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1 Foreword 

1.1 Definition of sustainability 

The term sustainability comes from the word “sustain” that means keeping in existence, maintaining alive. 

In Latin the word “sustinere” explains the human capacity to hold, to conserve and to save resources in 

such a way that they are not depleted or damaged (Mitchell, 1998). 

Although the concept of sustainable development is intrinsic in our mind, the first fixed point about this 

issue has been identified in 1987 with the sentence “development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs”. The definition has been 

enunciated in Switzerland and attributed to Gro Harlem Brundtland, Chairperson of the World Commission 

on Environment and Development. The definition was included in the Brundtland Report as the most 

general and primordial definition of sustainable human development (Fricker, 1998). In the following years, 

the definition of sustainability evolved and followed different paths according to objectives and productive 

sectors, without, however, losing the native meaning. 

In the agricultural sector, the term “sustainable agriculture” did not emerge into popular use until the late 

1980s, even if the research of high quality in life of human, animal or vegetal communities was not a new 

philosophy. In 1990 the term sustainable agriculture has been finally defined, by the U.S. Government 

Public Law 101-624, as the will to “enhance environmental quality and the natural resource base upon 

which the agricultural economy depends” and “enhance the quality of life for farmers and society as a 

whole” (Gold, 1999). 

During the Conference on Environment and Development, held in Rio de Janeiro in 1992, the United 

Nations defined sustainability as an essential goal of worldwide food and goods production. Concurrently, it 

was defined that the precautionary principle and the study of suspected risk of toxicity should be 

considered as major approaches to regulate the use of chemicals affecting humans’ health and 

environmental degradation (Hammond et al., 1995). 

Moreover, the Conference of Rio de Janeiro established the onset of the concept of sustainable land 

management, issue that, in the last years, is receiving considerable attention from scientists and policy 

makers (Syers et al., 1995). In 1998 Smith and Mc Donald provided the clearer and the best fitting definition 

of sustainability for the primary sector: “A farming system is durable when it fulfills the following 

sustainability requirements: 

- the development is compatible with the maintenance of ecological processes (ecological 

sustainability); 
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- the development is economically feasible and socially acceptable (economic and social 

sustainability).” 

Subsequently, the European Commission (2001), in harmony with Agenda 21 of the United Nations, set 

forth that: “The concept of sustainability is multidimensional. It includes ecological, social and economic 

objectives. Between these different elements, there is interdependency. Research results, indeed, confirm 

that the relationships are strong, numerous and complex. Strengthening the economic viability of rural 

areas is the basis for providing the means of preserving their social and environmental functions. Social 

implications result from the provision of rural employment opportunities, the diversification of economic 

activities and the promotion of local products, services, craft activities and agri-tourism”. 

According to European Commission (2001) the three pillars of sustainability (economic, social and 

environmental) should be developed through relevant synergies, despite they are not always mutually 

supportive and they even can compete with each other. To avoid this, sustainability requires a right balance 

between its three basic elements in order to avoid mistakes in the impact’s assessment and 

characterization. 

Also in the U.S.A. the definition of sustainability follows the distinction between economic, social and 

environmental subsets and, in fact, the American Sustainable Agriculture Research and Education (SARE, 

2014) fixed the following three main pillars of sustainability for agriculture: “profit over the long term”, 

“stewardship of our nation’s land, air and water” and “quality of life for farmers, ranchers and their 

communities”. These statements prove the necessity of a reconciliation between economic demands, social 

respect, equity and environmental compliance also for farmers that, therefore, must comply with the three 

pillars of sustainability. 

Nowadays, a farming system is considered sustainable if it is productive, useful to the society, oriented to 

resources’ conservation (soil, water, energy), commercially competitive and environmental friendly over 

the long term. In other words, sustainability in agriculture can be explained as the ability to produce goods 

(biomass and/or materials) and food (cereals, fruits and vegetables) in a cost-effective way, 

environmentally friendly and socially respectful of farmers and community quality of life. Sustainable 

production patterns must be able to provide satisfactory crop quality and yield, defend the environment 

and at the same time do not negatively affect farm economic return (Pannell and Glenn, 2000, Osinski et 

al., 2003, and Lien et al., 2006). 

The instruments available to date to move from a conventional to a sustainable agriculture range from 

(Bockstaller et al 2009): 

 new methodologies, such as innovative agriculture practices; 

 the use of Information and Communication Technology; 
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 the availability of a new generation of pesticides; 

 new approaches that could be included in the Integrated Farm/Crop/Pest Management; 

 the organic and biodynamic farming systems. 

With the introduction of sustainability in agriculture (and not only) the urgent need to provide tools for its 

evaluation arose (Girardin et al. 2000). The authors highlighted that these tools should be able to 

characterize the effects of cropping systems on human health and ecosystem, but at the same time should 

be tailored to users, user friendly and scientifically oriented. Since 2001 an European Directive (Directive 

42/2001/CE) is fostering the implementation of widely shared methods in order to reduce human 

environmental impacts. The Directive provides for the implementation of a procedural tool called Strategic 

Environmental Assessment (SEA), namely a structured decision support framework aiming to support more 

effective decision-making for sustainable development (Loiseau et al., 2012). Later, also Bockstaller et al. 

(2009) highlighted that the availability of operational assessment tools is a prerequisite for judging if 

farming and cropping systems are efficient and modern and for achieving a better management of 

environmental risks. From a more agro-ecological point of view, Zaks and Kucharik in the 2011 noted as the 

gaps of currently tools for more ecologically sound agro-ecosystems remain to be solved yet. The quality of 

data, availability of them, integration between models, data integration, farmers acceptance, social 

barriers, dissemination are the main drawbacks for the implementation of decision support system for the 

agro-ecological technology transferring. 

As soon understood, the keystone for the success of sustainability principles is the awareness that 

sustainable agriculture should never ignore the economic aspects (Tisdell, 1996, Bräuer, 2003, and Archer 

et al., 2007). The returns of agricultural production are likely to decline because of higher costs due to 

environmental actions. Thus, it will be very important to assess the cost of application of sustainability 

measures, evaluating their impact on the farmer's economic balance. Indeed, there is a high risk that the 

environmental commitment will cause a financial burden that will not be sufficiently covered by production 

and community supports (these are expected to decline by 15-20% in Italy compared to the Common 

Agriculture Policy of 2007-2013). Consequently, it is clear that the economic aspects of sustainability will 

play a major role in the future as precondition for the achievement of environmental goals. As suggested by 

Burja (2012) the environmental costs (emission to air, price per unit for GHG emissions, recycled waste, 

destruction of natural habitats, etc.) are elements that strongly influence farm profit size. The introduction 

of environmental management strategies requires the development of a financial accounting system to 

report economical sustainable performance. Economic efficiency and earth preserving must go in the same 

direction and the sustainability financial reporting promoted by Burja (2012) is an option to mark out, in 

monetary term, the impacts of environmental costs on farm profit. However, the difficulty to gather 
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information in monetary term about these costs is calling to question their consideration into firm financial 

accounting. 

If in the agricultural sector the success of environmental strategies is closely related to economic 

constraints fulfillment, in the commercial and industrial sectors however the success of production and 

consumption patterns is related to a change from existing unsustainable environmental pattern toward a 

less pressures on environmental limits (Alonso et al., 2013). Both agriculture and industrial sectors are 

called for a new global development strategy where environment protection is seen as an opportunity, not 

a threat. 

On the other hand, the increasing request by consumer to improve the quality of food and environment is 

directing the human efforts towards environmental issues. This is leading to a renewed perspective in 

agriculture, from a maximization of crop production to a higher respect of human and environmental 

health. Consequently, food production systems are changing their goals and managing strategies, in order 

to reply to consumers’ necessities. Therefore, the new food producers’ challenge is to balance natural 

resources use, to preserve landscape, to reduce pesticide impact, to improve environmental biodiversity 

protection and, simultaneously, to guarantee abundant and healthy yields. Reaching this high level of 

sustainable food production requires time, knowledge and expert assistance. The awareness that also the 

primary sector must contribute to decrease the environmental degradation and resources depletion is 

leading to new environmental-oriented agriculture solutions, as later argued. This tendency should, 

actually, be a reference point for all human activities, not only for the agriculture sector. Fortunately, the 

shift to sustainable production patterns has already begun. The increasing demand for resources’ 

protection is leading to new effective polities and initiatives implemented worldwide. As proof of this, the 

Global Outlook on Sustainable Consumption and Production (SCP) identified many case studies (patterns 

and polities) addressed toward the green growth strategy and the reduction of resources depletion (UNEP, 

2012). 

Although sustainability features and goals are rather intuitive for public opinion, the way how to measure it 

is still unfamiliar to most people. Often sustainability is a messy list of thoughts that we attempt to 

reorganize through indicators, measuring and monitoring issues and phenomena. Sustainability should be 

seen through a holistic perspective, i.e. the current and future goals of the whole system should be taken 

into consideration, and its evaluation should be considered as a dynamic process. Since sustainability is 

more than a “thing” to be measured, rather than asking us how we can measure sustainability, it may be 

more appropriate to ask us how we measure up to sustainability (Fricker, 1998). Paradoxically, it is easier to 

measure un-sustainability than sustainability and this kind of measurement is performed unconsciously 

much more frequently than we might think. Smith and McDonald (1998) highlighted that indicators of un-

sustainability are more available and measurable than indicators of sustainability. Moreover, with 
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unsustainable impact indicators, cause and effect relationships are usually more well-known and indicators 

of un-sustainability are more able to detect the shortages of management practices. The assessment of un-

sustainability, as the assessment of sustainability, needs several indicators in order to consider all 

potentially unstable aspects of the system (Smyth and Dumanski, 1993). 

1.2 Current legislation on sustainability 

In Europe, the development of a more sustainable agriculture is regulated by a comprehensive legislation 

framework. The main documents are: the Regulation concerning the placing of plant protection products 

on the market (Regulation 1107/2009/EC), the Directive about the machinery for pesticide application 

(Directive 127/2009/EC), the Regulation concerning statistics on pesticides (Regulation 1185/2009/EC), the 

Directive for community action in the field of water policy (Directive 60/2000/CE), the Nitrates Directive 

(Directive 676/1991/EC) and the Directive establishing a framework for Community action to achieve the 

sustainable use of pesticides (Directive 128/2009/EC). 

The latter requires, among other things, the development of tools and strategies for risk mitigation and the 

identification of indicators for the assessment of human and environmental risk, associated with the use of 

Plant Protection Products (PPPs), and the evaluation of the level of sustainability achieved by the farms. 

This can be obtained only with an appropriate legislation for sustainable agriculture specific for each 

European Member State. Each Member State submitted to the European Commission a National Action 

Plan (NAP), which includes the different sustainability strategies that can be adopted for pesticide risk 

reduction, taking into consideration local farmers’ needs. In other words, the NAP provides a practical 

pattern of how each European country will implement the principles and the measures of sustainability 

required by the Directive. The goal of the NAP is the identification and development of suitable strategies 

for reducing the potential risk caused by the use of PPPs and for the simultaneous monitoring of the results 

of the actions undertaken to this purpose. Moreover, the NAP should specify the indicators to be used for 

monitoring the use of PPPs, taking into consideration the social and productive structure of the country. 

The use of indicators can be performed through the provisions set out in Appendix 3 of the Directive on the 

sustainable use of PPPs. 

Sustainability in agriculture is also one of the main objectives of the Common Agricultural Policy (CAP) 

“post-2013”. A significant share of European funds, from 2014 to 2020, will contribute to improve the 

sustainability of food production. In particular, the founding bodies of Community Assistance wish to 

deliver bonus or direct subsidies to farmers who will carry out all measures set to "greening". Regarding 

these payments a significant share (30% of the expected resources) will be used to defray the costs of 

environmental and ecological actions undertaken by farmers. Thereby, the delivery of some financial 

resources to beneficiaries will be made only if they will carry out specific actions in order to reduce 
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environmental risk achieving greater sustainability of productions. The European economic subsidy, for 

these issues, is therefore gradually moving from an income support to a new form of assistance, that 

supports the costs of implementation of measures mitigating the environmental farm impact (Comegna 

and Sacchetto(1), 2014; Comegna and Sacchetto(2), 2014; Frascarelli and Cecci, 2014). 

From this point of view, sustainability indicators will become an important “estimator tool” for pursuing the 

minimum criteria required to gain access to Community supports. Already in the year 2000, the European 

Commission published a document called "Indicators for the Integration of Environmental Concerns into 

the Common Agricultural Policy" (European Commission, 2000). In this paper agri-environmental indicators 

are listed as useful tools for analyzing the positive and negative effects of the European rural policies and to 

study the relationship between agriculture and environment, in order to find out the future trends of the 

sector. The environmental indicators are matched with financial and physical indicators, in order to 

illustrate the progress of the implementation of the EU Rural Development Programs not only from the 

environmental point of view. All these agri-environmental indicators and measures are used by the 

European Commission to assess the extent to which Rural Development Policies are promoting ecosystem 

friendly farming practices and sustainable agriculture at the macro area level. 

1.3 Assessment of sustainability through indicators and models 

Sustainability can be evaluated not only by indicators, but also by models simulating phenomena. Girardin 

et al. (2000) highlighted as the choice of variables assessing environmental impacts of farm practises can 

follow two pathways: the use of models, able to simulate the farm system, and the use of bibliographic 

analysis together with human expertise in order to develop indicators. The difference between the two 

paths is that through a model approach the reality is simulated, whereas the indicators attempt to simplify 

the reality’s complex relationships (Girardin et al. 1999). 

Alongside these two methodologies, there is the assessment of environmental impacts by means of direct 

field measurements. Direct data collection is linked to the model approach, because accurate measured 

data are often required as model inputs. Nonetheless, the direct data collection depends on the complexity 

of performing field tests, surveys and samplings, since measurements are frequently costly and time-

consuming. Unfortunately, the complexity of interactions between parts of an eco-agro system and the 

costs of field measurements makes often every attempt vain. Moreover, it is impossible to characterize the 

whole variability of an eco-agro system by means of direct measurements because they depend, in turn, on 

other variables and parameters. To overcome these limitations, models usually use estimated data. Indeed, 

Bockstaller et al. (1997) have highlighted the possibility to use models to simulate field situations and 

environmental conditions and, therefore, substitute the direct measurements. At the same time, the 

authors noted that models are not adapted for use at farm level, require too much data and are not 
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validated for several conditions far from the setting of implementation. Nonetheless, in the last decades 

some scientists developed simulation models to describe the complexity of agro-systems and to study their 

sustainability (Girardin et al. 1999), even if the low accuracy and high complex input requirements of these 

models are discouraging their use.The main limit is the lack of accessible data required to describe in an 

objective way each environmental compartment. The impossibility to include in the evaluation all 

ecosystem compartments and the physical, chemical and biological processes, decreases the models 

reliability. Consequently, the use of indicators has been supported, even if sometimes the distinction 

between indicators, direct measurements and simulation models can be barely detectable, since results of 

indicators can come from field measurements, calculated indexes or model outputs, as described later on. 

For this reason, the use of indicators doesn’t mean the complete discarding of the other two 

methodologies (Bockstaller and Girardin, 2003). 

Many authors proposed to resort to indicators assessment, as if it were a kind of process of regression 

toward the hub of the problem by means of a simple method. Indeed some authors and sector experts 

have judged the use of indicators as the best known and handy method to assess the environmental impact 

(Girardin et al., 1999 and Pervanchon et al., 2002). 

Girardin et al. (1999) proposed a step-by-step technique to develop indicators for the evaluation of 

sustainability, starting from a method implemented by Mitchell et al. (1995). A seven stages procedure was 

then prepared: 

 definition of objectives (main and specific goals); 

 choice of the type of users (policy makers, companies, scientific, general public, etc.), in order to 

produce clear and attractive indicators; 

 development of the indicators; 

 determination of thresholds and standard values; 

 sensitivity analysis to estimate the most important parameters and variables; 

 probabilistic test to assess the accuracy of indicator values with observed variables; 

 usefulness (efficacy) test to control whether goals have been reached. 

The procedure to assess sustainability based on models, instead of indicators, is similar for certain aspects, 

although not completely. Also in this case, according to the authors, the main steps are seven: 

 definition of objectives; 

 choice of fundamental hypotheses and identification of main variables; 

 construction of equations including parameters and variables; 

 verification to check out the quality and the magnitude of the outputs; 

 sensitivity test to evaluate the usefulness of variables; 
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 evaluation that goals are pursued; 

 validation of simulated outputs compared with observed ones. 

Two main weak points, simplification and subjectivity, often lead to a non-complete acceptance of both 

sustainability assessment methodologies from experts or scientists. The use of indicators attempts, for 

definition, to simplify agri-ecosystem reality and, for this reason, its acceptance is not complete. However, 

Girardin et al. (1999) points out as also the model approach is based on aggregate and simplified data 

processing and, usually, on levels of information with lower accuracy than an hypothetical situation with a 

complete and exhaustive characterization of an ecosystem. 

Regarding subjectivity, the opinion of scientific community is less restrictive and negative than the aptitude 

to simplify. This happens because often there are not viable alternatives and subjectivity is used during the 

use of models as well as indicators. The subjectivity in the model approach is used for example for the 

definition of the level of acceptability of the model itself and for the criteria to evaluate its quality. Also the 

decision of the model developer to accept or to reject the model according to objectives is subjective and 

as a consequence also the validation of a model, usually based on observed data instead of users 

judgments (typical of indicator methodology), is only seemingly objective. Also in the use of indicators 

subjectivity is present in several phases: the choice of the indicator and the variables used for its 

calculation, the identification of the reference values, and the results management. Outcomes are usually 

managed for building synthetic indicators, such as weighted and ranked scores or indicators based on 

multi-criteria methods. The scale of outputs’ representation and the use of scores are again often 

subjective, because these choices rely on practical considerations. Despite the subjectivity weakness, the 

easy communication of the outcomes is the indicators’ strength. This fosters their usage, even though they 

are subjected to scientific discussions and not always their selection lies on explicit and transparent choices 

(Andreoli et al., 1999 and Bockstaller et al., 2008). It is the consensus which develops around the 

formulation of an indicator, that gives to the indicator itself its scientific value. Only a rigorous procedure of 

its formulation allows an expert consensus achievement. Furthermore, to increase consensus the scientific 

bases of an indicator must be guaranteed by thresholds and norms used like landmarks by evaluators to 

make judgments (Girardin et al., 1999). 

In the future, when all direct environmental measurements will be technically and financially possible, the 

application of models should substitute the use of indicators to simulate the functioning of a system. 

Nevertheless, the use of composite indicators will be still necessary to help end-users to understand the 

state of the system and to synthesize information for decision-making by user-friendly outputs (Girardin et 

al., 1999). The diatribe concerning which one is the best method for sustainability assessment is still open. 

The choice can be oriented towards models when detailed information is available or towards indicators 

when an objective data collection is not affordable. Bockstaller et al. (2008) proposed the possibility to use 
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both methods at the same time: the combined use of models and indicators increases the quality of 

judgment because in this way the assessment relies on measured, objective, and model-based indicators at 

the same time. With this hybrid situation, indicators can be derived by a model output or, from more 

complex models, by matrix of simulations. Some model simulations can be used to descend an indicator of 

impact: for example MACRO (Brown et al., 2003), a decision support tool about groundwater fate and 

mobility of pesticides in the soils, assesses pesticides contamination and the outputs of several simulations 

were collected into a matrix (table), which was then used for the implementation of indicators of impact. 

1.4 Sustainability indicators 

One of the most famous and complete definition of an indicator is: something that helps you understand 

where you are, which way you are going and how far you are from where you want to be. A good indicator 

alerts you to a problem before it gets too bad and helps you recognize what needs to be done to fix the 

problem (Sustainable measures, 2013). Since the 80s, different authors tried to define what the use of 

indicators means. For Germes (1981) the use of indicators is a priority pathway, both modest and flexible, 

pragmatic, but based on scientific knowledge, to shed light on and control an action. Ten years later, Kuik 

and Verbruggen (1991) specified that an indicator is a compromise between scientific results and the need 

for concise information, while Adriaanse (1993) pointed out the fact that indicators allow to better 

understand those situations where it is not easy, or impossible, to make direct evaluations. Mitchell and 

collaborators before (1995), and Fisher later (1998), showed how indicators are able to transmit 

information concerning complex systems so as to make them more comprehensible and, therefore, they 

relay a complex message in a simplified manner. From these comments it comes out how an approach 

based on indicators can be considered as a method to clarify an intricate system into an easier entity, 

studying it through a scientific procedure. 

Indicators for sustainability are different from all other indicators normally used for other sector studies 

because of the holistic approach of sustainability and the strong interconnection of its three pillars. The 

indicators used for sustainability characterization have to operate synchronized: not only indicators of the 

same category, but also indicators belonging to other pillars should have a strong relationship. The use of 

indicator is an analytical approach to describe a system as a whole: it has to be seen as a holistic 

methodology that deals with several environmental compartments and several environmental issues at the 

same time. 

From farmers’ point of view, indicators are instruments that foresee the future risks and aim at assessing 

the potential negative effect of the agricultural practices performed. With the use of indicators it is also 

possible to follow the progress achieved over time by the new actions performed to alleviate the negative 

effects of what has been done before (Halberg, 1999, Lenz et al., 2000, van der Werf and Petit, 2002). Their 
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aim is to help farmers to improve their crop management for reaching sustainable goals and to simplify 

complex phenomena and systems into a simple quantitative and qualitative procedure improving the ability 

to assess human impacts (Girardin et al., 2000). It means that indicators for farmers must be, first of all, 

decision aid tools or decision supports. Once actions has been taken, indicators help to quantify their 

beneficial effects and to estimate the degree of reaching of objectives that have been fixed by 

implementer, as described before for the agri-environmental indicators used at Community Agriculture 

Policy level (Girardin et al., 1999). 

Many people, companies, non-profits, universities, government agencies and policy makers have tried to 

assess the impact of food production through indicators of sustainability. In order to explain the big 

increase of methods based on indicators assessing the sustainability of agricultural system Bockstaller et al. 

(2009), recovering a citation of Riley (2001), defined this phenomenon as “indicators explosion”. This 

explosion proves as from the ‘90s the use of indicators has been considered a valid alternative to other 

methodologies, such as fate simulation models and field impact measurements, as before extensively 

argued. 

The best approach to use indicators for agriculture issues can be described by a flow chart. Figure 1 shows a 

design-assessment-adjustment cycle for the definition of sustainable management strategies and their 

evaluation through indicators. An always higher level of sustainability and eco-compatibility between 

farmers and environment needs is searched by means of a never-ending process. 

 

 

 

 

 

 

 

Figure 1: Design-assessment-adjustment cycle for the definition of sustainable management strategies and their 

evaluation by means of indicators. 

1.4.1 Characteristics of indicators 

An indicator is defined efficient when it is: i) able to describe the behavior of a phenomenon in time and 

space, ii) relevant, easy to understand, reliable, concise, and iii) based on accessible data. 
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An indicator is relevant when it is suitable to the purpose of measuring, i.e. it answers to an objective; it is 

easy to understand when also common people can easily know how it works and the meaning of its results. 

When an indicator provides accurate data and estimates what developer want to calculate, it is defined as 

reliable. Furthermore, for a realistic, objective, and feasible sustainability assessment, indicators should be 

limited in number, simple, understandable, easy to interpret, and unambiguous in order to make them 

useful and manageable. 

Last but not least, an indicator should be based on accessible input data. In fact, the possibility to gather 

information is often one of the main limits and frequently the data inaccessibility compromises the 

identification of the best indicator. Nonetheless, it often happens that the best indicators are those for 

which there is no data, while the indicators for which data are available are the least able to measure 

sustainability. Therefore, if at the beginning of the use of a particular indicator implementers find out that 

this is not immediately measurable, they don’t have to reject it but they have to try to develop or find 

better data sources (Sustainable measures, 2013). 

Indicators should also be scientifically justified, flexible (i.e., can change through time), appropriate and 

meaningful, linked with economy and society aspects, useful to achieve in any situation community’s goals, 

and robust enough to catch the behaviour of a phenomenon nowadays and in the future (Rossi et al., 

2010). 

 

Indicators can be classified as qualitative or quantitative indicators. Qualitative indicators are preferred by 

communities (e.g. consumers and non-expert policy makers), are generally based on subjective analysis 

and, therefore, sometimes are not directly measurable. Nonetheless, they are useful for sustainability 

assessments because they don’t exclude its intangible and irrational features and allow to show some 

important aspects of sustainability that other indicators would not be able to describe. On the other hand, 

quantitative indicators are derived by actions or phenomena easily traceable to a number (such as 

percentages or values with or without units of measurement) and therefore allow to perform a more 

objective analysis. This kind of indicators is usually more used by experts (e.g. scientists). 

An indicator can be a single variable, such as the amount of water used for irrigation, or a composite 

indicator, also called index, such as the assessment of environmental impacts of pesticides. A composite 

indicator is typically based on several criteria and sub-indicators with complex relationships (Girardin et al., 

1999). Generally, indicators on potential risk of chemicals or crop practices are composite indicators based 

on intermediate data or sub-indicators. 

According to their level of complexity, indicators can be distinguished into 3 three main categories, as 

suggested by Bockstaller et al. (2009): 

 The first group consists in simple, low quality of prediction or approximate indicators, whose 

outcomes are single values obtained by surveys, data on farmers’ performances, databases and 
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general environmental characteristics. In this group are included indicators not directly measured, 

or measured in an easy way. They are ratio or efficiency studies based on the estimation of 

balances (such as nitrogen fertilization, pesticide impacts and energy efficiency indicators), and are 

frequently used to understand the behaviour of the phenomena without a high detail. 

 The second group includes indicators with a higher level of complexity that work on several factors 

at the same time. They are usually indexes based on several parameters and variables. The majority 

of such indicators work on farm practices, on soil conditions, greenhouse gas emissions, indirect 

estimation of biodiversity and landscape, erosion assessment, pollution effects of stressors into 

water compartments etc. Indicators built like mechanistic simulation model are also belonging to 

this group. In this case, the connection between predicted effects and causes of a phenomena 

improves the quality of assessment, making the output of indicator more scientific, but the higher 

quality of assessment implies a higher complexity. Moreover, frequently the results are only 

predicted values, such as concentrations, rates, etc. derived by a model simulation. 

 The third group includes indicators focused on direct measurements on the field. All biodiversity 

indicators based on scouting and counting of species and their density quantification, as well as 

indicators based on laboratory analysis concerning crop quality, soil fertility, water pollution by 

nitrate and phosphorous can be categorized in this group. Often they are utilized to replace the use 

of models when these are not accurate enough, even if they are time-consuming, expensive, and 

they hardly describe cause-effect relationships. Furthermore, results from measurements are not 

immediately available to advice farmers on the deficiencies detected. 

 

Due to the high number of different indicators available, the choice of one or the other set of indicators 

should be a balance of many different needs (Sustainable measures, 2013): the region, the magnitude of 

the evaluation, the native goals of the appraisal, the sector and the type of results that evaluators want to 

obtain. No less important, the choice and construction of an indicator depends also on the available 

information, the social and economic context, the time available to search and collect data, the current 

state of knowledge, the orientation to a long or short outlooks and the needs of the users (Girardin et al., 

1999). For instance, an evaluation of environmental sustainability of a farm in the south of Europe will use 

different indicators respect to a farm in the north: in the first situation, water indicators have an high 

relevance due to high risk of dryness, while in the second situation indicators on irrigation appear less 

important and the attention should be focused more on the low temperature and the higher risk of 

pesticides persistence. 

According to the goal, the impact estimation by means of indicators can follow two ways: the use of 

indicators to study single aspects, such as the risk of pesticides, the fertilizers loss, the emission of 

greenhouse gasses, the impact of soil activities, etc., or the use of indexes to study the sustainability as a 

http://www.sustainablemeasures.com/
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whole. For example, in European rewarding projects, that aim at evaluating farmers’ management as  

whole, indicators are applied to pursue generic goals of sustainability, while indicators for detecting farm 

specific weak points are not essential. A set of different indicators should be also used when a sustainability 

self-certification is performed in contrast to a classic third party evaluation. The self-assessment is generally 

performed using questions with a yes/no answers, i.e. the primary aim is to make a photography of the 

farm context without the attempt to increase the sustainability, while when the evaluation is performed by 

a third party the increasing of sustainability is known to be the main goal. 

