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A B S T R A C T   

Background and purpose: Radiation dose escalation may improve local control (LC) and overall survival (OS) in 
select pancreatic ductal adenocarcinoma (PDAC) patients. We prospectively evaluated the safety and efficacy of 
ablative stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) for borderline 
resectable (BRPC) and locally advanced pancreas cancer (LAPC). The primary endpoint of acute grade ≥ 3 
gastrointestinal (GI) toxicity definitely related to SMART was previously published with median follow-up (FU) 
8.8 months from SMART. We now present more mature outcomes including OS and late toxicity. 
Materials and methods: This prospective, multi-center, single-arm open-label phase 2 trial (NCT03621644) 
enrolled 136 patients (LAPC 56.6 %; BRPC 43.4 %) after ≥ 3 months of any chemotherapy without distant 
progression and CA19-9 ≤ 500 U/mL. SMART was delivered on a 0.35 T MR-guided system prescribed to 50 Gy 
in 5 fractions (biologically effective dose10 [BED10] = 100 Gy). Elective coverage was optional. Surgery and 
chemotherapy were permitted after SMART. 
Results: Mean age was 65.7 years (range, 36–85), induction FOLFIRINOX was common (81.7 %), most received 
elective coverage (57.4 %), and 34.6 % had surgery after SMART. Median FU was 22.9 months from diagnosis 
and 14.2 months from SMART, respectively. 2-year OS from diagnosis and SMART were 53.6 % and 40.5 %, 
respectively. Late grade ≥ 3 toxicity definitely, probably, or possibly attributed to SMART were observed in 0 %, 
4.6 %, and 11.5 % patients, respectively. 
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Conclusions: Long-term outcomes from the phase 2 SMART trial demonstrate encouraging OS and limited severe 
toxicity. Additional prospective evaluation of this novel strategy is warranted.   

Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of 
cancer death [1]. Surgery is the only known curative treatment, 
although most newly diagnosed patients are not surgical candidates due 
to locally extensive and/or distant metastatic disease. Radiation therapy 
(RT) may benefit patients with advanced PDAC by improving local 
control (LC) [2], reducing pain [3], and enhancing quality-of-life (QoL) 
[4]. However, non-ablative RT does not provide an overall survival (OS) 
advantage over chemotherapy alone for borderline resectable (BRPC) 
[5] or locally advanced pancreas cancer (LAPC) [2]. 

Tumors in favorable anatomic locations such as the peripheral lung 
can safely be treated with ablative radiation dose that achieves a high 
rate of local control (LC) [6]. On the other hand, much lower dose is 
routine for tumors in anatomically challenging sites such as the pancreas 
to prioritize patient safety and resulting in only modest long-term LC 
[7]. Ensuring that the prescribed dose is confined to the tumor and not 
inadvertently delivered to nearby organs is limited by the suboptimal 
soft tissue image quality of cone-beam computerized tomography 
(CBCT) coupled with the inability of most conventional linear acceler-
ators to account for changes in the stomach and bowel position by 
“adapting” the radiation dose distribution as needed on each treatment 
day [8]. If these challenges could be overcome then there would be 
rationale to further explore the benefits of ablative RT for PDAC, which 
may include longer OS as suggested by retrospective studies from MD 
Anderson Cancer Cancer [9] and Rudra et al [10]. 

Stereotactic magnetic resonance (MR)-guided adaptive radiation 
therapy (SMART) has emerged as a technique that may achieve safe dose 
escalation for tumors in unfavorable locations within the chest, 
abdomen, and pelvis [11–14]. SMART delivered with a 0.35 Tesla (T) 
MR-guided system overcomes the challenges of conventional CBCT- 
guided stereotactic body radiation therapy (SBRT) by 1) using th-
e superior soft tissue contrast of MR imaging acquired before and 
continuously during treatment delivery, 2) automatically pausing 
treatment if the tumor is displaced out of the correct position, and 3) 
daily on-table treatment plan adaptation to account for -
interfraction anatomic changes [15]. We conducted a multi-center sin-
gle-arm phase 2 trial of SMART prescribed to 50 Gy in 5 fractions 
delivered on a 0.35 T MR-guided system for patients with BRPC or LAPC. 
With median follow-up of 8.8 months from SMART, the primary 
endpoint of acute grade ≥ 3 GI toxicity definitely related to SMART was 
met (0 %) as previously published [16]. We now report more mature 
study results including OS and late toxicity. 

Materials and methods 

Study design and participants 

This multi-center open-label single arm phase 2 trial was completed 
across 13 sites in 3 countries (United States, Israel, Italy). The study 
received institutional review board at each site, all participants provided 
written informed consent prior to study therapy, and it was registered on 
ClinicalTrials.gov (NCT03621644). 

