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Abstract
We develop a 2 × 2 evolutionary matrix game to model vegetation dynamics due 
to the effect of autotoxicity. The phenomenon of autotoxicity refers to the rise in 
soil of negative conditions for plant performance induced by the plants themselves. 
Relating the Nash Equilibrium Strategies of the game to the stability of the equilib-
rium points of the induced population dynamics, we investigate under which condi-
tions coexistence of low and highly sensitive to autotoxicity plants occurs and under 
which a monospecific population dominates the competition. Based on this classifi-
cation, we investigate the optimal distribution of the two distinct types of plants in 
order to maximize the cumulative total fitness and determine if this distribution is 
stable. The primary outcome of this study is to analyze the necessary conditions for 
achieving the highest total fitness in both mixed and monospecific populations of 
low-sensitivity plants. In contrast, we argue that a monospecific population of highly 
sensitive plants can never maximize overall fitness.
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1  Introduction

The fundamental work by John Maynard Smith and George Price [1] revealed the 
central role that Evolutionary Game Theory can play in the description of inter-
actions and conflicts in nature. Recently, such studies have been done in mod-
eling cancer to improve its treatment [2–4]. So far, both Classic and Evolutionary 
Game Theory are considered powerful tools for modeling and analyzing prob-
lems in economy, governments’ policies [5, 6], supplies’ chain [7–9] etc. Moreo-
ver, also several interactions among plants, including competition for resources, 
can be viewed as an evolutionary game [10]. For example, the interactions among 
plants with different level of allelochemical production as well as the interactions 
among mutualists and non-mutualists plants have been studied recently through 
an Evolutionary Game Theory point of view in [11, 12], respectively.

In the present work, we focus on a universal phenomenon of plant species, 
so-called autotoxicity or, more accurately, Plant-Soil Negative Feedback (PSNF) 
[13]. PSNF is defined as the development of negative conditions for plant vegeta-
tive and reproductive performances of individual belonging to the same species 
induced into the soil by the plants themselves. The mechanisms underlying PSNF 
are different as the build-up of soil-borne pathogen inoculum [14], the shift in 
composition of soil microbiome, and the release of autotoxic compounds during 
litter decomposition [15] including degraded self DNA [13]. Plant life forms can 
face or escape PSNF by different strategies. For example plants unable of vegeta-
tive propagation can avoid the negative impact of the “home” soil [16] by long-
range seed dispersion, producing the well known Janzen-Connell distribution [17, 
18]. Alternatively, clonal plants like grasses and sedge could escape the localized 
PSNF raised in the “home” soil by spreading in a radial fashion away through 
vegetative growth [19].

So far, mathematical tools as Ordinary Differential Equations systems [20] 
and Agent-Based Modelling [21] have been used to describe the above proce-
dure, as well as the interaction between competitive plants (in terms of fitness) 
with different autotoxicity sensitivities. The competition occurs due to fitness’ 
maximum capacity. The capacity may derive, for example, from resources’ limi-
tations. In the present work, we describe this competition as an Evolutionary 
Game. Our main goal is to indicate how each distribution of species in the popu-
lation affects the total fitness derived by the game and whether this total fitness 
is being optimized. Particularly, we develop a 2 × 2 matrix game to model the 
interaction among plants with different levels of sensitivity to autotoxicity. We 
also take into account the fact that the autotoxicity compounds affect not only the 
plant they come from but the other plant as well, either positively or negatively 
[22]. The game-theoretical framework allows us to express and analyze directly 
this interaction. Now, through the 2 × 2 matrix, we describe the result for any 
plant as a function of the other’s plant relative abundance. This approach reveals 
the frequency-dependence nature of this phenomenon [23], whereas the current 
literature focuses only on the density-dependence one. As population dynamics 
induced by the game we use the replicator equations [24] and we make a stability 
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classification of the Nash Equilibrium Strategies (NES) in relation to the equi-
librium points of the Replicator Dynamics. We then indicate under which condi-
tions an heterogeneous population, consists of plants with different sensitivity to 
autotoxicity, shares the available space and under which a unique species prevails 
over the others and survives alone. Using this analysis, we explicitly express the 
total fitness that derives by any possible population state as well as the one that 
derives by the stable equilibrium state. The form of the total fitness function var-
ies based on the specific conditions of the competition, meaning that it differs for 
each distinct relationship between the elements of the 2 × 2 matrix. In biological 
terms, any such relation may refers to a different plants’ environment. On most 
occasions, a critical difference between the maximum value of the total fitness 
function and its value at the equilibrium state occurs. In particular, we find out 
that under conditions that favor the dominance of highly sensitive to autotoxic-
ity plants, the corresponding maximum total fitness cannot be reached. On the 
contrary, coexistence of the two species might achieves to reach it’s own maxi-
mum as well as the dominance of low sensitive plants, always under some extra 
conditions.