The choice of the use of an indicator or the other should match up with the goal one want to achieve and 

should also be connected with realistic thresholds and/or target values that developers and users are going 

to achieve. Results are then compared with reference values to judge the quality of the indicator’s 

outcome. This last aspect is significant because an indicator is informative only if it is related to a reference. 

The identification of right thresholds and the study of the indicator’s deviation from them allow the 

indicator to functions as a diagnostic tool (Girardin et al., 1999). Therefore, setting a reference value has 

the same importance that the indicator development itself, and both, reference values and indicators, can 

be subjected to criticisms. Especially for indicators on environmental impacts, it is often not clear what type 

of reference values must be used to compare results. The lacking of scientific relevance in the reference 

values choice may raise to a rejection of the indicator by the scientific community (Oenema et al., 2005; 

Bockstaller et al., 2008). Typically, the low reliability of reference values arises when these are established 

by stakeholders and not by scientists and sector experts. To increase the trustworthiness, the choice of 

thresholds might follow one or more of these advices: being in accord with norms, referring to previous 

studies, knowing limit of measurement, considering number zero as optimum for performance indicators, 

regional standards or thresholds compared to previous year values. Sometimes, the ability of indicators to 

describe a specific phenomenon is assessed using the values of the indicators obtained by the first survey 

as initial values; this is a procedure not sufficiently accepted by expert opinion. Equally frequent is the use 

of average values obtained by a rough study of the system; these can lead to a comparison between two 

values, allowing to say whether a value is better of another, but not to affirm that a value describes a less 

impacting situation than another (Bockstaller et al., 2008). 

Moreover, according to goal, the monitoring of actions for a long period could be more important than 

studies relating to short term. In fact, a long-lasting perspective enables to study the past and the present 

to understand the future trends, to study the development of negative impacts over time and, 

consequently, to implement procedures able to provide a long period judgment of impacts. In such a way 

indicators work as warning tools for the future (Sadok et al., 2007). In other words, indicators can be used 

not only before new environmentally friendly actions are implemented (upstream steps) but also at the end 

of a meandering route of sustainability (downstream steps). The first situation is a prospective evaluation 

whereas the second is a retrospective evaluation, since historical data are used to build indicators which 
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capture past trend (Girardin et al., 1999). Evaluating sustainability over the time with indicators can be used 

as gauge to monitor positive movements as well as negative ones, can enable to alert if environmental 

impacts exceed a threshold or give information on impacts before they occur (Bockstaller and Girardin, 

2003, Reus et al., 1999). 

 

Some other more specific aspects have to be considered when choosing an indicator: it has to i) answer to 

environmental needs, ii) give clear and understandable results, iii) be users-friendly. 

The importance of the definition of the end-users of a particular indicator has been highlighted by several 

authors (Mitchell et al. 1995, Girardin et al., 1999, Yli-Viikari et al., 2007). If an indicator is tailored to 

specialist, such as agronomists, farmers, technicians and advisors, the complexity of information given can 

be elevated; while if the indicator is meant to policy-makers or consumers it should be more intuitive and 

easy to understand. In fact, since the users’ requirements are so different, it is unlikely that an indicator can 

be simultaneously efficient for different type of stakeholders. Moreover, it often happens that people doing 

the assessment through indicators and people using the outcomes of it are often different (Bockstaller et 

al., 2009). Not only the type of information, but also graphical representation of the outcomes has to be 

tailored to the end-users: for scientists the most important issues is to find indicators and their 

quantification methods, for people responsible for communication of results, the most important issue is to 

find a way to aggregate them for a best communication to stakeholders. Hence, for public, consumer and 

not expert people (community) the simplification is even more essential than other indicators choice 

criteria. 

Finally, according to Piorr (2003), for agriculture evaluation plans, the indicators choice depends also on 

their ability to fulfill specific requirements: 

- inform about status and development of complex systems; 

- provide sufficient information about sustainability of land use systems; 

- be responsive to changes related to human activities to indicate rapidly success and failure of 

activities; 

- able to show trends over time; 

- work as umbrella indicators summarizing different processes and/or environmental impacts. 

 

1.4.2 Methods to evaluate sustainability through indicators 

The philosophical conceptualization of the use of indicators to assess farms impacts must be adapted to a 

logical and handy framework for their use in a sustainability step-by-step proceeding. 

Several methods have been implemented to study sustainability through indicators. An attempt to 

categorize the most common methods has been made by Sustainable measures, (2013). Four main 
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categories have been described: i) list of indicators, ii) goal-indicator matrix, iii) driving force - state - 

response, and iv) comparison of the same indicator used in different times. 

Probably the most famous and used method is based on a mere list of indicators. This method is rather 

intuitive and, therefore, easily understood by people with different backgrounds. The list can be more or 

less elaborated and set up in different ways, considering the goals, experts consultations, specific needs, 

basic intuitions or, as suggest by Hess et al. (1999), using a Delphi technique. The Delphi technique is an 

interactive forecasting method, which relies on a panel of experts that answer questionnaires in two or 

more rounds. After each round, a facilitator provides an anonymous summary of the experts’ forecasts 

from the previous round and the experts are encouraged to revise their earlier answers in light of the 

replies of other members of their panel. It is believed that during this process the range of the answers will 

decrease and the group will converge towards the "correct" answer.  

The method of the goal-indicator matrix is focused on the relationship between indicators and goals of the 

assessment. For each evaluation process the usefulness of an indicator is tested according to its ability to 

answer to a purpose.  

The method Driving force - state - response or Driving force - pressure - state - impact - response was 

proposed by the Organization for Economic Co-operation and Development (OECD) to help understanding 

the logical flow of the actors and forces involved in the negative impact occurring. Human activities and 

natural conditions (driving forces) exert pressure on the environment and, as a consequence, the state of 

the environment changes. This leads to impacts on human health, ecosystems and materials, which may 

elicit a societal or government response. Therefore, this method is useful to study, through a cause-effect 

approach, the relationships between human actions and environmental effects (OECD, 1994 and Benini et 

al., 2010). 

The last cited method is based on a comparison of the same indicator calculated at different times (e.g. 

now and in the future). It is based on the study of what is happening to understand indicators evolution 

over the time and to understand how human activities and their effects will change in time. This method 

enables a long-term sustainability assessment. 

1.4.3 Problems related to the use of indicators and sustainability evaluation 

Problems and hurdles that might occur during environmental sustainability estimation are countless: one of 

the most important is how future human needs will get along with the wish to increase the respect of 

environment. 

During the process of quantification of impacts, implementers try to put aside human needs and priorities, 

focusing only on earth’s resources preservation. In this way the sustainability makes an effort to preserve 
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ecological integrity through a displacement from human to environmental issues. But unconsciously human 

interests are hardly ever shelved and it often happens that an evaluation of sustainability turns into a proof 

that actual agriculture features are already environment friendly. In this context, the use of indicators can 

lead to wrong evaluations since they might be used to justify our current actions rather than improve them. 

Implementers should, therefore, consider the risk that the positive human activities are highlighted, while 

weaknesses and vulnerabilities remain unknown. This risk occurs mainly when it is proved that current 

agricultural patterns and strategies are already to some extent sustainable: people and farmers will keep 

those patterns of development and crops productions. Sustainability concept should help people to look 

ahead and not considering only the positive aspects of the present (Fricker, 1998). 

Different issues arose in the sustainability evaluation in the last decades: the comparison of results, the 

compensation between negative and positive outcomes, the research of ready to use indicators and the 

tendency to merge multiple indicator into an overall composite indicator, are some of the most important 

items to consider for improving the quality of assessment. Only if these set of problems are accounted, 

developers will increase the scientific nature of the evaluation. 

Literature regarding comparison of impacts of human activities on environment calculated through 

indicators is quite poor, however, the work of Bockstaller and colleagues (2009) includes a comprehensive 

comparison between methods used to assess sustainability for farm (Eckert et al., 2000; van der Werf and 

Petit, 2002; Meyer-Aurich, 2005) and cropping system (Bockstaller et al., 1997; López-Ridaura et al., 2005). 

In particular, Bockstaller et al. (2009) report four cases where different indicators and processing methods 

used to assess impacts on the environment were compared. 

The first is a case study for the comparison of nitrogen losses indicators, especially nitrate leaching at farm 

and regional level. Feasibility, agronomic relevance, time of interpretation, threshold values and spatial 

scale were used as evaluation criteria to assess and compare 23 indicators (CORPEN, 2006). 

The second explains a comparison of 43 pesticide risk indicators in order to find the best indicators 

according to the French Ministry goals and policies. A list of 25 criteria were used to study mainly: 

indicators characteristics, end-users, method feasibility, relevance, readability, reproducibility, the list of 

parameters and variables used, the spatial scale and the environmental compartments taken into account 

(Devillers et al., 2005). 

Another comparison of five methods to assess sustainability was performed by a French regional 

organization called Agro-Transfert. The comparison aims at finding the best adapted tools to characterize 

the environmental impacts of agriculture in France. In one of them, called IDEA (Indicateur de Durabilité 

des Exploitations Agricoles), also social and economic indicators were included in the quantification of 
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impacts. Also for the comparison of these five methods a set of criteria were selected to evaluate their 

efficiency (Galan et al., 2007). 

Lastly the COMETE project compares four farm management tools upper Rhine plain on 13 farms by means 

of a list of scientific soundness, feasibility and utility criteria (Bockstaller et al., 2006). 

Nonetheless, Bockstaller et al. (2009) highlighted also as the tentative of all the previous authors to 

categorize approaches used has been vain, at least partially, owing to the great variability of the 

methodologies. Only evaluation criteria (i.e. feasibility, relevance, utility, etc.), the scale of evaluation (i.e. 

qualitative, semi-quantitative or quantitative), how appraisal has been performed, and the use or not of 

tables can be efficiently compared. 

Comparison on criteria and approaches used by developers should lead to a contemporary comparison of 

strengths and drawbacks up to the comparison of final results. 

Moreover, comparison between indicators of different studies is difficult because, although they may seem 

similar they could not have the same unit of measurement, boundaries and calculation methods. There is, 

therefore, the urgent necessity to plan comparative analysis and validation procedure to test the quality of 

the available sustainability assessment through indicators (Bockstaller et al., 2008 and Meynard et al., 

2002). To overcome the problem of comparison, aggregate indicators were developed by the aggregation 

of simpler indicators. Nevertheless, though often necessary, this strategy showed to be too simplistic and 

risky. Moreover, the use of aggregate indicators could be useless when the method of evaluation is based 

on a compensation approach. In fact, when an indicator describes a high negative impact on an 

environmental aspect and another is, instead, markedly positive this last one is not able to compensate the 

first indicator, because the environment is an interrelationship system where, if a compartment is polluted 

and another is cleaned, the outcome is not a middle pollution. Therefore, compensation is not acceptable 

for sustainability issues because when a threshold is exceeded for one parameter, the sustainability is put 

in question even if all other environmental parameters describe limited or nil impacts. 

Another shortcoming concerning the use of indicators relies on the difficulty to provide a complete set of 

“ready to use” indicators for all possible setting. Some international organisations (for example the 

Sustainability Assessment of Food and Agriculture system (SAFA) or Cool Farm Tool of Food and Agriculture 

organization of the United Nations (FAO)) are attempting to build indicators and standard procedures that 

give a quick route to calculate food production sustainability. Approximate standards can be seen as a 

progress toward the construction of a ready to use list of indicators. It is nearly impossible to develop a 

suited framework for all possible scenarios because the purposes of impact characterization are unlimited. 

As a consequence, the concept of sustainability is too complex and multifaceted, with an intrinsic 

subjectivity that does not make it feasible (IN-STREAM, 2011). 
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Until now, the attempt to develop one complete list of all-embracing indicators is failed. An alternative 

could lead to build an overall indicator characterizing the sustainability as a whole (Girardin et al., 2000), 

but different authors do not agree. According to Tisdell (1996) the process of building a single indicator, 

does not allow to consider all problems and to characterize the holistic nature of the topic. The effort to 

sum up several indicators in a single indicator could be too risky and simplistic, sure enough useful for data 

dissemination (Nardo et al., 2005, Jollands, 2006). 

Another issue under expert discussion is the chance of using indicators not only to have a look on 

sustainability performance, but also to exploit their outcomes in order to undertake purposeful actions and 

decisions to increase sustainability itself. All around the world, multinational companies use sustainability 

evaluations as parameters to influence their choice towards suppliers and to prove their green 

commitment to consumers. However, the use of indicators to distinguish food producers could be too 

hazardous because the goal of indicators is to address critical issues rather than obtain a trustworthy and 

objective screening of numerical value or score. A correct use of indicators could be found in the words of 

Sustainable measures (2013): “indicators are just vague clues for measuring progress, to create a shared 

vision of what society should be, to understand the right route to solve a problem or inefficiency and to 

monitor how the farm ecosystem is working”. As a consequence, the use of indicators to influence 

economic strategies could be risky and might entail injustices and unjustified discrimination. 

The two protocols called Sustainable Agriculture Initiative (SAI Platform, 2014) standards and Sustainability 

Assessment of food and Agriculture Systems (SAFA, 2014) are two examples of certification tools that have 

been recently developed for the food sector. SAI standards is the result of a study performed by 

Sustainable Agriculture Initiative (SAI) Platform, whereas SAFA guidelines were provided by Food 

Agriculture Organization (FAO). 

Both are excel tools under construction, generic checklists, frameworks based on list of objectives and have 

been designed by authors as subjective questions with yes/no answers. The list can be used by food chain 

stakeholders to check compliance with protocol standards. The questions change according to farming 

target group, purpose and level of detail. They are a standard, a certification scheme, which each enterprise 

can adhere to. 

These protocols are food sector oriented and are addressed to upstream and/or downstream companies, 

included in the same chain. They aim at the implementation of a step-by-step methodology to help 

enterprises to account their impact from an environmental, social and economic point of view. 

Nevertheless, they also aim at foster food multinational corporations to account the environmental, social 

and economic impacts of their suppliers, such as a single primary sector farm. In other words, they are a 

compliance check concerning sustainability issues. The certification of a company, performed according to 
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these protocols, will guarantee an higher transparency towards the consumers, but, on the other side, the 

approximations and the great subjectivity of the methodologies could imply unjustified discrimination 

between evaluated farms. Building a single standard protocol to assess sustainability for all type of farmers 

in the world, including any type of food chain, won’t ever be a correct way to chase the real sustainability 

purpose. 

1.4.4 Sensitivity and validation of sustainability evaluation 

The judgment of variables and parameters relevance during the evaluation process, as well as the 

validation of the assessment procedure are the main steps to assess sustainability through both indicators 

and models. The relevance judgment and the validation are usually performed through sensitivity analysis, 

usefulness tests and collection of end-users judgments. Bockstaller and Girardin (2003) defined, following 

the Oxford Dictionary definition, an indicator is validated if it is “well founded”, it “achieves the overall 

objectives” and it “produces the intended effect to assure its credibility”. 

Especially when an indicator is a melting of different variables and parameters (a composite indicator and 

hence an index) it should be tested to analyze whether its outcomes are sensitive to the input variables. 

With other words, a sensitivity analysis is recommended to increase the scientific quality of indicators and 

to focus only on inputs really influencing the outcomes. To find the affecting and strong variables and to 

discriminate them from minor affecting variables, it is useful to test an indicator in different settings and 

environmental situations (Bockstaller et al., 2008). 

The validation, on the other hand, explains the indicators ability to fulfill the goals of the assessment. 

According to Bockstaller and Girardin (2003), “an indicator will be validated if it is scientifically designed, if 

the information it supplies is relevant, if it is useful and used by the end users”. The most used and simple 

method to validate indicators or models is to compare predicted values with observed or measured data. It 

enables to evaluate the accuracy of the method applied, as well as, to carry out a sufficiently accurate 

validation of all environmental indicators, even if they are very simple. 

Notwithstanding its high importance, validation is hardly ever performed by developers of indicators. 

Bockstaller and Girardin (2003) highlighted as the scientific validation is mentioned by different authors, 

such as Mitchell et al. (1995), Crabtree and Brouwer (1999), Smith et al. (2000) and Vos et al. (2000), but 

without proposing a methodology to perform it. Moreover, the lack of competition between various sets of 

indicators discourages developers to dedicate time to validate them and the long term acceptance of 

indicators used in the evaluation is often considered sufficient to vouch for their soundness and credibility 

(Bockstaller and Girardin 2003). Besides, as noted by Bockstaller et al. (2008) and Rigby et al. (2001), the 

validation is difficult for simplified indicators. 
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To stop this trend Bockstaller and Girardin (2003) have proposed a new validation procedure based on a 

three steps methodological framework. The first step, called “designed validation” or “conceptual 

validation” (Mitchell and Sheehy, 1997), evaluates if the indicator is scientifically founded by submitting it 

to a panel of expert and for this reason Bockstaller and Girardin (2003) re-called this step “global expert 

evaluation”. The second step consists in the comparison of outputs with other similar models or indicators: 

if a simulation model is used its evaluation through experimental data is already a validation, while if 

simpler indicators are used, a dedicated probabilistic test has been proposed by the two authors. The 

probabilistic test assesses the performance and precision of the indicator by comparing predicted value 

with observed ones (“output validation”) in order to assess the soundness of indicator outputs. A 

subsequent evaluation of their differences acceptability is then performed by end-users to find out the 

utilization weaknesses (“end use validation”). This last step is similar to the “usefulness test” proposed by 

Girardin et al. (1999) and it guarantees that users understand indicators significance and realise indicators 

role in the environmental impacts processing. 

Validation of composite indicators is a bit more complicated: a single validation for each different indicator 

component or module should be theoretically done. Nonetheless, an approximation is needed when a 

composite indicator is a mix of variables and parameters of different types. For example, when 

environmental data coming from simulation models are joined with toxicological and eco-toxicological 

data, the validation might become complicated. The completely different frame of data makes comparisons 

of simulated data with direct environmental measured data very hard. Therefore, in many situations 

environmental data could be solely validated through an estimation of environmental concentration 

(Bockstaller and Girardin, 2003). 

Even if characterized by a more subjective nature, the strictness of the methodology and the degree of 

consensus by experts are also very important aspects. Only considering implementers, experts and end-

users opinions, indicators can be the most powerful vehicle to understand complex system relationships, to 

find in a short time the best strategies to raise the sustainability of agricultural systems and to find the right 

actions to increase economic and environmental performances. 

To study if indicators are used by and useful for end users, the identification of inconveniences of the 

impact assessment process is very important. The often high inapplicability of methods should foster the 

identification of meeting point between the scientific approach, required by the indicator developers, and 

the feasibility required by end-users. According to Bockstaller and Girardin (2003) different reasons can be 

the basis of indicator uselessness: a target of great relevance for the user may be missed, some data 

needed to calculate them are not available or the outputs of the indicator are not understandable or 

legible. Moreover they noted the importance to collect information from users, such as suggestions for 

improvement of the method, problems of implementation and misunderstandings, to avoid that indicators 
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remain confined to the office of the developer. For users the main qualities are simplicity, flexibility, 

legibility and understanding of the usefulness of an indicator. 

 

2 Background and objectives 

The increasing awareness of society that agricultural growers contribute to resources depletion and climate 

change in an irreversible way is fostering the implementation of more environmental-friendly strategies 

and actions at field scale (Winograd and Farrow, 2010). 

Cereal crops are highly cultivated all around the world and their cropping systems are often intensive and 

seldom represent potential habitats for floral and faunal biodiversity. The maximization of crops’ yield and 

quality is leading to an increase of inputs and the consequent occurrence of negative environmental 

impacts on ecosystems (Andreoli et al. 1999, Lenz et al. 2000). Consumers, media and public opinion have 

agreed to interrupt this tendency and divert towards more sustainable cropping systems. Different 

measures can be adopted to enhance resilience and self-regulating of cereals cultivation, but growers still 

do not use them widely. One of the reasons for low acceptance of these measures is insufficient evidence 

of their efficacy from agronomical, environmental and economic point of view. 

To answer to these new needs, the UN Conference on Environment and Development in Rio de Janeiro 

(UNCED, 1992) launched the paradigms for the implementation of sustainability principles (as reported 

previously in this dissertation). However, if the drawing up of these principles was relatively simple, their 

implementation is still far from being achieved. Indeed, tools, strategies, methods, and actions to increase 

sustainability of food production are still not evenly shared by opinion leaders. 

A comprehensive comparison of different production choices and actions would be essential in order to 

provide to the food production sector new ideas, advices and guidelines to answer to consumers’ needs 

(i.e. more countryside eco-functional services, less environmental impacts of food production and, at the 

same time, a social and economic high performance of cropping systems). 

These arguments fostered this PhD study that aims at developing an innovative approach for the cultivation 

of sustainable durum wheat in Italy. To reach this main objective the work was divided into three steps: 

1. selection of the indicators and methodologies that developers can use to assess the environmental 

sustainability of agricultural production; 

2. development of tools for sustainable management of wheat production; 

3. evaluation of both indicators and tools by means of field comparisons between actual and 

innovative (i.e. following the tools) wheat cultivation. 



24 
 

To perform step number three a 4-year project was carried out in collaboration with: 

 Horta S.r.l., a spin-off company of the Università Cattolica del Sacro Cuore, based in Piacenza (Italy). 

The Horta’s mission is to increase the value of research by transferring the technological innovation 

to practical agriculture at national and international level, by developing new cropping strategies, 

methods and products. The core activity of Horta is the development of Decision Support Systems 

(DSSs) for sustainable crop production based on new Information and Communication Technologies 

(ICTs). 

 LCE S.r.l., a research and consulting engineering company based in Torino (Italy). LCE works on 

sustainability by using Life Cycle Assessment (LCA), eco-balance, environmental engineering and 

management, green marketing, environmental communication and reporting and carbon 

management (application of the Kyoto Protocol). 

 Barilla S.p.A, one of the main food companies in Italy, Barilla is the biggest Italian food player, the 

most sold worldwide pasta brand, the biggest Italian bakery and the third bakery in Europe. 

This project used as background a former study LCE and Barilla performed together that resulted in the 

Environmental Product Declaration (EPD) of pasta (Barilla, 2014). In this preliminary study Barilla decided to 

undertake the analysis of different steps of pasta and bakery products chain with a LCA approach, in order 

to understand, and consequently promote, actions able to decrease emission during durum wheat 

cultivation and/or industrial processing. 

The LCA is an environmental impacts analysis methodology of consecutive and inter-linked stages of a 

production system: from raw material acquisition to final disposal or as colloquially said “from cradle to 

grave” (Baldo et al. 2008). Since the year 2000, the LCA has evolved as an important method for improving 

the environmental performance of food systems (Jungbluth et al., 2000 and Ruini and Marino, 2008) and it 

is a relevant tool for industries that invest money to improve eco-efficiency of food chain. 

The mentioned study performed by LCE evaluated the emissions generated during the durum wheat 

cultivation, the mill phase, the pasta production phase, the packaging production, the transport, and the 

cooking by consumers (Figure 2). 
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Figure 2: Pasta chain steps. Developed by LCE S.r.l. (Life Cycle Engineering) and available from: 

http://gryphon.environdec.com/data/files/6/7968/epd217_rev2.1.pdf  

The LCA showed that for making 1 kilogram of Barilla “Spaghetti n°5” the higher impacts occur during raw 

material cultivation and cooking phase (Figure 3). Cooking of the pasta is the most impacting stage, 

although it depends on consumer habits (the quantity of water used and cooking times). Surprisingly, the 

less impacting processes are the manufacturing of packaging and the transport (less than 5% each). 

 

 

 

 

Figure 3: Share of environmental impacts of pasta chain steps. Processing by Barilla S.p.A. and LCE S.r.l. 

Three main indicators were considered to evaluate the environmental impacts during the LCA study in 

order to produce the EPD of pasta: i) ecological footprint (ecological load), ii) carbon footprint (CO2 

emission) and iii) water footprint (water consumption). Considering that the phase of home cooking is not 

directly manageable by the company, the durum wheat cultivation represents the most impacting phase to 

focus on for improving the environmental performance of the pasta chain. In particular, cultivation is 

responsible for 84.5% of the ecological footprint, for 59.7% of the carbon footprint and for 99.6% of the 

water footprint (Figure 4). 
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Figure 4: Quantification of environmental impacts of pasta chain steps. It is the EPD (Environmental Product 

Declaration) of “Durum wheat semolina dried Pasta” of Barilla S.p.A. Processing by LCE S.r.l. (Life Cycle Engineering) 

and available from: http://gryphon.environdec.com/data/files/6/7968/epd217_rev2.1.pdf  

Gan et al. (2011) presented a study on the sources of CO2 emission during durum wheat cultivation in North 

America. Omitting the CO2 lost by the crop residue decomposition, the main source of CO2 emission was the 

use of fertilizer (Manufacturing N and N fertilizer emissions in Figure 5) and other chemicals, such as 

pesticides (Manufacturing other in Figure 5), to which is connected the fuel used for the distribution 

machines. Therefore, the choice of different crop management systems may highly influence the 

environmental impacts of crop production. 

 

Figure 5: Adapted from Gan et al. (2011). The main sources of emission during durum wheat cultivation. 

This project was designed following the strategy proposed by Von Wirén-Lehr, (2001). 

 Identification of the purpose and state of art. The purpose of the project was to evaluate tools able 

to increase the sustainability of durum wheat cultivation. In the years 2009/2010 and 2010/2011, a 
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study was carried out to: i) identify the main cropping systems used in Italy for durum wheat 

cultivation, and ii) use the expert’s knowledge to develop new, alternative systems able to 

potentially increase the environmental performance under specific conditions.  

 Choice of indicators and their characterization. The following indicators were selected for the 

evaluation of impacts of the different crop management strategies: Carbon footprint, Water 

footprint, Ecological footprint, Net Income, Agronomic NUE, Carbon sequestration and DON index. 

The evaluation was therefore based on eco-balancing and production-oriented indicators. 

 Assessment of sustainability following a strategy based on normative, goals, users thresholds and 

tolerance values. Field trials were arranged in the cropping seasons 2011/2012 and 2012/2013 to 

compare the farmer’s usual crop management and the innovative management based on: i) 

strategic advices provided by a 10-rules handbook for the sustainable cultivation of high quality 

durum wheat in Italy; and ii) tactic advices of the Decision Support System (DSS) granoduro.net®. 

Comparison of these two crop management practices was evaluated using the above mentioned 

indicators. 

 Identification and implementation of strategies and tools for the supply of management advices: by 

integrating the use of granoduro.net® and the “Handbook for sustainable cultivation of quality 

durum wheat in Italy” a new “wheat fine-tuned tool” was implemented to help growers 

transferring theoretical constructs of sustainability into practice. 

The project was goal-oriented (i.e. decreasing impact), means-oriented (i.e. fostering new cropping 

systems), and single crop and site-specific-oriented (i.e. durum wheat of Italy). This dissertation wants to 

overtake the main drawbacks of an assessment of agricultural sustainability based on goal-oriented 

concepts (Von Wirén-Lehr, 2001): 

 “the lack of systemic and transferable indicators which characterise agricultural and other eco-

systems regarding all dimensions of sustainability; 

 the deficit of an adequate evaluation of agro-ecosystems; 

 the lack of principal guidelines for the formulation of management advices for practical 

application.” 

3 Results and discussion 

3.1 Selection of sustainability indicators for the environmental assessment of agricultural crops  

After a comprehensive study of literature about sustainability indicators, the indicators described below 

were selected as the ones more suitable for the quantification of the sustainability of specific durum wheat 
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cropping systems and not for the estimation of farm sustainability as a whole (farm management). The 

majority of indicators selected concern environmental impact, only a few social and economic indicators 

has been taken into account. Therefore, economic viability, social respect and acceptability, as well as all 

other aspects regarding quality of production are considered only marginally. 