Patients were enrolled after completing ≥ 3 months of any induction 
chemotherapy without distant progression. Additional key eligibility 
criteria were previously published and included ≥ 18 years of age, 
adenocarcinoma of the pancreas classified as either BRPC or LAPC as per 
institutional definition, and CA19-9 ≤ 500 U/mL after induction 
chemotherapy [16]. There was no restriction on tumor size. 

SMART 

All patients were treated on a 0.35 T MR-guided radiation delivery 
system (ViewRay Inc., MRIdian®, Oakwood Village, OH, USA) using 
either cobalt-60 (MR-cobalt) or x-rays (MR-linac). Daily image guidance 
was performed using a breath-hold volumetric 0.35 T MR scan. The 
treatment approach was previously described [16]. Briefly, a total dose 
of 50 Gy in 5 fractions (biologically effective dose (BED)10 = 100 Gy) 
was prescribed to the PTV. A clinical target volume (CTV) was not 
initially permitted although became optional after a protocol amend-
ment in April 2019. An internal target volume (ITV) was not utilized 
because intrafraction soft tissue tracking and automatic beam gating 
were mandatory. On-table adaptive replanning was required when the 
predicted dosimetry indicated: 1) violation of any GI organ-at-risk 
(OAR) constraint, 2) < 85 % coverage of the GTV by the 95 % isodose 
line, 3) favorable anatomic shift between the GTV and OARs such that 
adaptive replanning would improve target coverage. OAR constraints 
included V33 ≤ 0.5 cm3 each for the duodenum, stomach, small bowel, 
and large bowel, respectively [17]. Prospective central quality assurance 
(QA) review was not required of the plans or contours prior to treatment. 
SMART was not delivered with concurrent systemic therapy. 

Therapy after SMART 

Therapy after SMART including chemotherapy and/or surgery were 
permitted at the discretion of the treating physician. No specific 
chemotherapy regimen or duration was required. Additionally, there 
was no restriction on the type of surgery or the interval from SMART to 
surgery. 

Patient assessments 

Patient assessments were required every 3 months (± 28 days) after 
SMART for the first year, then every 6 months (± 28 days) until 5 years 
had elapsed after SMART. Adverse effects were also assessed at least 
once during SMART and were graded according to the National Cancer 
Institute Common Terminology Criteria for Adverse Events (CTCAE) 
version 5.0. Acute adverse effects were defined as occurring within 90 
days of initiating SMART while late adverse effects were those occurring 
thereafter. Patient-reported QoL was measured using the FACT FHSI-18 
survey instrument at baseline, 3 months post-SMART, and 12 months 
post-SMART. 

Study data were reviewed at least annually by a Data Safety Moni-
toring Board (DSMB). A separate Clinical Events Committee (CEC) was 
responsible for reviewing and adjudicating all grade ≥ GI adverse events 
as being possibly, probably, or definitely related to SMART. Members of 
both committees had expertise in management of PDAC, did not 
participate in both the DSMB and CEC, did not work at a center with a 
0.35 T MR-guided RT system, and otherwise were not involved in the 
design or conduct of this study. 

Statistical analysis 

The primary endpoint was acute grade ≥ 3 GI toxicity definitely 
related to SMART. Secondary endpoints included: 1) 2-year OS after 
PDAC diagnosis, 2) 6-month distant progression free survival (DPFS) 
after SMART, 3) and QoL at 3 and 12 months after SMART. Local control 
(LC) was evaluated in the current analysis although was not a formal 
study endpoint. 

OS was defined as the time to death from any cause or otherwise date 

M.D. Chuong et al.                                                                                                                                                                                                                             

http://ClinicalTrials.gov


Radiotherapy and Oncology 191 (2024) 110064

3

of last follow-up. DPFS was defined as the time to the date of distant 
progression or otherwise last follow-up. Since LC was not a formal study 
endpoint, the definition of LC was not included in the study protocol and 
was reported at the discretion of the treating physician. 

Using a historical incidence of acute grade ≥ 3 GI toxicity of 15.8 %, 
a sample size of 113 patients was determined to provide 80 % power to 
detect a statistically significant and clinically meaningful difference 
assuming that the observed incidence in this study would be no greater 
than 8 %. The sample size calculation was performed using PASS 14 
(NCSS, Kaysville, Utah). Target accrual was 133 patients assuming 15 % 
patient attrition. SAS (version 9.4, SAS Institute, Cary, NC) was used for 
all statistical analyses. A p-value of < 0.05 was statistically significant 
and an observed value of the one-sided upper 95 % confidence bound 
was used. OS, DPFS, and LC were evaluated using the Kaplan Meier 
method. 

