δ)exp(βUi,t−1)

Zt−1
(3.7)

where Zt−1 =
∑I

i=1 exp(βUi,t−1) is a normalization factor and
∑I

i=1 ni,t = 1. If δ = 0

the updating rule reduces to the discrete choice model with synchronous updating; the

more general case 0 < δ < 1, gives some persistence in the impact of rule i, reflecting the

fact that not all participants update their rule in every period or at the same time: for

this reason δ can be seen as the average per period fraction of agents who doesn’t change

their previous forecasting rule (if δ = 1 the initial impacts of the rules never change). So

if 0 < δ < 1 in each period a fraction 1 − δ of individuals update their rule according to

the well known discrete choice model, used for example in Brock and Hommes (1997). β

represents the intensity of choice and measures how sensitive agents are to differences in

strategy performance: the higher β, the faster individuals will switch to more successful

rules (if β = 0, the result is an equal distribution of forecasting rules among individuals;

if β → ∞, the fraction 1 − δ who updates its heuristic switch to the most successful

predictor).

To keep the model as simple as possible, but rich and complete enough to explain the
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different price patterns observed in the experiments, we have selected only two heuristics,

which are rather simple and were among the rules estimated on the individual forecasts

in the experiments. A behavioral interpretation underlies each heuristic.

The first heuristic is a trend following rule. It extrapolates a trend that can be weak or

strong depending on what value is assigned to the parameter g:

pe1,t+1 = pt−1 + g(pt−1 − pt−2) (3.8)

This rule means that agents simply predict the last observed price level plus a multiple of

the last observed price change (g > 0). It generalizes the weak and strong trend following

rules developed by Anufriev and Hommes (2012). It is also worth to point out that at the

moment when the price forecasting for time t + 1 is submitted, price pt is still unknown

and the last observed price is pt−1.

The second rule is a little bit more complicated. It is a combination of the average

prediction of the last observed price and an estimate of the long-run equilibrium price

level with an extrapolation of the last price change

pet+1 = mpavt−1 + (1−m)pt−1 + l(pt−1 − pt−2) (3.9)

where pavt−1 is the sample average of all past prices, i.e. pavt−1 = 1
t

∑t−1
j=0 pj . This rule is called

learning anchoring and adjustment heuristic since it uses an anchor, mpavt−1 + (1−m)pt−1

defined as an (equally weighted) average between the last observed price and the sample

mean of all past prices, and extrapolates the last price change l(pt−1 − pt−2) according to

the value assigned to the parameter l. The parameter m represents the weight assigned

to the fundamental price.

This kind of rule is obtained from a related linear anchoring and adjustment heuristic

pe2,t+1 = mpf + (1−m)pt−1 + l(pt−1 − pt−2) (3.10)

In the experiment subjects did not know pf explicitly since they were not provided with the

fundamental price, but apparently they were able to learn the anchor mpft−1 +(1−m)pt−1

and extrapolates price change from there. Therefore we replaced pf in equation (3.10) by

a proxy pavt−1 given by the observed sample average of past prices1.

All these rules are first order heuristics in the sense that they only use last observed price

level, i.e. the last forecast and/or the last observed price change, but it could be also

1However we will use heuristic given by (3.10) in the simulations and stability analysis provided in the

following sections
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possible to introduce rules with more price lags.

Let us observe that (3.8)-(3.9) can be collected into one general rule, such as:

pi,t+1 = (1− βi,1 − βi,2)pf + βi,1pt−1 + βi,2pt−2 i = 1, 2 (3.11)

In this way the trend extrapolating rule is obtained for β1,1 = 1+g and β1,2 = −g, whereas

the anchoring and adjusting rule is obtained setting β2,1 = m+ l and β2,2 = −l.
In order to analyze the deterministic skeleton of the model, we set εt = 0 and obtain:

pe1,t+1 = pt−1 + g(pt−1 − pt−2)

pe2,t+1 = mpf + (1−m)pt−1 + l(pt−1 − pt−2)

nt = 1− exp
(
− 1

200 |pt−1 − pf |
)

Ui,t−1 = −(pt−1 − pei,t−1)2 + ηUi,t−2 i = 1, 2

ni,t = δni,t−1 + (1− δ) exp(βUi,t−1)
Zt−1

i = 1, 2

pt = 1
1+r

(
(1− nt)(n1,tp

e
1,t+1 + n2,tp

e
2,t+1) + ntp

f + y
)

(3.12)

3.4 Analysis of the model

The dynamics described by (3.12) can be re-written in deviations from the fundamental

price, setting

x1,t = pt − pf , x2,t = x1,t−1, x3,t = x1,t−2, x4,t = x1,t−3

and plugging the two heuristics into the price equation.

A number of issues arises when analyzing the model and, in order to give an answer to

all of these, we consider the deterministic skeleton of the system in (3.3) and analyze its

properties.

The following 7-dimensional system of first order equations consists in 2 equations de-

scribing the evolution of performance measures, one describing the fractions of different

forecasting rules, one equation describes the price dynamics and other 3 equations are

used to take lags of price deviations into account.
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

U1,t−1 = ηU1,t−2 − (x1,t−1 − (1 + g)x3,t−1 + g · x4,t−1)2

U2,t−1 = ηU2,t−2 − (x1,t−1 − (m+ l)x3,t−1 + l · x4,t−1)2

n1,t = δn1,t−1 + 1−δ
Zt−1

exp (β[−(x1,t−1 − (1 + g)x3,t−1 + gx4,t−1)2 + ηU1,t−2])

x1,t = exp(− 1
200
|x1,t−1|) 1

1+r

(
[δn1,t−1 + 1−δ

Zt−1
exp
(
β
[
−(x1,t−1 − (1 + g)x3,t−1 + gx4,t−1)2 + ηU1,t−2]

)]
((1 + g)x1,t−1 − gx2,t−1)+

+[δn2,t−1 + 1−δ
Zt−1

exp
(
β
[
−(x1,t−1 − (m+ l)x3,t−1 + lx4,t−1)2 + ηU2,t−2]

)]
((m+ l)x1,t−1 − lx2,t−1)

)
x2,t = x1,t−1

x3,t = x2,t−1

x4,t = x3,t−1

First of all it is worth to notice that it is straightforward to check that the fundamental

steady state is a fixed point for the map and we investigate its local stability. Furthermore

notice that the local stability of the price dynamics at the steady state pt = pf = p∗ is not

affected by the robot traders. Taking this result into account, we study the local stability

of the equilibrium x1 = x2 = x3 = x4 = 0 of this system with price equal to pf and zero

fraction of robot traders.

The Jacobian matrix J of the system at the steady state is given by

Js =



η 0 0 0 0 0 0

0 η 0 0 0 0 0
βη(1−δ)

4 −βη(1−δ)
4 δ 0 0 0 0

0 0 δpf

1+r
(1+g+m+l)

2(1+r)
−g−l

2(1+r) 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0


This Jacobian matrix has eigenvalues equal to 0 and η (both of multiplicity 2), δ of

multiplicity 1 and the remaining two eigenvalues are the roots of characteristic polynomial

for the matrix

Jλ =

 (1+g+m+l)
2(1+r)

−g−l
2(1+r)

1 0


Since η and δ are supposed to be smaller than 1, they do not determine a change in

the stability of the system. We also assume δ 6= 1 that assures an important impact of the

heuristics over time and η < 1 which means agents take into account their past perfor-

mances. For these reasons the local stability conditions are completely determined by the

eigenvalues of Jλ and the coefficients of forecasting heuristics are the main driving forces.

Nevertheless the parameters η and δ affect the speed of convergence, being eigenvalues
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of the Jacobian matrix. Furthermore the local stability is not influenced by the intensity

of choice β, as in Anufriev et al. (2012). So the fundamental steady state of the asset

pricing model is locally stable if all the eigenvalues of Jλ lie inside the unit circle. When

the heuristic coefficients are specified, the eigenvalues of Jλ can be computed.

Let

P(λ) = λ2 − 1 + g +m+ l

2(1 + r)
λ+

g + l

2(1 + r)
(3.13)

be the characteristic polynomial of Jλ. The stability region of the fixed point is determined

by the following conditions (see the work of Medio 1992 and Medio and Lines 2003):
P(1) = 1− Tr +Det > 0

P(−1) = 1 + Tr +Det > 0

Det < 1

Due to the symmetry of the map, simple computations show that a pitchfork2 bifurca-

tion of the fundamental steady state arises when P(1) = 0, whose curve has equation

m = 1 + 2r. It does not depend on g and l and occurs for parameter values that have

no economic meaning in our setting. The flip bifurcation curve, P(−1) = 0, has equation

3 + 2(r + g + l) + m = 0. The Neimark-Sacker bifurcation curve, defined by Det = 1,

corresponds to g+l
2 = R where we have set (1 + r) = R.

Figure 3.3: Stability region in the (m, g + l) parameter space

Figure 4.4 depicts the stability region in the parameter space (m, g + l). As the picture

shows, the only bifurcation that can occur is a Neimark-Sacker, represented by the hor-

izontal line g+l
2 = R: this situation appears when the average extrapolation coefficient

exceeds R. Moreover pitchfork and flip bifurcations may occur but only for parameter

2Recall that the fundamental steady state always exists.
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values that have not economic meaning in our setting.

This evolutionary switching model with only two heuristics is able to generate dynamics

with an unstable fundamental steady state. As we have already mentioned, the switching

model with competing trend extrapolating and anchoring and adjusting heuristics under-

goes a Neimark-Sacker bifurcation when the average extrapolation coefficient exceeds the

value of the gross interest rate R. Moreover it is important to stress that even if the fun-

damental steady state is locally stable, other attractors, such a stable cycle, may co-exist.