The most important indicators selected is called “Carbon Footprint (CFP)” (PAS 2050, 2008). It represents 

the amount of greenhouse gases released directly or indirectly from human activities and it can be 

expressed in two measurement units: tons of CO2 equivalent/tons of product (when it is referred to a 

quantity) or kilograms of CO2 equivalent/hectare (when it is referred to a surface). In particular, it measures 

the impact of goods production and all other human activities on climate, taking into account all 

greenhouse gases, produced by several sources that can modify the balance of carbon dioxide. The main 

greenhouse gases (GHGs), listed in the Kyoto Protocol, are: carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6) and some 

particulates (United Nations, 1997). Each greenhouse gas can be converted into carbon dioxide (equivalent 

of CO2) through a particular conversion factor that was defined by the Intergovernmental Panel on Climate 

Change (IPCC, 2001). Hence, the CFP indicator is used to estimate the Global Warming Potential (GWP) of 

each human activity or system. Depending on the system under evaluation, the identification and 

quantification of emissions will change: for example, in agricultural systems the emissions of 

manufacturing, farm use and disposal of fuel, fertilizers, and pesticides are mainly taken into consideration. 

Nitrous oxide (N2O) emissions come from nitrogen fertilizer use, soil tillage, manure management and peat 

land cultivation and its greenhouse effect is around 300 times more powerful of Carbon dioxide. Whereas 

methane (CH4) comes from the fermentations of the digestive system of livestock, paddy rice cultivation 

and manure, and sewage management and it is over 20 times more powerful than CO2. Therefore, 

strategies and methods reducing emissions of N2O, CH4 and CO2 are increasingly requested, in order to 

decrease the constant flow of GHGs into the atmosphere (van der Werf and Petit 2002). 

The indicator called “water footprint” (Hoekstra et al., 2011) was exploited for the water compartment 

since it measures the water consumption. This index is made up of three components: the “green water”, 

that evaluates the water evapotranspired by plants, the “blue water”, that considers the irrigation water or, 

more generally, the water needed for a manufacturing process, including wash water by industrial 

consumption, and the “grey water”. The last one represents the fresh water needed for the dilution, up to 

legal thresholds or to a concentration close to natural concentration, of contaminated (waste) water by 

chemical treatments and fertilization during crop production and industrial processes. The units of 

measurements used are liters/hectare for “green water”, m3 of water/tons for “blue water”, and liters/kg 

for “grey water”. The unit of the overall indicator (“water footprint”) is m3 of water or tons of water 

depleted per tons of product. 
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Equally important is the evaluation of resources depletions: an overall estimation can be performed by the 

indicator “ecological footprint” (Kitzes et al. 2008). This indicator is an assessment of the amount of 

biologically productive land and sea needed to provide resources for human needs, included waste 

disposal. With other words, it is an estimation of the amount of productive land required to produce tools, 

materials, goods and energy required to bear and to absorb the wastes generated by human activities. 

Therefore, the ecological footprint is a measurement of human dependence on land resources. The unit 

that quantifies the bio-capacity of earth is the global hectare (gha), therefore the ecological footprint is 

quantified as gha/tons of field product or global m2/tons of field product. The “ecological footprint” 

estimates outflow and inflow of resources from and to a bordered scenario that could be a country, a city, a 

farm and even a single farm plot. To calculate the hectares required for resource production and waste 

disposal the indicator incorporates in the assessment six elements: 

1. the land needed to produce energy: it consists of an afforested area required to absorb the 

emissions from the use of fossil fuels (energy land); 

2. the agricultural land for food production (crop land); 

3. the grazing land for livestock sector (grazing land); 

4. the forest area for wood (forest land); 

5. the developed land (built-up); 

6. the sea surface dedicated to the growth of resources for fishing (sea land). 

For the estimation of durum wheat ecological footprint in particular, only the first two points are 

meaningful. 

Carbon, water and ecological footprint was referred to the environmental management standards 

belonging to the category ISO 14000. For the first three years of the field validation the footprint indicators 

were based on already existing LCA databases (Ecoinvent, an international inventory of LCA data), while in 

the last year property databases were implemented to improve the quality of assessment, making it closer 

to Italian features. 

The agronomic indices “NUE (Nitrogen Use Efficiency)” and “Agronomic NUE” were selected to quantify 

how much of the nitrogen applied to a crop is actually adsorbed by plants. This allows the estimation of its 

potential losses in the environment. For the time being, other more sophisticated indices on nitrogen 

efficiency such as “nitrogen uptake efficiency (NUpE)”, “NUtE (Nitrogen Utilization Efficiency)” and 

“nitrogen harvest index (NHI)” (Foulkes et al., 2009 and Rahimizadeh et al.,2010) are not considered. 

The “NUE” represents the kilograms of grain dry mass at harvest per kilogram of available N (from soil plus 

fertilizers), while “Agronomic NUE” represents the kilograms of grain dry mass at harvest per kilogram of 

supplied N (from fertilizers). “NUtE” represents the kilograms of grain dry mass per kilogram of N of 



30 
 

harvested biomass (above-ground N), and “NUpE” represents the kilograms of N into harvested biomass 

(above-ground N) per kilogram of available N (from soil plus fertilizers), whereas “NHI” is the proportion of 

N into harvest grain (above-ground N). These indices are influenced by the crop, the years of rotation, the 

kind of fertilizer used, the crop residues management and the weather conditions. The loss of nitrogen 

fertilizers in the environment is a combined effect of denitrification, volatilization, leaching and run off and 

it could cause serious environmental problems to fresh and ground water as well as economic drawbacks 

for high productivity agriculture. 

All the indices mentioned above are used to evaluate the efficiency of nitrogenous fertilizers applied during 

crop production. Knowing this efficacy allows to identify the portion of nitrogen removed by wheat and, 

consequently, the amount left that leached, runoff, volatilized or stayed into the ground. Once estimated 

the amount remaining in the soil and the amount volatilized the remaining is leached into underground 

water bodies or run off by surface water. Moreover, the evaluation of the effectiveness of fertilization can 

be used as an indirect assessment of drinkable water quality. Finally, NUE allows economic considerations: 

the use of nitrogen fertilizers in an efficient way (high NUE) involves a decreasing of fertilizers needed for 

growing, with a subsequent cost savings. 

The reduction of carbon dioxide in the air can be performed by removing CO2 from the atmosphere storing 

it as carbon molecules or organic matter in soils and standing biomass. To understand to what extend agro-

technical measures can promote soil carbon long-term storing, a study of carbon sequestration in durum 

wheat was included in the field evaluation. Organic Carbon is correlated with many factors of agricultural 

productivity and sustainability of agri-ecosystems: climate (water and temperature trend), cover vegetation 

(land use and agronomic practices), topography, crop practices and crop residues quality. Goreau (1990) 

and later López-Bellido et al. (2010) provide examples of use of Carbon sequestration indicators and debate 

the possibilities of controlling atmospheric carbon dioxide by balancing the sources and sinks of the gas. 

López-Bellido et al. 2010 explains the effects of tillage system, crop rotation, and N fertilization on the “soil 

organic carbon (SOC)” storage over 20 years. 

“Yield per hectare” (Simon, 1989), “quality specifications”, “net income” (Chen, 2000) and “costs” are some 

economic indicators that has been monitored in this study to understand how farm practices can influence 

both qualitative and quantitative productive outcomes. 

“Yield per hectare” is the amount of caryopsis as tons/hectare obtained in compliance with Good 

Agricultural Practices (GAP). In the project the yield is related to specific quality or harvesting parameters. 

For instance, in cereals, kernels are referred to a moisture of 13%; for tomato the yield refers to a quality of 

5° Brix Tomato, while sugar beets refers to 16 degrees of polarization. 

The “risk of mycotoxins (deoxynivalenol contamination)” is an example “quality specification” that was 

monitored in the field evaluation. This indicator evaluates the risk of toxic molecules to human health 

originated by the proliferation of pathogenic fungi (Fusarium graminearum and F. culmorum), producers of 
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secondary metabolites called mycotoxins. The indicator describes in particular the risk of mycotoxin 

deoxynivalenol (DON) occurring in ears and grain. The development of these fungi and their toxic 

secondary metabolites depends on meteorological factors and growing, as well as on more specific factors 

linked to cropping system, such as varietal susceptibility, rotation of crops and tillage of soil. Therefore the 

amount of mycotoxins changes depending on the choices made by farmers and on seasonal trend during 

crop season. DON content in wheat for animal and human consumption is limited by law: for unprocessed 

durum wheat the law limit is 1750 ppb of deoxynivalenol contamination (Reg. CE n. 1881/2006). The “DON 

index” is calculated on a scale 0 to 9, where 0 means no risk and 9 means risk of contamination, i.e. high 

probability to overcome the law limit (Rossi et al. 2003). The estimation of the presence and quantification 

of mycotoxins in cereal crops give the social dimension of sustainability of this study. The risk of mycotoxins 

in food is one of the most important aspects of food safety and it is an issue highly felt by policy makers in 

the last decades.  

Finally, the “net income” indicator represents a difference between the Gross Marketable Production 

(GMP) (yield of crop multiplied by the price) and the crop production costs. The GMP generally does not 

take into account the direct market support of Common Agricultural Policy (CAP), while cost of production 

takes into account only the direct costs of cultivation (field operations and technical tools and resources). 

Indirect costs (i.e. land use, financial interests, taxes, etc.) are not taken into account. The Net Income is 

measured as €/tons or €/hectare. 

In the first field evaluations (2009/2010 and 2010/2011 ) different “yes/no” indices were also considered 

(only few data will be shown in the thesis due to their scarce application). These indices belong to the 

“Good environmental practices” category: 

i. use of cover crop; 

ii. use of buffer strips and hedges: indicates the presence or absence of vegetative barriers 

between plots for limiting the drift of PPPs spread out with non-optimal environmental 

conditions. 

iii. use of anti-drift nozzles: their use can decrease the risk of PPPs spreading out of the target. 

iv. mitigation measures of runoff (hilly ditches, etc): allow to assess, especially in hilly areas, 

the presence of small seasonal ditches to collect the water runoff. They restrict erosion and 

water surface runoff occurring during heavy rain falls. 

v. subsurface drainage: indicates if networks of sub-surface tubes are implemented in areas 

with shallow groundwater and/or stagnant surface water. 
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The decision to use a limited number of indicators comes from the belief that the identification of many 

parameters of evaluation leads only apparently to a right assessment of sustainability. The potential 

increasing of accuracy obtained by using a lot of indicators fail at the moment of the collection of 

information. The risk of getting unrepresentative data increases with increasing of the human resources 

and timing required to obtain them. Nonetheless, the list of indicators was not strict: in different years the 

indicators used changed according to company’s priorities and needs. 

3.2 Innovative tools for the sustainable durum wheat management  

3.2.1  granoduro.net®  

granoduro.net® is a web-based decision support system (DSS) developed by Horta S.r.l., spin off company of 

the Università Cattolica del Sacro Cuore, for the sustainable management of durum wheat. The 1.0 version 

of the system is on the market since 2010; during this PhD study a 2.0 version was developed with new 

services, to make it more competitive, and an improved interface, to make it more user-friendly. 

The system is intended to help farmers and agricultural advisors in decision-making for cultivation of durum 

wheat (from sowing to harvest) following the principles of sustainable agriculture requested by the 

Directive 2009/128/CEE. Moreover the tool plans to overcome the constraints of on-web agro-ecological 

technologies argued by Zaks and Kucharik (2011). 

Through granoduro.net® a farmer can manage all tactical decisions in order to maximize yields and kernels 

quality. Decision supports provided by granoduro.net® are designed on a holistic and site-specific approach, 

taking into account weather conditions and plot-specific peculiarities of the crop. Indeed, granoduro.net® 

outputs are tailored to a crop-unit (CU), a wheat field sown on an uniform piece of land (i.e., same 

characteristics of the soil, with the same wheat variety, same rotation, same soil tillage) and cropped in a 

uniform manner all season long (from the previous crop to harvest). Each CU is characterized by means of 

site-specific information both static (i.e. do not change over the season and are provided una tantum by 

the user to the DSS), and dynamic (i.e. change over the season), that represent the input variables of the 

simulation models running within the system. The DSS provides decision supports for all key elements of 

the production process, including: seeding, crop growth and development, timing and amount of fertilizers 

(nitrogen, potassium and phosphorus), weed control and risk of occurrence of the more important fungal 

diseases. All services are based on expert knowledge and epidemiological models. 

Based on the previous considerations, the DSS for durum wheat production was designed following the 

conceptual diagram of Figure 6 (Rossi et al., 2010). As indicated in this figure, both static-site profiles and 

site-specific information (data) are viewed as flowing from the environment via instrumented sensors or 

human activities (scouting, analyses, etc.) to a database. The information is manipulated, analyzed, and 

interpreted though comparison with available expert knowledge as part of the decision process. The 

information is processed for producing a decision support. The decision itself is the responsibility of the 
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user, and the DSS is not designed to replace the decision maker but to help in making choices by providing 

additional information. A decision results in an action to be executed within the crop environment. After 

the action is carried out, the environment is again monitored to begin a new cycle of information flow. 

Thus, information flows to and from the environment in an endless loop that begins with sensing and ends 

with action (Sonka et al., 1997). 

 

Figure 6: Conceptual diagram of granoduro.net®.  

Users access to the DSS from the company website (http://www.horta-srl.com/) by means of a user name 

and password. At the beginning of durum wheat cropping season (October and November in the north and 

in November and December in the south of Italy) users have to fill out a data sheet regarding the crop unit 

features. An example of data gatherer is illustrated into Figure 7. With more details, for model initialization, 

the main data request to users are: user name, nearest weather station, a free name of crop unit, hectares, 

if crop unit is into a nitrate vulnerable zone, farm name, province, municipality, altitude, mean slope, farm 

management (conventional, integrated or organic), variety of durum wheat, expected yield, rotation, date 

of sowing, soil characteristic (texture and endowment of nutrients), soil tillage, sowing conditions, and 

information about organic fertilization. Other inputs not compulsory but recommended are the soil analysis 

and personal details of farm and/or membership organization. 
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Figure 7: The main data sheet gatherer used to collect information about crop unit. Data are collected regarding: 

growers, location, tactic crop grower choices (variety, high or low input orientation, rotation, etc.), soil characteristics, 

sowing conditions and organic fertilization. 

Each crop unit has to be collected to a nearby weather station, therefore, a network of weather stations 

was implemented in the most important region for durum wheat cultivation (Figure 8). 
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Figure 8: The network of weather stations (blue and white spots of the map) used to monitor weather patterns during 

the cultivation of durum wheat.  

When data are correctly filled in a new “production unit”, models start running and all services are 

available throughout the durum wheat season. In Figure 9 an example of crop list: for each crop unit a sum 

up data (membership organization, user name, farm name, production unit name, municipality, wheat 

variety, hectares, weather station, and farm management) and the main services supplied to growers and 

technicians is shown. Following each service will be described in more details. 

 

Figure 9: A snapshot illustrating how granoduro.net® services are displayed to users. Ten crop unit are listed (one 

horizontal line for each CU). A summary of information collected during “crop unit” characterization is shown and 

intuitive icons help users find the service wanted. 
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By clicking on the icon  advices on the possible application of phosphorus and potassium before sowing 

(“before-sowing fertilization”) will be shown. The recommendation of fertilizer’s application depends on 

soil texture, physical and chemical soil characteristics (e.g. Ph, limestone, available phosphorus and 

potassium, etc.), mineral fertilizers endowment, rotation, and expected yield (Figure 10). 

 

Figure 10: A snapshot illustrating suggestions for before-sowing fertilization with phosphorus and potassium by 

granoduro.net®. 

Recommendations about density of sowing are available through the symbol:  (“soil density/hectare 

advice”). The density of sowing is influenced by variety, date of sowing, bed sowing, depth of sowing, risk of 

water logging, weight of thousand seeds, climate category, soil texture and presence of gravel (Figure 11). 

The output indicates the number of seeds per square meter and kilograms of seed per hectare. 

 

Figure 11: A snapshot illustrating suggestions for density of sowing. granoduro.net® shows sowing as number of seeds 

per square meter and as kilograms per hectare of vital seeds. 

By the icon  data about temperature, leaf wetness, air humidity and rainfall registered by the closest 

weather station are provided in real-time (Figure 12). The outputs are given for the last 72 hours (Figure 

13), from October 1st of the year of sowing to the day consultation (Figure 14) and as weather forecast of 

five days later the day of consultation (Figure 15). 
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Figure 12: Real-time weather data outputs: last data registered and transmitted by the reference weather station. 

 

Figure 13: Weather data outputs of last 72 hours. 
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Figure 14: Outputs of historical weather data (temperature, rain, air relative humidity and leaf wetness).  

 

Figure 15: Outputs of the weather forecast for the following five days. 

Thanks to granoduro.net® users can consult a complete and up to date database of pesticides approved for 

durum wheat cultivation in Italy. The goal of this DSS is to encourage a more conscious use of pesticides 

and not to promote some pesticides rather than other ones. For this reason, none pesticides manufacturer 
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is recommended, promoted or inadvisable. By clicking on  (Figure 16) insecticide, fungicide, herbicides, 

plant growth regulator, avoiding lodging, and seeds dressing fungicides available for durum wheat are listed 

for the main adversity. For each plant protection product the following information are given: physical and 

chemical properties, human and environmental risk of toxicity, the label, rules of usage, risk of resistance 

development, controlled pests, as well as the field applicability according to weather forecast and 

pesticides properties (Figure 17). 

 

Figure 16: Adversities considered by the pesticide database of granoduro.net® . Clicking on  on the right of each 

horizontal line, users can find pesticides for insects (aphis, flies, Oulema melanopus, soil insects, bugs, and midge), 

avoiding lodging, plant growth regulators, several fungi (septoria leaf blotch complex, fusarium heat blight, powdery 

mildew, yellow and brown rust, Elimintosporium spp., Tilletia spp., Ustilago tritici and foot rot complex) and herbicide.  
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Figure 17: An example of applicability of pesticide Amistar according to weather pattern in the day of consultation and 

in the following two days. Forecast of wind, rain, too low or too high temperature, extreme relative humidity not 

recommend treatment (red warning), whereas if meteorological parameters are suitable to physical and chemical 

properties of pesticide, the treatment is recommended (green warning). 

The core of granoduro.net® is represented by the disease control functionality (icon ). Epidemiological 

models are driven by weather data and simulate i) the development of the different pathogens and ii) the 

risk of mycotoxins Deoxynivalenol (DON) and Zearalenone (ZEA) production (DON is produced by some 

Fusarium species that infect wheat caryopsis during ripening, while ZEA is produced by both Fusarium and 

Gibberella species). The use of epidemiological models allows to schedule treatments against a particular 

pathogen only if really necessary. In such a way repeated treatments over time can be replaced by 

treatments only when disease pressure is high (i.e. high inoculums, high spreading by wind and/or rain and 

high risk of infection). The diseases considered to date are: septoria leaf blotch (Septoria tritici and 

Stagonospora nodorum), fusarium heat blight (Fusarium culmorum and F. graminearum), powdery mildew 

(Blumeria graminis f. sp. Tritici), yellow and brown leaf rust (Puccinia striiformis f.sp. tritici and Puccinia 

triticina (recondita). For each disease and risk, two output’s levels are provided by the system: i) a 

synthetized output represented by a dashboard giving the general risk and ii) , provided by clicking on the 

dashboards, detailed outputs of the specific epidemiological models (Figure 18-19). 

 

Figure 18: First level output: dashboards for risk of yellow rust occurrence (i.e. “Ruggine Gialla”), septoria leaf blotch 

complex (i.e. “Septoriosi”), powdery mildew (i.e. “Oidio”), brown rust (i.e. “Ruggine bruna”), fusarium head blight (i.e. 

“Fusariosi Spiga”) and DON. Green means low risk, while red very high risk of infections onset. 
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Figure 19 shows as example the detailed outputs of the model for septoria infections: spring infection 

pressure, inoculum dose, disease spreading, and autumn and winter infection pressure. While Figure 20 

shows the second level of outputs of the model for DON production: probability of DON production and its 

variation depending on strategy adopted by growers to control mycotoxigenic fungi. 

Figure 19: An example of graphs shown to users if the dashboards of septoria leaf blotch complex (i.e. “Septoriosi”) is 

clicked. Graph about spring infection pressure, field inoculums amount, disease spreading, and autumn and winter 

infection pressure are shown from the October, 1
st

 to five days later the day of consulting. 
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Figure 20: An example of graph shown to users if the dashboards of DON is clicked. Graph about the probability of 

DON developing is shown from the first expected day of heading (April, 7
th

) to the end of ripening. Other threes 

dashboards explain the risk of DON if none fungicide treatment is performed (on the left), if a treatment is done (in the 

centre) and the risk of ZEA occurrence if none fungicide treatment is done by growers. 

Complementary to the disease models a model for winter wheat development was integrated into the DSS 

(Rossi et al., 1997). Dynamics of wheat phenological phase, flowering behaviour, and total and green area 

of each leaf are calculated from the time of their appearance until complete senescence based on date of 

sowing, wheat variety and weather variables (Figure 21) (Salinari and Meriggi, 2011). 
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Figure 21: The first graphs shows the simulation of winter wheat crop canopy development during season, from sowing 

to five days later the day of consulting; all key phenological stages are pointed by yellow rhombus. In the second graph 

a focus on flowering is displayed to monitor the relationship between rainfalls, flowering and risk of Fusarium head 

blight developing. The last graph describes the development of leaf biomass; light green line means green leaf biomass 

at the date indicated by x axis, while the dark green line describes the total developed leaf biomass (green and dry) at 

the date indicated by x axis. 

Another functionality of granoduro.net® is dedicated to weed control: for each weed species a descriptive 

fact sheet (pictures, EPPO, scientific and local name) was prepared to help farmers identify what they see in 

the field (Figure 22 and 23). Once selected one or more weeds observed, the system indicates with a 



44 
 

ranking frame (from the most effective to the less ones) which commercial product can be used for the 

control depending on predicted wheat phonological stage, weed sensitivity to the active ingredients of 

pesticides, weather conditions, chemical and physical properties of pesticides. 

Growers choice products (one or two) according to effectiveness and farm storage availability, if pesticides 

are compatible (chemical miscibility) a sum up of chemicals choices is displayed (Figure 24), otherwise users 

are encouraged to choice other products. As for pesticide also for herbicides, field applicability of the day of 

consulting and for the two days later is available (Figure 25). 

Figure 22: The list of seventy more important weeds of Italy that can be chosen by users during weed tool query. EPPO, 

scientific and local name are displayed as well as pictures and fact sheets to simplify recognizing. 



45 
 

Figure 23: A snapshot of user input screen. User, according to experience or field scouting, can input up to ten weeds, 

change the crop phonological stage and the date of hypothetical treatment. 

 

Figure 24: An example of treatment of March 12
th

 during durum wheat stem elongation against four weeds (GALAP, 

AVEFA, STEME, PAPRH) with two herbicides (Allegory Gold and Trace). A recap of pesticides effectiveness toward the 

four weeds is described by means of colours: red (weed resistant), yellow (weed partially susceptible), and green (weed 

susceptible). 

 

Figure 25: An example of applicability of herbicide Allegory Gold and Trace according to weather pattern in the day of 

consultation and the following two days. Forecast of wind, rain, too low or too high temperature, extreme relative 

humidity are weather patterns where granoduro.net® not recommend treatment (red warning), whereas if 

meteorological pattern are suitable to physical and chemical pesticide properties the treatment is recommended 

(green warning). 

A functionality for crop fertilization is also present in the DSS: at the beginning of crop season potassium 

and phosphorus fertilization are considered, while during spring, advices are provided on the amount of 
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nitrogen fertilizers and the best timing to spread them into the field (Figure 26). The advice of fertilization is 

based on a balancing approach between inputs and removals, usually two or three spreading out are 

recommended. The calculation of fertilization dose takes into account: fall and winter rainfall (from 

October to February), fall and winter temperature, nitrogen by rain, endowment of nitrogen by soil fertility, 

nitrogen by mineralization of organic matter and previous crop, organic fertilizers contribution, crop’s 

requirements (depending on variety and expected yield), fall and winter leaching and fixation of nitrogen 

compounds in the crop residues and soil clay. 

 

Figure 26: An example of nitrogen fertilization profile suggested by granoduro.net®. The 212 kg of nitrogen 

recommended per hectare should be split into three shares. 60 kg/ha during tillering, 112 kg/ha at the beginning of 

stem elongation, and the last 40 kg/ha at the booting stage. 

To conclude, granoduro.net® is not only a decision support system to help farmers during durum wheat 

cultivation, but also a calculator of environmental impacts. To account environmental impacts and calculate 

indicators of sustainability, a register of farming operations (Figure 27) is submitted to users through the 

icon . Each crop activity (cropping activities and technical tools) contributes to the overall impact of 

wheat cultivation and in this register users can record data about soil tillage, sowing, fertilizations, 

treatments, irrigation, harvesting and delivering to storage facility (Figure 28).The environmental impact is 

summed up into three indicators: carbon, water and ecological footprint. Other agronomic indicators as 

Agronomic Nitrogen Use Efficiency (Agronomic NUE), yield, protein, test weight, and DON contamination 

are listed in the summary table (Figure 29). The indices of impact are available by the icon  . 

 



47 
 

 

Figure 27: A snapshot of the register of farming operations used to account environmental impacts. Some data about 

soil tillage (“Lavorazione del terreno”), sowing (“Semina”), fertilization (“Fertilizzazione”), treatments (Trattamento 

antiparassitario”), irrigation (“Irrigazione”), harvesting (“Raccolta”) and delivering to storage facilities (“Consegna”) 

are collected by users with this frame. 

Figure 28: A snapshot of the register of farming operations used to account environmental impacts. Some growers 

activities are recorded. 

 

Figure 29: An environmental impacts summary table. Indicators as carbon, water and ecological footprint are shown 

both per hectare and per tons of caryopsis harvested. The impact depends on cropping activities and technical tools 

recorded by farmers by means of a register of farming operations. 

To calculate the impacts, as well as for other DSS functionalities, different databases were implemented. 

The most important regard: 
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 weeds. Data of miscibility of herbicides, weather thresholds, chemical and physical 

properties of herbicides, weeds effectiveness, field applicability according to wheat 

growing stage and weeds characteristics were collected; 

 pesticides. Chemical and physical properties, all labels data, method of use, efficacy and 

toxicity risk data were accounted; 

 register of farming operations. Seed companies and storage facilities were inventoried; 

 fertilizers. The fertilizers used for durum wheat were categorized and estimated, as well the 

unit impact according to formulation, nutrients and chemical properties; 

 fuel consumption. Any cropping activities was matched with a fuel consumption depending 

on machine, soil texture and field slope. 

To fully understand the potential of this DSS one should consider that the most important weakness of 

sustainability is the difficulty to demonstrate its advantages. Sustainability hardly proves its benefit for the 

environment, but granoduro.net® through the calculation of cultivation impacts on the environment is able 

to prove the benefits of sustainability if this is pursued. granoduro.net® was chosen and used in the field 

evaluations for getting durum wheat production more environmentally durable. The matching of advices 

with the accounting of environmental impacts of cropping activities and technical tools makes this tool 

what farmers were looking for: a tool for reducing economic and environmental impacts and for proving 

the benefits of practices carried out into fields. 

granoduro.net® is a “working in progress” project where Horta’s staff as a whole has contributed and will 

concur at the implementation of best and new services.  
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3.2.2 Handbook for sustainable cultivation of quality durum wheat in Italy  

During the PhD a Decalogue for sustainable cultivation of quality durum wheat in Italy was drawn in 

collaboration with Barilla S.p.A., Horta S.r.l. and LCE S.r.l. (Figure 30). It is a handy booklet to answer needs 

of increasing durum wheat quality, decreasing of impacts of cropping system and a comeback to basic 

aspects of agronomy. In this handbook the 10 rules that farmers and technicians must comply for deliver 

durum wheat to Barilla S.p.A are described.  

  

Figure 30: The cover and contents of the handbook drawn up for Barilla S.p.A. Ten agronomical rules are listed to help 

farmers to increase sustainability quality durum wheat cultivation in Italy. Processing by Horta S.r.l. and LCE S.r.l.. 

Sustainability implies the production of goods and food respecting the environment, the economic 

advantage for farmers and society. Sustainable agriculture contributes for improving the quality of life for 

both farmers and the community as a whole. 

The sustainable farmer gives priority to production systems that help preserve environmental resources, 

safeguard their wellness and produce an adequate quality and quantity of food, with a connected economic 

reward. Agricultural sustainability is a priority for the new Common Agricultural Policy (CAP 2014-2020). 