Results 

A total of 136 patients were enrolled between January 2019 and 
January 2022 (Fig. 1) across 13 institutions in the United States (n =
11), Italy (n = 1), and Israel (n = 1). More than half (n = 78; 57.4 %) 
were enrolled by 4 institutions (30.8 %). Baseline patient and tumor 
characteristics are summarized in Table 1. Mean patient age was 65.7 
years (range, 36–85 years). Most tumors were classified as LAPC (n = 77; 
56.6 %) versus BPRC (n = 59; 43.4 %) and the majority were in the head 
of the pancreas (n = 95; 69.9 %). Mean CA19-9 at diagnosis was 537.5 
U/mL (range, 1.0–9,600.0 U/mL) compared to 71.7 U/mL (range, 
0.0–468.0 U/mL) after induction chemotherapy. 

Patients received induction chemotherapy for a mean 4.5 months 
(range, 2.0–16.4 months), predominantly FOLFIRINOX +/- other regi-
mens (n = 111; 81.7 %). Nearly all were treated on a 0.35 T MR-linac (n 
= 134; 98.5 %) vs. 0.35 T MR-cobalt system (n = 2; 1.5 %). Despite the 
need to adapt nearly all fractions (633/680; 93.1 %) typically due to 

predicted GI OAR constraint violations, the average GTV D90 across the 
initial and adapted plans was 48.9 (BED10 = 96.7)± 5.9 Gy and 48.6 
(BED10 = 95.8)± 7.0 Gy, respectively. The average GTV maximum dose 
across initial and adapted plans was 63.6 Gy (BED10 = 144.5 Gy) and 
66.4 Gy (BED10 = 154.5), respectively (Table 2). 

Chemotherapy after SMART was given to 33 patients (24.3 %) 
although details regarding regimen or duration are unknown for most 
patients. Surgery was performed after SMART in 47 patients (34.6 %) 
more often among those with smaller primary tumor (mean 2.8 vs. 3.3 
cm; p = 0.031), T1-3 vs. T4 stage (71.6 % vs. 36.2 %; p < 0.001), BRPC 
vs. LAPC (74.5 % vs. 25.5 %; p < 0.001), lower CA19-9 after induction 
chemotherapy (mean 52.9 vs. 81.7; p = 0.083). Surgical outcomes are 
summarized in Supplementary Table 1. Margin-negative (R0) resection 
was achieved in 38 patients (80.9 %). Among the 7 patients (14.9 %) 
with a positive margin most had BRPC (n = 6), received induction 
FOLFIRINOX (n = 5), and underwent venous (n = 1) or arterial resection 
(n = 3) including the celiac artery in 2 patients. Pathologic response 
rates included ypT0, ypT1, ypT2, ypT3, and ypT4 of 6.4 %, 31.9 %, 38.3 
%, 4.3 %, and 6.4 %, respectively. 

Median follow-up from diagnosis and SMART was 22.9 months 
(range, 8.0–51.5 months) and 14.2 months (range, 1.2–47.4 months), 
respectively. Sixty-two patients (45.6 %) were alive at the time of 
analysis while the others had died (n = 69), were lost to follow-up (n =
3), withdrew consent (n = 1), or were withdrawn by the investigator (n 
= 1) (see Fig. 2a). 

Median OS from diagnosis and SMART was 22.8 months and 14.2 
months, respectively. 2-year OS for the entire cohort from diagnosis 
(Fig. 2a) and SMART (Fig. 2b) was 53.6 % and 40.5 %, respectively. On 
multivariable analysis (MVA), lower 2-year OS from diagnosis was 
associated with head vs. body/tail tumor (hazard ratio [HR] 2.045, 95 % 
confidence interval [CI], 1.090–3.838; p = 0.026) and CA19-9 increase 
after SMART (HR 2.525, 95 % CI, 1.111–5.742; p = 0.027) while surgery 
was associated with higher 2-year OS (HR 0.218, 95 % CI, 0.104–0.454; 

Fig. 1. Consort Diagram.  
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p < 0.0001); 2-year estimated OS for resected vs. unresected patients 
from SMART was 67 % vs. 26 % (p < 0.001), respectively (Supple-
mentary Table 2). 2-year LC from diagnosis and SMART for the entire 
cohort was 77.7 % and 78.2 % (Fig. 2c), respectively, and was higher for 
resected vs. unresected patients (90 % vs. 71 %; p = 0.019). 6-month 
DPFS from SMART was 72.0 %. 2-year DPFS from diagnosis and 
SMART for the entire cohort was 39.5 % and 28.5 % (Fig. 2d), respec-
tively, and was higher for resected vs. unresected patients (67 % vs. 22 
%; p < 0.001) (see Figs. 2d–2g). 

The number of patients with worst acute and late ≥ 3 GI toxicities is 
summarized in Table 3 with specific adverse events described in Sup-
plementary Table 3. As previously reported, the incidence of acute grade 
≥ 3 GI toxicity definitely, probably, or possibly related to SMART was 0 
%, 2.2 %, and 6.6 %, respectively [16]. Late grade ≥ 3 GI toxicity 
definitely, probably, or possibly related to SMART was reported in 0 %, 
5.3 % (7/131), and 14.5 % (19/131) of patients, respectively. One late 
grade 5 event was adjudicated to being possibly related to SMART in a 
patient with local failure at the site of a bleeding malignant ulcer. 