Hence the local stability properties of the fundamental steady state do not imply global

stability, depending on the coefficients of the forecasting heuristics.

3.5 Model simulations

In this section we show some interesting properties that the model is able to exhibit3.

First of all, different behaviors can arise from our setting and the explanation is that

heterogeneous learning has a kind of path-dependance behavior, as Anufriev and Hommes

have shown in their works (2012). For this reason the model is capable of reproducing

different price courses, consistent with the outcomes of the laboratory experiments with

human subjects. Moreover this path-dependent distinction of the model remains effective

for a large range of parameters. As shown in Figure 3.2 of Section 2, the three qualitatively

different price patterns observed in the experiment can be reproduced, that is monotonic

convergence, persistent oscillation and dampening fluctuations.

A particular feature of the model is the possibility in which prices do not necessarily con-

verge to the fundamental steady state. This means that in this heterogeneous agent model

with evolutionary learning, prices could settle down to a stable periodic or quasi-periodic

orbit and not to their fundamental value, even if this remains locally stable.

Figure 4.9 shows coexistence of attractors in our heterogeneous framework: indeed we

can observe either convergence to the fundamental steady state (Figure 4.9, left box) or

convergence to a stable periodic attractor (Figure 4.9, right box) for the same parameter

values. Note that we are considering parameter values in the stability region of the fun-

damental steady state, i.e. (g + l)/2 = 1.04 < R.

It has also to be noticed that the convergence to the fundamental steady state requires

more. In this eventuality agents start with a strong trend extrapolation and only after

3Here we restrict our analysis to the case of no memory in the performance measure (η = 0) and no

stickiness in the fraction of individuals who keep fixed the previous strategy (δ = 0).
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Figure 3.4: LHS: convergence to the fundamental steady state (p0 = 59, q0 = 59). RHS: con-

vergence to a periodic attractor (p0 = 55, q0 = 55). Parameter values: g = 1.06, l = 1.02,m =

0.35, β = 0.4

some periods some kind of fundamental expectations were used, due to the initial large

prediction errors and thus low performances.

We further deepen the analysis showing the existence of two kinds of bifurcation and the

importance of this aspect is related to the fact that there exists an open region in the pa-

rameter space where a stable steady state and a stable attracting closed curve coexist, as

the previous pictures showed. Even when the fundamental price pf is locally stable, price

need not converge to this fundamental value, but may focus on an attracting closed curve.

Indeed, as shown by Gaunersdorfer et al. (2008), an open region in the parameter space

with a stable steady state and an attracting closed curve may exist. This phenomenon is

due to the existence of a particular codimension two bifurcation, the so-called Chenciner

bifurcation (see Hommes, 2013).

Generally a steady state may lose stability through a Neimark-Sacker bifurcation when

its Jacobian matrix has two eigenvalues lying on the unit circle with all other eigenvalues

inside the unit circle. Two types of Neimark-Sacker bifurcation are distinguished:

• a supercritical Neimark-Sacker bifurcation where the stable steady state becomes

unstable and the unstable steady state is surrounded by an attracting closed curve

with periodic or quasi-periodic dynamics;

• a subcritical Neimark-Sacker bifurcation where the stable equilibrium becomes un-

stable and the stable equilibrium is surrounded by a repelling closed curve with

periodic or quasi-periodic dynamics.
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A subcritical Neimark-Sacker bifurcation is generally associated with explosive dynamics

that occur after its appearance. Here we do not have such kind of dynamics but we can

observe bounded and wide oscillations. From the view point of a policy maker, it could be

reasonable prevent this kind of dynamics. Accordingly, policy maker should reveal clear

information about fundamentals so that anchoring or fundamental beliefs become stronger

and Neimark-Sacker bifurcation becomes supercritical.

Following Gaunersdorfer et al. (2008), we compute the curve in the parameter space (m, g)

which indicates the transition from a supercritical bifurcation to a subcritical one.4

Recall that at this stage we have restricted our analysis to the case of no memory (η = 0)

and synchronous updating in fractions (δ = 0). Then the parameter space P is equal to

P = {(β, g,m, l, R) : β > 0, g > 0, 0 < m < 1, l > 0, R > 1}

The Neimark-Sacker bifurcation manifold is given by

H = {(β, g,m, l, R) ∈ P :
g + l

2
= R}

In our evolutionary adaptive learning model, the locus of degenerate Neimark-Sacker

(Chenciner) bifurcation points in the (m, g) parameter plane, within the Neimark-Sacker

bifurcation manifold H = {g+l2 = R} is reported in Figure 3.5. From Figure 3.5 we can

see that for small g values the steady state loses stability through a subcritical Neimark-

Sacker bifurcation. When g is sufficiently large, as m increases the bifurcation becomes

subcritical, the steady state becomes unstable and, when it is stable, it co-exists with a

repelling closed curve. Moreover there exists a so called volatility clustering5 region where

a locally stable fundamental steady state and an attracting closed curve coexist. Note

that for g < 0.95 the bifurcation is always subcritical but it arises for l = 2R − g > 1.15,

i.e. when the anchoring and adjusting rule becomes destabilizing.

In Figure 3.6 the bifurcation diagram in the parameter space (l,m) shows the transition

from a supercritical bifurcation to a subcritical. How can it be read? Let us move from

figure 3.5 and fix a g-value (for example g = 1.5). For this value there exists a m∗-value

(m∗ = 0.496232) on the x-axis that marks the transition from supercritical to subcritical

bifurcation. Furthermore the bifurcation diagram in Figure 3.6 clarifies this mechanism:

4In the appendix the main steps to reach this goal are shown.
5We refer to volatility clustering as an endogenous phenomenon due to the presence of different kind

of agents in which price irregularly move between different regimes where periods of low volatility are

interchanged by periods of persistent deviations from the fundamentals and high volatility.
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Figure 3.5: Plot of the curve that marks the transition from a supercritical to a subcritical

bifurcation

indeed on the bifurcation manifold g+l
2 = R we reported the m∗-value for which the tran-

sition happens and we can observe that for values of m lower than m∗ the bifurcation is

supercritical whereas for m > m∗ the bifurcation is subcritical. Indeed in such a case the

periodicity regions appear before the Neimark-Sacker bifurcation.

We can provide a simple economic intuition about this phenomena, i.e. in the presence

of strong extrapolators, price deviations are reinforced by trend followers. This leads the

fundamental steady to be locally unstable and prices depart from their fundamental value.

But when deviation becomes too large, trend followers extrapolate less and condition their

forecast on market fundamentals: in this way a fundamental rule is prevailing and prices

quickly return to the fundamental value. This is a cyclic process that repeats. So when

trend followers are weakly extrapolators (i.e. g close to 1), the interaction among agents

can lead them to coordinate on a periodic orbit around the locally stable fundamental

steady state.

Up to now it has been shown that the fundamental steady state p∗ is stable for small g

and l values, and it loses its stability in a Neimark-Sacker bifurcation at g + l = 2(1 + r):

indeed we have seen that for g + l < 2(1 + r) a stable invariant curve may exist when the

steady state is still locally stable.

Our model can also show some more complex dynamical behavior for which chaos arises.

We show this behavior by two different time series: in the left box of Figure 3.7, obtained

with i.c. p0 = 31.6 and q0 = 31.6, we can observe a cycle of period 8 around the funda-

mental steady state (there is not a long transient to converge to the cycle) whereas in the

right box of Figure 3.7, obtained with i.c. p0 = 31.7 and q0 = 31.7, the longer transient
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Figure 3.6: Bifurcation diagram in the (l,m) parameter plane

Figure 3.7: LHS: periodic cycle with a short transient. RHS: chaotic repeller with a longer

transient

part reveals the existence of a chaotic repeller.

This dynamical change is due to a homoclinic bifurcation that occurs when trend extrap-

olators are strong (large g values) and the second rule gives greater importance to the last

price change (large l values). Indeed trend followers strongly extrapolate small deviations

from the fundamental steady state leading to oscillating prices. Moreover, this learning

system shows the existence of a homoclinic orbit which is associated to complex dynamic

behavior. This evolutionary interaction is connected to the existence of a homoclinic bifur-

cation which generates chaotic dynamics (for better explanation see the works of Agliari

et al. 2001, 2005).
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3.6 A more general case: δ 6= 0 and η 6= 0

Previous simulations have been conducted by setting δ = 0 and η = 0 which means respec-

tively synchronous updating and no memory. Similar simulations can be provided showing

that the same qualitative results can be reached even if we re-introduce a kind of inertia

in fractions dynamics (a-synchronous updating) and memory in the fitness measure.

The three price patterns observed in laboratory experiments can be reproduced thank

to the heterogeneous learning mechanism (see figure 3.2 in Section 2). We simulate the

model for a fixed set of parameters, i.e. β = 0.4, δ = 0.9, η = 0.7 and m = 0.5. Note that

the parameter values of g, l and m are selected within the stability region displayed in

figure 4.4. As previously shown, local stability does not depend on the intensity of choice

β. Furthermore, its dependance on the other two parameters of the learning mechanism,

η and δ is also limited. Indeed the local stability conditions are completely determined

by polynomial (3.13) and only depend on the coefficients of forecasting heuristics. The

parameters η and δ, being eigenvalues of the Jacobian matrix, affect the speed of the

convergence.

In the previous section it has been shown that the fundamental steady state is stable for

some g-values, it loses stability in a Neimark-Sacker bifurcation for g+l
2 = R but a stable

limit cycle can even exist for g + l < 2R, i.e. when the fundamental equilibrium is still

locally stable. The same qualitative behavior exists also in the presence of a-synchronous

updating and memory in the fitness measure. Furthermore, by numerical simulations, in

Figure 3.8 we shows an example of 3 coexisting attractors in the (pt − pt+1) plane for

different initial conditions and with the same parameter values (g = 1, l = 1.062 and

m = 0.01). Since g+l
2 < R, these attractors coexist with the locally stable fundamental

steady state. We can observe the fundamental price along with a stable 6-cycle and a

quasi-periodic circle.