This handbook for wheat cultivation is a list of guiding principles for farmers who face the complex 

challenges of modern agriculture. 

The aims of the ten rules that will be described in details in the following pages are: 

 DON contamination reduction; 
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 increase of quality yield; 

 reduction of environmental impacts. 

Rule 1: Crop rotation 

Rotating durum wheat with dicotyledonous crops (e.g. soybean, sunflower, rapeseed, tomato, sugar 

beets, alfalfa, pulses, grass, etc..): 

 Rotation reduces the environmental impact. For example, the rotations with dicotyledonous 

allows a reduction of greenhouse gas by over 30%, due to the possibility of using less fertilizers 

(Figure 31). 

 

Figure 31: Emission of CO₂ (tCO 2 eq/ha) of two quadrennial crop rotations. Study data "Sustainability of crop systems" 

coordinated by Barilla, 2010. Processing by LCE S.r.l. and Horta S.r.l.. 

 Crop rotation increases the income of the field. The rotation with dicotyledonous allows 

approximately a 60% increase of total net income, mainly due to the possibility of obtaining higher 

yields without decreasing costs (Figure 32). 

 

Figure 32: Economic indicators into two different quadrennial rotations in central Italy (€/ha). Study data 

"Sustainability of crop systems" coordinated by Barilla, 2010. Processing by LCE S.r.l. and Horta S.r.l.. 
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Rule 2: Til soil with respect 

Tilling soil in a more conservative manner while taking into account the local area, climate, type of soil 

and rotation performed, is crucial to preserve its fertility.  

 Conservative tillage allows significant cost savings (Figure 33). Minimum soil tillage cuts costs of 

30-35% (Figure 33) and CO2 emissions of 30% (Figure 34) compared to traditional methods. 

 

Figure 33: Comparison of sowing costs (€/ha) between traditional and minimum tillage. Study data "Sustainability of 

crop systems" coordinated by Barilla, 2010. Processing by LCE S.r.l. and Horta S.r.l.. 

 

Figure 34: Comparison of sowing emissions (kgCO2eq/ha) with a traditional and minimum tillage. Study data 

"Sustainability of crop systems" coordinated by Barilla, 2010. Processing by LCE S.r.l. and Horta S.r.l.. 

 Soil tillage is one of the key elements for reducing mycotoxin risk. Conditions of high Fusarium 

head blight risk require land ploughing to reduce inoculums pressure. The risk of DON 

contamination is higher with minimum or no-tillage, whereas with ploughing the risk of 

contamination falls down of 79% (Figure 35). 
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Figure 35: Contribution of ploughing and tillage without turning for decreasing DON contaminations into wheat 

produced in the 800 plots of Emilia-Romagna region (from 2002 to 2004) with different soil tillage methods. Studies of 

“Università Cattolica del Sacro Cuore” of Piacenza, Italy, 2004. 

Soil tillage is influenced by rotation practiced and the area. In the Table 1 a framework of some 

recommendations about soil tillage are described for the north, centre and south of Italy with four different 

type of rotations. 
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Table 1: Recommendations about ploughing according to area and rotation. 

Legend: +++ recommended; ++ advised; + possible; - not advised tillage. Processing by LCE S.r.l. and Horta S.r.l.. 

Tillage  Northern Italy Central Italy Southern Italy 

Rotation of durum 
wheat with maize, 
sorghum and wheat 

Rotation of durum 
wheat with soybean, 
oilseed rape, 
tomato, alfalfa and 
sugar beet 

Rotation of durum 
wheat with maize, 
sorghum and durum 
wheat  

Rotation of durum 
wheat with soy, 
rapeseed, tomato, 
alfalfa, peas and sugar 
beet  

Monoculture of 
durum wheat 

Rotation of durum 
wheat with 
sunflower, oilseed 
rape and field 
bean  

Deep ploughing 
(40 – 45 cm) 

+++ + +++ + + - 

Shallow ploughing 
(25-30 cm) 

+++ ++ +++ ++ +++ ++ 

Combined/ 
minimum tillage 
(25 – 30 cm) 

+ ++ ++ +++ +++ +++ 

Sod seeding - ++ - +++ - +++ 
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Rule 3: Use the most suitable variety 

Choosing the variety in relation to the cropping area and expectations in terms of productivity and 

technological quality: choose the variety on the basis of production criteria, production stability, resistance 

to adversities and technological quality. 

Rule 4: Use only certified and treated seeds 

Only certified seeds guarantee varietal identity (productive potentiality, technological quality and 

resistance to adversities) and quality of the seeds (purity, germination). 

Using certified seeds allows better selection and improved marketed varieties of seeds. Only industrially 

treated seed allows the best protection against pathogens found on kernels and better active distribution 

upon each seed. 

In Figure 36 dots represent average value of new accessions included into the official trials, while the line 

represents the growing trend of production over the years thanks to genetic enhancement. 

 

 

 

 

 

Figure 36: Yields increase (%) of new varieties compared to the Creso and Simeto average (set at 100). National 

network of variety trials of durum wheat. 

Rule 5: Sowing at the right moment 

The behaviour of durum wheat variety changes in relation to area and weather conditions. With different 

time of sowing, the varieties recommended change. The varieties produce differently in relation to sowing 

period. Some varieties adapt better to late sowing (Figure 37). 

 

 

 

 

Figure 37: Wheat yield (t/ha) of three varieties sown at four different moments. Processing by LCE S.r.l. and Horta S.r.l.. 
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Rule 6: Use the right amount of seed 

Select sowing density in relation to variety, crop area, planting period and soil conditions. 

Excessively dense planting prevents crops from the best exploiting of reserves and fosters development of 

disease (Figure 38). In the figure the variety “A” achieves maximum productivity with balanced sowing rate, 

whereas variety “B” achieves higher yields with higher investments. 

 

 

 

 

 

 

 

Figure 38: Wheat yield (t/ha) of two varieties with different sowing density in the Emilia Romagna region in 2011. 

Rule 7: Weed control 

Treatment’s delay leads to consistent production losses due to competition of crop with infesting species. It 

is crucial to select proper weeding solutions in regard to weed infestation as well as weather and crop 

conditions. For example, in the southern Italy springtime treatments with herbicides against Avena spp. can 

lead to production losses of up to 80% compared to winter treatment (Figure 39). 

 

Figure 39: Wheat yield (t/ha at 13% of humidity) in relation to application stage of the two herbicides against wild 

oats. Tests performed in Foggia (south of Italy). The yield potentiality of the 19
th

 January is set equal to 100. Processing 

by LCE S.r.l. and Horta S.r.l.. 
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Rule 8: Fertilization in relation to plant needs 

Achieving higher yield and protein implies correct dosage of nitrogen by fractionating it in relation to plant 

needs. High efficiency of nitrogen is obtained considering the required amount of nitrogen supply to wheat 

according to crop rotation, land endowment, variety cropped and climate pattern. In different year, the 

highest production was achieved with different doses: differences are caused by climate and crop rotation 

(Figure 40). 

 

Figure 40: Wheat yield (t/ha at 13% of humidity) under increased dosage of nitrogen fertilizers over five-year period 

(2006-2010). Tests carried out in Ravenna (north of Italy) by the Terremerse Cooperative in 2006-08 and by Horta in 

2009-10. Processing by LCE S.r.l. and Horta S.r.l.. 

Nitrogen spread out during planting has low efficiency because it is leached by winter precipitation. 

Nitrogen is more effective when fractionated during cropping season. A fertilization during stages of 

development is important for the productivity, whereas a fertilization during booting or heading, is crucial 

to obtain a high protein content (Figure 41). 

 

Figure 41: Protein content (% of dry matter) obtained with 3 different times of application of nitrated fertilizers. Tests 

carried out in Ravenna (north of Italy) in 2011. The same nitrogen dose of 41 units (from ammonium nitrate) was 

applied during tillering, stem extension and booting-heading. Processing by LCE S.r.l. and Horta S.r.l.. 
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Rule 9: Pests control 

Farmers should carry out treatment in relation to real risk. Risk depends mainly on varietal susceptibility, 

stage of development, agronomic choices, weather conditions, incoculum and infective pressure of pests. 

Fusarium head blight is one of the most important disease of durum wheat in Italy also because Fusarium 

species produce the mycotoxin DON (Deoxynivalenol). Control of Fusarium must be performed through 

preventive and curative measures. Several factors affect mycotoxin production (Figure 42). The 47% of risk 

onset is influenced by seasonal trend and cultivation area, varietal species influence for the 33%, crop 

rotation 8%. The remaining 12% depends on soil tillage choices (Giosué and Meriggi, 2010). 

 

Figure 42: Contribution in % of different DON accumulation factors. Data processed over a three-year study performed 

in Emilia Romagna by Università Cattolica del Sacro Cuore in 2005. 

Different crop strategies can affect toxins production in a different way. Combining the factors described in 

Figure 42 the risk of contamination will be different. Limiting DON content in cereal can be achieved only 

through an overall strategy that accounts for all crop aspects (Figure 43). 

 

 

 

 

 1 2 3 4 5 

Fungicide treatment no no no no yes 

Crop rotation cereals cereals other crops other crops other crops 

Tillage sod ploughing ploughing ploughing ploughing 

Variety A A A B B 

 

Figure 43: Effects of different technical strategies on DON content into kernels. Trials performed in 3 place of the Po 

valley (Northern Italy) for the research project SINSIAF. The worst situation (situation 1) is set equal to 100. Tests 

performed by Università Cattolica del Sacro Cuore in 2007. The percentage values express the reduction of risk 

compared with the highest value (situation 1: no one fungicide treatment, cereal rotation, sod seeding and susceptible 

variety “A”). Processing by LCE S.r.l. and Horta S.r.l.. 
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Rule 10: Extend sustainability to farm system 

Planning the whole rotation and integrating durum wheat cultivations in the schedule allows to reach 

objective more easily. Moreover, the employment of technical measures in respect of good farm practices 

and the compliance with guidelines for Integrated Pest Management (IPM) will entail a sustainable use of 

resources and pesticides. Finally, the adoption of farm hydraulic measures to prevent erosion, runoff and 

contamination of water bodies and fostering bio-diversity actions (use hedges, cover crops, etc.) will 

simplify the achievement of purposes. 

3.3 Validation of innovative tools for the sustainable durum wheat management and of sustainability 

indicators  

3.3.1 Feasibility study  

The first step of the validation project was the identification and comparison (based on historical data) of 

the different cropping systems practiced by growers during durum wheat cultivation in Italy (country from 

which about 75% of the durum wheat for Barilla’s pasta production comes from). The objective of this first 

step was to identify the cropping systems and crop rotations able to achieve better economic, quality, 

safety and environmental performance (Ruini et al. 2010). 

The 13 more representative Italian four-year crop rotation systems were analysed taking into consideration 

also their geographical distribution (Ruini et al. 2011). 

In the north the following five scenarios were tested: 

1) Maize rotation: Maize, Durum wheat, Maize, Maize; 

2) Diversified rotation: Soybean, Durum wheat, Oilseed rape, Maize. 

3) Cereals rotation: Maize, Durum wheat, Grain Sorghum, Common wheat; 

4) Industrial rotation: Soybean, Durum wheat, Maize, Common wheat; 

5) Horticoltural rotation: Tomato, Durum wheat, Maize, Common wheat. 

In the centre the following four scenarios were tested: 

6) Cereals rotation: Durum wheat, Durum wheat, Grain Sorghum, Durum wheat; 

7) Proteic pea rotation: Pea, Durum wheat, Pea, Durum wheat; 

8) Alfalfa rotation: Alfalfa, Alfalfa, Alfalfa, Durum wheat; 

9) Industrial rotation: Oilseed rape, Durum wheat, Sunflower, Durum wheat. 

In the south the following four scenarios were tested: 

10) Durum wheat rotation: Durum wheat, Durum wheat, Durum wheat, Durum wheat; 

11) Fodder rotation: Oats and vetch, Durum wheat, Oats and vetch, Durum wheat; 
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12) Horticoltural rotation: Tomato, Durum wheat, Durum wheat, Durum wheat; 

13) Chickpea rotation: Chickpea, Durum wheat, Chickpea, Durum wheat. 

For each cropping system two different management strategies were considered: 

 High Input (Hi): characterized by deep soil tillage, wide use of fertilizers and pesticides; 

 Low Input (Li): characterized by minimum tillage, limited use of fertilizers and pesticides without 

the possibility of irrigation (except with tomato). 

When possible a third management strategy was also considered: 

 Organic farming (Org): which excludes the use of synthetic fertilizers and pesticides. 

For the evaluation of impacts of the above mentioned crop rotation systems and management strategies 

the indicators described in the former section were used. To calculate carbon, water and ecological 

footprint indices the software SimaPro 7 was used. It is a widely used program for calculating the emission 

by means of a life cycle assessment (LCA) approach for products and/or production processes of any 

production sector. The input data were taken from the database Ecoinvent (one of the largest web-based 

inventory of environmental impacts of goods and processes), collected directly in the farms or estimated 

with the help of the IPCC (Intergovernmental Panel on Climate Change) manuals. The process for the 

calculation of the indicators followed ISO 14000 standards, which were used as guidelines to understand 

environmental impact assessment principles, and the results are shown in Table 2. 

Table 2: Main outcomes about the emissions, net income, nitrogen efficiency and DON index of the selected rotations 

in different areas of Italy. Average of the high and low input management strategies. Processing by Horta S.r.l.. 

 

Region Cropping 
system 

Yield 
(t/ha) 

Carbon 
Footprint

1
 

(tCO2eq/t) 

Water 
Footprint 
(m

3 
H20/t) 

Ecological 
Footprint 
(global ha/t) 

Net 
Income 
(€/t) 

Agronomic 
NUE 
(kg/kg) 

DON 
Risk 
(0-9) 

N
o

th
 

Lombardy, Veneto and 
Friuli Venezia Giulia 

Maize 7 0.51 315 0.38 155.3 33.8 7.9 

Diversified 7.5 0.42 294 0.36 166.9 44 1.7 

Emilia Romagna Cereals 7.3 0.51 328 0.4 140.7 32.5 7.9 

Industrial 7.5 0.41 315 0.38 156.7 42.2 2.3 

Horticultural 7.5 0.36 315 0.38 151.1 47.1 1.7 

C
en

tr
al

 

Marche, Tuscany Cereals 3.3 0.67 745 0.73 24.1 28.4 3.9 

Proteic pea 5.3 0.43 502 0.49 138.8 45.3 0 

Alfalfa 4.3 0.3 478 0.47 99.4 66.7 0 

Industrial 5.3 0.34 479 0.47 139.2 58.5 0 

So
u

th
 

Apulia, Basilicata, Sicily Durum wheat 2.5 0.74 1429 1.11 23.3 32.4 1 

Fodder 5 0.45 694 0.54 132.8 44.3 0 

Horticultural 4.2 0.53 874 0.68 111.8 38.7 0 

Chickpea 5 0.45 694 0.54 132.8 44.3 0 
1The calculation of carbon footprint does not take into account the sequestration of carbon performed by crops during growing season because LCE 

S.r.l. estimated, in according with IPPC rules, that the carbon fixed as organic matter is for the 90% or more emitted in the air within the next two or 

three years, if usual practices of tillage are carried out. 
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Results for the three footprints indices obtained in this analysis are consistent with data available in 

literature. Usually for the cultivation of one ton of durum wheat between 0.3 – 0.8 tCO2eq are produced, 

300 - 1800 m3 H20 are consumed, and 0.3 – 1.3 global ha are required for resource production and waste 

disposal. These data were esteemed by the Barilla’s EPD of pasta drown up in 2009. 

In order to estimate the efficiency of each scenario the indicators values were converted into an efficiency 

index. The value of each indicator was converted into a number from 1 to 5: the higher the value, the 

higher the positive judgment of the cropping system and the lower its impact. This index was quantified for 

the thirteen rotations tested and results for the footprints indices are shown in Figure 44 for the north, 

centre and south of Italy. 

The cereals rotation, both following high and low input strategy, is the worst scenario from the emission 

point of view in all Italian regions. While the best rotations resulted to be the diversified one in Northern 

Italy, the pea and alfalfa ones in Central Italy and fodder and chickpea ones in Southern Italy. “The 

restricted use of inputs (“Li”) entailed an higher value of efficiency index (and therefore lower impacts) 

except for the cereals rotation in northern and central Italy and for the durum wheat monoculture in 

southern Italy. Usually, within unfavourable rotations (i.e. the cereals rotation in the north and centre or 

the durum wheat monoculture in the south of Italy) the restricted use of chemicals (“Li”) entailed an lower 

value of efficiency index. This happens because the negative effects of cereals monoculture (diseases 

occurring, soil depletion, decreasing of fertility) are speeded up with negative effects on yield and 

qualitative parameters. 
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Figure 44: Efficiency index of different scenarios in the north (a), centre (b) and south (c) of Italy. Higher is the efficiency 

index, lower will is the impact on the environment. “Li”: low input, “Hi”: high input. EF: Ecological Footprint index, WF: 

Water Footprint index , CF: Carbon Footprint index. Processing by Horta S.r.l.. 
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The calculation of the efficiency index (values 1-5) was done also for the indicators Agronomic NUE and 

DON contamination. Higher is the value of the efficiency index, lower is the nitrogen deficiency (i.e. a good 

availability of nitrogen by previous crop or a good chemical or organic fertilization plan) and the risk of 

mycotoxin DON occurrence. 

In Northern Italy the rotations of durum wheat with soybean, oilseed rape and tomato increased the 

efficiency of fertilization and decreased the risk of Fusarium species development. For these two reasons, 

diversified, industrial and horticultural scenarios in the north of Italy have an efficiency index higher than 

rotations with cereals (maize and wheat), which promote Fusarium head blight occurrence. This happens 

also in the centre and south of Italy (Figure 45), where rotation of durum wheat with leguminous increases 

the index of nitrogen efficiency and decreases the risk of mycotoxins. Nevertheless in the centre and south 

of Italy the risk of DON contamination is naturally lower thanks to mainly dryer weather patterns during 

wheat flowering. The difference between high and low input scenarios are not significant for these two 

indicators for the majority of circumstances as can be seen in the Figure 45. 
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Figure 45: Efficiency index of different scenarios in the north (a), centre (b) and south (c) of Italy. Higher is the efficiency 

index, lower is the nitrogen deficiency and the risk of DON contamination. “Li”: low input, “Hi”: high input. EF: 

Ecological Footprint, WF: Water Footprint, CF: Carbon Footprint. Processing by Horta S.r.l.. 
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The assessment of economic behaviour of the thirteen rotations was done through the indicator net 

income. For this evaluation the direct costs of cultivation operations and technical processes were updated 

at November 17th, 2009. 

The rotation tested in the north are all profitable because yield are sufficiently high, while in the centre and 

south durum wheat rotated with other cereals or in monoculture makes cultivation inconvenient and only 

rotations with leguminous and horticultural crops guarantee a satisfactory return. Therefore, as happened 

with the previous indicators, also net income indicator disincentives the monoculture of durum wheat or 

the rotation of durum wheat with other cereals such as sorghum, common wheat and maize (Figure 46). 
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Figure 46: Net income (€/ha) of different scenarios in the north, centre and south of Italy where durum wheat is rotated with some crops. “Li”: low input, “Hi”: high input. 

Processing by Horta S.r.l.. 
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To better understand which factor influenced mostly the emission of CO2 in the atmosphere a sensitivity 

analysis on all footprint entries was also performed (Figure 47): the greenhouse gases emissions due to 

NH4, N2O and CH4 produced during the storage and spreading out of organic and synthetic fertilizers were 

also considered. As already mentioned in Table 2 the CO2 sequestered by crops was not taken into account 

because not relevant. 

During durum wheat cultivation the most important contribution to Global Warming Potential (GWP) is 

given by the use of organic and synthetic fertilizers. Second ranked are the agricultural operations that 

generate greenhouse gases mainly by fuel consumption. 

Figure 47: Contribution (tCO2eq/t agricultural products) of the main entries of carbon footprint indicator to the 

increase of GWP during durum wheat cultivation. “li”: low input, “hi”: high input, “org” organic inputs. Processing by 

Horta S.r.l and LCE S.r.l.. 

Moreover, to better specify the carbon footprint indicator in Figures 48, 49, 50, 51, 52 and 53 are shown 

the values of CO2 emitted by each single crop, for each single rotation, for the north, centre and south of 

Italy. The bar charts show the carbon footprint both per tons of agricultural production and per hectare. 
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also considered. Indeed, it was demonstrated that organic cropping systems that use manure or sewage 
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present very high impacts. Emissions of CO2 per hectare of oilseed rape, sorghum and soy crops are lower 

compared to other crops. This is justified by the notoriously reduced use of technical tools (pesticides and 

fertilizers) for their cultivation. 

Figure 48: Carbon footprint related to several crop rotations carried out in the north of Italy with high (Hi), low (Li) or 

organic (Org) inputs. Emission expressed as tCO2eq/t agricultural product. Processing by Horta S.r.l and LCE S.r.l.. 

 

Figure 49: Carbon footprint related to several crop rotations carried out in the north of Italy with high (Hi), low (Li) or 

organic (Org) inputs. Emission expressed as tCO2eq/hectare. Processing by Horta S.r.l and LCE S.r.l.. 
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In central Italy (Figures 50 and 51) the results obtained for alfalfa rotation proved the key role played by 

leguminous fodder to collapse CO2 emissions: only during the first year the emissions are significant 

because an arrangement of fields is requirement, but from the second year, the emissions are almost nil. 

The emissions of durum wheat in the centre of Italy are the highest of all crops judged in the scenarios; if 

emission are accounted per tons of harvested, only sunflower emission is higher than durum wheat (Figure 

50). 

 

Figure 50: Carbon footprint related to several crop rotations carried out in the centre of Italy with high (Hi) or low (Li) 

inputs. Emission expressed as tCO2eq/t agricultural product. Processing by Horta S.r.l and LCE S.r.l.. 

 

Figure 51: Carbon footprint related to several crop rotations carried out in the centre of Italy with high (Hi) or low (Li) 

inputs. Emission expressed as tCO2eq/hectare. Processing by Horta S.r.l and LCE S.r.l.. 

 -   

 0,5  

 1,0  

 1,5  

 2,0  

 2,5  

 3,0  

Durum wheat (3° year) 

Sorghum 

Durum wheat (2° year) 

Sunflower 

Proteic Pea (2° year) 

Durum wheat (1° year) 

Oilseed rape 

AlfaAlfa (3° year) 

AlfaAlfa (2° year) 

AlfaAlfa (1° year) 

Proteic Pea (1° year) 

 -  

 2  

 4  

 6  

 8  

 10  

 12  
Durum wheat (3° year) 

Sorghum 

Durum wheat (2° year) 

Sunflower 

Proteic Pea (2° year) 

Durum wheat (1° year) 

Oilseed rape 

AlfaAlfa (3° year) 

AlfaAlfa (2° year) 

AlfaAlfa (1° year) 

Proteic Pea (1° year) 



69 
 

Figures 52 and 53 provide the results obtained for Southern Italy. For this analysis an additional rotation 

was considered, being very common in the south of Italy: lentil, durum wheat, lentil and durum wheat. Like 

in the north and centre, the abundant use of fertilizers, chemicals and soil tillage increases the emission of 

CO2 for every scenarios except for the monoculture of durum wheat. This happens because the yields, in a 

scenario with only durum wheat, are so low that the use of production factors increase the yield, and as a 

consequence the impact decrease, both per ton and hectare. Fodder rotation account for lowest CO2 

emissions. Lentil rotation determines important emissions per ton (Figure 52) but few emissions per 

hectare (Figure 53), due to a the very low yield per hectare. An opposite behaviour was registered for 

horticultural rotation because tomato cultivations achieve very high yields. 

 

Figure 52: Carbon footprint related to several crop rotations carried out in the south of Italy with high (Hi) or low (Li) 

inputs. Emission expressed as tCO2eq/t agricultural product. Processing by Horta S.r.l and LCE S.r.l.. 
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Figure 53: Carbon footprint related to several crop rotations carried out in the south of Italy with high (Hi) or low (Li) 

inputs. Emission expressed as tCO2eq/hectare. Processing by Horta S.r.l and LCE S.r.l.. 

Once again it was demonstrated that, also in regards to emissions, crops do better when rotated with 

pulses. This occurs because pulses (i.e. peas, lentils, chickpea, alfalfa, clover fodder) decrease the 

greenhouse gas emissions of a crop rotation, thanks to very limited requirement of N fertilizers, and 

increase fertility of soil thanks to symbiotic nitrogen fixation, with positive effects on the forthcoming 

crops. They increase soil microbial diversity, which helps plants in rotation to simplify access to nutrients 

and consequently the lower need of N decreases the N2O emissions and the non-renewable energy use. 

From pests control standpoint pulses, being a broadleaf crop, help breaking cereals pest cycles, reducing 

pesticide applications during cereal year. Less pesticides entails also a water footprint 10-20% lower than 

wheat grown in monoculture. This  happens also because pulses increase the availability of water for the 

next crop thanks to better soil structure by alternating variable deep-rooted plants. 

Finally, to understand the potential of each scenario to increase fields sustainability, the environmental, 

agronomic and economic results were merged into an aggregated indicator, expressing the total efficiency 

of the different crop systems analysed (Figures 54, 55 and 56). The indicator was built up as a score system: 

a score from 1 to 5 was assigned progressively to all indicators considered and added up. Only for net 

income the score ranged from -5 to +5 in order to express also contexts of economic loss. Therefore, the 

maximum possible value was 30 (score 5 for all indicators), whereas the worst was -5 (score 0 for carbon 

footprint, water footprint, ecological footprint, nitrogen index, Don index and -5 for net income). The 

higher the score, the better the crop system evaluation. 
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In northern Italy (Figure 54) the total score for maize and cereals scenarios, which are considered the 

baseline scenarios, resulted to be lower than for diversified rotations (industrial and horticultural 

scenarios). The latter can be therefore identified as alternative and innovative options that should be 

promoted. Durum wheat monoculture or in rotation with other cereal crops is strongly discouraged since 

the score of total efficiency index is low (less than 15). 

In the centre (Figure 55) best performances were given by durum wheat with pea, whereas the worst 

scenario was once again the monoculture. Not only pea but also alternative rotations with oilseed rape, 

sunflower and alfalfa are efficient. 

In the south (Figure 56) the net income of monoculture scenario (a traditional scenario) is strongly negative 

and also other indicators have a poor performance. Instead, any rotations with dicotyledonous (which are 

considered innovative and alternative scenarios) should be suggested for increasing all pillars of 

sustainability. 

 

Figure 54: Overall efficiency index of several rotation patterns. CF, WF and EF mean Carbon, Water and Ecological 

Footprint. Scores of scenarios studied for the north of Italy with high “Hi” and low “Li” use of production factors. 

Processing by Horta S.r.l and LCE S.r.l.. 
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Figure 55: Overall efficiency index of several rotation patterns. CF, WF and EF mean Carbon, Water and Ecological 

Footprint. Scores of scenarios studied for the centre of Italy with high “Hi” and low “Li” use of production factors. 

Processing by Horta S.r.l and LCE S.r.l.. 

 

Figure 56: Overall efficiency index of several rotation patterns. CF, WF and EF mean Carbon, Water and Ecological 

Footprint. Scores of scenarios studied for the south of Italy with high “Hi” and low “Li” use of production factors. 

Processing by Horta S.r.l and LCE S.r.l.. 
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3.3.2 Comparison between real and optimised durum wheat management 

To collect real data on rotations and crop management a questionnaire (Figure 57) was prepared and sent 

to 20 farmers selected, in agreement with Barilla, all around Italy. 

 

Figure 57: The questionnaire used to collect information by farmers about cropping activities performed and technical 

tools used into four-year rotations from 2008 to 2011. Processing by Horta S.r.l. 