QoL assessment was completed at baseline, 3 months post-SMART, 

and 12 months post-SMART by 133 (97.8 %), 107 (83.0 %), and 55 
(64.7 %) enrolled patients, respectively. QoL outcomes will be published 
separately. 

Discussion 

The phase 2 SMART trial is the first prospective study of ablative 5- 
fraction SMART for BRPC/LAPC and, to the best of our knowledge, is 
also the largest SBRT trial for PDAC of any stage. The development of the 
SMART trial was inspired by several retrospective studies that suggested 
radiation dose escalation benefits patients with inoperable PDAC (see 
Table 4) [9,10]. A phase 1 trial published by Henke et al. was the first to 
prospectively demonstrate the feasibility of SMART prescribed to 50 Gy 
in 5 fractions (biologically effective dose [BED10] = 100 Gy) to unre-
sectable abdominal tumors including several in the pancreas [11]. A 
multi-center analysis of inoperable PDAC patients treated on a 0.35 T 
MR-cobalt device in 5–28 fractions reported 2-year OS of 49 % vs. 30 % 
(p = 0.03) among those prescribed a BED10 of > 70 Gy vs. ≤ 70 Gy; no 
grade 3 or higher toxicity was reported in the high dose cohort [10]. MD 
Anderson Cancer Center also reported that LAPC patients prescribed a 
BED10 > 70 Gy with CT guidance usually in 28 fractions had higher 
median OS than those prescribed lower dose [9]. 

While radiation dose escalation may be feasible at experienced 
centers and for patients with more favorable anatomy when delivered in 
up to 28 fractions using CT guidance [9,18], prior attempts to safely 
dose escalate in up to 5 fractions have been unsuccessful [19,20]. A 
phase 2 trial from Denmark that enrolled 22 LAPC patients who were 
prescribed 45 Gy in 3 fractions (BED10 = 112.5 Gy) resulted in most 
patients experiencing acute grade ≥ 3 toxicity within 14 days of treat-
ment including pain, nausea, diarrhea, and/or a decline in performance 
status [19]. Courtney and colleagues published phase 1 trial outcomes of 
SBRT prescribed up to 50 Gy in 5 fractions using CBCT that included 
“nontrivial rates of severe late GI toxicity” including multiple grade 4 
and 5 adverse events [20]. As such, non-ablative SBRT (e.g., 33 Gy in 5 
fractions; BED10 = 54.8 Gy) is a standard of care to optimize safety, but 
potentially at the expense of efficacy. 

The SMART trial was designed with the hypothesis that the advanced 
imaging and delivery capabilities of a 0.35 T MR-guided system could 
overcome historical limitations in achieving safe radiation dose escala-
tion [21]. Given that no prospective study had demonstrated the feasi-
bility of ablative ultra-hypofractionated RT for PDAC, the SMART trial 
was principally designed to assess safety, and also evaluate long-term 
treatment efficacy. We previously reported that with median follow-up 
of 8.8 months from SMART the primary endpoint of acute grade ≥ 3 
GI toxicity definitely related to SMART was met [16]. The current 
analysis presents mature study outcomes with median follow-up of 22.9 
months from diagnosis and 14.2 months from SMART. 

Treatment was well tolerated during and after SMART with most 
patients being followed at least 12–18 months. The incidence of late 
grade ≥ 3 GI toxicity definitely (0 %) or probably (4.6 %) related to 
SMART was similar to what has been reported after non-ablative SBRT 
[7,22]. The clinical significance of several late adverse events, especially 
some adjudicated to be possibly related to SMART, is unclear given that 
they occurred in the context of disease progression (e.g., “abdominal 
distention” and “ascites” in patients with peritoneal metastasis) or sur-
gery (e.g., “abdominal infection”). Moreover, late GI bleeding possibly 
related to SMART (including 1 grade 5 event) was documented in 
several patients with local tumor progression into the stomach or bowel. 

Ablative SMART was feasible despite our mean PTV volume of 133.4 
cm3 (range, 32.8–444.2 cm3) being the largest in any pancreas SBRT 
trial to the best of our knowledge (Table 3). The median PTV in a trial by 
Courtney et al. [20] was 37 cm3 (range, 4.4–187 cm3) and was 71.4 cm3 

(range, 31.9–225.2 cm3) in a study from Herman and colleagues [7]; 
neither permitted elective coverage. The generous PTV volume in our 
study was influenced by > 50 % of patients being treated to not only 
gross tumor but also areas of potential microscopic disease, which we 

Table 1 
Baseline patient and tumor characteristics.  