In the left panel of Figure 3.9 it is illustrated what happens before and after the Neimark-

Sacker bifurcation. Numerical simulations suggest that for g = 1 and l = 1 the funda-

mental steady state is unique and locally stable since it still lies in the stability region
g+l
2 < R (m is set equal to 0.5 in both pictures). As g increases, the right panel of Fig-

ure 4.1 displays that an invariant attracting curve (a quasi-periodic attractor) appears

via a supercritical bifurcation. We can claim that the fundamental value pf is a unique

locally stable equilibrium if the price does not differ too much from it and the dynam-

ics converges towards it. Moreover the fundamental price pf can be destabilized via a
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Figure 3.8: Projections of attractors in the pt − pt+1 plane

Neimark-Sacker bifurcation at g+l
2 = R and a stable closed curve with periodic or quasi-

periodic behavior occurs. This closed curve may be associated with a chaotic repeller via

homoclinic bifurcation as well (as in the case of no memory and synchronous updating

of fractions), meaning that price will not converge to the fundamental value but it will

fluctuate around it after a long transient part. Finally, the bifurcation diagram in Figure

(a) g + l = 2 (b) g + l = 2.2

Figure 3.9: Projection of a stable and a quasi-periodic attractor in the pt − pt+1 plane

3.10 depicts how the dynamics of the switching model with two heuristics depends on the

memory parameter η. Small values of the memory parameter η imply that agents do not

give great importance to past performance of both heuristics and they forget it rapidly.

Since the trend extrapolating rule is generally self-reinforcing on a short time scale, this

heuristic will often dominate even if some occasional errors can occur when trend reverses.

Consequently, oscillations are especially wide for small η values. When memory increase
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(larger η values), the evolutionary switching model tends to generate smaller amplitude

fluctuations. This evidence is related to a lower usage of the trend following rule due to

its poor performance.

Figure 3.10: Bifurcation diagram in the switching model with respect to the memory parameter

η. The amplitude of the quasi-periodic oscillations becomes smaller as η increases. Benchmark

parameters are β = 0.4, δ = 0.9, r = 0.05 and extrapolation coefficients g = 1.3, l = 1

3.7 Conclusions

Neoclassical economic thinking have been assuming that individuals form expectations

rationally leading to an efficient allocation of resources. On the other hand laboratory

experiments with human subjects have shown that agents do not behave fully rational,

but follow simple heuristics (rules of thumb). For this reason the variables, such as prices

or interest rates, may deviate from fundamentals, similar to the large fluctuations observed

in financial markets. Moving from these stylized facts, we addressed the question whether

it is possible to express this evidence by means of a simple model and whether this model

is able to generate both persistent excess volatility and convergence to the fundamental

equilibrium.

The model is made up with simple and different forecasting rules, each of which can

generate its own type of dynamics. In every period the forecasting strategy is selected

among the population of heuristics and agents adapt their selection over time, based on the

relative performance of the heuristics (evolutionary selection mechanism). The outcomes

we came up with is quite interesting: the dynamics exhibits path-dependence feature, i.e.

the capability to generate both persistent oscillating and converging patterns for the same

parameter values. Indeed path dependance implies that initial conditions are responsible

for differences in aggregate price patterns. We can claim that even if the path-dependence
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feature remains valid for a large range of parameters, some quantitative aspects may

change when parameters vary, such as the speed of convergence or the amplitude and

frequency of oscillations.

We have also shown that the fundamental steady state can be locally unstable with our set

of heuristics and, although the fundamental equilibrium is locally stable, other attractors

may co-exist. There is a simple economic intuition of this phenomena, depending on the

strength of the trend extrapolation and the role of stabilization forces. Indeed evolutionary

interaction among strong extrapolators and stabilizing agents leads to other attractors with

irregular price fluctuations, switching between periods of low and high volatility. Thus the

interaction among different kind of agents may lead to a stable closed curve (or a more

complicated attractor) around a locally stable steady state. Irregular price oscillations

and coexistence of attractors can be considered as an explanation of some stylized facts,

such as volatility clustering observed in real financial markets.

We are aware the model proposed here is simple and should be considered as stylized

behavioral model, but excess volatility and a kind of volatility clustering are created by

the trading process, and this seems to be in line with financial practices. If the evolutionary

interaction of boundedly rational agents with different trading strategies extols volatility,

there are important consequences for regulatory policy in financial markets. Good or

bad news in the markets can be amplified by the evolutionary mechanism. Since we

are embedded in an increasingly globalized world, and of course this is true for financial

markets, small changes in fundamentals in one country may generate changes in asset

price in other countries.
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Appendix: Normal form analysis

In everything that follows we set δ = 0 ad η = 0. Then prices are written in deviations

from the fundamental price, as introduced in Section 3. The fundamental fixed point pf

corresponds with x = 0.

Considering the family of maps Φ(µ, x) = (ϕ(x, µ), x1, x2, x3), the evolution map ϕ is

assumed to be of the form:

ϕ(x, µ) =
1

R

[(
s̃(x1 + g(x1 − x2)) + (1− s̃)(l(x2 − x1)−mx1)

)]
with

s̃ = exp(−β[(x1−x3−g(x3−x4))]2)
exp(−β[(x1−x3−g(x3−x4))]2)+exp(−β[x1−mx3−l(x3−x4)]2)

and

µ = (g, l,m,R)

Now we focus on the bifurcations of the origin and, for this aim, the linearization DΦ(0)

of Φ at 0 has to be computed:

J = DΦ(0) = dΦ
dx (0) =


1

2R(m+ l + g + 1) − (l+g)
2R 0 0

1 0 0 0

0 1 0 0

0 0 1 0

 =


2a −b 0 0

1 0 0 0

0 1 0 0

0 0 1 0


introducing parameters a and b by

a = 1
4R(m+ l + g + 1) and b = l+g

2R

and with steady state values x = 0 and s̃ = 1
2 .

The characteristic equation of the matrix turns out to be:

λ2(λ2 − 2aλ+ b) = 0

The root λ = 0 has multiplicity 2 whereas the other two roots are

λ± = a±
√
a2 − b

A necessary condition for the occurrence of a Neimark-Sacker bifurcation is that |λ±| = 1

and λ± 6∈ {−1, 1} or, equivalently, that:

b = 1 and a2 − 1 < 0.
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In terms of original parameters:

g = 2R and −6R− 1 < m < 2R− 1

We’ll assume in the following that these conditions are fulfilled and let λ = λ+; then

λ− = λ̄.

Complex eigenvectors of J are q and q̄ ∈ C4, given by:

q = (1, λ̄, λ̄2, λ̄3)

satisfying Jq = λq, Jq̄ = λ̄q̄, and e3 and e4, satisfying Je3 = e4, Je4 = 0, where ej denotes

the j’th unit vector.

The subspace spanned by eigenvectors of J with eigenvalues having norm equal to 1 is

called the linear center space Ec whereas the subspace spanned by eigenvectors ofJ with

eigenvalues with norm not equal to 1 is called hyperbolic space Eh. In this case Ec is

spanned by linear combinations of q and q̄ of the form zq + z̄q̄; the space spanned by e3

and e4 is the space Eh. The spaces Ec and Eh span together the tangent space of X at

zero.

Now the Neimark bifurcation can be studied reducing the system to a center manifold

which is tangent to the span of eigenvectors q and q̄. Since every vector x ∈ X can be

written as

x = zq + z̄q̄ + y

where z ∈ C and y ∈ Eh. The center manifold can be described by a map w : Ec → Eh,

w = w(z, z̄) with the property that

w(0, 0) = ∂w
∂z (0, 0) = ∂w

∂z̄ (0, 0) = 0

Furthermore it is convenient to introduce the notion of adjoint eigenvectors (see [62]). If

the complex inner product is given by

〈x, y〉 =

n∑
i=1

x̄iyi

then there is a unique vector p ∈ C4, called the adjoint eigenvector of q, satisfying:

JT p = λ̄ and 〈p, q〉 = 1

where JT denotes the transpose of J and with the properties 〈p, q̄〉 = 0 and any real vector

y satisfies 〈p, y〉 = 0 if and only if y ∈ Eh.
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For q = (1, λ̄, λ̄2, λ̄3), the vector p is equal to

p =
1

1− λ2
(1,−λ, 0, 0)

Recall that the map defining the system is of the form Φ(µ, x) = (ϕ(x, µ), x1, x2, x3) with

ϕ(x, µ) =
1

R

[(
s̃(x1 + g(x1 − x2)) + (1− s̃)(l(x2 − x1)−mx1)

)]
where

s̃ = e−x
2
1

e−βu2

e−βu1 + e−βu2

u1 and u2 are of the form

u1 = − (x1 − x3 − g(x3 − x4))2

u2 = − (x1 − l(x3 − x4)−mx3)2

Moreover, in order to compute the normal form of a Chenciner bifurcation, a Taylor

development of ϕ is required. This leads to

ϕ(x1, x2, x3, x4) =
1

R

[
l(x1 − x2) +mx1 +

(1

2
+
β(u1(x1, x3, x4)− u2(x1, x3, x4))

4

)
·(x1 + g(x1 − x2)− l(x1 − x2)−mx1)

]
The following step is due to find an expression of Φ in (z, z̄, x) variables. Note that:

(x1, x2, x3, x4) = (z + z̄, λ̄z + λz̄, x3 + λ̄2z + λ2z̄, x4 + λ̄3z + λ3z̄)

In the new coordinates the factors of ϕ have the form:

l(x1 − x2) +mx1 = c0z + c0z

x1 + g(x1 − x2)− l(x1 − x2)−mx1 = z(c0 − d0) + z̄(c̄0 − d̄0)

β
4 (u1 − u2) = c1z

2 + c2|z|2 + c̄1z̄
2

where cj (j = 0, 1, 2) and d0 are used to collect the parameters.