FARM

TOTAL HECTARES

FILLING DATE

Year 2011 2010 2009 2008

CULTURAL ACTIVITIES Description
Cultural activities 

costs- €/ha
Unit SOY

DURUM 

WHEAT
CORN

COMMON

WHEAT

     Ploughing 45/50 cm number of transits

     Ploughing 25/30 cm number of transits

     Combined grubber (30-40 cm) number of transits

     Ripping number of transits

     Other (to specify) number of transits

     Harrowing number of transits

     Harrowing with revolving harrow number of transits

     Harrowing with rigid teeth or with springs number of transits

     Between rows weeding number of transits

     Between rows mill ing number of transits

     Other (to specify) number of transits

     Direct sowing (combined) number of transits

     Sod sowing number of transits

     Wheat sowing machine number of transits

     Precision sowing with localized phosphorus number of transits

     Tomato transplant number of transits

     Other (to specify) number of transits

     Other (to specify) number of transits

     Granular manure distribution number of transits

     Other (to specify) number of transits

     Other (to specify) number of transits

     Pre-seeding / pre-emergence number of transits

     Post-emergence number of transits

     Fungicide distribution number of transits

     Insecticide distribution number of transits

     Insecticide distribution with "stilt" number of transits

     Other (to specify) number of transits

     Irrigation with sprinkling number of transits

     Irrigation with hoses (fertirrigation) number of transits

     Recovery hoses number of transits

     Other (to specify) number of transits

     Summer crop combined harvesting number of transits

     Wheat combined harvesting number of transits

     Tomato harvesting number of transits

     Crop residues cutting up number of transits

     Other (to specify) number of transits

     Other (to specify) number of transits

TECHNICAL TOOLS Description
Techincal tools 

costs- €/ha
Unit SOY

DURUM 

WHEAT
CORN

COMMON 

WHEAT

     Wheat seeds (these might be with fingicide and/or insecticide) kg/ha

     Corn seeds unit/ha

     Soy seeds kg/ha

     Soy rhizobia kg/ha

     Tomato transplant unit/ha

     Other (to specify) kg/ha

     To specify product name kg/ha

     To specify product name kg/ha

     To specify product name kg/ha

     To specify product name kg/ha

     To specify product name kg/ha

     To specify product name kg/ha

     Diammonium phosphate 18-46 kg/ha

     Triple superphosphate (47% P2O5) kg/ha

     Ammonium nitrate  (34% N) kg/ha

     Urea (46% N) kg/ha

     Manure (0,5% N) kg/ha

     NPK (8-24-24) kg/ha

     Other (to specify) kg/ha

     Other (to specify) kg/ha

     Other (to specify) kg/ha

YIELDS Description  Unit SOY
DURUM 

WHEAT
CORN

COMMON 

WHEAT

     Crop yield - t/ha (commercial humidity)

     Proteins (durum and common wheat) - % of dry matter

     Hectolitre weight (durum and common wheat) - kg /hl

     DON (durum and common wheat) - ppb

     Other (to specify) - -

ENVIRONMENT 

ASPECTS
Description Unit SOY

DURUM 

WHEAT
CORN

COMMON 

WHEAT

     Use of cover crop - -

     Use of hedges, buffer strip, ecc. - -

     Anti-drift nozzles - -

     Mitigation measures of runoff (hil ly diches, ecc.) - -

     Subsurface drainage - -

 Primary soil tillage

 Quantitative and 

qualitative outputs

Conservation tillage

Irrigation

Seeding on tillaged soil

Fertilization

Herbicides

Harvesting

Secondary soil tillage

Pest control

Various

Seed

Herbicides

Pest control

Fertilizers
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The questionnaire was divided into four sections: 

• cropping activities; 

• technical tools used; 

• yield and qualitative outcomes; 

• environmental aspects. 

Each section was composed by sub-sections with multiple entries. The questionnaire required information 

about practices that were implemented during growing season. For example, the “technical tools” section 

is divided into sub-sections: “Seed”, “Herbicide”, “Pests control”, etc., each one with their entries. The last 

section concerns environmental friendly actions undertaken by growers to increase the sustainability of 

crops and these should provide an overview of the attitude and awareness of farmers toward 

environmental issues. 

Twelve out of twenty farmers filled in the questionnaire and the data gathered were compared with target 

values given by expert knowledge. This means that real scenarios (data from questionnaires) were 

compared with target scenarios (expert opinions) that describe the best distribution of costs, pesticides and 

fertilization plans depending on farm location, rotation, weather and other strategic choices undertaken by 

grower. Target values were estimated for low (reduced tillage, fertilizers, irrigation and limited use of 

pesticides), high (intensive tillage, irrigation, intensive fertilization and high environment chemical pressure 

in order to maximize yields, rather than cost reduction) and organic (observance of organic farming 

principles and postulates) use of inputs. Nonetheless almost all the farmers interviewed demonstrated to 

be yield-oriented, rather than cost reduction-oriented (low-input scenario), and therefore mainly target 

values referring to high input strategy were considered (only exception the rotation of durum wheat with 

sunflower). 

Each rotation performed by farms was matched with a specific theoretical scenario, helping the 

identification of weaknesses of growers’ practices carried out. Price of crops was related to March 2011 

quotation (durum wheat was 270-280 €/ton). 

Considering the questionnaires filled in by farmers the following rotations were identified: 

 Rotation 1: tomato, durum wheat, tomato, common wheat; 

 Rotation 2: durum wheat, maize, common wheat, sugar beet; 

 Rotation 3: last year with alfalfa, durum wheat, maize, first year with alfalfa;  

 Rotation 4: sugar beet, durum wheat, chickpea, durum wheat; 

 Rotation 5: sunflower, durum wheat, sunflower, durum wheat (low input, case 1); 

 Rotation 6: sunflower, durum wheat, sunflower, durum wheat (low input, case 2); 

 Rotation 7: sunflower, durum wheat, clover seed, durum wheat; 

 Rotation 8: sunflower, durum wheat, sunflower, durum wheat (high input); 
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 Rotation 9: field beans, durum wheat, durum wheat, field beans; 

 Rotation 10: field beans, durum wheat, durum wheat, sunflower; 

 Rotation 11: durum wheat, sunflower, durum wheat, sunflower; 

 Rotation 12: durum wheat, oilseed rape, durum wheat, oilseed rape. 

Farms tested were located in three Italian regions: Emilia Romagna (in the northern Italy for the rotations 1 

and 2), Marche (in the central Italy for the rotations 3,4,5,6,7,8,9, and 10) and Apulia (in the southern Italy 

for the rotations 11 and 12). The interviewed person were chosen between farmers cropping durum wheat 

as the main crop of the rotation. They were opinion leader in their area, so that data collected were 

representative of a more advanced and scientific agriculture.  For the twelve interviewed, historical data 

were collected about soil tillage, drilling, chemicals treatments, fertilizations, harvesting, qualitative 

parameters, irrigation and environmental measures.  

Each rotation has a detailed cost structure, due to different strategies of fertilization, cultivation and 

technical tools used and their comparison with target values allowed the identification of weak and 

strengths points of farming processes and choices undertaken during the crop growing cycle. 

For all twelve rotations, costs and emissions indicators were calculated and compared with target values. 

Indicators like the contamination of mycotoxin, the yield of crop and the carrying out of the eco-

conditionality measures were not subjected to elaboration since these are simple and “ready to use” 

numerical values. For the other composite indicators (such as carbon, ecological and water footprint) the 

same method described previously was used for calculation. 

Table 3 a,b,c and d list the indicators values obtained for the different rotations and for the different 

scenarios (real vs. target). 
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Table 3 a: Real and target values of variables and indicators monitored in the second project step. 

 

   Carbon Footprint 

(tCO2eq/t)  

Carbon Footprint 

(tCO2eq/ha) 

 Water Footprint 

(tH2O/t)  

 Water Footprint 

(tH2O/ha) 

Ecological Footprint 

(global m2/t)  

Ecological Footprint 

(global m2/ha) 

Rotation  Year Crops Real  Target Real  Target Real Target Real Target Real Target Real Target 

Rotation 1 2011 Tomato Scarpariello 0.09 0.06 6.75 4.20 89.8 84.3 6735.0 5901.0 482.9 384.1 36214.5 26888.4 

2010 Durum Wheat 0.51 0.41 3.21 2.87 997.4 998.5 6283.5 6989.5 4602.4 4221.0 28995.2 29547.2 

2009 Tomato Scarpariello 0.09 0.06 6.75 4.20 89.8 84.3 6735.0 5901.0 482.9 384.1 36214.5 26888.4 

2008 Common Wheat 0.36 0.33 2.34 2.31 997.3 997.4 6482.3 6981.6 4355.8 3870.9 28312.6 27096.1 

Rotation 2 2011 Durum Wheat 0.31 0.41 2.02 2.87 613.8 451.3 3989.8 3159.4 4687.8 4419.2 30470.5 30934.5 

2010 Maize 0.12 0.20 1.38 2.20 624.4 680.4 7180.3 7484.6 2465.4 2586.2 28351.6 28448.2 

2009 Common Wheat 0.25 0.22 1.80 1.65 589.2 542.3 4242.0 4067.2 4125.7 4189.6 29704.7 31422.0 

2008 Sugar beet 0.03 0.04 2.14 2.28 90.9 122.6 6482.6 6988.8 405.9 527.7 28940.7 30080.6 

Rotation 3 2011 Alfalfa 0.69 0.42 5.54 2.54 694.3 119.1 5554.5 714.8 3425.6 4826.5 27404.4 28959.1 

2010 Durum Wheat 0.42 0.38 1.89 1.89 1157.4 1157.3 5208.1 5786.6 6326.7 5694.0 28470.2 28470.2 

2009 Maize 0.92 0.61 5.95 4.26 581.3 583.7 3778.4 4086.1 4297.1 4386.4 27931.2 30704.6 

2008 Alfalfa 0.08 0.08 0.76 0.71 694.3 694.3 6942.5 5901.1 2693.8 3171.7 26938.1 26959.1 

Rotation 4 2011 Sugar beet 0.07 0.07 2.28 3.33 554.1 554.2 18838.2 24937.7 882.8 716.3 30014.0 32233.1 

2010 Durum Wheat 0.54 0.38 2.58 2.28 1175.4 1177.3 5641.8 7064.0 5939.0 4858.2 28507.4 29149.4 

2009 Chickpea 0.43 0.35 0.47 0.63 1830.6 1833.0 2013.6 3299.5 24844.2 15437.0 27328.6 27786.7 

2008 Durum Wheat 0.65 0.46 2.58 2.28 1175.4 942.8 4701.8 4714.1 7126.8 5827.1 28507.4 29135.5 

Rotation 5 2011 Sunflower 0.28 0.69 0.84 2.42 1819.4 1818.5 5458.1 6364.6 9224.1 8437.2 27672.3 29530.3 

2010 Durum Wheat 0.69 0.48 3.24 2.64 1177.6 1176.4 5534.8 6470.1 6208.6 5337.5 29180.5 29356.3 

2009 Sunflower 0.28 0.68 0.84 2.38 1819.4 1818.5 5458.1 6364.7 9224.1 8461.0 27672.3 29613.6 

2008 Durum Wheat 0.68 0.48 3.26 2.64 1177.7 1176.4 5652.8 6470.1 6340.7 5337.5 30435.4 29356.3 

Rotation 6 2011 Sunflower 0.86 0.68 2.06 2.38 1815.6 1818.5 4357.5 6364.6 11829.7 8437.2 28391.3 29530.3 

2010 Durum Wheat 0.69 0.49 3.59 2.70 1175.5 1176.4 6112.5 6470.1 5734.4 5337.5 29818.8 29356.3 

2009 Sunflower 0.85 0.69 2.04 2.42 1815.7 1818.5 4357.6 6364.7 11884.2 8461.0 28522.1 29613.6 

2008 Durum Wheat 0.80 0.48 3.60 2.64 1175.6 1176.4 5290.0 6470.1 6626.4 5537.5 29818.8 30456.3 
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Table 3 b: Real and target values of variables and indicators monitored in the second project step. 

   Carbon Footprint 

(tCO2eq/t)  

Carbon Footprint 

(tCO2eq/ha) 

 Water Footprint 

(tH2O/t)  

 Water Footprint 

(tH2O/ha) 

Ecological Footprint 

(global m2/t)  

Ecological Footprint 

(global m2/ha) 

Rotation  Year Crops Real  Target Real  Target Real Target Real Target Real Target Real Target 

Rotation 7 2011 Sunflower 1.18 0.81 2.60 2.84 1817.8 1820.2 3999.1 6370.5 13624.9 8784.8 29974.8 30746.9 

2010 Durum Wheat 0.92 0.37 3.50 2.22 1520.1 1373.2 5776.2 8239.4 7866.1 4846.4 29891.1 29078.5 

2009 Clover seeds  1.17 0.28 0.41 0.22 2093.7 1830.7 732.8 1464.5 78209.7 33584.7 27373.4 26867.7 

2008 Durum Wheat 0.83 0.54 3.49 2.70 1375.3 1373.5 5776.2 6867.7 7116.9 5851.9 29891.0 29259.5 

Rotation 8 2011 Sunflower 0.46 0.71 1.39 2.49 1815.3 1820.7 5445.9 6372.5 9288.0 8420.3 27863.9 29470.9 

2010 Durum Wheat 0.74 0.61 3.72 3.36 1157.5 1161.3 5787.5 6386.9 5914.2 5434.8 29571.1 29891.5 

2009 Sunflower 0.43 0.71 1.39 2.49 1815.3 1820.7 5808.9 6372.5 8707.5 8420.3 27863.9 29470.9 

2008 Durum Wheat 0.78 0.61 3.72 3.36 1157.5 1161.3 5556.1 6386.9 6160.6 5434.8 29571.1 29891.5 

Rotation 9 2011 Field bean 0.17 0.22 0.56 0.77 1329.2 1329.2 4386.5 4652.3 8361.8 8045.6 27593.8 28159.7 

2010 Durum Wheat 0.55 0.45 3.14 2.24 1178.2 1411.5 6715.9 7057.5 5276.4 5847.0 30075.2 29235.0 

2009 Durum Wheat 0.39 0.39 2.42 2.34 2196.5 2197.0 13618.2 13182.2 4663.9 4913.3 28916.1 29479.9 

2008 Field bean 0.15 0.16 0.50 0.56 1329.2 1253.8 4386.4 4388.3 8339.0 7901.5 27518.8 27655.2 

Rotation 10 2011 Field bean 0.13 0.19 0.41 0.67 1197.3 1198.6 3831.2 4195.0 8518.5 7972.2 27259.2 27902.6 

2010 Durum Wheat 0.51 0.62 3.16 3.09 1160.0 1160.6 7226.9 5803.2 4824.7 5954.5 30057.7 29772.5 

2009 Durum Wheat 0.48 0.40 2.82 2.20 1159.6 1158.3 6818.4 6370.7 4963.4 5295.0 29184.6 29122.2 

2008 Sunflower 0.75 0.53 2.10 1.86 1820.0 1816.7 5096.1 6358.5 10260.9 8167.0 28730.4 28584.3 

Rotation 11 2011 Durum Wheat 0.73 0.60 2.77 2.70 1373.9 1373.7 5220.9 6181.7 7560.3 6520.9 28729.1 29344.1 

2010 Sunflower 0.64 0.63 1.15 1.76 1853.7 1856.4 3336.7 5197.9 15745.4 10402.5 28341.7 29127.1 

2009 Durum Wheat 0.73 0.60 2.77 2.70 1373.9 1373.7 5220.9 6181.7 7560.3 6520.9 28729.1 29344.1 

2008 Sunflower 0.64 0.63 1.15 1.76 1853.7 1856.4 3336.7 5197.9 15745.4 10402.5 28341.7 29127.1 

Rotation 12 2011 Durum Wheat 0.73 0.60 2.77 2.70 1373.9 1373.7 5220.9 6181.7 7560.3 6520.9 28729.1 29344.1 

2010 Oilseed rape 0.36 0.41 0.86 1.23 3952.3 3954.1 9485.5 11862.2 11481.3 9384.5 27555.0 28153.6 

2009 Durum Wheat 0.73 0.60 2.77 2.70 1373.9 1373.7 5220.9 6181.7 7560.3 6520.9 28729.1 29344.1 

2008 Oilseed rape 0.36 0.41 0.86 1.23 3952.3 3954.1 9485.5 11862.2 11481.3 9384.5 27555.0 28153.6 
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Table 3 c: Real and target values of variables and indicators monitored in the second project step. 

   Yield (t/ha)  Agr. NUE (kg/kg)  Net Income (€/t) Net Income (€/ha)  DON  

Rotation Year Crops Real Target Real  Target Real Target Real Target Real (µg/kg)   Target DON (1-9) Target 

(µg/kg) 

Rotation 1 2011 Tomato Scarpariello(1) 75.0 70.0 19.0 36.9 46.7 42.0 3502.5 2940.0 / / / 

2010 Durum Wheat 6.3 7.0 36.8 53.0 133.8 128.3 842.9 898.1 213.0 1.1 ≤1750 

2009 Tomato Scarpariello(2) 75.0 70.0 19.0 36.9 46.7 42.0 3502.5 2940.0 / / / 

2008 Common Wheat 6.5 7.0 63.7 53.8 126.7 113.2 823.6 792.4 176.0 5.0 ≤1250 

Rotation 2 2011 Durum Wheat 6.5 7.0 41.8 35.5 112.6 120.7 731.9 844.9 1500.0 6.6 ≤1750 

2010 Maize 11.5 11.0 46.9 37.7 100.6 98.3 1156.9 1081.3 / / / 

2009 Common Wheat 7.2 7.5 46.3 58.8 136.6 128.3 983.5 962.3 850.0 5.0 ≤1250 

2008 Sugar beet 71.3 57.0 84.5 79.3 23.2 16.0 1654.2 912.0 / / / 

Rotation 3 2011 Alfalfa(1) 8.0 6.0 32.0 58.8 59.2 6.6 473.6 39.6 / / / 

2010 Durum Wheat 4.5 5.0 49.3 33.6 68.4 71.9 307.8 359.5 Near 0 0.0 ≤1750 

2009 Maize 6.5 7.0 26.0 35.7 32.1 47.0 208.7 329.0 / / / 

2008 Alfalfa(2) 10.0 8.5 0.0 0.0 162.4 133.4 1624.0 1133.9 / / / 

Rotation 4 2011 Sugar beet 34.0 45.0 51.2 56.6 -2.5 7.8 -85.0 351.0 / / / 

2010 Durum Wheat (1) 4.8 6.0 29.9 59.4 97.2 129.6 466.6 777.6 Near 0 0.0 ≤1750 

2009 Chickpea 1.1 1.8 0.0 0.0 225.0 347.0 247.5 624.6 / / / 

2008 Durum Wheat (2) 4.0 5.0 27.8 41.0 77.7 101.5 310.8 507.5 Near 0 0.0 ≤1750 

Rotation 5 2011 Sunflower(1) 3.0 3.5 83.3 28.5 215.0 136.8 645.0 478.8 / / / 

2010 Durum Wheat(1) 4.7 5.5 29.3 41.0 75.3 107.4 353.9 590.7 Near 0 0.0 ≤1750 

2009 Sunflower(2) 3.0 3.5 83.3 28.5 215.0 136.8 645.0 478.8 / / / 

2008 Durum Wheat(2) 4.8 5.5 28.7 41.0 71.2 107.4 341.8 590.7 Near 0 0.0 ≤1750 

Rotation 6 2011 Sunflower(1) 2.4 3.5 28.2 28.5 84.0 137.3 201.6 480.6 / / / 

2010 Durum Wheat(1) 5.2 5.5 22.1 41.0 61.0 105.7 317.2 581.4 Near 0 0.0 ≤1750 

2009 Sunflower(2) 2.4 3.5 28.2 28.5 84.0 137.3 201.6 480.6 / / / 

2008 Durum Wheat(2) 4.5 5.5 25.5 41.0 28.5 105.7 128.3 581.4 Near 0 0.0 ≤1750 
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Table 3 d: Real and target values of variables and indicators monitored in the second project step. 

   Yield (t/ha)  Agr. NUE (kg/kg)  Net Income (€/t) Net Income (€/ha)  DON  

Rotation  Year Crops Real Target Real  Target Real Target Real Target Real 

(µg/kg) 

Target 

DON (1-9) 

Target 

(µg/kg) 

Rotation 7 2011 Sunflower 2.2 3.5 25.9 35.1 73.6 157.3 161.9 550.6 / / / 

2010 Durum Wheat(1) 3.8 6.0 20.7 59.4 20.6 124.7 78.3 748.2 0.0 0.0 ≤1750 

2009 Clover seeds  0.4 0.8 0.0 0.0 -850.0 159.4 -297.5 127.5 / / / 

2008 Durum Wheat(2) 4.2 5.0 22.9 38.0 43.4 92.3 182.3 461.5 0.0 0.0 ≤1750 

Rotation 8 2011 Sunflower(1) 3.0 3.5 35.3 28.5 189.2 177.3 567.6 620.6 / / / 

2010 Durum Wheat(1) 5.0 5.5 22.6 41.0 57.0 113.3 285.0 623.2 0.0 0.0 ≤1750 

2009 Sunflower(2) 3.2 3.5 37.6 28.5 202.3 177.3 647.4 620.6 / / / 

2008 Durum Wheat(2) 4.8 5.5 21.7 41.0 48.6 113.3 233.3 623.2 0.0 0.0 ≤1750 

Rotation 9 2011 Field bean(1) 3.3 3.5 0.0 0.0 37.5 39.9 123.8 139.7 / / / 

2010 Durum Wheat(1) 5.7 5.0 30.1 38.0 76.5 72.5 436.1 362.5 0.0 0.0 ≤1750 

2009 Durum Wheat(2) 6.2 6.0 43.5 59.5 105.5 105.4 654.1 632.4 0.0 0.0 ≤1750 

2008 Field bean(2) 3.3 3.5 0.0 0.0 37.5 39.9 123.8 139.7 / / / 

Rotation 10 2011 Field bean 3.2 3.5 0.0 0.0 50.5 31.1 161.6 108.9 / / / 

2010 Durum Wheat(1) 6.2 5.0 33.0 38.0 90.8 88.4 565.7 442.0 0.0 0.0 ≤1750 

2009 Durum Wheat(2) 5.9 5.5 32.7 41.0 95.5 104.9 561.5 577.0 0.0 0.0 ≤1750 

2008 Sunflower 2.8 3.5 21.9 28.5 136.0 33.7 380.8 118.0 / / / 

Rotation 11 2011 Durum Wheat(1) 3.8 4.5 26.5 33.6 80.9 98.1 307.4 441.5 0.0 0.0 ≤1750 

2010 Sunflower(1) 1.8 2.8 39.1 28.5 118.3 125.9 212.9 352.5 / / / 

2009 Durum Wheat(2) 3.8 4.5 26.5 33.6 80.9 98.1 307.4 441.5 0.0 0.0 ≤1750 

2008 Sunflower(1) 1.8 2.8 39.1 28.5 118.3 125.9 212.9 352.5 / / / 

Rotation 12 2011 Durum Wheat(1) 3.8 4.5 26.5 33.6 67.8 89.4 257.6 402.3 0.0 0.0 ≤1750 

2010 Oilseed rape(1) 2.4 3.0 31.6 31.3 214.1 169.9 513.8 509.7 / / / 

2009 Durum Wheat(2) 3.8 4.5 26.5 33.6 67.8 89.4 257.6 402.3 0.0 0.0 ≤1750 

2008 Oilseed rape(2) 2.4 3.0 31.6 31.3 214.1 169.9 513.8 509.7 / / / 

 



80 
 

In the following paragraphs the results obtained for the different indicators are discussed considering 

mainly durum wheat cultivation within each rotation, only in some cases considering the rotation as a 

whole. 

Carbon Footprint  

Figure 58 shows real vs. target data for the indicator Carbon Footprint expressed as tCO2eq/t durum wheat: 

real durum wheat emissions were higher than target ones (90% of the values are located on the right of the 

bisector, area b). Only Durum Wheat-Rot.2 and Rot.10 have real values lower than target ones (left of the 

bisector, area a) and only Durum Wheat-Ration 9(2) has equivalent real and target values. Also when the 

rotations are considered as a whole the majority of emissions calculated on real data are higher than the 

one for target data (Figure 59). 

 

Figure 58: Real and target values of carbon footprint of durum wheat of the 12 rotations (tCO2eq/t durum wheat). The 

“(1)” is the first durum wheat of the rotation, whereas “(2)” is the second one. 
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Figure 59: Real and target values of carbon footprint of the 12 rotations (tCO2eq/t crops). 

If emissions of CO2 are calculated per hectare (Figure 60) their values increase because of the relative low 

yield per hectare of durum wheat cultivation. 

The values calculated on farmers data are, with the exception of few situations, 5-25% higher than target 

ones. 

 

Figure 60: Real and target values of carbon footprint of durum wheat of the 12 rotations (tCO2eq/ha durum wheat). 

The “(1)” is the first durum wheat of the rotation, whereas “(2)” is the second one. 
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Regarding the whole rotations, the higher emissions for wheat and lower emissions for the other crops lead 

toward an equilibrium between real and target values. The years with cereals cultivation are the most 

environmental impacting compared with other crops within the rotations. 

Only Rotation 1 and 3 have very high real values (Figure 61) due to high Tomato Scarpariello and Maize 

growing emissions. While, in the Rotation 2 the low CO2 emission could be connected with the choice to 

plan a rotation with four different crops. 

 

Figure 61: Real and target values of carbon footprint of the 12 rotations (tCO2eq/ha crops). 

It is known that carbon footprint values are affected by fertilizers by 80% and soil tillage by 10%; pesticides 

(2%), seeds (3%), fuel used during harvesting (2%) and other items (3%) such as the transport to 

warehouse, influence the impact by a lower percentage (LCE, personal communication). The completed 

questionnaires demonstrated that abundant fertilization and deep tillage are still a common practices 

performed even after cultivation of crops like sunflower and field beans. Especially in northern Italy deep 

tillage is used to reduce the risk of mycotoxins (i.e. Fusarium inoculum is forced underground). Also in 

central Italy, mainly hilly area, every year ploughing is a common practice and this entails the increase of 

risk of erosion and higher fuel consumption. Also, the number of steps for the preparation of the seedbed 

are often too high. A reduction of fields interventions through combined machine and the use of them with 

optimal timing could be a way to reduce emissions. Some dicotyledonous crops, such as sunflower, don’t 

leave upon soil a lot of crop residues and sod seeding alternative is feasible. At least with broadleaves crops 

no tillage or minimum tillage should be promoted as good alternative strategy to decrease emissions and 

costs without compromise the success of crop. 
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Water Footprint  

Durum wheat in Italy is usually not irrigated: water consumption depends mainly on the evapotranspiration 

of the crop (called green water) and marginally by water polluted by pesticides and fertilizers used during 

cropping season (called grey water). The evapotranspiration increases with yield, while grey water is 

considered nearly the same for real and target crop value. The resulted variability therefore depends on 

crop biomass and farm location (in the south of Italy usually evapotranspiration is higher than in the north). 

Generally, there are not substantial differences between durum wheat and other crops within the rotations 

due to the scarce influence of farm activities on this indicator. A restricted number of real values are higher 

than target ones when both the use of inputs and yields are high. 

Ecological Footprint  

The relationship between yield of crop and use of resources is the main variable influencing the ecological 

footprint. Indeed, this indicator depends on the use of soil for the cultivation, called “crop land” (91%), the 

fertilization (4%), the tillage of soil (3%) and other variables (2%) (LCE, personal communication).  

Therefore, the low yield of durum wheat and the high use of resources have negative effect on ecological 

footprint that is inversely proportional to yield. 

Only durum wheat cultivation within rotations 9 and 10 achieved real yields higher than target ones and 

therefore real values for ecological footprint are lower than target ones, meaning that production factors 

were used in an efficient way (Figure 62). 

For all the other rotations real ecological footprints resulted to be higher than target ones mainly due to 

lower yields achieved (area b of Figure 62). 
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Figure 62: Real and target values of ecological footprint of durum wheat of the 12 rotations (global m
2
/t durum 

wheat). The “(1)” is the first durum wheat of the rotation, whereas “(2)” is the second one. 

Agronomic NUE 

The indicator Agronomic NUE allows the monitor crop nitrogen efficiency. For its calculation data about 

yield (kg of kernels per hectare) and the amount of nitrogen spread out on crop (kilograms of nitrogen per 

hectare) are necessary and were taken from the questionnaires. For a specific amount of nitrogen applied, 

higher is the amount assimilated by crop, higher will be this indicator. 