Characteristic N (range) 

Total number of patients 136 
Age (years), mean 65.7 (36–85) 
Gender 

Male 
Female 

69  
(50.7 %) 67  
(49.3 %) 

Race 
White 
Black or African American 
Asian 
American Indian or Alaska Native 
Other 
Unknown 

118  
(86.8 %) 10  
(7.3 %) 4  
(2.9 %) 1  
(0.7 %) 1  
(0.7 %) 2  
(1.5 %) 

ECOG performance status 
0 
1 

62  
(45.6 %) 74  
(54.4 %) 

Histology 
Adenocarcinoma 
Adenosquamous carcinoma 

135  
(99.3 %) 1  
(0.7 %) 

Tumor location 
Head/neck 
Body 
Head/body 
Body/tail 
Tail 

96  
(70.6 %) 25  
(18.4 %) 4  
(2.9 %) 10  
(7.4 %) 1  
(0.7 %) 

Largest tumor size (cm), mean 3.1 (0.6–6.6) 
Resectability 

Locally advanced 
Borderline resectable 

77  
(56.6 %) 59  
(43.4 %) 

Clinical T stage 
T1 
T2 
T3 
T4 
Unknown 

5  
(3.7 %) 33  
(24.3 %) 17  
(12.5 %) 80  
(58.8 %) 1  
(0.7 %) 

Clinical N stage 
N0 
N1 
NX 

93  
(68.4 %) 33  
(24.3 %) 10  
(7.3 %) 

Clinical M stage 
M0 

136  
(100 %) 

CA 19–9 (U/mL), mean 
At diagnosis 
Before SMART 

537.5  
(1–9,600) 71.7  
(0–468) 

Induction chemotherapy regimens 
FOLFIRINOX only 
FOLFIRINOX then other regimen 
Gemcitabine/nab-paclitaxel 
Gemcitabine only 
Other 

89  
(65.4 %) 22  
(16.2 %) 23  
(16.9 %) 1  
(0.7 %) 1  
(0.7 %) 

Induction chemotherapy duration (months), mean 4.5 (2.0–16.4)  

M.D. Chuong et al.                                                                                                                                                                                                                             



Radiotherapy and Oncology 191 (2024) 110064

5

Table 2 
Target dose metrics of initial versus adapted plans.   

Initial Plans Adapted Plans  

Mean Dose ± SD (Gy) Mean BED10 (Gy) Range (Gy) Mean Dose ± SD (Gy) Mean BED10 (Gy) Range (Gy) 

GTV D95 45.3 ± 7.1  86.3 28.9–62.4 45.0 ± 8.0  85.5 21.4–61.5 
CTV D95 43.5 ± 7.2  81.4 28.5–57.5 43.6 ± 7.4  81.6 21.5–59.8 
PTV D95 37.1 ± 7.0  64.6 21.9–54.1 36.7 ± 7.6  63.6 6.1–54.2  

GTV D90 48.9 ± 5.9  96.7 32.4–63.4 48.6 ± 7.0  95.8 24.4–63.8 
CTV D90 47.3 ± 6.2  92.1 31.8–58.2 47.7 ± 5.9  93.2 25.1–61.0 
PTV D90 42.4 ± 6.8  78.4 25.1–55.6 42.2 ± 7.1  77.8 11.2–56.0  

GTV D80 52.4 ± 4.5  107.3 38.2–64.4 52.5 ± 5.4  107.6 30.2–66.0 
CTV D80 51.3 ± 4.5  103.9 36.6–59.8 51.4 ± 3.9  104.2 31.1–62.1 
PTV D80 47.9 ± 5.0  93.8 29.6–56.9 47.9 ± 5.1  93.8 23.9–58.8  

GTV maximum dose 63.6 ± 4.2  144.5 51.9–75.5 66.4 ± 4.8  154.5 49.9–79.4 
CTV maximum dose 65.0 ± 4.7  149.5 51.9–75.5 64.9 ± 4.8  149.1 50.3–79.4 
PTV maximum dose 64.0 ± 4.1  145.9 52.0–75.5 65.0 ± 4.8  149.5 50.3–79.4  

GTV mean dose 55.2 ± 3.7  116.1 47.5–66.3 56.2 ± 4.0  119.3 36.9–67.2 
CTV mean dose 54.7 ± 3.3  114.5 47.4–63.4 54.2 ± 3.3  112.9 37.5–63.9 
PTV mean dose 52.1 ± 2.9  106.3 42.8–60.0 52.0 ± 3.3  106.0 33.5–61.7  

GTV minimum dose 29.4 ± 9.0  46.7 15.2–56.5 31.0 ± 9.3  50.2 11.3–57.0 
CTV minimum dose 27.3 ± 7.0  42.2 15.9–49.9 25.4 ± 6.4  38.3 8.5–49.0 
PTV minimum dose 20.2 ± 5.7  28.4 10.2–41.8 19.8 ± 5.4  27.6 3.0–34.8 

GTV = gross tumor volume; CTV = clinical target volume; PTV = planning target volume; BED = biologically effective dose; SD = standard deviation. 