Following the approach of the GHW-model, the dynamics on the center manifold up to

fourth order are determined by:

ψ(z, z̄) = ζ(z, z̄, w(z, z̄)) = λz +
1

1− λ̄2

∑
m+n=3

ζmnz
mzn +O(|z|5)

with m,n > 0. The Neimark bifurcation at 0 is degenerate if

Reζ21λ− λ̄ = 0

or equivalently if

Imζ21 = 0



Chapter 4

Macroeconomic Stability and

Heterogeneous Expectations

4.1 Introduction

From the sixties onwards, rational expectations (RE) emerged as the dominant paradigm

in economics. Nowadays RE are the main mathematical formulation of the agents’ ex-

pectations. During the last decades indeed, after the works of Muth (1961) and Lucas

(1972), the RE hypothesis have been widely applied in all the different field of economics

and finance modeling, becoming the leading and more appealing paradigm.

Even if the RE hypothesis has the advantage of being more easily tractable, today it

seems quite unrealistic to assume that agents have perfect knowledge of the whole economic

system; moreover, as emphasized also by Sargent (1993), rational expectations imply not

only that individuals are perfectly aware of the mechanisms moving the economy, but also

that they are able to solve all the computational problems which arise in the model.

Of course real people often act on the basis of overconfidence, fear and peer pressure

- topics that behavioral economics is now addressing. As stated by Hommes (2005), the

characteristic of an economic system is the fact that it is an expectations feedback system,

therefore expectations play a central role in all the modern macroeconomic theory. The

equilibrium models that were developed, by assumption, do not consider most of the

structure of a real economy because this implies too much nonlinearity and complexity for

equilibrium methods to be easily tractable.

Modeling economy as a bottom-up system is an approach in which individuals un-

derstand the whole framework but only a very small part of it (see De Grauwe, 2010).
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These systems work as a result of the application of simple rules of thumb by a variety of

individuals populating the system.

As suggested by Hommes (2006), the tremendous volume of trading operations that can

be observed every day in all the real markets, reinforces the idea of heterogeneous ex-

pectations (HE) and the idea that differences of opinions among market participants are

necessary for trade to occur.

Heterogeneous agent models mimic important observed stylized facts in asset returns, such

as fat tails, volatility clustering and long memory, as discussed e.g. in the extensive surveys

of LeBaron (2006) and Hommes (2005).

Some recent examples of macro and financial models with heterogeneous expectations

include Evans and Honkapohja (2003, 2006) Bullard and Mitra (2002), Hommes (2001,

2002), Ascari et al. (2012). Moreover Hommes (2011), Assenza et al. (2013) and some

others studies, provided evidence in favor of heterogeneous expectations using laboratory

experiments with human subjects.

Recently Anufriev et al. (2012) introduce heterogeneous expectations in macroeco-

nomics employing a simple frictionless DSGE model to investigate inflation dynamics

under alternative interest rate rules where agents have heterogeneous expectations and

update their beliefs based on past performance as in Brock and Hommes (1997).

In this work we follow this line of research but we enrich the framework introducing out-

put dynamics. We investigate the stabilizing effects of different monetary policy rules

in an economy described by the 3-equations New Keynesian model where agents switch

between different forecasting rules on the basis of their past performances. We consider a

parsimonious model with simple heuristics which is able to generate endogenous waves of

optimism and pessimism (animal spirits). The analysis of monetary policy is conducted to

investigate the role of inflation and output gap in business cycle movements. We also give

some policy suggestions analyzing the role of the Central Bank in reducing the volatility

and the distortion of output and inflation.

The model is composed by the IS curve, a New Keynesian Phillips curve and a Taylor rule,

as in the work of Clarida et al. (1997). According to the benchmark model of Branch

and McGough (2009, 2010), our setting has the same functional form as the standard

formulation except for the homogeneous expectation hypothesis which is replaced with

a combination of heterogenous expectations. We show that incorporating heterogeneous

expectations into the New Keynesian model may significantly alter the stability properties

of the fundamental equilibrium: the model may have multiple equilibria in the presence
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of expectations heterogeneity.

The business cycle dynamics depends on the expectations environment and the coefficients

of the interest rate rule as in Anufriev et al. (2012) but, differently from their findings,

we conclude that the monetary authority has to react even more aggressively in order to

guarantee the uniqueness (and global stability) of the RE equilibrium. The Central Bank

has to send correct and stronger signals to agents in order to break down the reinforcing

process that arises not only between past and current inflation but also between inflation

and output. If the monetary policy reacts weakly to inflation, a cumulative process of ris-

ing inflation and output appears. On the other hand, with an aggressive monetary policy,

the monetary authority is able to induce stable dynamics. Finally the Taylor principle

is sufficient to guarantee convergence to the fundamental steady state but it is no longer

enough to avoid multiple equilibria and it can reduce volatility and distortion of output

and inflation. Additionally we show that in our setting there exists the possibility of two

supercritical Neimark-Sacker bifurcations to occur which give rise to the appearance of

two invariant curves around the respective focus. The convergence to the non rational

steady states is no more monotonic but there are quasi-periodic oscillations.

The paper is organized as follow: Sections 2 and 3 present the model economy and the

heterogeneous expectations framework; the main contributions of the paper are presented

in Sections 4 and 5 where the dynamical properties of the model are investigated. Firstly

we consider the simplest scenario in which agents can choose among only three different

forecasting rules, then we apply the concept of large type limit (LTL) to investigate the

dynamics in the case of a continuum of forecasting rules. In Section 6 we perform a pol-

icy analysis to investigate how monetary policy should be designed in order to minimize

volatility and distortion of the simulated time series. Section 7 concludes.

4.2 The model economy

The model is made up of a standard aggregate demand and supply, augmented with

a Taylor rule. Heterogeneity is introduced because agents use different rules of thumb

(heuristics) to forecast the future values of economic variables; moreover these rules are

subjected to a learning mechanism which is able to create endogenous business cycle.

The aggregate demand is presented as

yt = a1Etyt+1 + a2 (it − Etπt+1) (4.1)
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where yt and yt+1 are respectively the output gap in period t and t+ 1, it is the nominal

interest at t rate, πt+1 is the rate of inflation at t+ 1 and E is the expectations operator.

The aggregate supply can be interpreted as a New Keynesian Phillips curve:

πt = f1Etπt+1 + f2yt (4.2)

Equation 4.2 can be derived from firms’ profit maximization under sticky price assumption

where inflation at time t is increasing in both output at the current period and expected

inflation.

Finally the monetary policy rule is given by

it = c1πt + c2yt (4.3)

We adopt a contemporaneous Taylor rule as a simplifying assumption even if we are aware

about the criticism in that direction. We set the baseline calibration of the model according

to the work of Clarida et al. (1997) and table 1 summarizes the parameter values.

a1 = 1 a2 = −1

f1 = 0.99 f2 = 0.3

c1 = 1.5 c2 = 0.5

Table 1: parameters calibration

Combining (4.1) and (4.3) we have

yt = a1Etyt+1 + a2c1πt + a2c2yt − a2Etπt+1

and substituting (4.2) we get

yt = a1Etyt+1 + a2c1f1Etπt+1 + a2c1f2yt + a2c2yt − a2Etπt+1

Solving for yt

yt =
a1

(1− a2c1f2 − a2c2)
Etyt+1 +

a2 (c1f1 − 1)

(1− a2c1f2 − a2c2)
Etπt+1 (4.4)

Then we plug (4.4) into (4.2) and after some algebra we obtain

πt =
a1f2

(1− a2c1f2 − a2c2)
Etyt+1 +

f1 (1− a2c2)− f2a2

(1− a2c1f2 − a2c2)
Etπt+1 (4.5)
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4.2.1 Expectations

In this part we will present the Adaptive Belief System developed by Brock and Hommes

(1997) that allows to model expectations by introducing heterogeneity among agents. In

particular we refer to the work of Anufriev et al. (2012) to describe the evolutionary

part of the model and we will briefly present the updating mechanism for agents’ beliefs,

addressing the cited paper for major details.

As already stressed by Simon (1955), people have limited knowledge and calculus ability,

and if they want to pursue better decision rules, they must bear some search costs; due

to these two limitations, agents are endowed only with a bounded rationality and as a

consequence, they use simple heuristics when they face a decision that entails some degree

of uncertainty.

Assume that agents can form expectations choosing from 2H+1 different forecasting rules.

We denote with Êh,tyt+1 and Êh,tπt+1 the forecasts of output and inflation by h-th rule.

Moreover, each rule for output and for inflation prediction can be chosen by (eventually)

different number of individuals: therefore the fraction of agents using forecasting rule h

to forecast output at time t is denoted by wh,t and the one for inflation zh,t.

The fractions are updated according to an evolutionary fitness measure.The fitness

measures, for output and inflation respectively, are publicly available (i.e. assume they

can be read in a freely available newspaper) but subject to noises and expressed in utility

terms as:

Ũh,t = Uh,t + εh,t (4.6)

Ṽh,t = Vh,t + νh,t (4.7)

where Uh,t and Vh,t are the deterministic parts and εh,t and νh,t are the stochastic compo-

nents of the fitness measures.