The Agronomic NUE was calculated only for those crops fertilized by grower. The usual practice in southern 

Italy is to fertilize with pre-sowing interventions in autumn or winter. This choice is partly justified by the 

mild winter which allows the growth of cereals also during December and January. But it is also true that 

the growth in these months, being slow and with a limited foliar apparatus, requires low amounts of 

nitrogen (less than 20kg/ha between sowing and tillering, Masoni and Pampana, 2004), often available in 

the soil from previous crop residual nitrogen and crop residues. Therefore, pre-sowing nitrogen fertilization 

is not sufficiently justified, since it is far from the months (March, April and May) in which plants needs a lot 

of nitrogen for stems elongation, booting, ear emergence, flowering and ripening of kernels. 

In Figure 63 the red dotted lines (value of Agronomic NUE equal to 30) represent the threshold defined by 

experts for an acceptable use of nitrogen supplied, therefore only crops that fall into area c are considered 

efficient from a nitrogen point of view, while crops that fall into area a present a very low nitrogen 

efficiency. Figure 63 also shows that the majority of real Agronomic NUE values of durum wheat are far 
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from target values (values on the right or on the left of the bisector). In particular, 80% of real values are 

lower than target ones, meaning a poor efficiency of fertilization. This is often caused by fertilization during 

growing season with a higher amount of nitrogen in respect to the one effectively needed by plants or a too 

low final yield for the fertilization plan adopted. Only Durum Wheat-Rot.2 and Durum Wheat-Rot.3 have 

real nitrogen efficiency higher than target one because, despite yields were similar, the nitrogen inputted 

on field was lower. 

 

Figure 63: The Agronomic Nitrogen Use efficiency (NUE) index (kg yield/kg N applied) for durum wheat of the 12 

rotations. The “(1)” is the first durum wheat of the rotation, whereas “(2)” is the second one. 

Regarding the complete rotations, the questionnaires revealed a general low use of fertilization plans and 

better performances of other crops in respect to durum wheat. 

This analysis showed that the low efficacy use of nitrogen fertilization is the most important weak point 

that requires improvements and is the key issue to work on to increase farm sustainability both 

economically and environmentally. For this reason, evaluators established that the efficiency of 

fertilization, estimated by the indicator Agronomic NUE, is an innovative metric to study this critical issue, 

not well investigated by Italian agronomists yet.  

The timing of nitrogen applications is crucial to increase the efficiency of the fertilization, the use of 

technical assistance can help to optimize it because the best moment of fertilization depends on the stage 

of crop, variety needs and weather trend. To help farmers to improve fertilization choices was promoted, 

since the copping season 2011/2012, the use of a decision support system: granoduro.net®. 
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Net income  

The prices considered for the calculation of the net income were the following: durum wheat 270 €/t (price 

taken from “Bologna Borsa Merci”, an Italian broad of trade of commodities, at the time of writing this 

note), tomato Scarpariello 65 €/t, soybean 380 €/t, fodder of alfalfa 180 €/t, common wheat 250 €/t, maize 

230 €/t, sunflower 400 €/t, sugar beet 45 €/t, oilseed rape 420 €/t, sorghum 230 €/t, proteic pea 300 €/t, 

chickpea 700 €/t, lentil 1000 €/t, clover seed 500 €/t and field bean 220 €/t. Since the prices considered are 

the same for real and target scenario, the differences in net income values are influenced by yield, field 

activities and technical tools costs, as well as by the spreading over time of costs in the four-year rotations. 

The comparison revealed that the target durum wheat net income is higher than the real one (Figure 64, 

almost all values are in area a), both considering net income per ton or per hectare (Figure 65). The same 

happened when the rotations were considered as a whole (Figure 66). 

Nevertheless, Durum wheat of Rotation 9 (durum wheat (1) and (2)) and 10 (durum wheat (1) (2)) have 

good performance both per ton and hectare. This happens because the yields were higher than target 

ones. The rotation yields per hectare were respectively 5.7, 6.2, 6.2 and 5.9 tons/ha, while the target ones 

were respectively 5, 6, 5 and 5.5 tons/ha. On the other hand, real costs were only slightly higher than target 

scenarios. As a consequence, their values are on the right or close to bisector (Figure 64 and 65). For the 

Durum Wheat-Rot.11 and Durum Wheat-Rot.12 the low real net income was only influenced by the low 

yield and not by the costs of growing, since, in this last examples, the real costs are lower than target ones. 

Per hectare, the best performance of Durum Wheat-Rot.9(1) and Durum Wheat-Rot.10(1) were 

conditioned also by the favourable rotation (Figure 64); indeed the rotation with legume crops, such as 

field bean, improves chemical and physical properties of soil with positive effects on wheat yield (and net 

income). 

In Durum Wheat-Rot.7(1) the high cost of cultivation and the low yield (real yield of 3.8 t/ha, while target 

yield is 6 t/ha) caused the worst performance, as highlighted also in the Figures 64 and 65. 

The best situations showed up in northern Italy: Durum Wheat-Rot.1 and Durum Wheat-Rot.2, despite the 

costs are similar, around 1000 €/ha, the yields of the real scenario were higher, resulting to satisfy net 

income. Instead, cereal crops of central and southern Italy, are at the limit of the economic convenience. 
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Figure 64: Net income of durum wheat of the 12 rotations (€/t). The “(1)” is the first durum wheat of the rotation, 

whereas “(2)” is the second time. 

 

Figure 65: Net income of durum wheat of the 12 rotations (€/ha). The “(1)” is the first durum wheat of the rotation, 

whereas “(2)” is the second time. 

Comparing the net incomes of the whole rotations the worst performances were reached by the rotations 
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rotation 4, 30-35% in the rotation 6, up to 90% in the rotation 7 (Figure 66). The Rotation 7 has a low real 

net income because the year with clover seeds crop has a marked negative performance, with a negative 
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impact on the mean of the four-years rotation as a whole. This happened also with sugar beet for the 

rotation 4. Other bad performances are the rotations 8 and 11 where real net income is lower than target 

ones because profitability of years with durum wheat is significantly low. 

For rotations 1 and 2 the good performance of net income is a contribution of all crops of the rotation 

(tomato Scarpariello, durum wheat and common wheat for the first one, while sugar beet and maize for 

the second one). 

 

Figure 66: Net income of the 12 rotations (€/ha). The “(1)” is the first time of the crop in the rotation, whereas “(2)” is 

the second. 

DON 

The main factors that influence the development of mycotoxigenic fungi and their production of 

mycotoxins are the weather conditions, the inoculum presence and the host susceptibility. Northern Italy 

usually presents rainy springs and therefore the risk of contamination is usually high, while in the rest of 

the country only in particularly rainy springs the fungi can develop. Moreover, the risk is greater in the 

farming systems where wheat is rotated with maize or other cereals and, since straw is the matter where 

the pathogen overwinters, minimum or no tillage increase the inoculum upon soil surface. Finally, the 

mycotoxins production depends on the susceptibility of varieties of wheat toward DON toxin-producing 

fungi: Fusarium graminearum and F.culmorum. 
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The DON index is a laboratory quantification of the presence of the fungal toxin deoxynivalenol into kernels 

of common and durum wheat.  

DON values were gathered by farmers through the questionnaire and results were compared with legal 

threshold (1750 µg/kg for durum wheat and 1250 µg/kg for common wheat) and target values (best 

situation, 0 µg/kg). Data for common and durum wheat are displayed in Table 3 (c and d). 

The risk of contamination of kernels was considered relevant only in the Rotation 2, since it is close to the 

maximum legal. The other rotations presented values far from legal limit and were freely marketable. 

Mitigation measures 

In the last part of the questionnaire information on actions adopted by farmer to mitigate negative effects 

of practices performed during crop cultivation were gathered. The main mitigation measures considered 

were the use of cover crops, the use of buffer strips and hedge, the use of anti-drift nozzles, the 

performance of mitigation measures against runoff and the adoption of subsurface drainage. Table 4 

reports the obtained answers. 

Table 4: List of the rotations which adopted one or more mitigation measures decreasing the exposure of environment. 

“X” means practice undertaken, while “-” means practice does not carried out. 

Rotation Year Crops Use of 
cover crop 

Use of buffer 
strips and hedges 

Use of anti-drift 
nozzles 

Mitigation 
measures of runoff 

Subsurface 
drainage 

Rotation 
1 

2011 Tomato Scarpariello - X X - - 

2010 Durum Wheat - X X X - 

2009 Tomato Scarpariello - X X - - 

2008 Common Wheat - X X X - 

Rotation 
2 

2011 Durum Wheat - - X - - 

2010 Maize - - X - - 

2009 Common Wheat - - X - - 

2008 Sugar beet - - X - - 

Rotation 
9 

2011 Field bean - - - X - 

2010 Durum Wheat - - - X - 

2009 Durum wheat - - - X - 

2008 Fiedl bean - - - X - 

Rotation 
11 

2011 Durum Wheat - - X - - 

2010 Sunflower - - - - - 

2009 Durum Wheat - - X - - 

2008 Sunflower - - - - - 

Rotation 
12 

2011 Durum wheat - - X - - 

2010 Oilseed rape - - - - - 

2009 Durum wheat - - X - - 

2008 Oilseed rape - - - - - 
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Only in 5 out of 12 situations at least one mitigation measure was performed, demonstrating the still rare 

attitude of farmers to adopt these practices. The most used mitigation measure was the use of anti-drift 

nozzles. This can be explained by the fact that a small investment is needed to adopt this mitigation 

practice and that usually authorities recommend it. 

Other mitigation measures are not widely recommended because they are more linked to the 

characteristics of the area, for example, in flat areas (like in the Po Valley) the use of runoff reduction 

measures are less important than in hilly areas (such as in the Marche region), and on the other hand, the 

subsurface drainage is more important in plots with compacted and flat soil than in the hilly setting where 

the ground slope already allows the elimination of excess rainwater. 

As a step foreward, for the most interesting (from a sutainability point of view) and rapresentative crop 

rotations of Northern, Central and Southern Italy a comparison of real values with target one was 

performed with more detail. Only Carbon footprint, Agronomic NUE and net income indicators (Table 3 a, 

b, c, d) were used in this comparison and for the following selected rotations: 

 Rotation 1: tomato, durum wheat, tomato, common wheat; 

 Rotation 2: durum wheat, maize, common wheat, sugar beet; 

 Rotation 5: sunflower, durum wheat, sunflower, durum wheat (low input, case 1); 

 Rotation 6: sunflower, durum wheat, sunflower, durum wheat (low input, case 2); 

 Rotation 9: field beans, durum wheat, durum wheat, field beans; 

 Rotation 11: durum wheat, sunflower, durum wheat, sunflower; 

 Rotation 12: durum wheat, oilseed rape, durum wheat, oilseed rape. 

About carbon footprint, also a comparison with standard values achieved during the editing of the 

Environmental Product Declaration of pasta performed by Barilla S.p.A. and LCE S.r.l. in 2009, was done. 

Using the data in Table 3, the carbon footprint of durum wheat calculated through real scenarios is higher 

than target one. This occurs for all rotations except the durum wheat of rotation 2. In addition, the real 

values are always lower than EPD one, as can be noted in the Figures 67, 68, and 69, except for the durum 

wheat of rotation 6. Hence, a comparison between real and EDP scenario highlights that, although real 

values are usually higher than target they are lower than the preliminary EDP study. 
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Figure 67: Real and target emission of durum wheat of two rotations in the north of Italy, tCO2eq/t durum wheat. Data 

compared with a reference value from literature (EPD data, 2009). 

 

Figure 68: Real and target emission of durum wheat of three rotations in the centre of Italy, tCO2eq/t durum wheat. 

Data compared with a reference value from literature (EPD data, 2009). 
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Figure 69: Real and target emission of durum wheat of two rotations in the south of Italy, tCO2eq/t durum wheat. Data 

compared with a reference value from literature (EPD data, 2009). 

Due to the high input of fertilizers or their not efficient optimization in timing and amount, the emission of 

carbon dioxide increased. To prove the strong connection between carbon footprint and the efficiency of 

fertilization it is useful to compare the previous three figures with Figure 70 that shows nitrogen use 

efficiency (Agronomic NUE). In the Figure 70 the target values are higher than real ones except for rotation 

2. Therefore, when the nitrogen fertilization efficiency is lower than target one, the carbon footprint is 

higher and vice versa.  

 

Figure 70: Real and Target Agronomic NUE (kg/kg) of durum wheat of the seven rotations under evaluation. The 

dotted line is the threshold for an acceptable value of nitrogen use efficiency. 

The reasons for a low efficiency of fertilizations can be understood focusing on two issues: firstly, farmers 

decided the amount of nitrogen to use independently from previous crop, soil analysis and weather 
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conditions; secondly, the timing was not matched with the real needs of stems. As before argued, nitrogen 

applications are often performed too early respect to effective plant needs and the fertilizer is usually lost 

by volatilization or leaching into groundwater during spring rainfalls. 

To check weak points of the seven rotations it is worth to perform an economic evaluation: a comparison 

between costs was made to estimate net income values. A discrimination between field operations and 

technical tools costs allowed to find weaknesses of choices made during cropping season. In Figure 71 real 

and target costs are compared. 

 

Figure 71: Real and target costs (sum of technical tools and cropping activities) of durum wheat of the 7 rotations 

(€/ha). 

The dynamic analysis of net income is very attractive for durum wheat because, with the methodologies 

and choices of cultivation available to date, it is not profitable in the centre and south of Italy (Figure 72). In 

the north the difference between real and target is nearly zero, whereas in the centre and south the target 

values are 45% higher than real ones. This demonstrate how new methods and strategies are required to 

improve yields and economic sustainability of durum wheat and of the whole rotation (Figure 73). 

Figure 72: Real and target net income of durum wheat of the 7 rotations (€/t durum wheat). 
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Figure 73: Real and target net income of the 7 rotations (€/ha). 

Taking into account these outcomes a set of issues were identified where improvement could be 

undertaken. The notions, strategies and concepts chosen as essential or innovative for improving 

sustainability of durum wheat were collected in Table 5, that describes 9 themes where farmers can 

operate to optimize crops growing. 

Table 5: A list of sectors where wheat producers can operate to improve sustainability of their fields. 

 Topic Key factors or actions to answer topics 

1 Crop rotation If possible rotate wheat with dicotyledonous or fodder crops 

2 Tillage Choice tillage depth and intensity in relation to soil texture, climate, seeding age and 
crop rotation. Promote minimum tillage and no till with broadleaves crops. 

3 Seeding age time Define seeding time in relation to climate of the area and variety 

4 Seeds Use certified seeds 

5 Seeding density According to the variety, seeding timing and soil conditions (use of granoduro.net®) 

6 Variety choice Choose varieties tested in the area, tailored to climate zone and with enough 
productivity and technological quality. 

7 Chemical weeding Optimize weeds control (use of granoduro.net®) 

8 Nitrogen 
fertilization 

Optimize timing and amount of nitrogen fertilization to achieve high productivity and 
high protein content. Balance nitrogen in relation to rotation, natural availability of 
soil, variety and climate trends (use of granoduro.net®) 

9 Fungicide 
protection 

Assess risk of disease occurrence. This risk depends on varietal susceptibility, growth 
stage of crop, weather trend and pathogen pressure (use of granoduro.net®).  

 

One of the most important aspects is the optimization of fertilization plans and the use of rotations for 

reducing environmental impacts. Monoculture and fertilization plans not based on a nitrogen balancing 

calculation must be strongly discouraged. 
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The main weaknesses identified in the second project steps are finally: wrong fertilization plans and timing 

of spread out, too intense soil tillage, limited use of rotations, and incorrect use of pesticides. To solve 

these shortcomings in the following project step (cropping season 2011/2012) the use of the handbook and 

granoduro.net® was tested as innovative cropping strategy. 

3.3.3 Field comparison between current and innovative durum wheat management 

During 2011/2012 growing season, granoduro.net® was tested to estimate its potential to improve 

economic, social and environmental sustainability of durum wheat. 

The goal of this project step was to demonstrate to growers that a careful planning of crop rotations and 

the use of a DSS for wheat management produce benefits from a sustainability point of view and added-

value to production. To achieve this, two different durum wheat cropping strategies were compared in 

thirteen farms across Italy: 

1. farmer’s usual crop management (with only farmer tactic and strategic choices); 

2. crop management through the use of the Decision Support System (DSS) granoduro.net® for tactic 

decisions and the Handbook for the strategic ones. 

The thirteen farms involved in the study were located in the most important areas of durum wheat 

cultivation in Italy: four in the north (Emilia Romagna region), seven in the centre of Italy (Tuscany and 

Marche regions), while the last two in the south (Apulia region). 

The crop rotations tested were durum wheat in rotation with waxy maize, grain sorghum, common and 

durum wheat, sunflower, oilseed rape, sugar beet, field bean, chickpea, fodder pea and tomato. 

Sustainability was assessed as for the project steps before in terms of carbon, water and ecological 

footprint, net income, agronomic NUE, mycotoxin contamination and carbon sequestration (Ruggeri et al., 

2012). The main data for indicators calculation were collected through a questionnaire: 

• cropping activities and technical tools during crop cultivation; 

• direct costs €/hectare for each field practice; 

• use of fuel (litres/hectare) for each cropping activity; 

• use of pesticides and fertilizers (litres or kilograms/hectare). 

The questionnaire used to collect data is displayed in the Figures 74, 75, 76 and 77. The first part focuses on 

general information (Figure 74), the second asks data on cropping activities performed (Figure 75), the third 

requires information about technical tools spread out, while in the last part data on yield, quality 
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parameters (Figure 76) and the implementation of measures of mitigation of pesticides risk are requested 

(Figure 77). 

 

Figure 74:The questionnaire for the cropping season 2011/2012. General information section. 

 

Figure 75:The questionnaire for the cropping season 2011/2012. Cropping activities section. 

Cropping year

Farm Name Hectares

Address Rotation (2010-2011)

Owner Name and Surname Durum wheat variety 

Telephone Date of sowing

e-mail

VAT number or fiscal code

Description crop unit

County

Municipality

Locality

Height above mean sea level 

(AMSL) 

Farm and fields data collection

Farmer’s usual Crop 

management

Use of granoduro.net™ and the 

Handbook for sustainable cultivation 

Cultural activities
Date dd/mm/yy

Fuel consumption

(liters/ha) 
Costs €/Ha Date dd/mm/yy

Fuel consumption

(liters/ha) 
Costs €/Ha

Ploughing 45/50 cm

Ploughing 25/30 cm

Combined grubber (30-40 cm)

Ripping

Other (to specify)

Harrowing (30-35 cm)

Harrowing with revolving 

harrow Harrowing with rigid teeth or 

with springsBetween rows weeding

Between rows milling

Other (to specify)

Other (to specify)

Direct sowing (minimum tillage)

Sod sowing

Wheat sowing machine

Combined sowing machine

Other (to specify)

Pre-sowing Organic matter

Pre-sowing 

First post-sowing

Second post-sowing

Third post-sowing

Foliar fertilization

Other (to specify)

Pre-sowing total kill herbicide

Pre-emergence

First post-emergence  

Second post-emergence 

First treatment - fungicide

Second treatment - fungicide

Third treatment - fungicide

Insecticide

Other (to specify)

Sprinkler irrigation

Other (to specify)

Harvesting with chopping

Harvesting without chopping

Chopping straw

Baling straw

Loading straw

Transport straw to farm center

Transport wheat to farm center

Other (to specify)

Harvesting

Fertilization

Pests control

Irrigation

Weeds control

Conservation 

tillage

Seeding on 

tillaged soil

Secondary soil 

tillage

Use of granoduro.net™ and the Handbook for 

sustainable cultivation 
Farmer’s usual Crop management

Primary soil 

tillage
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Figure 76:The questionnaire for the cropping season 2011/2012. Technical tools section. 

 

Figure 77: The questionnaire for the cropping season 2011/2012. Yield, qualitative outcomes and measures of 

mitigation of risk section. 

In total thirteen different scenarios (rotations) were tested (Table 6). 

 

 

 

 

 

 

 

 

Technical tools
Name pesticide Date dd/mm/yy

Amount (liters o 

Kg/ha)
Costs €/Ha Name pesticide Date dd/mm/yy

Amount (liters o 

Kg/ha)
Costs €/Ha

Seeds without dressing

Seeds dressing

Other (to specify)
Pre-sowing total kill herbicide

Pre-emergence

First post-emergence  

Second post-emergence 

First treatment - fungicide

Second treatment - fungicide

Third treatment - fungicide

Insecticide
Other (to specify)

Pre-sowing Organic matter 

Fertilizer Pre-sowing 
First Fertilizer Post-emergence
Second Fertilizer Post-
Third Fertilizer Post-emergence
Leaf fertilizers

Other (to specify)

Seed

Use of granoduro.net™ and the Handbook for sustainable cultivation Farmer’s usual Crop management

Weeds control

Pest Control

Fertilization

Production characteristics

Crop yield (t/ha)

Straw (t/ha)

Selling price €/t of wheat

Selling price €/t of straw

Protein (% on dry matter)

Hectoliter weight (Kg/hl)

DON contamination (ppb)

Ashes 

Eco-conditionality Measures

Use of cover crop 

("yes" or "no")

Use of hedges, buffer strips, 

buffer zones etc. ("yes" or "no")

Use of anti-drift nozzles

("yes" or "no")

Mitigation measures of runoff 

(hilly ditches, etc.) ("yes" or 

"no")Use of subsurface drainage 

tubes ("yes" or "no")

Farmer’s usual Crop management

Farmer’s usual Crop management

Use of granoduro.net™ and the Handbook for 

sustainable cultivation 

Use of granoduro.net™ and the Handbook for 

sustainable cultivation 
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Table 6: Area, contribute to soil fertility and rotations of the 13 scenarios monitored in the 2011/2012. 

Area  Scenarios  Contribution of the rotation to soil fertility Durum wheat in rotation with: 

North 1 Richness Tomato 

North 2 Richness Tomato 

North 3 Pauperizing Waxy maize 

North 4 Pauperizing Grain Sorghum 

Centre 5 Rich Field bean 

Centre 6 Neutral Sunflower 

Centre 7 Neutral Sunflower 

Centre 8 Richness Chickpea 

Centre 9 Neutral Sunflower 

Centre 10 Neutral Oilseed rape/Sunflower 

South 11 Richness Tomato 

South 12 Richness Oilseed rape 

South 13 Neutral Sunflower 

 

The field comparisons were done by large plots (i.e. not strip experiment), ranging from half hectare to 

some hectares. Usually one big plot was split up into two parts and managed one side following farmer’s 

choices, the other following the advices of granoduro.net® and the handbook. The comparisons highlighted 

some differences on the amount of fertilizers applied on crops, number and timing of fungicides 

treatments, whereas on soil tillage, seeding density and herbicide usage the differences were minimal or 

negligible between the two approaches. Any difference between the two cropping strategies were 

accounted in the questionnaire by farmers at the end of the cropping season. Once questionnaires were 

filled out, the calculation of performance indicators, both economic and environmental, was performed by 

means of a LCA approach. 

Some plots were photographed, as shown in Figures 78, 79, 80, 81 and 82. The first two were taken during 

ripening. In the Figures 78 and 79 the optimization of fertilization through granoduro.net® increased the 

bending strength of wheat. Instead in the section managed by farmer the amount of nitrogen spread out 

was standard quantity and no nitrogen balance between inputs and outputs was calculated. As a 

consequence, the amount of nitrogen used was higher than needs and wheat lodged when heavy rain 

occurred. 

The other three photos are referred to wheat stem extension stage and differences between the two 

managements were not visible yet. 
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Figure 78: The plot of scenario 1 subjected to comparison. Farmer’s usual crop management versus the use of 

granoduro.net® and an handbook for wheat sustainability. 

  

Figure 79: The plot of scenario 2 subjected to comparison. Farmer’s usual crop management versus the use of 

granoduro.net® and an handbook for wheat sustainability. 

 

 

 

 

 

Use of granoduro.net™ and the Handbook 

for wheat sustainability  
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Farmer’s usual crop management 
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Figure 80: The plot of scenario 6 subjected to comparison. Farmer’s usual crop management versus the use of 

granoduro.net® and an handbook for wheat sustainability.  

  

Figure 81: The plot of scenario 7 subjected to comparison. Farmer’s usual crop management versus the use of 

granoduro.net® and an handbook for wheat sustainability. 

 

Farmer’s usual crop management 

Farmer’s usual crop management 
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Figure 82: The plot of scenario 9 subjected to comparison. Farmer’s usual crop management versus the use of 

granoduro.net® and an handbook for wheat sustainability. 

 

Indices, parameters, and indicators referring to durum wheat cultivated within each rotation are collected 

in the Table 7 a,b,c. In particular the following data were collected: yield (tons/hectare), yield at 13% of 

humidity (tons/hectare), yield at 0% of humidity (tons/hectare), straw yield (tons/hectare), quality 

parameters as protein content (% of dry matter), test weight (kilograms/hl), humidity at harvesting (%), 

mycotoxin DON (ppb) and ash (% of dry matter). Quality parameters were calculated by laboratory testing 

performed for samples gathered by plots under evaluation. 

From the economic point of view data gathered were: straw price (€/ton), kernels price (€/ton), GMP straw 

(€/hectare), GMP kernels (€/hectare), Total GMP (€/hectare), cropping activities costs (€/ton and 

€/hectare), technical tools costs (€/ton and €/hectare), and total direct costs (€/ton and €/hectare). 

Agronomic performance was estimated through the index: nitrogen up-taken by kernels 

(kilograms/hectare), total protein (tons/hectare), theoretical biomass above soil (tons/hectare), theoretical 

biomass (straw + roots) (tons/hectare), fuel consumption (litres/hectare), nitrogen supplied 

(kilograms/hectare), nitrogen from soil crop residues (kilograms/hectare), agronomic NUE 

(kilograms/kilograms), carbon sequestration of kernels (tons/hectare), carbon sequestration of biomass 

(tons/hectare), and total carbon sequestration (tons/hectare). 

Farmer’s usual crop management 
Use of granoduro.net™ and the Handbook 

for wheat sustainability  
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Table 7 a: Yield, quality parameters and indicators of durum wheat of the 13 scenarios compared in the 2011/2012 cropping season. 

 

 

 

 

Farm  

Type of 

rotation 

Durum wheat in 

rotation with: granoduro.net® Yield (t/ha) 

Yield at 13% of 

humidity (t/ha) 

Yield at 0% of 

humidity (t/ha) 

Protein content 

(% of dry matter) 

Test weight 

(kg/hl) 

Humidity at 

harvesting (%) 

Mycotoxin 

DON (ppb) 

Ash (% of 

dry matter) 

Straw yield 

(t/ha) 

1 Richness Tomato Yes 9.1 9.5 8.3 14.2 87.5 9.3 17.5 1.8 6.0 

No 8.2 8.5 7.4 14.4 87.6 9.3 138.0 1.9 6.5 

2 Richness Tomato Yes 7.9 8.1 7.1 14.6 85.5 10.7 17.5 1.9 6.0 

No 7.2 7.4 6.4 13.9 87.0 11.1 56.0 2.1 6.5 

3 Pauperizing Waxy maize Yes 7.3 7.6 6.6 17.0 84.7 9.9 17.5 1.9 4.9 

No 7.9 8.2 7.1 17.0 85.1 9.8 17.5 2.0 4.5 

4 Pauperizing Grain Sorghum Yes 4.0 4.1 3.6 15.6 84.0 10.5 17.5 1.7 3.0 

No 4.5 4.6 4.0 15.4 86.1 10.6 218.0 2.0 3.0 

5 Richness Field bean Yes 8.0 8.2 7.2 12.9 85.3 10.9 17.5 2.0 4.3 

No 8.0 8.3 7.2 14.2 84.2 10.3 17.5 2.2 4.3 

6 Neutral Sunflower Yes 7.7 8.0 7.0 12.6 86.4 9.7 70.0 2.3 4.5 

No 7.3 7.5 6.5 12.9 86.8 10.3 17.5 2.1 4.5 

7 Neutral Sunflower Yes 4.9 5.1 4.4 12.2 88.0 8.9 17.5 1.8 0.0 

No 4.6 4.8 4.2 14.7 87.2 9.2 17.5 2.0 0.0 

8 Richness Chickpea Yes 5.7 5.8 5.1 13.3 85.4 10.1 17.5 1.8 0.0 

No 6.4 6.6 5.7 12.8 84.8 10.2 94.0 2.0 0.0 

9 Neutral Sunflower Yes 5.8 5.8 5.1 14.8 83.1 13.3 518.0 2.1 3.0 

No 6.2 6.3 5.5 13.2 84.9 11.0 144.0 2.0 3.0 

10 Neutral Oilseed 

rape/Sunflower 

Yes 5.8 6.0 5.2 13.1 84.7 10.2 100.0 2.2 0.0 

No 5.6 5.8 5.0 14.1 82.5 10.1 17.5 2.1 0.0 

11 Richness Tomato Yes 5.0 5.3 4.6 15.7 87.6 8.6 17.5 2.0 2.0 

No 4.3 4.5 3.9 15.3 88.1 8.8 17.5 1.9 2.0 

12 Richness Oilseed rape Yes 4.8 5.0 4.3 12.7 87.0 9.6 17.5 2.1 2.0 

No 5.1 5.3 4.6 14.7 86.4 9.5 112.8 1.8 2.0 

13 Neutral Sunflower Yes 4.0 4.1 3.6 13.5 86.8 10.0 17.5 1.9 2.0 

No 4.0 4.2 3.6 14.2 85.5 9.5 17.5 2.1 2.0 
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Table 7 b: Economic variables and indicators of durum wheat of the 13 scenarios compared in the 2011/2012 cropping season. 