2 � Model description

We introduce a 2 × 2 matrix game of interactions between representants of a popula-
tion consisting of species with low (L) and high (H) autotoxicity. The payoffs of the 
game correspond to the proportion of fitness (B) the plants get in each competition 
case. The species pay a cost for preventing autotoxicity according to how sensitive 
they are. Particularly, when an L plant faces another L, each plant gets a proportion 
� of the fitness B and pays as a cost a proportion sl which defines the sensitivity to 
autotoxicity of species L. Accordingly, when both plants have high sensitivity, each 
plant gets a proportion � and pays a cost sh as the sensitivity of species H. Finally, in 
a mixed competition of H and L plants, the H plant gets a proportion � and pays the 
cost sh and the L plant gets a proportion � and pays the cost sl.

In monospecific competitions, we likely observe a fitness loss besides the auto-
toxicity effect, that is 0 ≤ �, � ≤ 0.5 . This loss is less likely observed in mixed com-
petitions since the presence of different species guarantees that (again, besides the 
autotoxicity effect) one species occupy all the resources the other left [25]. There-
fore, we will study this game under the following assumption:

Assumption   In a mixed population of plants with low (L) and high (H) sensitivity 
to autotoxicity and in the absence of the cost for preventing autotoxicity, the two 
species share the total fitness. That is, � + � = 1 ⇔ � = 1 − � , �,� ∈ [0, 1].

We define Δs ∶= sh − sl as the difference between the two autotoxicities’ sensitiv-
ity. Since sh, sl ∈ [0, 1] and sh ≠ sl (otherwise, there is no distinction between L and 
H phenotypes), we get Δs ∈ (0, 1] . For sake of simplicity we assume that B = 1.
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By the abovementioned, one can derive the 2 × 2 payoff matrix A which describes 
the payoffs for the species in every interaction among them. Each element of matrix 
A consists of a pair where the first and the second coordinates refer to the payoffs of 
the row-player and the column-player, respectively:

3 � Symmetric 2 × 2 games and replicator dynamics

We first give some propositions and known theoretical results that will be used 
throughout the paper.

3.1 � Nash equilibria on symmetric 2 × 2 games and total payoff

A 2 × 2 matrix game A =

(
(aij, bij)

)
i,j=1,2

 is called symmetric if the players have 

identical sets of strategies and aij = bji for all i, j ∈ {1, 2} . The game described by (1) 
is symmetric. Such games can be fully characterized by the first coordinates (i.e. aij ) 
of the payoff matrix A.

Proposition 1  [26] Symmetric 2 × 2 games have at least one symmetric Nash Equi-
librium (NE), i.e., there is some x ∈ [0, 1] such that the point 

(
(x, 1 − x), (x, 1 − x)

)
 is 

a NE.

Proposition 2  [27] On symmetric 2 × 2 games, we have the following three cases for 
the NE according to the values of aij : 

1.	 (a11 > a21 and a12 > a22 ) or ( a11 < a21 and a12 < a22 ): We have just one pure1 
equilibrium since there is a dominant strategy. The point 

(
(1, 0), (1, 0)

)
 is the NE 

if the first relation holds, the point 
(
(0, 1), (0, 1)

)
 otherwise. We will call this game 

Domination Game.
2.	 a11 > a21 and a12 < a22 : We have three NE. The points 

(
(1, 0), (1, 0)

)
 and (

(0, 1), (0, 1)
)
 are the pure ones and the point 

(
(x∗, 1 − x∗), (x∗, 1 − x∗)

)
 is the mixed 

one. We will call this game Priority Effect.