Fig. 2a. Overall Survival from Diagnosis.  
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Fig. 2b. Overall Survival from SMART.  

M.D. Chuong et al.                                                                                                                                                                                                                             



Radiotherapy and Oncology 191 (2024) 110064

7

Fig. 2c. Local Control from SMART.  

M.D. Chuong et al.                                                                                                                                                                                                                             



Radiotherapy and Oncology 191 (2024) 110064

8

Fig. 2d. Distant Disease Progression Free Survival from SMART.  

M.D. Chuong et al.                                                                                                                                                                                                                             



Radiotherapy and Oncology 191 (2024) 110064

9

Fig. 2e. Resected Patients vs Non-Resected Patients Overall Survival from SMART.  
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Fig. 2f. Resected Patients vs Non-Resected Patients Local Control from SMART.  
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Fig. 2g. Resected Patients vs Non-Resected Patients Distant Disease Progression Free Survival from SMART.  
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recognize is controversial [23,24]. Lastly, elective regions were pre-
scribed the same dose as gross disease although while this may be 
feasible, a lower elective dose (e.g., 25–33 Gy) may decrease toxicity 
while maintaining efficacy [25,26]. 

The 2-year OS rates from diagnosis and SMART was 53.6 % and 40.5 
%, respectively, which are notably higher than what has been reported 
after non-ablative SBRT (Table 3). We acknowledge that evaluating the 
effect of ablative dose on OS is complicated by enrolling not only LAPC 
but also BRPC patients and permitting surgery after SMART. Resected 
patients had more favorable baseline characteristics including less 
advanced disease, and therefore is not surprising that treatment out-
comes including DPFS and OS were superior to those of the unresected 
patients. It is unknown whether we would have achieved higher OS 
outcomes if inclusion criteria were more restrictive. However, only 1 
patient received single-agent chemotherapy and the median CA19-9 
after chemotherapy was relatively low at 71.7 U/mL although ranged 
up to 468 U/mL. 

Why might OS be improved in select patients who receive ablative 
radiation dose? Local failure may cause not only morbidity, but also 
mortality in nearly one-third of PDAC patients even in the presence of 
limited distant metastatic disease, as reported by a rapid autopsy study 
from Johns Hopkins University [27]. As such, significantly delaying or 
preventing local progression in well selected patients could not only at 
least maintain QoL, but also potentially improve OS. A retrospective 
analysis from the Miami Cancer Institute was the first to suggest that 
improved durable LC achieved by ablative 5-fraction SMART may 

decrease the likelihood of death due to local progression [28]. 2-year LC 
in the current study from SMART was 78.2 %, which is higher than 
historical SBRT outcomes and may be related to the ablative prescribed 
dose as per a HyTEC analysis demonstrating a dose–response relation-
ship for LC among unresectable PDAC patients [29]. The amount of the 
target covered by ablative dose may impact LC and can be enhanced 
with on-table adaptive replanning compared to non-adaptive workflows 
[30,31]. Target volume coverage by at least the prescribed dose was 
substantial not only in the initial but also adapted SMART trial plans. 

Study limitations include enrolling both BRPC and LAPC patients, 
and that institutional resectability criteria were permitted instead of a 
standardized definition. Any induction chemotherapy regimen was 
permitted although nearly all patients received FOLFIRINOX and/or 
gemcitabine/nab-paclitaxel. Although the primary study endpoint was 
related to patient safety, OS may have been influenced by permitting 
CA19-9 up to 500 U/mL after induction chemotherapy. The lack of a 
standardized LC definition complicates comparison of our results with 
other studies. Prospective centralized plan and contour QA review was 
not required and prior PDAC RT trials have shown that study deviations 
are common, especially regarding contouring and treatment planning 
[32], which may influence OS [33]. 

In summary, this updated analysis of the phase 2 SMART trial 
demonstrates that ablative 5-fraction SMART is safe and results in 
favorable long-term OS for BRPC and LAPC patients. A phase 3 ran-
domized trial evaluating whether OS is improved with addition of 
ablative SMART to chemotherapy versus chemotherapy alone for LAPC 
is warranted. 
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Table 3 
Patients with worst acute and late grade 3 or higher adverse events possibly, 
probably, or definitely attributed to SMART.  