 

 

 

Farm  granoduro.net® 

Price straw 

(€/t) 

Price of 

kernels (€/t) 

GMP kernels 

(€/ha) 

GMP straw 

(€/ha) 

Total GMP 

(€/ha) 

Crop. activities 

costs (€/ha) 

Technical tools 

costs (€/ha) 

Total direct 

costs (€/ha) 

Crop. activities 

costs (€/t) 

Technical tools 

costs (€/t) 

Total direct 

costs (€/t) 

Net Income 

(€/ha) 

1 Yes 30.0 271.4 2574.1 180.0 2754.1 443.0 374.0 817.0 46.7 39.4 86.1 1937.1 

No 30.0 271.4 2319.8 195.0 2514.8 473.0 508.0 981.0 55.3 59.4 114.8 1533.8 

2 Yes 60.0 271.4 2201.6 360.0 2561.6 433.0 407.0 840.0 53.4 50.2 103.5 1721.6 

No 60.0 271.4 1997.6 390.0 2387.6 483.0 555.0 1038.0 65.6 75.4 141.0 1349.6 

3 Yes 25.0 271.4 2063.9 122.5 2186.4 610.8 375.3 986.1 80.3 49.3 129.7 1200.3 

No 25.0 271.4 2228.2 112.5 2340.7 650.9 408.8 1059.7 79.3 49.8 129.1 1280.9 

4 Yes 50.0 271.4 1117.1 150.0 1267.1 665.0 317.4 982.4 161.6 77.1 238.7 284.7 

No 50.0 271.4 1255.5 150.0 1405.5 665.0 469.0 1134.0 143.7 101.4 245.1 271.5 

5 Yes 60.0 271.4 2232.6 258.0 2490.6 519.5 435.3 954.8 63.1 52.9 116.1 1535.8 

No 60.0 271.4 2247.9 258.0 2505.9 519.5 462.2 981.7 62.7 55.8 118.5 1524.2 

6 Yes 50.0 271.4 2169.9 225.0 2394.9 608.5 360.0 968.5 76.1 45.0 121.1 1426.4 

No 50.0 271.4 2042.1 225.0 2267.1 598.5 405.0 1003.5 79.5 53.8 133.4 1263.6 

7 Yes 50.0 271.4 1377.8 0.0 1377.8 404.0 314.0 718.0 79.6 61.8 141.4 659.8 

No 50.0 271.4 1303.5 0.0 1303.5 398.0 409.8 807.8 82.9 85.3 168.2 495.7 

8 Yes 50.0 271.4 1587.1 0.0 1587.1 595.0 422.3 1017.3 101.7 72.2 174.0 569.8 

No 50.0 271.4 1793.2 0.0 1793.2 630.0 532.3 1162.3 95.3 80.6 175.9 630.9 

9 Yes 55.0 271.4 1577.6 165.0 1742.6 538.0 327.0 865.0 92.5 56.3 148.8 877.6 

No 55.0 271.4 1707.0 165.0 1872.0 573.0 449.0 1022.0 91.1 71.4 162.5 850.0 

10 Yes 55.0 271.4 1624.7 0.0 1624.7 465.0 606.5 1071.5 77.7 101.3 179.0 553.2 

No 55.0 271.4 1571.3 0.0 1571.3 465.0 678.5 1143.5 80.3 117.2 197.5 427.8 

11 Yes 100.0 340.0 1793.2 200.0 1993.2 410.0 305.3 715.3 77.7 57.9 135.6 1277.9 

No 100.0 340.0 1535.6 200.0 1735.6 404.0 325.5 729.5 89.5 72.1 161.5 1006.1 

12 Yes 100.0 340.0 1685.6 200.0 1885.6 443.0 335.8 778.8 89.4 67.7 157.1 1106.8 

No 100.0 340.0 1804.1 200.0 2004.1 446.0 355.5 801.5 84.1 67.0 151.1 1202.6 

13 Yes 100.0 340.0 1396.9 200.0 1596.9 415.5 312.6 728.1 101.1 76.1 177.2 868.8 

No 100.0 340.0 1414.8 200.0 1614.8 416.0 355.5 771.5 100.0 85.4 185.4 843.3 
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Table 7 c: Agronomic and environmental variables and indicators of durum wheat of the 13 scenarios compared in the 2011/2012 cropping season. 

Farm  granoduro.net® 

Nitrogen up-

taken by 

kernels 

(kg/ha) 

Nitrogen 

applied (kg 

/ha) 

Nitrogen from 

soil crop 

residues 

(kg/ha) 

Agronomic 

NUE (kg/kg) 

Total 

protein 

(t/ha) 

Theoretical 

biomass 

above soil 

(t/ha) 

Theoretical 

biomass 

(straw + roots) 

(t/ha) 

Fuel 

consumption 

(l/ha) 

Carbon 

Footprint 

(tCO2 

eq/ha) 

Carbon 

Footprint 

(tCO2 eq/t) 

Water 

Footprint 

(m3H20/ha) 

Water 

Footprint 

(m3H20/t) 

Ecological 

Footprint 

(global 

ha/ha) 

Ecological 

Footprint 

(global 

ha/t) 

Carbon 

sequestration 

(kernels) (t/ha) 

Carbon 

sequestration 

(biomass) 

(t/ha) 

Total Carbon 

sequestration 

(t/ha) 

1 Yes 205.6 166.8 90.0 49.5 1.2 12.4 15.5 114.0 2.62 0.25 12295 1176 2.75 0.263 5.2 6.8 12.0 

No 187.6 195.8 90.0 38.0 1.1 11.2 13.9 137.0 2.96 0.314 10549 1119 2.79 0.296 4.7 6.1 10.8 

2 Yes 180.8 160.0 102.0 44.1 1.0 10.6 13.2 130.0 2.58 0.284 10834 1193 2.76 0.303 4.4 5.8 10.2 

No 156.5 212.8 102.0 30.1 0.9 9.6 12.0 141.0 3.2 0.386 10008 1209 2.79 0.338 4.0 5.3 9.3 

3 Yes 197.0 176.0 64.0 37.6 1.1 9.9 12.4 180.5 2.85 0.338 9357 1109 2.79 0.33 4.1 5.5 9.6 

No 213.0 190.3 64.0 37.5 1.2 10.7 13.4 183.0 2.79 0.306 10062 1105 2.78 0.306 4.5 5.9 10.4 

4 Yes 97.7 122.0 87.0 29.4 0.6 5.4 6.7 329.0 2.3 0.499 5508 1198 2.72 0.591 2.2 3.0 5.2 

No 108.4 204.5 87.0 19.7 0.6 6.0 7.5 329.0 3.2 0.619 9498 1836 2.8 0.542 2.5 3.3 5.8 

5 Yes 162.5 143.5 112.0 49.9 0.9 10.7 13.4 114.5 2.19 0.238 11438 1239 2.76 0.299 4.5 5.9 10.4 

No 179.5 183.6 112.0 39.2 1.0 10.8 13.5 118.5 2.65 0.287 13116 1421 2.79 0.303 4.5 5.9 10.4 

6 Yes 153.2 145.0 63.0 48.0 0.9 10.4 13.0 130.5 2.1 0.238 11394 1287 2.75 0.31 4.3 5.7 10.1 

No 148.6 200.0 63.0 32.7 0.8 9.8 12.3 127.5 1.54 0.184 10647 1269 2.7 0.322 4.1 5.4 9.5 

7 Yes 94.5 114.0 39.0 38.7 0.5 6.6 8.3 120.0 1.94 0.348 7031 1264 2.67 0.479 2.8 3.6 6.4 

No 107.5 163.0 39.0 25.6 0.6 6.3 7.8 127.0 2.47 0.468 7489 1418 2.72 0.516 2.6 3.4 6.1 

8 Yes 118.4 144.5 97.0 35.2 0.7 7.6 9.5 112.5 1.86 0.285 9848 1514 2.69 0.414 3.2 4.2 7.4 

No 128.8 167.0 97.0 34.4 0.7 8.6 10.8 116.0 2.74 0.373 11367 1545 2.78 0.378 3.6 4.7 8.3 

9 Yes 131.1 142.1 71.0 35.6 0.7 7.6 9.5 85.0 1.8 0.268 10098 1507 2.66 0.396 3.2 4.2 7.3 

No 126.2 164.6 71.0 33.2 0.7 8.2 10.3 88.5 2.42 0.343 10987 1554 2.73 0.387 3.4 4.5 7.9 

10 Yes 119.5 205.0 58.0 25.4 0.7 7.8 9.8 56.0 2.51 0.377 10783 1617 2.75 0.412 3.3 4.3 7.5 

No 124.3 213.0 58.0 23.6 0.7 7.6 9.4 56.0 2.65 0.411 11335 1761 2.75 0.427 3.1 4.2 7.3 

11 Yes 126.0 99.6 105.0 46.1 0.7 6.9 8.6 143.2 1.55 0.269 8941 1550 2.7 0.467 2.9 3.8 6.7 

No 105.6 89.0 105.0 44.1 0.6 5.9 7.4 136.8 1.41 0.285 7849 1584 2.68 0.541 2.5 3.2 5.7 

12 Yes 95.9 100.0 74.0 43.1 0.5 6.5 8.1 136.9 1.7 0.31 9096 1659 2.74 0.499 2.7 3.6 6.3 

No 119.0 89.0 74.0 51.9 0.7 6.9 8.7 139.9 1.59 0.271 9796 1671 2.73 0.465 2.9 3.8 6.7 

13 Yes 84.6 75.0 62.0 47.7 0.5 5.4 6.7 125.7 1.41 0.31 7834 1717 2.71 0.595 2.2 2.9 5.2 

No 89.9 89.0 62.0 40.7 0.5 5.4 6.8 126.0 1.56 0.34 8062 1753 2.72 0.592 2.3 3.0 5.3 
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To check if granoduro.net® was able to improve the sustainability of plots a Student t-test with a 

confidence interval of 90% (α level two-tailed test 0.1) was performed (Table 8). The choice of 90% relies on 

the lack of significant outcomes for confidential interval at 95% and 99%. 

Table 8: Mean values of the more interesting variables and indicators assessed in the 13 scenarios of the cropping 

season 2011/2012. 

Performance of 13 comparisons 

 granoduro.net
®
 Mean ± Standard error  

Yield (t/ha) No  6.3 ± 0.43 

Yes 6.3 ± 0.48 

Protein (% dry matter) No  14.3 ± 0.31 

Yes 14 ± 0.4 

Test weight (kg/hl) No  85.9 ± 0.43 

Yes 85.8 ± 0.41 

DON (µg/kg) No  68.1 ± 18.6 

Yes 66.4 ± 38.3 

Ash (% dry matter) No  2.02 ± 0.03 

Yes 1.96 ± 0.05 

Gross Marketable Product  kernels (€/ha) No  1786.2 ± 100.4 

Yes 1800.2 ± 116 

Cropping activities costs (€/ha) No  517.1 ± 26.6 

Yes 503.9 ± 25.1 

Technical tools costs (€/ha) No  454.9 ± 26.8 

Yes 376.3 ± 22.7 

Total costs (€/ha) No  972 ± 41 

Yes 880.2 ± 34.3 

Total costs (€/t) No  160.3 ± 9.97 

Yes 146.8 ± 11 

Net Income (€/ha) No  975.4 ± 117.6 

Yes 1078.4 ± 137.8 

Carbon footprint (tCO2 eq/ha) No  2.39 ± 0.18 

Yes 2.11 ± 0.12 

Carbon footprint (tCO2 eq/t) No  0.352 ± 0.029 

Yes 0.308 ± 0.02 

Water footprint (m
3
H20/ha) 

 

No 10058.8 ± 438.5 

Yes 9573.6 ± 532.8 

Water footprint (m
3
H20/t) No  1480.4 ± 68.6 

Yes 1386.9 ± 58.6 

Ecological footprint (global ha/ha) 

 

No 2.75 ± 0.011 

Yes 2.73 ± 0.01 

Ecological footprint (global ha/t) No  0.42 ± 0.03 

Yes 0.41 ± 0.03 

Nitrogen (kg/ha) No  166.3 ± 13.06 

Yes 137.96 ± 9.84 

Agronomic (NUE kg/kg) No  34.7 ± 2.4 

Yes 40.8 ± 2.2 

Total Carbon Sequestration (t/ha) No  7.96 ± 0.55 

Yes 8.02 ± 0.61 

 

The cropping season 2011/2012 was extremely favourable for durum wheat in Italy in terms of yields, 

quality and health of grains. The temperature was around the average and the rainfalls was abundant 

during key durum wheat phonological stages. The development of mycotoxin by Fusarium spp. was strongly 
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unfavourable. Therefore, the conditions resulted to be not favourable to identify the characteristics of 

different approaches and the potential benefits of using innovative farming systems from a disease 

management point of view. Only values of three indicators on costs and two on the use of fertilizers 

resulted to be significantly different in the two management strategies (Table 9). 

Table 9: List of indicators resulted significant at a Student t-test with a confidence interval of 90% (α level two-tailed 

test 0.1, assumed equal variance) in the season 2011/2012. 

  t-test for Equal 

Means, for 

Independent 

Samples 

df  Sig. (2-tail)  Difference 

between 

means 

Difference 

standard 

error 

Confidence interval for the 

difference at 95%. Min-Max 

Confidence Intervals 

Technical tools costs (€/ha) 2.237 24 0.035 78.58846 35.1361 6.07117 151.1058 

Total costs (€/ha) 1.717 24 0.099 91.78692 53.4582 -18.54541 202.1193 

Technical tools costs (€/t) 1.815 24 0.082 12.86604 7.08988 -1.7667621 27.49884 

Nitrogen (kg/ha) 1.731 24 0.096 28.31154 16.3546 -5.44264 62.06572 

Agronomic NUE (kg/kg) -1.871 24 0.074 -6.09711 3.25961 -12.824612 0.630401 

 

Total direct costs (€/t) of crop management following granoduro.net® (b) were statistically lower than 

farmers management (a), especially with rich or neutral contribution by previous crop (-10% 

approximately) (Figure 83). 

 

 

 

 

 

 

 

Figure 83: Total direct costs (€/ha) for the durum wheat of the 13 scenarios categorized as enriching, neutral and 

pauperizing. Statistical differences; a,ab,b…= Student-t Test (p=0.1). 

In Figures 84 and 85 total costs were split up into the main activities, such as tillage, seeding, fertilization, 

pesticides and harvest/transport, and into technical tools and cropping activities respectively. In particular, 

granoduro.net® (b) reduced the cost by acting on pesticides and fertilizers, while less relevance was noted 

for tillage, seeding and harvest/transport to farm centre (Figure 84). This is confirmed also in Figure 85 

where it is reported that the benefits of granoduro.net® (b) occurred especially for technical tools costs. 
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Figure 84: Total direct costs (€/ha) for the durum wheat of the 13 scenarios. Costs are split up into tillage, seeding, 

fertilization, pesticides application and harvest/transport to farm centre. Statistical differences; a,ab,b…= Student-t 

Test (p=0.1). 

 

Figure 85: Total direct costs (€/ha) for the durum wheat of the 13 scenarios. Costs are split up into technical tools and 

cropping activities. Technical tools costs with granoduro.net® were statistically different by no-granoduro.net® use. 

This did not happen for direct costs of cropping activities. Statistical differences; a,ab,b…= Student-t Test (p=0.1), n.s.= 

not significant.  

 

Interestingly, the values of the indicator Agronomic NUE (Figure 86) referring to farmers’ (a) and 

granoduro.net® management (b) were statistically significant. In particular, the use of granoduro.net® 

increased the efficiency of nitrogen use by 5-8%, i.e. same yields were obtained by the two managements 

but the one following granoduro.net® used a lower dosage of nitrogen. 
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Figure 86: Agronomic NUE (kg/kg of N applied) for the durum wheat of the 13 scenarios categorized as enriching, 

neutral and pauperizing. Statistical differences; a,ab,b…= Student-t Test (p=0.1). 

Data of the cropping season 2011/2012 demonstrated that, when durum wheat is rotated with leguminous 

or horticultural crops, crop cultivation direct costs (€/ha), use of diesel fuel (l/ha), carbon footprint 

(tCO2eq/ha or tCO2eq/t) and ecological footprint (global ha/t) are lower and Agronomic NUE (kg/kg) higher 

than farmer scenario. 

In particular, when durum wheat is cultivated within a favourable rotation with leguminous gas emission 

are 36% lower (Figure 87), direct costs of cultivation are 31% lower (Figure 88), and yields improve by 15-

20% rather than within an unfavourable rotation with cereals or industrial crops (Figure 89). 

 

Figure 87: Carbon footprint (tCO2eq/t durum wheat) for the 13 scenarios categorized as rotation of durum wheat with 

cereals, industrial, leguminous or horticultural crops. Statistical differences. a,ab,b…= Student-Newman-Keuls Test 

(p=0.05). 
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Figure 88: Total direct costs (€/t durum wheat) for the 13 scenarios categorized as rotation of durum wheat with 

cereals, industrial, leguminous or horticultural crops. Statistical differences. a,ab,b…= Student-Newman-Keuls Test 

(p=0.05). 

  

Figure 89: Yield (€/ha durum wheat) for the 13 scenarios categorized as rotation of durum wheat with cereals, 

industrial, leguminous or horticultural crops. Statistical differences. a,ab,b…= Student-Newman-Keuls Test (p=0.05). 

The results achieved in this first year of comparison were considered very positive by stakeholders, even if 

significant differences were achieved only for few indicators. 

The use of granoduro.net® and the handbook allowed to increase the awareness of farmers, technicians 

and agronomists of which variables influence durum wheat performance. This new approach proved as 

plot-specific information is mandatory for increasing the quality of decisions throughout crop season. 

Stakeholders learnt that agricultural practices can influence the environmental, economic and food safety 

performances of durum wheat cultivation. In particular, the use of rotations and the optimization of 

fertilizers, tillage, seeding and weeds and pests control are crucial to increase sustainability. The choice of 

an appropriate crop rotation is a key point for the sustainability of a farming system. Monoculture of durum 

wheat is not recommended also for quality reasons because its cropping residues (straw and chaff) are a 

habitat for fungi fostering DON contamination. 

The use of granoduro.net® and the handbook in pilot farms, respectively for tactic and strategic decisions, 

was repeated in cropping season 2012/2013 and compared with the usual farmer’s crop management. 
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Data about management practices performed were collected and indicators calculated directly through a 

functionality implemented on granoduro.net® (i.e., completely independent from the software SimaPro 7 

and the database Ecoinvent used in the years 2009/2010 and 2010/2011 to calculate the footprint 

indicators). Indeed, new databases about emissions and consumption of fuel were developed and 

implemented into granoduro.net® thanks to Horta S.r.l. expertise and this allowed to refine and speed up 

the indicators calculation. The new procedure led to more accurate values of carbon and ecological 

footprint, usually lower than the ones estimated by the software SimaPro 7 and the database Ecoinvent 

used in the first two years. 

Moreover, in this second pilot farms year the potentiality of granoduro.net® were studied in the light of a 

SWOT analysis (Hill and Westbrook, 1997), i.e. the strengths, weaknesses, opportunities and threats of the 

use of granoduro.net® were analysed: 

Strengths 

• solid database on pests and pesticides built through field trials over the last 15 years; 

• easy tool to manage; 

• based on mechanistic models; 

• no commercial purposes, it is only a decision support system. 

Weaknesses 

• limited portfolio of durum wheat varieties to choose on: Levante, Latinur, Saragolla, Normanno, 

Odisseo, Iride, Aureo, Maestrale, Svevo,Grecale, Miradoux, Pigreco, Monastir, Yelodur, Ramirez, 

Maracas, PR22D66, PR22D89, Tirex, Biensur, Achille, San Carlo, Casare, Claudio, Emilio Lepido, 

Massimo meridio, Simeto and Duilio. 

Opportunities 

• increase efficiency of farming systems and optimization of costs; 

• more communication and relationships between Barilla S.p.A., its suppliers, farmers associations 

and single farmers; 

• consciousness of farmers toward which variables influence crop yield and quality and how farm 

activities are related to costs; 

• collect positive feedbacks from farmers for increasing sustainability also at the base level of the 

food chain; 

• oriented to CAP (Common Agricultural Policy) and sustainable use of pesticides (Directive 

128/2009/CEE). 
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Threats 

• cooperatives or Chemical Industries may see the system as a limit to their agri-input selling activity; 

• Italian farmers have limited accessibility to and skills for on-line web consultancy; 

• farmers’ suspicion of giving their data to the industry; 

• cost to start up the system; 

• costs for maintaining the system. 

By considering these aspects, 22 comparisons were planned. The 22 farms involved in the study were 

located in the most important areas of durum wheat cultivation in Italy, the majority into Emilia Romagna 

region, some in the centre of Italy (Tuscany and Marche regions), while three in the south (Apulia and 

Campania regions). 

Characteristics of these rotations were collected by farmers through the same questionnaire of the 

previous cropping season and the calculated indicators are displayed in the Table 10 a,b,c,d. 

The interviewed farmers cultivated durum wheat in rotation with some of the most widespread 

broadleaves in Italy: sugar beet, tomato, potato, sunflower, chickpea and leguminous (i.e. alfalfa and 

clover). Also less favourable rotations with grass species like sorghum, ray grass and wheat were tested. As 

for the previous experimental year differences between the two cropping strategies were accounted in the 

questionnaire by farmers at the end of the cropping season. Once questionnaires were filled out, the 

calculation performance indicators, both economic and environmental, was performed by means of a LCA 

approach. 

In the 22 comparisons significant differences were not observed between the two cropping strategies, even 

for the amount of fertilizers applied on crops and number and timing of fungicides treatments. Small 

differences were instead identified for the sowing density and soil tillage. This happened probably for two 

reasons: the farmers involved in the comparison were already durum wheat opinion leader in their district, 

and cultivated wheat in an efficient way even before the starting of the project. Secondly some growers 

had already taken part to the project the year before. As a consequence, intentionally or unconsciously 

they imitated choices advised for the year before and dissimilarities fading out irremediably. 
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Table 10 a: Yield, quality variables, economic variables and indicators of durum wheat of the first 11 scenarios compared in the 2012/2013 cropping season. 

 

 

 

 

Area Farm 

Variety of 

durum wheat 

Rotation of 

durum wheat 

with: granoduro.net® 

Yield at 13% 

of humidity 

(t/ha) 

Protein (% of 

dry matter) 

Test 

weight 

(kg/hl) 

Price 

kernels 

(€/t) 

GMP kernels 

(€/ha) 

GMP 

kernels 

(€/t) 

Cropping 

activities 

costs (€/ha)  

Technical tools 

costs (€/ha) 

Total direct 

costs (€/ha) 

North 1 Normanno Sugar beet Yes 7.5 11.8 84.6 240.0 1788.0 240.0 539.0 492.0 1031.0 

Normanno Sugar beet No 7.7 12.8 80.5 240.0 1836.0 240.0 554.0 585.0 1139.0 

North 2 Normanno Sugar beet Yes 5.4 14.0 85.0 260.0 1404.0 260.0 385.0 451.0 836.0 

Normanno Sugar beet No 4.9 13.5 84.2 250.0 1225.0 250.0 400.0 517.5 917.5 

North 3 Normanno Alfalfa Yes 5.4 13.5 85.1 250.0 1345.0 250.0 445.0 378.4 823.4 

Normanno Alfalfa No 5.0 12.0 84.5 240.0 1188.0 240.0 445.0 517.5 962.5 

North 4 Levante Tomato Yes 6.6 14.5 83.5 260.0 1716.0 260.0 483.0 365.0 848.0 

Dylan Tomato No 5.9 13.1 80.3 250.0 1475.0 250.0 488.0 455.0 943.0 

North 5 Levante Potato Yes 7.5 13.5 79.0 250.0 1875.0 250.0 475.0 409.0 884.0 

Levante Potato No 7.0 13.6 81.4 250.0 1750.0 250.0 489.0 423.0 912.0 

North 6 Odisseo Sugar beet Yes 8.3 13.8 77.6 250.0 2085.0 250.0 573.0 485.3 1058.3 

Odisseo Sorghum No 8.6 14.2 80.8 260.0 2230.8 260.0 575.0 447.6 1022.6 

North 7 San Carlo Tomato Yes 7.4 13.2 83.7 250.0 1860.0 250.0 496.0 269.0 765.0 

San Carlo Tomato No 6.5 12.6 83.7 240.0 1562.4 240.0 572.0 306.0 878.0 

North 8 Levante Tomato Yes 6.4 14.5 82.8 260.0 1664.0 260.0 483.0 382.0 865.0 

Dylan Tomato No 6.2 14.7 83.4 260.0 1612.0 260.0 488.0 475.0 963.0 

Centre 9 Normanno Sunflower Yes 4.2 12.9 77.0 240.0 1008.0 240.0 575.0 513.0 1088.0 

Normanno Sunflower No 3.8 13.5 77.5 250.0 945.0 250.0 610.0 608.0 1218.0 

Centre 10 Normanno Chickpea Yes 3.6 12.3 75.8 240.0 864.0 240.0 570.0 402.4 972.4 

Normanno Chickpea No 3.9 12.5 75.9 240.0 936.0 240.0 600.0 521.0 1121.0 

Centre 11 Normanno Sunflower Yes 4.9 14.0 79.0 260.0 1274.0 260.0 540.0 548.2 1088.2 

Normanno Sunflower No 4.9 14.1 79.2 260.0 1274.0 260.0 565.0 619.0 1184.0 
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Table 10 b: Economic, environmental and nitrogen efficiency variables of durum wheat of the first 11 scenarios compared in the 2012/2013 cropping season. 