The fraction of agents choosing strategy h is given by the well known discrete choice

model:

wh,t =
eγ1Uh,t−1∑H
h=1 e

γ1Uh,t−1
(4.8)

zh,t =
eγ2Vh,t−1∑H
h=1 e

γ2Vh,t−1
(4.9)
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where γ1 and γ2 are the intensity of choice parameters and reflect the sensitivity of agents

in selecting the optimal strategy. The higher the fitness of a forecasting rule h, the higher

the probability that an agent will select strategy h.

The functions U (·), V (·) are the past squared forecast errors:

Uh,t−1 = −
(
yt−1 − Êh,t−2yt−1

)2
− Ch (4.10)

Vh,t−1 = −
(
πt−1 − Êh,t−2πt−1

)2
− Ch (4.11)

where Ch is the information cost of predictor h. Since they are boundedly rational, the

fundamental steady state predictor for output gap and inflation requires some efforts or

some information gathering costs1 Ch > 0. Simon (1955) stressed information gathering

and processing costs as an obstacle to fully rational, optimal behavior. Agents must either

face search and information gathering costs in using sophisticated, optimal rules or may

choose to employ free and easily available simple rules of thumb that perform “reasonably

well”. Generally, for a simple heuristic predictor, information costs are assumed Ch = 0,

but for more complex forecasting rules (e.g. rational expectations) information gathering

costs may be positive.

4.3 Evolutionary model with constant belief types

We consider a scenario in which agents can choose among 2H + 1 different symmetric

forecasting rules, where positive and negative biases are exactly balanced around the

Rational Expectations Equilibrium (henceforth REE). This choice implies that the REE is

among the steady states of the model. Notice however that this hypothesis is not essential

for most of quantitative results to hold. In this environment agents roughly know the

fundamental steady state of the economy whereas they disagree about the correct value of

the fundamental output and inflation steady state. The existence of constant predictors is

supported by learning to forecast laboratory experiments with human subjects that have

shown that individuals use very simple rules (see the work of Assenza et al., 2013).

The rational predictor is:

Ê0,tyt+1 = Ê0,tπt+1 = 0 (4.12)

1It is here necessary to state clearly that a fundamentalist agent is different from the rational one (except

in one particular case): as a matter of fact the former does not know that in the economy some disturbing,

heterogeneous agents are present and so, he predicts the equilibrium thinking that all the agents are as

he is; differently the ”true” rational agent, must be aware of the presence of all the disturbing agents and

also of their biased predictions, taking them into account while predicting the equilibrium
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The other constant belief types are defined by:

bh = Êh,tyt+1 =


b
h if 1 ≤ h ≤ H

− b
2H+1−h if H + 1 ≤ h ≤ 2H

dh = Êh,tπt+1 =


d
h if 1 ≤ h ≤ H

− d
2H+1−h if H + 1 ≤ h ≤ 2H

for output and inflation respectively.

The market forecast is obtained as a weighted average of the H predictors:

Etyt+1 =

2H∑
h=0

wh,tÊh,tyt+1 (4.13)

Etπt+1 =
2H∑
h=0

zh,tÊh,tπt+1 (4.14)

Substituting (4.8), (4.10) in (4.13) and (4.9), (4.11) in (4.14), and taking also into

account that the rational agents have predictor (4.12), we obtain

Etyt+1 =

∑2H
h=1 bh exp

(
−γ1 (yt−1 − bh)2

)
∑2H

h=1 exp
(
−γ1 (yt−1 − bh)2

)
+ exp

(
−γ1 (yt−1)2 + C

) (4.15)

Etπt+1 =

∑2H
h=1 dh exp

(
−γ2 (πt−1 − dh)2

)
∑2H

h=1 exp
(
−γ2 (πt−1 − dh)2

)
+ exp

(
−γ2 (πt−1)2 + C

) (4.16)

Now by inserting (4.15) and (4.16) into (4.4) and (4.5), we get the 2-D system

yt =
a1

(1 − a2c1f2 − a2c2)

∑2H
h=1 bh exp

(
−γ1 (yt−1 − bh)2

)∑2H
h=1 exp

(
−γ1 (yt−1 − bh)2

)
+ exp (−γ1 (yt−1) + C)2

+ (4.17)

+
a2 (c1f1 − 1)

(1 − a2c1f2 − a2c2)

∑2H
h=1 dh exp

(
−γ1 (πt−1 − dh)2

)∑2H
h=1 exp

(
−γ1 (πt−1 − dh)2

)
+ exp

(
−γ1 (πt−1)2 + C

)

πt =
a1f2

(1 − a2c1f2 − a2c2)

∑2H
h=1 bh exp

(
−γ2 (yt−1 − bh)2

)∑2H
h=1 exp

(
−γ2 (yt−1 − bh)2

)
+ exp

(
−γ2 (yt−1)2 + C

) + (4.18)

+
f1 (1 − a2c2) − f2a2
(1 − a2c1f2 − a2c2)

∑2H
h=1 dh exp

(
−γ2 (πt−1 − dh)2

)∑2H
h=1 exp

(
−γ2 (πt−1 − dh)2

)
+ exp

(
−γ2 (πt−1)2 + C

)
We refer to the map expressed by equations (4.17)-(4.18) as

L (yt, πt;H, γ1, γ2) (4.19)
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4.4 Model analysis

The analysis of the model described by (4.19) is conducted by fixing γ1 = γ2 = γ, H = 1

and C = 0. In this way we consider the simplest scenario in which agents can choose

among three different heuristics with bias parameters b = 1 and d = 1, meaning that type

1 agents expect that inflation and output will be above its fundamental level whereas type

2 agents expect an inflation and output level lower than the fundamental value. Type 3

agents believe that output and inflation rate will be always at its REE value.

Assuming these conditions, the map described in (4.19) always owns the REE (y∗, π∗) =

(0, 0). This fundamental steady state can be locally stable or even unstable. Furthermore

multiple equilibria may appear leading the dynamics to non rational expectations steady

states.

We will provide the analysis of the dynamics which depends on parameter γ and the

Taylor coefficient c1. First of all we compute the Jacobian matrix of the map at the RE

equilibrium:

J =

 4 a1 γ e−γ

(−a2 c1 f2−a2 c2+1) (2 e−γ+ec)
4 a1 f1 γ e−γ

(−a2 c1 f2−a2 c2+1) (2 e−γ+ec)

4 a1 f2 γ e−γ

(−a2 c1 f2−a2 c2+1) (2 e−γ+ec)

4
(

a1 f1 f2
−a2 c1 f2−a2 c2+1

+f1
)
γ e−γ

2 e−γ+ec


The trace and the determinant of matrix J are respectively given by

Tr(J) =
4
(

a1 f1 f2
−a2 c1 f2−a2 c2+1 + f1

)
γ e−γ

2 e−γ + ec
+

4 a1 γ e−γ

(−a2 c1 f2 − a2 c2 + 1) (2 e−γ + ec)

Det(J) = − 16 a1 f1 γ
2

(a2 c1 f2 + a2 c2 − 1) (eγ+c + 2)2

Following the work of Medio (1996), the stability region of the fundamental steady state

is determined by the following conditions:
1− Tr(J) +Det(J) > 0

1 + Tr(J) +Det(J) > 0

Det(J) < 1

(4.20)

In our setting the REE can lose stability via pitchfork bifurcation, that occurs when the

curve 1 − Tr(J) + Det(J) = 0 is crossed. We compute this curve letting the inflation

coefficient and the intensity of choice vary, and keeping fixed the other parameters at the

baseline calibration (see Table 1). Figure (4.1) shows the stability region in the parameter

space (γ, c1): the REE is locally stable for any (γ, c1) that lie in the red region.
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Figure 4.1: Stability region in the (γ, c1) plane

Moreover the fundamental steady state can also lose stability via flip bifurcation but for

parameter values that have no economic meaning in our setting. Finally the Neimark-

Sacker bifurcation can not occur because it can be shown that the eigenvalues of the

Jacobian matrix at the REE are always real.

Now we will focus on the existence of other equilibria in this simplest scenario. Recall

that the steady states of the map are determined by setting

yt−1 = yt = y

πt−1 = πt = π

From (4.18) we can obtain the expression for y, given by

y =
π −

f1
(
d2 e−(π−d2)

2 γ+d1 e−(π−d1)
2 γ
)

ec−π2 γ+e−(π−d2)2 γ+e−(π−d1)2 γ

f2
(4.21)

Then by substituting the latter expression into (4.17) we are able to get a function G(π) =

0 which allows us to compute all the steady states of the system.

In what follows we provide an analysis of the global dynamics of (4.17)-(4.18) and we

show how these dynamics depend on parameters γ and c1.2

Let us consider a weak monetary policy scenario (c1 = 0.5): the bifurcation diagram in

Figure 4.2-a shows the evolution of the steady states as γ increases and, moving along

Path 1 in Figure 1 we can see how the REE loses stability. There exist values 0 < γ∗1 < γ∗2

such that:

2We will mainly focus on the dynamics of the fundamental steady state for a small number of γ values

even if we are aware of the existence of further dynamics in addition to what we show. For example in the

moderate monetary policy scenario the non fundamental steady states present other bifurcations that can

lead to the appearance of stable focus or unstable nodes.
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(a) 0 < γ < 10 (b) γ = 1.1 (c) γ = 5

Figure 4.2: Bifurcation diagram and basins of attraction in the low information costs scenario

and weak monetary policy

• for γ < γ∗1 there exists only one steady state, the RE equilibrium, which is unique and

may be globally stable (recall that the case γ = 0 corresponds to the circumstance

of infinite variance and difference in fitness can not be observed: so agents do not

switch among predictors and all fractions are constant and equal to 1/H);

• for γ = γ∗1 ≈ 1.062 a supercritical pitchfork bifurcation occurs: the RE equilibrium

loses stability and two new stable steady states are created around it;

• for γ∗1 < γ < γ∗2 there are two stable steady state whose basins are separated by the

stable set of the RE equilibrium which is a saddle (Figure 4.2-b);

• for γ = γ∗2 ≈ 1.9275 the RE equilibrium becomes stable again via a subcritical

pitchfork bifurcation and two saddles appear;

• for γ > γ∗2 at least three locally stable steady states exist and their basins are

separated by the stable sets of the saddles (Figure 4.2-c).