Acute (≤ 90 days from SMART) 

Definitely related to SMART 
Grade 3 
Grade 4 
Grade 5 
Grade ≥ 3  

0/136 (0 %) 
0/136 (0 %) 
0/136 (0 %) 
0/136 (0 %) 

Probably related to SMART 
Grade 3 
Grade 4 
Grade 5 
Grade ≥ 3  

3/136 (2.2 %) 
0/136 (0 %) 
0/136 (0 %) 
3/136 (2.2 %) 

Possibly related to SMART 
Grade 3 
Grade 4 
Grade 5 
Grade ≥ 3  

5/136 (3.7 %) 
2/136 (1.5 %) 
2/136 (1.5 %) 
9/136 (6.6 %) 

Late (>90 days from SMART) 
Definitely related to SMART 

Grade 3 
Grade 4 
Grade 5 
Grade ≥ 3  

0/131 (0 %) 
0/131 (0 %) 
0/131 (0 %) 
0/131 (0 %) 

Probably related to SMART 
Grade 3 
Grade 4 
Grade 5 
Grade ≥ 3  

1/131 (0.8 %) 
5/131 (3.8 %) 
0/131 (0 %) 
6/131 (4.6 %) 

Possibly related to SMART 
Grade 3 
Grade 4 
Grade 5 
Grade ≥ 3  

13/131 (9.9 %) 
1/131 (0.8 %) 
1/131 (0.8 %) 
15/131 (11.5 %)  
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Table 4 
Select radiation therapy studies for borderline resectable and locally advanced pancreas cancer.  

Study N Imaging Resectability IC 
duration 
(mo) 

IC 
regimen 

RT Dose BED10 

(Gy) 
Elective 
coverage 

PTV 
volume 

Surgery 
after RT 

Median FU 
(mo) 

LC DPFS OS Grade 3 þ
toxicity 

LAP07 trial 
(phase 3) 

133 
(CRT) 

x-ray LA 100 % median 
4.0 

G +/- E 
(100 %) 

54 Gy / 30 
fx 

63.7 No NR 3 (2.3 %) 46.2 (CRT arm, 
from 1st 
randomization) 

NR NR median: 15.2 
months (CRT 
arm, from 1st 
randomization) 

CRT/G (19.8 
% non-heme) 
CRT/G-E 
(23.1 % non- 
heme) 

CONKO-007 
trial 
(phase 3) 

168 
(CRT) 

x-ray LA 100 % median 
3.0 

FFX 
(81.2 %) 
G (18.8 
%) 

50.4 Gy/28 
fx 

59.5 No NR 61 (36.3 
% of CRT 
patients) 

16.0 (from 
randomization) 

NR NR 2-yr: 34.8 % 
(CRT patients 
after 
randomization) 

14 % 

Hoyer et al. 
(phase 2) 

22 x-ray LA 100 % N/A None 
(100 %) 

45 Gy/3 fx 112.4 No GTV: 32 
cc 

0 % NR 6-mo: 
57 % 

NR 1-yr: 5 % Acute grade 
2+: 79 % 
Late grade 
2+: 94 % 

Herman et al. 
(phase 2) 

49 x-ray, 
CBCT 

LA 100 %  
NR 

G (100 
%) 

33 Gy/5 fx 54.8 No 71.4 4 (8.2 %) 13.9 (from dx) 1-yr: 
78 % 
2-yr: 
NR  

NR 
1-yr: 59 % 
2-yr: 18 % 

Grade 2+: 11 
% 

Teriaca et al. 
(phase 2) 

39 CBCT LA 100 % NR FFX 
(1005) 

40 Gy/8 fx 72.0 No NR 7 (17.9 
%) 

13 (from dx) 2-yr: 
~60 % 
(from 
dx) 

NR 2-yr: ~20 % 
(from dx) 

Acute: 0 % 
Late: 10 % 

Comito et al 
(phase 2) 

45 CBCT LA 100 %  GEMOX 
(38 %) 
G (1.5 %) 
Other (1 
%) 
None (29 
%) 

45 Gy/6 fx 78.8 No median 
64.7 cc 

3 (6.7 %) 13.5 (from RT) 2-yr: 
87 % 
(from 
RT) 

NR 2-yr: 33 % (from 
dx) 
2-yr: 18 % (from 
RT) 

Acute: 0 % 
Late: 0 % 

Krishnan et al. 
(retro) 

47 CBCT, 
CT-on- 
rails 

LA 100 %  
median 
3.5  

G-based 
(68.1 %) 
FFX 
(31.9 %) 

63 Gy/28 fx 
(29.8 %) 
70 Gy/28 fx 
(23.4 %) 
67.5 Gy/15 
fx (14.9 %) 
60 Gy/10 fx 
(2.1 %) 
50 Gy/5 fx 
(2.1 %) 
51.3–70.4 
Gy/13–39 
fx (29.7 %) 

77.2 
87.5 
97.9 
96.0 
100.0 
70.4–84.3 

No NR 2 (4.3 %) 9.6 (from RT) 2-yr: 
17 % 
(from 
RT)  