Farm 

Cropping 

activities costs 

(€/t) 

Technical 

tools costs 

(€/t) 

Total direct 

costs (€/t) 

Net income 

(€/ha) 

Net income 

(€/t) 

Carbon 

footprint 

(tCO2eq/t) 

Carbon 

footprint 

(tCO2eq/ha) 

Water 

footprint 

(m3H20/t) 

Water 

footprint 

(m3H2O/ha) 

Ecological 

footprint 

(global ha/t) 

Ecological 

footprint 

(global ha/ha) 

Agronomic 

NUE (kg/kg) 

1 72.3 66.0 138.4 757.0 101.6 0.213 1.82 1054.0 9024.0 0.307 2.63 49.7 

72.4 76.5 148.9 697.0 91.1 0.255 2.24 1052.0 9254.0 0.299 2.63 48.4 

2 71.3 83.5 154.8 568.0 105.2 0.335 2.08 1105.0 6860.0 0.424 2.63 36.2 

81.6 105.6 187.2 307.5 62.8 0.334 1.88 1116.0 6268.0 0.463 2.61 40.3 

3 82.7 70.3 153.0 521.7 97.0 0.205 1.27 1106.0 6837.0 0.420 2.60 58.8 

89.9 104.5 194.4 225.5 45.6 0.340 1.93 1131.0 6433.0 0.464 2.64 34.2 

4 73.2 55.3 128.5 868.0 131.5 0.360 2.73 1127.0 8551.0 0.364 2.76 35.4 

82.7 77.1 159.8 532.0 90.2 0.280 1.90 1146.0 7769.0 0.400 2.72 49.2 

5 63.3 54.5 117.9 991.0 132.1 0.270 2.17 1136.0 9144.0 0.330 2.65 43.9 

69.9 60.4 130.3 838.0 119.7 0.213 1.82 1054.0 9024.0 0.307 2.63 49.7 

6 68.7 58.2 126.9 1026.7 123.1 0.228 2.19 1064.0 10195.0 0.279 2.67 46.5 

67.0 52.2 119.2 1208.2 140.8 0.220 2.17 1061.0 10471.0 0.271 2.67 47.8 

7 66.7 36.2 102.8 1095.0 147.2 0.292 2.49 1084.0 9267.0 0.323 2.76 43.0 

87.9 47.0 134.9 684.4 105.1 0.401 3.00 1097.0 8202.0 0.374 2.79 29.7 

8 75.5 59.7 135.2 799.0 124.8 0.271 1.99 1130.0 8314.0 0.360 2.65 42.2 

78.7 76.6 155.3 649.0 104.7 0.239 1.71 1138.0 8112.0 0.368 2.63 45.9 

9 136.9 122.1 259.0 -80.0 -19.0 0.494 2.39 1430.0 6902.0 0.563 2.72 24.2 

161.4 160.8 322.2 -273.0 -72.2 0.603 2.62 1647.0 7158.0 0.633 2.75 19.7 

10 158.3 111.8 270.1 -108.4 -30.1 0.413 1.71 1373.0 5679.0 0.636 2.63 26.1 

153.8 133.6 287.4 -185.0 -47.4 0.445 1.99 1583.0 7096.0 0.595 2.67 24.3 

11 110.2 111.9 222.1 185.8 37.9 0.359 2.02 1269.0 7146.0 0.471 2.65 29.8 

115.3 126.3 241.6 90.0 18.4 0.410 2.31 1436.0 8088.0 0.478 2.69 26.2 
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Table 10 c: Yield, quality variables, economic variables and indicators of durum wheat of the last 11 scenarios compared in the 2012/2013 cropping season. 

Area Farm 

Variety of 

durum wheat 

Rotation of 

durum wheat 

with: granoduro.net® 

Yield at 13% 

of humidity 

(t/ha) 

Protein (% 

dry matter) 

Test 

weight 

(kg/hl) 

Price 

kernels 

(€/t) 

GMP 

kernels 

(€/ha) 

GMP 

kernels 

(€/t) 

Cropping 

activities costs 

(€/ha) 

Technical 

tools costs 

(€/ha) 

Total direct 

costs (€/ha) 

Centre 12 Normanno Sunflower Yes 4.0 14.0 76.0 250.0 1000.0 250.0 604.0 427.4 1031.4 

Normanno Sunflower No 4.4 12.6 77.5 240.0 1056.0 240.0 632.0 563.3 1195.3 

Centre 13 Normanno Clover Yes 3.0 13.6 76.1 250.0 750.0 250.0 640.0 292.0 932.0 

Normanno Clover No 3.0 13.6 76.0 250.0 750.0 250.0 640.0 369.0 1009.0 

Centre 14 Svevo Sunflower Yes 5.1 13.4 77.4 250.0 1275.0 250.0 530.0 298.0 828.0 

Svevo Sunflower No 6.0 14.0 78.0 250.0 1500.0 250.0 565.0 413.0 978.0 

Centre 15 Iride Sunflower/Pea Yes 6.0 12.0 80.0 240.0 1440.0 240.0 509.0 337.0 846.0 

Iride Sunflower/Pea No 6.0 12.0 80.0 240.0 1440.0 240.0 509.0 389.0 898.0 

Centre 16 Odisseo Durum wheat Yes 6.7 13.1 82.8 250.0 1667.5 250.0 642.0 552.0 1194.0 

Odisseo Durum wheat No 6.4 14.1 82.2 260.0 1656.2 260.0 642.0 621.0 1263.0 

Centre 17 Odisseo Durum wheat Yes 6.4 13.5 83.6 250.0 1597.5 250.0 597.0 553.0 1150.0 

Odisseo Durum wheat No 7.4 13.7 82.5 250.0 1850.0 250.0 597.0 584.0 1181.0 

Centre 18 Iride Ryegrass Yes 4.5 12.2 82.4 240.0 1080.0 240.0 440.0 552.0 992.0 

Iride Durum wheat No 4.0 11.3 80.1 240.0 960.0 240.0 500.0 582.0 1082.0 

South 19 Aureo Field bean Yes 4.2 16.7 81.8 305.0 1290.2 305.0 442.0 414.0 856.0 

Aureo Tomato No 4.2 12.0 82.3 285.0 1202.7 285.0 415.0 464.0 879.0 

South 20 Aureo Durum wheat Yes 4.5 16.7 84.3 305.0 1366.4 305.0 482.0 374.0 856.0 

Aureo Tomato No 3.8 12.7 83.0 285.0 1077.3 285.0 412.0 514.0 926.0 

South 21 Aureo Durum wheat Yes 4.7 17.1 81.5 305.0 1424.4 305.0 506.0 389.0 895.0 

Aureo Chickpea No 3.5 17.0 82.3 305.0 1067.5 305.0 395.0 578.0 973.0 

South 22 Aureo Sunflower Yes 4.0 16.0 83.3 305.0 1210.9 305.0 340.0 460.8 800.8 

Aureo Sunflower No 4.3 14.8 83.2 305.0 1317.6 305.0 343.0 514.0 857.0 
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Table 10 d: Economic, environmental and nitrogen efficiency variables of durum wheat of the last 11 scenarios compared in the 2012/2013 cropping season. 

Farm 

Crop. activities 

costs (€/t) 

Technical tools 

costs (€/t) 

Total direct 

costs (€/t) 

Net 

income 

(€/ha) 

Net 

income 

(€/t) 

Carbon 

footprint 

(tCO2eq/ha) 

Carbon 

footprint 

(tCO2eq/t) 

Water 

footprint 

(m3H2O/ha) 

Water 

footprint 

(m3H2O/t) 

Ecological 

footprint 

(global ha/ha) 

Ecological 

footprint 

(global ha/t) 

Agronomic 

NUE (kg/kg) 

12 151.0 106.9 257.9 -31.4 -7.9 1.96 0.387 7021.0 1388.0 2.64 0.523 29.3 

143.6 128.0 271.6 -139.3 -31.6 2.40 0.474 8201.0 1622.0 2.69 0.531 24.0 

13 213.3 97.3 310.7 -182.0 -60.7 1.44 0.417 4728.0 1371.0 2.62 0.758 26.1 

213.3 123.0 336.3 -259.0 -86.3 1.44 0.417 4728.0 1371.0 2.62 0.758 26.1 

14 103.9 58.4 162.4 447.0 87.6 1.54 0.260 7409.0 1264.0 2.62 0.447 41.3 

94.2 68.8 163.0 522.0 87.0 1.63 0.237 8611.0 1249.0 2.65 0.385 47.7 

15 84.8 56.2 141.0 594.0 99.0 1.58 0.229 9685.0 1404.0 2.63 0.381 47.3 

84.8 64.8 149.7 542.0 90.3 2.06 0.299 10642.0 1543.0 2.66 0.386 35.5 

16 96.3 82.8 179.0 473.5 71.0 2.44 0.319 9952.0 1299.0 2.71 0.354 34.5 

100.8 97.5 198.3 393.2 61.73 2.41 0.330 10733.0 1467.0 2.72 0.372 31.1 

17 93.4 86.5 180.0 447.5 70.03 2.06 0.280 9808.0 1333.0 2.68 0.365 40.3 

80.7 78.9 159.6 669.0 90.41 2.17 0.252 12471.0 1447.0 2.70 0.313 43.3 

18 97.8 122.7 220.4 88.0 19.6 2.53 0.488 8547.0 1652.0 2.72 0.525 22.1 

125.0 145.5 270.5 -122.0 -30.5 2.44 0.532 8396.0 1826.0 2.71 0.589 20.7 

19 104.5 97.9 202.4 434.2 102.6 1.95 0.452 6738.0 1564.0 2.66 0.617 33.7 

98.3 110.0 208.3 323.7 76.7 2.36 0.488 8938.0 1847.0 2.70 0.559 25.2 

20 107.6 83.5 191.1 510.4 113.9 2.57 0.499 9745.0 1892.0 2.79 0.541 23.2 

109.0 136.0 245.0 151.3 40.0 2.93 0.674 9474.0 2181.0 2.79 0.642 17.3 

21 108.4 83.3 191.6 529.4 113.4 2.32 0.490 6383.0 1351.0 2.75 0.581 31.2 

112.9 165.1 278.0 94.5 27.0 2.76 0.686 7687.0 1911.0 2.75 0.685 18.2 

22 85.6 116.1 201.7 410.1 103.3 2.09 0.364 6852.0 1501.0 2.67 0.585 36.5 

79.4 119.0 198.4 460.6 106.62 2.50 0.504 10270.0 2068.0 2.75 0.555 24.7 
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To check if granoduro.net® was able to improve the sustainability of plots, a Student’s t-test with a 

confidence interval of 95% (α level two-tailed test 0.05) was performed on data obtained (Table 11). 

Table 11: Mean values of the more interesting variables and indicators assessed in the 22 scenarios of the cropping 

season 2012/2013. 

 

The standard error is an important indicator of how precise is the estimation of the population mean. The 

size of the standard error is good or acceptable for all indicators studied in the 22 scenarios except for Net 

Performance of the 22 comparisons 

  granoduro.net® Mean ± Standard error 

Yield (t/ha) No 5.34 ± 0.325 

Yes 5.47 ± 0.312 

Protein (% of dry matter) No 13.38 ± 0.264 

Yes 13.91 ± 0.322 

Test weight (kg/hl) No 80.84 ± 0.553 

Yes 81.01 ± 0.686 

Gross Marketable Product (€/ha) No 1359.61 ± 78.297 

Yes 1408.41 ± 74.251 

Gross Marketable Product (€/t) No 256.82 ± 4.31 

Yes 259.55 ± 4.878 

Cropping activities costs (€/ha) No 519.82 ± 18.978 

Yes 513.45 ± 16.538 

Technical tools costs (€/ha) No 502.99 ± 18.616 

Yes 424.75 ± 18.607 

Total costs (€/ha) No 1022.81 ± 27.085 

Yes 938.21 ± 26.154 

Cropping activities costs (€/t) No 104.66 ± 7.672 

Yes 101.17 ± 7.726 

Technical tools costs (€/t) No 102.60 ± 7.465 

Yes 82.78 ± 5.421 

Total costs (€/t) No 207.27 ± 13.768 

Yes 183.95 ± 11.772 

Net Income (€/ha) No 336.80 ± 83.299 

Yes 470.21 ± 79.227 

Net Income (€/t) No 49.55 ± 13.884 

Yes 75.60 ± 12.613 

Carbon footprint (tCO2eq/ha) No 2.21 ± 0.088 

Yes 2.06 ± 0.083 

Carbon footprint (tCO2eq/t) No 0.39 ± 0.031 

Yes 0.35 ± 0.021 

Water footprint (kg/ha) No 8546.64 ± 370.06 

Yes 7944.9 ± 328.62 

Water footprint (kg/t) No 1454.2 ± 74.49 

Yes 1313.5 ± 45.5 

Ecological footprint (global ha/ha) No 2.69 ± 0.011 

Yes 2.67 ± 0.012 

Ecological footprint (global ha/t) No 0.474 ± 0.029 

Yes 0.46 ± 0.027 

Agronomic NUE (kg/kg) No 33.14 ± 2.433 

Yes 36.42 ± 2.052 



117 
 

Income where probably the sample size was not enough to reach a high accuracy of estimation of 

population parameter. On the other hand, the quantitative and qualitative indices present a very low 

dispersion of values within the set, as well as ecological and carbon footprint. They proved the low 

variability of the sampling distribution and the high quality of the sample under evaluation.    

The cropping season 2012/2013 was not favourable for durum wheat in Italy in terms of yields, quality and 

health of grains. The temperatures were lower than average from spring to June. The rainfall was abundant 

and excessive during the whole winter and spring. The development of mycotoxin on wheat ears by 

Fusarium spp. was supported by wet weather conditions. The heavy and constant rainfalls impeded the 

treatments and the fertilizations. The waterlogging was frequent and some experimental plots failed due to 

flooding. This happened especially in the north and centre of Italy. The precipitation was double than 

average and the root asphyxia during spring months reduced the potentiality of innovative farming 

systems. Therefore, as happened in the previous year, the trials were performed in conditions not 

favourable to identify advantage or disadvantage of using granoduro.net®, nonetheless some differences 

were found (Table 12). 

Table 12: List of indicators resulted significant through a Student’s t-test with a confidence interval of 95% (α level two-

tailed test 0.05, assumed equal variance) in the season 2012/2013. 

  t-test for 

Equal Means, 

for 

Independent 

Samples 

df Sig. (2-tail) Difference 

between 

means 

Difference 

standard 

error 

Confidence interval for 

the difference at 95%. 

Min-Max Confidence 

Intervals 

  

Technical tools costs (€/ha) 2.973 42 0.005 78.2455 26.3210 25.1274 131.3635 

Technical tools costs (€/t) 2.149 42 0.037 19.8227 9.2260 1.2040 38.4415 

Total costs (€/ha) 2.247 42 0.030 84.6091 37.6512 8.6259 160.5922 

 

The 22 scenarios were split up into two groups: 

 durum wheat in rotation with crops improving soil fertility (scenarios called “Rich”),  

 durum wheat in rotation with crops which maintain or decrease soil fertility (scenarios called 

“Neutral - Poor”). 

Tomato, field bean, chickpea, sugar beet, potato, pea, alfalfa and clover were considered enriching crops. 

Neutral or negative effects on soil fertility and durum wheat productivity was attributed to crops such as 

sunflower, sorghum, wheat and ryegrass. The previous statistical analysis did not take into account the 

distinction between rich and neutral - poor, but it was done only on the comparison between the use of 

granoduro.net® and farmers choices. 
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Regarding costs, the use of granoduro.net® allowed to decrease the use of technical tools. The reduction of 

dosage of fertilizers respect to usual farm choices allowed saving money. Instead, the cropping activities 

costs were essentially equal. Thanks to pesticides treatments optimization and the reduction of nitrogen 

fertilizations, the total costs were lower with granoduro.net® (b) (Figures 90-95). 

 

Figure 90: Technical tools costs (€/t) for the durum wheat of the 22 scenarios categorized as enriching and neutral-

pauperizing. Statistical differences; a,ab,b…= Student-t Test (p=0.1). 

 

Figure 91: Technical tools costs (€/ha) for the durum wheat of the 22 scenarios categorized as enriching and neutral-

pauperizing. Statistical differences; a,ab,b…= Student-t Test (p=0.1). 
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Figure 92: Total direct costs (€/ha) for the durum wheat of the 22 scenarios categorized as enriching and neutral-

pauperizing. Statistical differences; a,ab,b…= Student-t Test (p=0.1). 

The net income was not statistical. It occurred because with neutral – poor processions the difference 

between the two alternatives were limited. (Figures 93 and 94). 

 

Figure 93: Net income (€/t) for the durum wheat of the 22 scenarios categorized as enriching and neutral-pauperizing. 
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Figure 94: Net income (€/ha) for the durum wheat of the 22 scenarios categorized as enriching and neutral-

pauperizing. No statistical differences. 

As happened the previous year, the carbon sequestration was not statistically significant. The indicator 

depends mainly on biomass photosynthesized by green tissues and yield harvested. No differences were 

underlined about these variables and this explains why differences between the two alternatives are low. 

With granoduro.net®, the emission of CO2, the consumption of water and the ecological footprint were 

equal or lower than the non-use of the support. The trend is most noticeable with carbon footprint, 

whereas with water and ecological footprint limited differences were noted. However, all indicators were 

not statistically significant. Unlike previous year, the indicator Agronomic NUE is not statistically significant 

(Figure 95). 

 

Figure 95: Agronomic NUE (kg/kg of N applied) for the durum wheat of the 22 scenarios categorized as enriching and 

neutral-pauperizing. No statistical differences. 
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economically convenient too (such as minimum tillage recommended by the Decalogue and/or fractioned 

fertilization as suggested by granoduro.net®) because they increase their efficiency. Switching from a 

rotation with only cereals to one with also dicotyledonous reduces environmental impacts and DON risk, 

conversely net income increases. 

Finally, data of the two cropping seasons (2011/2012 and 2012/2013) were joined together to form one 

sample of 35 comparisons between granoduro.net® and farmers’ managements and a new statistical 

analysis was performed (Table 13). 

Table 13: Mean of the more interesting variables and indicators assessed in the 35 scenarios of the cropping seasons 

2011/2012 and 2012/2013. 

Performance of the 35 comparisons 

  granoduro.net® Mean ± Standard error 

Yield (t/ha) No 5.70 ± 0.268 

Yes 5.80 ±0.271 

Protein (% of dry matter) No 13.75 ± 0.216 

Yes 13.95 ± 0.248 

Test weight (kg/hl) No 82.71 ± 0.563 

Yes 82.81 ± 0.605 

GMP (€/ha) No 1518.1 ± 70.36 

Yes 1553.9 ± 70.42 

Cropping activities costs (€/ha) No 518.80 ± 15.252 

Yes 509.89 ± 13.772 

Technical tools costs (€/ha) No 485.14 ± 15.645 

Yes 406.77 ± 14.765 

Total costs (€/ha) No 1003.9 ± 22.87 

Yes 916.67 ± 21.037 

Cropping activities costs (€/t) No 97.48 ± 5.494 

Yes 95.05 ± 5.759 

Technical tools costs (€/t) No 92.34 ± 5.538 

Yes 75.09 ± 4.142 

Total costs (€/t) No 189.83 ± 10.087 

Yes 170.15 ± 8.896 

Net Income (€/ha) No 573.99 ± 85.49 

Yes 696.12 ± 86.403 

Carbon footprint (tCO2eq/ha) No 2.28 ± 0.086 

Yes 2.079 ± 0.069 

Carbon footprint (tCO2eq/t) No 0.378 ± 0.022 

Yes 0.333 ± 0.015 

Water footprint (m
3
H20/ha) No 9108.3 ± 306.72 

Yes 8549.8 ± 312.03 

Water footprint (m
3
H20/t) No 1463.9 ± 52.68 

Yes 1340.8 ± 35.92 

Ecological footprint (global ha/ha) No 2.712 ± 0.010 

Yes 2.694 ± 0.0093 

Ecological footprint (global ha/t) No 0.453 ± 0.022 

Yes 0.443 ± 0.021 

Agronomic NUE (kg/kg) No 33.71 ± 1.757 

Yes 38.05 ± 1.546 
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A Student’s t-test was carried out and for the following indicators significant differences were obtained for 

the two different managements: technical tools (€/ha) and total direct costs (€/ha) were significant at a 

confidence interval of 99% (α level two-tailed test 0.01), technical tools (€/t) at a confidence interval of 95% 

(α level two-tailed test 0.05), whereas carbon footprint (CO2eq/ha and CO2eq/t), water footprint (m3H20/t) 

and agronomic NUE (kg/kg) at a confidence interval of 90% (α level two-tailed test 0.10) (Table 14). 

The standard deviation average of these indicators is limited and it means a low spread in the sampling 

distribution. The accuracy of the sample (35 comparisons) is good for the majority of the indices, 

demonstrating that the dispersion of values within the set is low. Only Net Income has a deviation error 

more than the 10%. 

Table 14: List of indicators resulted significant at a Student’s t-test with a confidence interval of 99, 95 and 90% (α level 

two-tailed test 0.01, 0.05 and 0.10, assumed equal variance) in the seasons 2011/2012 and 2012/2013. 

  t-test for Equal 
Means, for 
Independent 
Samples 

df Sig. (2-tail) Difference 
between 
means 

Difference 
standard error 

Confidence interval for 
the difference at 95%. 
Min-Max Confidence 
Intervals 

Technical tools costs (€/ha) 3.643 68 0.001 78.3714 21.5119 35.4451 121.2978 

Technical tools costs (€/t)  2.493 68 0.015 17.2429 6.9152 3.4439 31.0418 

Total costs (€/ha) 2.808 68 0.006 87.2743 31.0774 25.2603 149.2883 

Carbon Footprint 
(tCO2eq/ha) 

1.838 68 0.070 0.20286 0.11038 -0.01739 0.42311 

Carbon Footprint (tCO2eq/t) 1.675 68 0.098 0.045171 0.026962 -0.008631 0.098974 

Water Footprint (m
3
H20/t) 1.932 68 0.058 123.171 63.763 -4.065 250.408 

Agronomic NUE (kg/kg) -1.852 68 0.068 -4.3343 2.3398 -9.0033 0.3348 

 

These results prove the usefulness of granoduro.net® and the handbook to improve sustainability of durum 

wheat and of the whole rotation in which it is included. 

4 Conclusion 

This PhD study attempts to give an answer to the current debates concerning the meaning of sustainability, 

the feature of indicators, and the frameworks in which they should be located, which remain often 

inconclusive. Pannell and Schilizzi (1999) and Pannell and Glenn (2000) said that sustainability indicators are 

adapted tools for attempting to manage the changeability of the events in the future. Therefore, the 

development of transparent indicators is essential to clarify which aspects of the sustainability are relevant 

into practice. This proposal is a prototype for making progress in this direction. It might be used and 

adjusted according to needs by other future users (other crops and/or other nations) to consolidate the 

theoretical sustainability paradigms and to transform them into recommendations for agricultural practice.  
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The experimentation performed within this PhD allowed to close the gap between theoretical and practical 

principles of sustainability. Indeed, thanks to Barilla availability to plan multi-years field validation, the 

project can be considered as an example of how theoretical principles can be put into practice. The 

different steps of the validation process (i.e. the theoretical study, the comparison between real and target 

values and the two years of practical use of the handbook and the DSS granoduro.net®) were able to 

demonstrate to farmers and experts that impacts can be monitored and reduced and, therefore, 

demonstrated that sustainability is actionable and calculable. The project increased the predisposition of 

growers toward the reaching of a higher degree of sustainability and the consultancy of expert technicians 

should drive more and more grower efforts towards this path. A strong integration of social, economic and 

environmental interests of farmers, technicians, warehousing centres is essential to achieve the objective 

of a higher sustainability of durum wheat. As said Dumanski (1997), if it is pursued in an efficient way, it will 

ensure that agriculture becomes part of the environmental solution, rather than remaining an 

environmental problem. 

The handbook and granoduro.net® proved to be tools that help farmers improving the quality of their 

decisions, both strategic (choice of rotations, tillage, choice of varieties, fertilization techniques and use of 

certified seeds) and tactical (in response to events raised by pests, weeds and nutrition needs). 

In more details, it was confirmed that traditional cereals crop rotations are less performing than rotations 

of durum wheat with broadleaves crops and that a long-term scheduling of crop rotations (more than 3 

years) is crucial for sustainability purposes. Unfortunately, to date the crop’s choice is often done at the 

beginning of each season: rarely farmers carry out a rotation planning over the years, taking into 

consideration the effects of previous crop residues, nitrogen schedule and the possibility to spare tillage in 

the subsequent year. The development of reasoned and planned rotations is one of the most difficult goals 

to be transmitted to farmers because it is hampered by price volatility and the limited number of 

alternative crops that can be rotated with durum wheat. The use of rotations and the overcoming of these 

two obstacles is the main challenge of the future. 

With this project Barilla S.p.A. won the 2013 edition of the European CSR Award Scheme, an initiative 

promoted by the European Commission to give visibility to the best practices of Corporate Social 

Responsibility in Europe.   

The study continued during cropping season 2013/2014: 80.000 tons of durum wheat were cultivated in 

Italy by means of the Handbook and granoduro.net® and bestow on Barilla. The same approach is planned 

for cropping season 2014/2015 during which 140.000 tons of durum wheat are expected to be cultivated 

following the web assistance of an improved version of granoduro.net®. A new tool to monitor soil water 

balancing will be available, as well as an improved list of durum wheat varieties for which the phenological 
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model will be calibrated. Moreover, new indicators of sustainability concerning health, soil, air, biodiversity, 

energy and water compartments will be calculated and monitored. Human and environmental toxicity of 

pesticides, carbon sequestration, erosion, soil compactions by machinery, water supply, water use technical 

efficiency, recycle, use of fuel and indirect evaluation of biodiversity will be the most important topics 

under evaluation. 

One of the worst phenomena occurring around DSS is that their models are developed and die after some 

few years, because nobody maintains them, nobody disseminate them to production sector and they are 

not fitted to real needs of food sector. It happens because advices are not suitable to farm structure (big 

surfaces and few employed) and are focused only on one tactic or strategic choice. Instead, a competitive 

system should have an holistic view, i.e., in a single tool users can find all what they need to increase 

productivity of their fields. Advices to improve sustainability should not imply more hassle and annoyance, 

possibly they should save time and never have to increase the elapsed time to perform the activity. The 

same happens for economic issues: advices by DSS have to save money or at least not be more expensive 

than common practices. 

Also the practicality of support is essential. Scholars and scientists should work all together to put into one 

single tool the huge amount of scientific knowledge about pesticides, crops, weather, pathogens resting 

into university faculties and institutes. Moreover dissemination should not be only into conferences 

attended only by scientists and scholars. Conversely, closer relations with prospective users matched with 

permanent technical consultancy is important to introduce the service and to gain confidence. Farmers, 

farmer organisations or associations should be the right audience. 

Therefore the success of a tool requires initially a correct view of what farmers and society need, the 

integration of many different knowledge, an initial financial support, a widespread communication and 

dissemination and eventually a cost-benefit analysis to understand where costs can be reduced and profit 

increased in order to guarantee support survival. In this perspective the success of a DSS is pursued only 

through an increasing number of users over the years. It will be a obligatory path because if costs 

associated with developing and implementing a computerized decision support system are substantial, its 

maintaining is even more expensive. 

The implementation of granoduro.net® was financed in since 2008 with the perspective of doing applied 

research and to redeploy disease models implemented in the university into productive sector. After some 

years of dissemination and communication and a continuous updating and upgrading of hardware and 

software (i.e web-site and models), the catchment of users has become remarkable and costs of 

maintenance began to raise year by year. For these reason its financial subsistence has required a cost-

benefit analysis where costs were compared with profits to determine whether it has been a good 
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investment. The application of a cost-benefit analysis requires the implementation of a cost-benefit model 

by means of a case study showing the costs and benefits of a choice (Ye et al., 2009). Concerning 

granoduro.net®, benefits resulting from the sale to farmers, technicians and agronomists. Benefits 

originates also by local, regional or national founds fostering projects to increase the sustainability of 

cereals/flour/pasta chains.  

On the other side, costs can be split up into two parts: costs for validation of models and for up-to-date 

advices. The costs for validation consist in experimental plots to test varieties (such as their nitrogen uptake 

ability, diseases tolerance and phenological characterization), amount of fertilizers, timing of fertilization, 

date of sowing, seeding density, timing of treatments, number of treatments and pesticides effective. In 

addition, experimental trials require a first design, field surveys, soil tillage, sowing, treatments, 

fertilizations, harvesting and qualitative and quantitative analysis. The second most important cost item 

regards the maintenance of up-to-date pesticide databases, the upgrading of algorithms, purchasing of 

weather stations, the transmission of weather data from weather stations to server and all computing and 

web pages updates. No less important are also the costs for dissemination and advertising. 

The systemic approach followed in this study will be applied also to other agricultural raw materials related 

to Barilla’s food chain, such as common wheat, rye and tomato coming from all the main supply countries 

(France, Turkey, Greece and some areas of north America). This will be a further step toward sustainability 

of the whole Barilla’s food chain, and hopefully a good example to be replicated by other big and small food 

companies. 
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