In Figure (4.2-b-c) we have denoted the stable steady states with black circles and the

saddle points with brown circles.

Considering a moderate interest rate rule by setting c1 = 1.5, we follow the bifurcation

diagram in Figure (4.3) corresponding to Path 2 in Figure 1. By numerical simulations,

we can approximatively find values 0 < γ∗1 < γ∗2 < γ∗3 < γ∗4 such that:

• for γ < γ∗1 the RE equilibrium is the unique steady state which can be globally

stable;
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• for γ = γ∗1 ≈ 3.67035 there are two simultaneous3 saddle-node bifurcations which

give rise to two saddles and two stable nodes;

• for γ∗1 < γ < γ∗2 there are three stable steady states and two saddle points whose

stable manifolds separate the basins of the stable fixed points (Figure 4.3-b);

• for γ = γ∗2 ≈ 6.265 there are two simultaneous saddle node bifurcations and two

nodes (that suddenly become stable focus) along with two saddles appear;

• for γ∗2 < γ < γ∗3 there are two stable nodes along with the RE steady state, two

stable nodes or focus and four saddles. Moreover endogenous fluctuations appear:

such fluctuations are dampened down when the nodes become stable focus but they

can be also self reinforcing. Indeed there exists a particular value γ = γNS where

two supercritical Neimark-Sacker bifurcations occur and cause the appearance of two

invariant curves around the respective focus (Figure 4.4-a);

• for γ = γ∗3 ≈ 6.395 there are two simultaneous contact bifurcations in which the

invariant curves collide with the border of their basins and disappear;

• γ∗3 < γ < γ∗4 there are three stable steady states, two unstable focus and two saddle

points whose stable sets separate the basins of the stable fixed points;

• for γ = γ∗4 ≈ 6.97 there are two simultaneous saddle-node bifurcations which creates

two saddles and two stable nodes;

• for γ > γ∗4 at least five locally stable steady states exist along with two unstable

nodes. The basins of attractions of these fixed points are delimited by the stable

sets of the corresponding saddle points (Figure 4.3-c).

In the moderate monetary policy scenario, even if the RE equilibrium is always locally

stable, a variety of global dynamics appears. When the value of γ increases, the RE

equilibrium remains always locally stable but multiple equilibria are created via saddle-

node bifurcations and this occurrence may have interesting policy implications. As a

matter of fact, when the reaction to inflation in a neighborhood of the RE steady state is

relatively high, the dynamics converge to the fundamental equilibrium. On the other hand,

when inflation and output gap are out of the basin of attraction of the RE equilibrium,

the implemented policy is not able to lead the economy to the fundamental steady state.

3Recall the map is symmetric w.r.t. the REE.
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(a) 0 < γ < 10 (b) γ = 5 (c) γ = 10

Figure 4.3: Bifurcation diagram and basins of attraction in the low information costs scenario

and moderate monetary policy

(a) (b)

Figure 4.4: Basin of attraction of the invariant curve and inflation time series

Hence more agents will adopt the positive (negative) bias driving the system to one of the

positive (negative) non-fundamental steady states. In Figure 4.4-a we show the existence

of an attracting invariant curve for γ = 6.387: for this γ value the convergence to the non

rational steady state is no longer monotonic but there are quasi-periodic oscillations, as

reported in Figure 4.4-b. The presence of a stable focus is associated with endogenous

and self-reinforcing fluctuations of the variables.4 Thus it is worth to point out that even

if the Taylor principle is sufficient to guarantee convergence to the RE equilibrium, it is

no longer enough to avoid the economy settle down to other non fundamental equilibria.

To give a greater insight to the role of the parameters γ and c1, we show the behavior

of the function G(π) which gives the equilibrium values for variable π. In Figure 4.5 we fix

c1 = 1.5 letting vary γ. We can observe that the number of the roots of G(π), and conse-

quently the steady states of the map, increases. The oscillations, as long as the intensity

of choice rises, become more frequent and wide. In Figure 4.6 we fix γ = 1000 as a proxy

4Even if we are aware we do not consider all the possible bifurcation that can occur in this map, our

focus is on the analysis of the RE equilibrium and its stability properties.
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(a) γ = 1 (b) γ = 5 (c) γ = 10

Figure 4.5: Function G(π) in the (π,G(π)) plane for different γ values and c1 = 1.5

for a high sensitivity of agents, and we let vary c1. When the monetary policy becomes

stronger, the number of the steady states decreases and, in particular, for c1 = 4.425 there

exists only one root for function G(π).

We define the monetary policy as aggressive if c1 > c∗1 = 4.425. Indeed when we look

at the limit case γ → +∞, the Jacobian matrix has an eigenvalues equal to zero with

multiplicity two. Therefore the REE is always locally stable.

The economic intuition behind this result can be found in the heterogeneous framework

of expectations. Differently from the work of Anufriev et al. (2012), in which authors

developed a 1-D simple frictionless DSGE model to study the role of heterogeneous expec-

tations about future inflation and the potential de-stabilizing effect of different interest

rate rules, our 2D model gives different policy intuitions. In order to avoid multiple equi-

libria, the policy rule must be aggressive enough to ensure uniqueness and global stability

of the REE. Anufriev et al. found evidence of global stability of the REE if the Taylor

rule coefficient was greater than 2. Employing a standard 3-equations New-Keynesian

model, we conclude that the monetary authority has to react more aggressively in order

to guarantee the uniqueness (and global stability) of the REE. Therefore an aggressive

monetary policy can influence heterogeneous expectations by sending correct signals to

agents that correct their expectations in order to break down the reinforcing process that

arises between inflation and output.

4.5 Infinitely many beliefs types

Depending on the strength of the monetary policy and the values that the intensity of

choice assumes, we showed that in an economy populated by only 3 types of agents, the

fundamental steady state y∗ = π∗ = 0 can be locally stable or unstable, and the dynamics

displays coexistence of several steady states.
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(a) c1 = 0.5 (b) c1 = 2.5 (c) c1 = 4.425

Figure 4.6: Function G(π) in the (π,G(π)) plane for different c1 values and γ = 1000

The aim of this section is to investigate how the stability conditions change when the

number of constant forecasting rules increases and approaches to infinity.

Suppose that there exist 2H + 1 different belief types for output bh and 2H + 1 for

inflation dh all available at zero cost.

In order to study the dynamics of the system as long as the number of predictors

become large, we apply the concept of Large Type Limit (LTL) developed by Brock et al.

(2005).

Assume that at t = 0 the beliefs about output b = bh ∈ R are drawn from a common

distribution with density ψ(b), and that the predictors for inflation d = dh ∈ R are

also drawn from a common initial distribution with density ω(d). Now assuming that

distributions for predictors are both normal, ψ(b) ∼ N(m, s2) and ω(d) ∼ N(n, q2), the

LTL map becomes

y =
a1

1 − a2c1f2 − a2c2

m+ 2γs2y

1 + 2γs2
+

a2 (c1f1 − 1)

1 − a2c1f2 − a2c2

n+ 2γq2π

1 + 2γq2
(4.22)

π =
a1f2

(1 − a2c1f2 − a2c2)

m+ 2γs2y

1 + 2γs2
+
f1 (1 − a2c2) − a2f2
(1 − a2c1f2 − a2c2)

n+ 2γq2π

1 + 2γq2
(4.23)

Assuming that both distribution functions are centered around zero mean m = n = 0

giving the unique steady state y∗ = π∗ = 0. Normality and zero mean are simplifying

assumptions, indeed the main results hold also for positive distributions and asymmetric

predictors. Obviously the beliefs are symmetric with respect to the RE equilibrium only

under the previous hypothesis, helping us in investigating the stability properties of the

fundamental steady state.

Now we compute the Jacobian matrix of the system given by (4.22)-(4.23) to investigate

the stability of the RE equilibrium. If n 6= m 6= 0 the following results and the critical

values of γ do not change even if the steady state of the LTL map is not the REE.

J =

− 2s2γa1
(2s2γ+1)(a2c1f2+a2c2−1)

2q2γ
2q2γ+1

a2−a2c1f1
a2c1f2+a2c2−1

− 2s2γa1f2
(2s2γ+1)(a2c1f2+a2c2−1)

2q2γ
2q2γ+1

(
f1 + a2f2−f2a2c1f1

a2c1f2+a2c2−1

)




4.5 Infinitely many beliefs types 82

(a) Space (s2, q2) (b) Space (s2, c1) (c) Space (s2, γ)

Figure 4.7: Stability/instability region of the RE equilibrium in different parameter spaces

The trace is

Tr(J) =
2γq2

(
f1 + a2f2−f2a2c1f1

a2c1f2+a2c2−1

)
2γq2 + 1

− 2γs2a1

(2γs2 + 1)(a2c1f2 + a2c2 − 1)

The determinant is

Det(J) =
−4q2s2γ2a1f1

(2γq2 + 1)(2γs2 + 1)(a2c1f2 + a2c2 − 1)

The stability conditions in a 2-D system, as we have already shown, are given by (4.20).

Substituting our parametrization (see Table 1) we can find a relation between the in-

tensity of choice γ and the variances of the two distributions, s2 and q2. By numerical

investigation, we can exclude the existence of flip or Neimark-Sacker bifurcations. The

pitchfork bifurcation, whose curve is given by Hc1 (γ) = 1 − Tr(J) + Det(J) = 0, is the

only bifurcation that can occur in our setting.