2-yr: 
NR  

2-yr: 22 % 
(from RT) 

Acute: 2 % 
Late: NR 

Reyngold 
et al. 
(retro) 

119 CBCT LA 100 %  
median 
4.0 

FFX (55 
%) 
G/A (31 
%) 
Other 
(11 %) 
None 
(2.5 %) 

67.5 Gy/15 
fx (19 %) 
75 Gy/25 fx 
(81 %) 

97.9 
97.5 

Yes (100 
%) 

median 
GTV 31 
cc 

0 % 24.5 (from dx) 
18.4 (from RT) 

2-yr: 
67.2 % 
(from 
RT) 

NR 2-yr: 38 % 
(from RT) 

Acute/late: 
13.4 % 

Rudra et al. 
(retro) 

25 0.35 T 
MR  LA 75 % 

BR 16.7 %  
median 
3.9 

FFX 
(37.5 %) 
FOLFOX 

40–52 Gy/5 
fx (64 %) 
50–67.5 

median 
77.6 

Yes 
(% NR) 

median 
73.3 cc 

2 (8.3 %) 17 
(from RT) 

2-yr: 
77 % 

1.5-yr: 
24 % 

2-yr: 49 % 
(from RT) 

Acute: 0 % 
Late: 0 % 

(continued on next page) 
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Table 4 (continued ) 

Study N Imaging Resectability IC 
duration 
(mo) 

IC 
regimen 

RT Dose BED10 

(Gy) 
Elective 
coverage 

PTV 
volume 

Surgery 
after RT 

Median FU 
(mo) 

LC DPFS OS Grade 3 þ
toxicity 

(4.2 % 
Other 
(16.7 %) 
None 
(8.3 %) 

Gy/10–15 
fx (36 %) 

median 
82.7 

(from 
RT) 

(from 
RT) 

Hassanzadeh 
et al. (retro) 

44 0.35 T 
MR 

LA 64 % 
BR 14 %   

median 
5.8  

FFX 
(36.4 %) 
G/A 
(34.1 %) 
G alone 
(6.8 %) 
A alone 
(4.5 %) 
None 
(18.2 %)  

50 Gy/5 fx 100.0 No median 
109 cc 

3 (6.8 %) 16 (from dx) 2-yr 
59.3 % 
(from 
dx) 

2-yr 
37.8 % 
(from 
dx) 

2-yr: 37.9 % 
(from dx) 

Acute: 0 % 
Late: 0 % 

Chuong et al. 
(retro) 

62 0.35 T 
MR 

LA 72.6 % 
BR 22.6 %  median 

4.2 

FFX 
(69.4 %) 
G/A 
(24.2 %) 
G (6.4 %) 

50 Gy/5 fx 
(88.7 %) 
45 Gy/5 fx 
(8.1 %) 
40 Gy/5 fx 
(3.2 %) 

100.0 
85.5 
72.0 

Yes (80.6 
%) 

NR 6 (9.7 %) 18.6 (from dx) 
11.0 (from RT) 

2-yr: 
68.8 % 
(from 
RT) 

2-yr: 
23.7 % 
(from 
RT) 

2-yr: 27.7 % 
(from RT) 

Acute: 4.8 % 
Late: 4.8 % 

SMART trial 
(phase 2) 

136 0.35 T 
MR 

LA 56.6 % 
BR 43.4 % 

mean 4.5 FFX 
(65.4 %) 
FFX +
other 
(16.2 %) 
G/A 
(16.9 %) 
G (0.7 %) 
Other 
(0.7 %) 

50 Gy/5 fx 100.0 Yes 
(54.4 %) 

mean 
133.4 cc 

47 (34.6 
%) 

22.9 (from dx) 
14.2 (from RT) 

2-yr: 
77.7 % 
(from 
dx) 
2-yr: 
78.2 % 
(from 
RT)  

2-yr: 
39.5 % 
(from 
dx) 
2-yr 
28.5 % 
(from 
RT) 

2-yr: 53.6 % 
(from dx) 
2-yr: 40.5 % 
(from RT) 

Acute: 0 % 
definitely, 
2.2 % 
probably, 6.6 
% possibly 
related 
Late: 0 % 
definitely, 
4.6 % 
probably, 
11.5 % 
possibly 
related 

Retro = retrospective; CRT = chemoradiation; CBCT = cone-beam computerized tomography; MR = magnetic resonance; LA = locally advanced; BR = borderline resectable; FFX = 5-fluorouracil, leucovorin, oxaliplatin, 
irinotecan; FOLFOX = 5-fluorouracil, leucovorin, oxaliplatin; G = gemcitabine; A = nab-paclitaxel; E = erlotinib; GEMOX = gemcitabine, oxaliplatin; fx = fraction; dx = diagnosis; RT = radiation therapy; NR = not 
reported. 
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