We investigate numerically the local stability of the REE assigning different values at

q2, s2 and γ.

Figure 4.7-a represents the stability/instability region in the space (s2, q2) if c1 = 0.5

and γ = 10. The stable part is marked in red whereas blue color represents the unstable

configuration. It has to be noticed that with these calibrations, the stability conditions

can be achieved only if the ratio of the variances is not too large, meaning that the

agents can choose among a continuum of forecasts that are not too much distant from

the RE predictor. This underlines the importance of the spread of the initial beliefs as

reported in the work of Anufriev et al. (2012). In order to have a better understanding

on the conditions under which the system can be stable, we assign the same variance to

both output and inflation distribution. Figure 4.7-b displays the stability region in the

parameter space (s2, c1). According to this plot, if the variance is not too large, the REE

always exhibits local stability for any c1 value.
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Finally Figure 4.7-c shows the stability/instability region in the plane
(
s2, γ

)
. There exists

an inverse relation between the variance and the intensity of choice. This result remarks

the importance of the spread among predictors: thus if s2 is not too large, the system

is locally stable because the adopted forecasts are equally distributed around the RE

predictor. Therefore the fractions will remain almost constant. On the other hand, if s2 is

large enough, the system is unstable only if γ is sufficiently large: this means that agents

can easily switch among different predictors which are not close to the RE equilibrium,

leading the system to be unstable.

In the previous analysis we have assumed a normal distribution with zero mean of initial

beliefs for both output and inflation. As shown by Hommes (2010), similar conclusions

can be derived for fixed strictly positive distribution functions of initial beliefs. To get

some intuition for this result, it is useful to look at the limiting case γ =∞. If there exists

a continuum of beliefs, the best predictor in every period, measured according to the past

forecast error, will be the forecast that exactly coincides with the last period’s realization

of both output and inflation, bh = yt−1 and dh = πt−1. For γ =∞, the fitness measure for

each strategy is perfectly observable and in each period all agents pick the forecasting rule

with the higher performance in the previous period, switching to the optimal predictor.

Therefore, for the case γ =∞, the economy can be represented taking into consideration

only one representative naive agent. Hence the system is given by:

yt =
a1

1− a2c1f2 − a2c2
yt−1 +

a2 (c1f2 − 1)

1− a2c1f2 − a2c2
πt−1

πt =
a1f2

1− a2c1f2 − a2c2
yt−1 +

f1 (1− a2c2)− a2f2

(1− a2c1f2 − a2c2)
πt−1

Following the work of Gaĺı (2009), we can rewrite the system in matrix notation ob-

taining  yt

πt

 = A

 yt−1

πt−1

 (4.24)

A = Ω

 a1 a2 (c1f2 − 1)

a1f2 f1 (1− a2c2)− a2f2


where

Ω =
1

1− a2c1f2 − a2c2

is a parameter aggregation and, under the usual assumptions it is always positive. The

solution y∗ = π∗ = 0 always satisfies the system (4.24) which is locally stable if the trace

and the determinant of A satisfy the usual stability conditions shown in (4.20).
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Figure 4.8: Stability and instability region for the case γ =∞

The dynamics of (4.24) depends on the policy coefficients (c1, c2), in addition to the

non-policy parameters.

Let us restrict our attention to the case of rules for which c1, c2 > 0. Under the assumption

of non-negative values for (c1, c2), a necessary and sufficient condition for y∗ = π∗ = 0 to

be globally stable is given by

(a1 + a2c2 − a1a2c2 − a1a2c1f2 − 1)f1 + a2f2 − a1 + 1 > 0 (4.25)

Therefore in an environment with only one representative naive agent the monetary

authority should respond to deviations of inflation and output from their target levels by

adjusting the nominal interest rate satisfying the Taylor principle: at least in the long run,

nominal interest rates should rise by more than the increase in the inflation rate. Indeed

figure (4.8) illustrates graphically the regions of parameter space for c1, c2 associated with

stable and unstable REE, as implied by condition (4.25). Thus, the equilibrium will be

unique under interest rate rule (4.3) whenever c1 and c2 are sufficiently large enough to

guarantee that the real rate eventually rises in the face of an increase in inflation.

4.6 Policy analysis

In this section we consider a different perspective. We adopt an agent-based approach

employing our model as an artificial laboratory to carry out computer experiments to

improve our insights into the working of certain regulatory mechanisms. Now we are

keen in expressing the impact that different policy settings have on the time series of the

relevant variables. We follow Westerhoff (2008) introducing two indexes. The first is based
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on the distortion, calculated as:

Dist(x) =
1

T

T∑
t=1

| xt − xRE |

with x = y, π.

Dist(x) measures the distortion of the time series, that is the mean of the deviation of

the relevant variable from its steady state. We do not use the standard deviation because

it considers the distortion as the dispersion of the time series from its mean, while the

mean of xt is not the steady state.

The second index, called volatility index, denotes the rate of change of the time series and

it is calculated as:

V ol(x) =
1

T − 1

T∑
t=2

| xt − xt−1 |

with x = y, π.

To calculate the distortion and the volatility we add a white noise term εt to equation

(4.2). This component, as in Clarida et al. (1997), can be interpreted as a cost push

shockand it can affects marginal costs due to, for example, wage stickiness. We run the

model for 1000 quarters with different values of the Taylor rule coefficients, c1 and c2. We

perform Monte Carlo simulations using 1000 different realizations of the pseudo random

number generator for each c1 as well as each c2, and then taking the mean. In doing so

we also vary the intensity of choice coefficient and, to have a larger overview, we compute

the analysis for three values of γ, namely γ = [1, 3, 5].

First of all we present the results obtained letting the inflation coefficient in the Taylor

rule vary, setting c2 = 0.5 and fixing the number of agents equal to 11 because results

with only three agents are not robust enough and display an unpredictable behavior.

Figure 4.9 (top left and bottom left boxes) presents the distortion and the volatility of

the output as long as c1 increases from 0.5 to 1.5. The three curves are computed for

different values of the intensity of choice parameter γ. Increasing the rationality parameter,

the generated time series deviate much more from the rational expectations equilibrium,

displaying also a greater volatility. Output distortion and volatility reach their minimum

at ĉ1 = 1.02. It has to be noticed that, even if the Taylor principle is only weakly satisfied,

it minimizes both distortion and volatility of output. On the other hand, both inflation

distortion and volatility monotonically decrease as c1 increases (see Figure 4.9 top right

and bottom right boxes). Moreover the series are steeper as long as γ increases, meaning

that the Taylor principle mostly affects an economy populated by more reactive agents.
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Figure 4.9: The influence of c1 on volatility and distortion indexes

The non-monotonic decreasing curves of output distortion and volatility suggests the

existence of a value ĉ1 such that for c1 < ĉ1 inflation targeting is able to reduce both

inflation and output distortion and volatility. Indeed for c1 > ĉ1 there exists a trade-off

between output and inflation, the lower are Dist(π) and V ol (π), the higher are Dist (y)

and V ol (y).

Inflation targeting does not exclude the role of output stabilization. DSGE modelers

underline that price rigidities provide a rationale for output stabilization by Central Bank

(see Clarida et al., 1997 and Gaĺı, 2009) or for a flexible inflation targeting (Svensson,

1997). Because of the existence of rigidities, when sufficiently large shocks occur, leading

inflation to depart from its target, the Central Bank should follow a strategy of gradual

return of inflation to its target. Since too abrupt attempts to bring back inflation to its

target, would require such high increases in the interest rate implying too strong declines

in output.

We perform a similar exercise, fixing c1 = 1.5 and letting the output coefficient of the

Taylor rule vary from 0.1 to 2.1. Results suggest that there exists a trade-off between

inflation and output distortion (Figure 4.10 top left and top right panels). Output distor-

tion monotonically decreases as long as the reaction coefficient to output gap increases.

On the contrary, inflation distortion increases. Noteworthy that the rise in the inflation

distortion is bigger (in absolute value) than the reduction in output distortion.

On the other hand, by increasing the parameter c2, we observe a reduction in output
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Figure 4.10: The influence of c2 on volatility and distortion indexes

volatility and an increase in inflation volatility, as Figure 4.10 shows (bottom left and right

panels). From Figure 4.10 (bottom left) it can be noticed that output volatility increases

for c2 < 0.5 and a sufficiently high value of γ. These trends make an interpretation less

clear: indeed there exists a trade-off between output and inflation volatility for c2 > 0.5, if

agents switch sufficiently fast between predictors. As in the previous analysis, the inten-

sity of choice affects the policy influence on the economy: if agents hardly switch among

predictors, the monetary policy loses most of its influence but distortion and volatility of

the two variables are cut down by this occurrence.

To summarize our findings, if the Central Bank is keen in inflation targeting with a mon-

etary policy rule such that c1 < ĉ1, it is possible to reduce both output and inflation

variability. The relation is non-linear and, with a too high inflation stabilization param-

eter, there exists a trade-off where lower inflation variability is obtained at the cost of

increased output variability. Even with a Taylor rule coefficient that could lead to a mul-

tiplicity of equilibria, the variability of the two variables can be lowered at the same time.

Moreover some output stabilization is good because it reduces both output and inflation

variability by preventing too large switches in forecasting behavior.
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4.7 Conclusions

In this work we studied the stability properties of a macroeconomic model in which agents

have heterogeneous expectations. We investigated the stabilizing effects of different mone-

tary policy rules in an economy described by the 3-equations New Keynesian model where

agents switch between different forecasting rules on the basis of their past performances.

Moreover we analyze the role of the Central Bank in reducing the volatility and the dis-

tortion of output and inflation.

We found that the business cycle dynamics depends on the expectations environment and

the coefficients of an interest rate rule (e.g. Taylor rule). If the monetary policy reacts

weakly to inflation, a cumulative process of rising inflation and output appears. Different

signals from the market can lead the economy to non-fundamental steady states, reinforced

by self-fulfilling expectations of high inflation. On the contrary, when the response to in-

flation is moderate, the heterogeneous expectations can be managed in order to correct

past forecast error and to conduct the economy towards the REE. Even with an aggressive

monetary policy, the monetary authority is able to send correct signals to agents and can

induce stable dynamics settling down to the fundamental steady state. It is also worth

to point out that even if the Taylor principle is sufficient to guarantee convergence to the

fundamental steady state, it is no longer enough to avoid multiple equilibria. Indeed the

monetary policy rule must be sufficiently aggressive to guarantee a proximity between the

realized inflation and the REE.

Our model suggests that, to avoid multiple equilibria, the policy rule must react more

aggressively than in the work of Anufriev et al. to guarantee the uniqueness (and global

stability) of the REE, breaking down the reinforcement process that arises between infla-

tion and output.

Furthermore, in the case of many beliefs types (a continuum of beliefs), a monetary policy

rule that reacts aggressively to current inflation can fully stabilize the system. If the policy

rule is not aggressive enough and the intensity of choice is large, the cumulative process

of inflation and output appears again.

Finally we considered two summary indexes (i.e. volatility and distortion) that link the

impact of the Taylor rule coefficients to distortion and volatility of the fundamental vari-

ables. Policy makers can reduce volatility and distortion of output and inflation with a

sufficient degree of reaction.

Depending on the target of the monetary authority, inflation volatility and distortion
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can be minimized but also output stabilization can be taken into account. Indeed, if the

Central Bank shifts its target from inflation to output, results suggest that there exists a

trade-off between inflation and output distortion but, a strong reaction to output is more

likely to stabilize the economy.



Chapter 5

Summary

In this thesis we have analyzed and appraised the effect of modeling human decision mak-

ing and individual behavior as boundedly rational in a different economic settings. In

particular, we focus on situations in which different subjects act and use the same limited

resources. In these systems, if agents were rational, they would account for the effects

due to their interaction and coordinate their decisions to the equilibrium level where they

would all get the same outcome. Modeling agents as boundedly rational could help in

explaining the observed size and variability of fluctuations of economic variables, such as

prices, output or inflation rate, even when no changes of the underlying fundamentals

occur.

Boundedly rational agents are specified as using simple heuristics in their decision making.

An important aspect of the type of bounded rationality described in the present work is

that the population of agents is heterogeneous, which means that actors can choose differ-

ent decision strategies to solve the same economic problem. The set of rules is disciplined

by a selection mechanism, where the best performing rule, measured according to some

fitness rule, attracts the most number of agents. This feature implies that our model are

dynamics, with agents switching among the different rules at different periods of time.

An important role in triggering switching between rules is played by the dynamics feed-

back among individual expectations of economic variables and their aggregate realizations.

This expectational feedback mechanism, which we call expectational feedback, transforms

agents’ interaction into a mutual dependence between the individual choices of economic

actors and the environment against which these choices are evaluated. At the light of this

kind of feedback, rational agents are usually assumed to have rational expectations, that

is, to find actions such that expectations and realizations are consistent and the system
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is at equilibrium. In this respect, as the functional dependence of fractions of agents in

terms of economic variables and previous fractions is nonlinear, our systems are nonlinear

so that a variety of different types of behaviors other than convergence or divergence can

be observed, such as bounded erratic fluctuations.

The contribution of the thesis is twofold. In departing from the traditional approach where

a representative rational agent is present, we evaluate when the frequently used argument

in favor of rationality (namely that rationality is the outcome of the repetend interaction

of heterogeneous boundedly rational agents) is justified. Furthermore, by showing in what

respect our results differ from the rational benchmark, we characterize whether the inter-

acting agents framework can reproduce empirically observed phenomena in the different

economic settings we consider. Secondly, we develop three models with heterogeneous

expectations and evolutionary selection among forecasting strategies and study aggregate

behavior under heterogeneous expectations among boundedly rational agents.

In chapter 2 we have developed a model to study the housing market starting from

an Agent-Based perspective. Relaxing the rational expectation hypothesis and allow-

ing households to have a backward-looking behavior, we have shown that an endogenous

appearance of bubbles can lead the price to long-last deviate from its fundamental steady

state. The model with chartist-fundamentalist mechanism matches real data quite well.

The exogenous preference shock, calibrated using the Michigan Consumers Surveys, is the

main force driving the system. Adding the interest rate and the credit tightness effects,

we can observe only a minimum anticipation of the price dynamics. This heterogeneous

framework gives the right persistence in the house price dynamics and the hump shape of

the price series is given by the self fulfilled mechanism induced by the backward looking

expectation. Indeed in a rational expectation model the inertia is the result of a lag trans-

mission of exogenous shocks; in contrast, our behavioral model is capable to reproduce the

inertia in the price series without imposing lags in the transmission process. The model

has also some space for policy investigation anchoring the interest rate to house price.

The distortion and the volatility of prices can be reduced using an appropriate degree of

reaction.

In chapter 3 we have developed a simple present discounted value asset pricing model with

heterogeneous beliefs which is able to exhibit a kind of path-dependance property explain-

ing how both stable steady states and attracting curves can arise endogenously within the

model. The model is made up with simple and different forecasting rules, each of which

can generate its own type of dynamics. In every period the forecasting strategy is selected
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among the population of heuristics and agents adapt their selection over time, based on

the relative performance of the heuristics (evolutionary selection mechanism). The out-

comes we came up with is quite interesting, i.e. the model can endogenously generate both

persistent oscillating and converging patterns within the same economic framework, for

the same parameter values. We can claim that even if these dynamic aspects remain valid

for a large range of parameters, some quantitative aspects may change when parameters

vary, such as the speed of convergence or the amplitude and frequency of oscillations.

We have also shown that the fundamental steady state can be locally unstable with our

set of heuristics and, although the fundamental equilibrium is locally stable, other attrac-

tors may co-exist. There is a simple economic intuition of this phenomena, depending

on the strength of the trend extrapolation and the role of stabilization forces. Indeed

evolutionary interaction among strong extrapolators and stabilizing agents leads to other

attractors with irregular price fluctuations, switching between periods of low and high

volatility. Thus the interaction among different kind of agents may lead to a stable closed

curve (or a more complicated attractor) around a locally stable steady state. Irregular

price oscillations and coexistence of attractors can be considered as an explanation of some

stylized facts, such as volatility clustering observed in real financial markets.

We are aware the model proposed here is simple and should be considered as stylized be-

havioral model, but excess volatility and a kind of volatility clustering are created by the

trading process, and this seems to be in line with financial practices. If the evolutionary

interaction of boundedly rational agents with different trading strategies extols volatility,

there are important consequences for regulatory policy in financial markets. Good or bad

news in the markets can be amplified by the evolutionary mechanism. Since we are em-

bedded in an increasingly globalized world, and of course this is true for financial markets,

small changes in fundamentals in one country may generate changes in asset price in other

countries.

In chapter 4 we studied the stability properties of a macroeconomic model in which agents

have heterogeneous expectations. We investigated the stabilizing effects of different mone-

tary policy rules in an economy described by the 3-equations New Keynesian model where

agents switch between different forecasting rules on the basis of their past performances.

Moreover we analyzed the role of the Central Bank in reducing the volatility and the

distortion of output and inflation.

We found that the business cycle dynamics depends on the expectations environment and

the coefficients of the monetary policy. If the monetary policy reacts only weakly to infla-
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tion, a cumulative process of rising inflation and output appears. Different signals from

the market can lead the economy to non-fundamental steady states, reinforced by self-

fulfilling expectations of high inflation. On the contrary, when the response to inflation is

moderate, the heterogeneous expectations can be managed in order to correct past forecast

errors and to conduct the economy towards the RE equilibrium. Even with an aggressive

monetary policy, the monetary authority is able to send correct signals to agents and can

induce stable dynamics settling down to the fundamental steady state. It is also worth

to point out that even if the Taylor principle is sufficient to guarantee convergence to the

fundamental steady state, it is no longer enough to avoid multiple equilibria.

We have also to highlight that, in the case of many beliefs types, a monetary policy rule

that reacts aggressively to current inflation can fully stabilize the system. If the policy

rule is not aggressive enough and the intensity of choice is large, the cumulative process

of inflation and output appears again.

We have also considered two summary indexes (i.e. volatility and distortion) that link

the impact of the Taylor rule coefficients to distortion and volatility of the fundamental

variables. Policy makers can reduce volatility and distortion of output and inflation with

a sufficient degree of reaction. Thus, depending on the target of the monetary authority,

inflation volatility and distortion can be minimized but also output stabilization can be

taken into account. Indeed, if the Central Bank shifts its target from inflation to output,

results suggest that there exists a trade-off between inflation and output variability.

A general conclusion following from the results of this thesis is that non-rational beliefs may

survive evolutionary competition among heterogeneous forecasting strategies. Boundedly

rational agents’ interaction and adaptation can trigger ongoing fluctuations around equi-

librium levels in addition to convergence or deviation from the steady state of the model.

This is, for example, consistent with excess volatility in financial markets. In general,

these endogenous fluctuations can be characterized as irregular cycles along which rules

perform better than others in different periods of time. Therefore, policy makers should

seriously take into account bounded rationality when designing monetary or fiscal policies,

since decisions constructed under the assumption of homogeneous rational expectations

can be destabilizing when expectations are heterogeneous.
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