(1)

1  A NE 
(
(x

1
, 1 − x

1
), (x

2
, 1 − x

2
)

)
 is pure when x

1
, x

2
 are equal either to 1 or 0. If x

1
 or x

2
∈ (0, 1) , the NE 

is called mixed.
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3.	 a11 < a21 and a12 > a22 : We have three NE. The points 
(
(1, 0), (0, 1)

)
 and (

(0, 1), (1, 0)
)
 are the pure ones and the point 

(
(x∗, 1 − x∗), (x∗, 1 − x∗)

)
 is the mixed 

one. We will call this game Hawk-Dove2.

where x∗ = a22−a12

a11−a12−a21+a22
, x∗ ∈ (0, 1).

Proposition 3  [26] On a 2 × 2 matrix game A =

(
(aij, bij)

)
i,j=1,2

 , the expected payoff 

for the row-player under the pair of strategies 
(
X, Y

)
=

(
(x, 1 − x), (y, 1 − y)

)
 , where 

x, y ∈ [0, 1] , is given by the function

Accordingly, the expected payoff for the column-player is

vc(X, Y) = X (bij)i,j=1,2 Y
T.

We denote the expected total payoff of a 2 × 2 matrix game A under the pair of 
strategies 

(
X, Y

)
 as v(X, Y) ∶= vr(X, Y) + vc(X, Y).

Proposition 4  [26] On a symmetric 2 × 2 game A = (aij)i,j=1,2 , the payoff functions 
of the two players are symmetric, i.e. vr(X, Y) = vc(Y ,X).

Remark 1  On a symmetric 2 × 2 game A = (aij)i,j=1,2 and under a symmetric pair 
of strategies 

(
X,X

)
 , Proposition 4 gives that vr(X,X) = vr(x) = vc(x) . According to 

Proposition 3, the expected total payoff is given by the function:

If the value

belongs to the domain of function (2) (that is, x0 ∈ [0, 1] ), then (2) gets its maxi-
mum or minimum value on x0 and this value is

Remark 2  After standard calculations, we observe that if a11 − a12 − a21 + a22 < 0 , 
then v(x0) is the maximum value of (2) and if a11 − a12 − a21 + a22 > 0 , v(x0) is the 
minimum.

vr(X, Y) = X (aij)i,j=1,2 Y
T
= x

(
y a11 + (1 − y) a12

)
+ (1 − x)

(
y a21 + (1 − y) a22

)
.

(2)v(x) = 2
(
x2 (a11 − a12 − a21 + a22) + x (a12 + a21 − 2 a22) + a22

)

(3)x0 =
2 a22 − a12 − a21

2 (a11 − a12 − a21 + a22)

(4)v(x0) = −

(a12 + a21 − 2 a22)
2

2 (a11 − a12 − a21 + a22)
+ a22

2  The same inequalities hold for the well known Hawk-Dove game introduced in [28].
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3.2 � Replicator dynamics and nash equilibrium strategies of the game

So far, the matrix A describes the specific matching of the plants and the relative fit-
ness. We now move to its consequences in terms of population dynamics using Rep-
licator Dynamics [24] to describe the dynamical process for the densities of the 
strategies in the game (1). The state of the population can be denoted by the proba-
bility matrix p = (xL xH)

T , xL + xH = 1 . Therefore, xL and xH are the proportions of 
L and H strategy in the population, respectively. The rate of increase dxL

dt
∕xL of L 

strategy is a measure of its evolutionary success. The Replicator equation expresses 
this success as the difference between the fitness vr

(
eT
1
, pT

)
= eT

1
Ap of xL and the 

average fitness vr
(
pT , pT

)
= pTA p of the population, where eT

1
= (1 0) . Accord-

ingly, the rate of increase dxH∕xH of H strategy is given by the difference 

vr
(
eT
2
, pT

)
− vr

(
pT , pT

)
= eT

2
Ap − pTA p , where eT

2
= (0 1) . Thus, we obtain:

Regarding the equilibrium points of (5), we firstly observe that the origin (0,0) is 
not an admissible equilibrium point since xL + xH = 1 . According to the stability 
analysis of (5) for symmetric games as it is provided in [29], the equilibria of (5) can 
either be stable or saddles. Moreover, we have that the only possible equilibria are 
the three NESs (1, 0), (0, 1) and (x∗, 1 − x∗) . If the matrix A defines a Domination 
game, then the mixed equilibrium (x∗, 1 − x∗) is not admissible ( x∗ < 0 or x∗ > 1 ) 
and the unique equilibrium point of the system is either (1, 0) or (0, 1) and it is sta-
ble (therefore, globally stable). Moreover, the pure NES defines the Evolutionary 
Stable Strategy3 of the evolutionary game. In the case of the Priority Effect game, 
the pure NESs are the locally stable equilibria.4and the mixed one is the unstable. In 
the case of the Hawk-Dove game, the mixed NES is the unique (therefore, globally) 
stable equilibrium point of the system. Summarizing, we get the table:

4 � Results

4.1 � Stability conditions for the nash equilibrium strategies

Implementing Proposition 2 and according to Table 1, we have the following results 
regarding the NESs and the stable states of system (5) for the game (1): 

(5)

⎧
⎪⎨⎪⎩

dxL

dt
= xL ⋅ (e

T
1
Ap − pTAp)

dxH

dt
= xH ⋅ (eT

2
Ap − pTAp)

3  An evolutionary stable strategy is a strategy such that, if most of the members of a population adopt it, 
there is no "mutant" strategy that would give higher reproductive fitness [1].
4  There are two basins of attraction, therefore the initial condition defines in which of them the system 
will end up. For that reason the game is called Priority Effect.
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1.	 The case 𝜙 − 𝜃 < Δs < 𝜆 − (1 − 𝜙) , i.e. the case of Priority Effect game, is never 
possible since �, � ≤ 0.5 , therefore � − (1 − �) ≤ � − �.

2.	 If Δs > 𝜙 − 𝜃 : We have the Domination game and L is the stable NES.
3.	 If Δs < 𝜆 − (1 − 𝜙) : We have the Domination game game and H is the stable 

NES.
4.	 If 𝜆 − (1 − 𝜙) < Δs < 𝜙 − 𝜃 : We have the Hawk-Dove game and the coexistence 

mixed strategy (x∗, 1 − x∗) is the stable NES, where 

 Recall that x∗ defines the share of L strategy in the population and, conse-
quently, 1 − x∗ defines the share of H. Regarding how changes in the parameters 
change the mixture of strategies at this equilibrium point, we can see the follow-
ings, taking the partial derivatives of (6) with respect to each parameter:

•	 𝜕x∗

𝜕Δs
=

1

1−𝜃−𝜆
> 0

•	 𝜕x∗

𝜕𝜙
= −

1

1−𝜃−𝜆
< 0

•	 𝜕x∗

𝜕𝜃
=

Δs−𝜙+1−𝜆

(1−𝜃−𝜆)2
> 0

•	 𝜕x∗

𝜕𝜆
=

Δs−(𝜙−𝜃)

(1−𝜃−𝜆)2
< 0

The possible stable NESs for �, � ∈ {0.1, 0.3, 0.5} in positive � and Δs phase 
space are presented in Fig. 1:

Remark 3  The space where H strategy dominates the competition (dark grey) 
defines an isosceles right triangle with perpendicular sides equal to � . The space 
where we observe coexistence of L and H plants (light grey) defines an isosceles 
trapezium with parallel sides defined by the lines Δs = � − � and Δs = � − (1 − �) 
with length equal to (1 − �)

√
2 and �

√
2 , respectively. The non parallel sides are of 

length 1 − � − �.

Therefore, we can explicitly calculate, in terms of � and � , the area for each 
different space:

Corollary 1  The areas of the three different spaces are:

(6)x∗ =
Δs − � + 1 − �

1 − � − �

Table 1   Relation between the 
NESs of the games defined in 
Proposition 2 and the stable 
equilibrium points of the system 
(5)

   Game class      Nash equilibrium 
strategies (NES) 

   Stable equilibria of (5)  

Domination (1, 0) or (0, 1) (1, 0) or (0, 1)
Priority effect (1, 0), (0, 1), 

(x
∗
, 1 − x

∗
)

(1, 0) and (0, 1)

Hawk-Dove (1, 0), (0, 1), 
(x

∗
, 1 − x

∗
)

(x
∗
, 1 − x

∗
)



	 N. Karagiannis‑Axypolitidis et al.

1 3

•	 Ecoex =
1

2
(� − 1)2 −

1

2
�2;

•	 Ehigh = �2∕2;

•	 Elow = 1 − (Ecoex + Ehigh) = 1 −
1

2
(� − 1)2.

Since �, � ∈ [0, 0.5] , Ecoex is a decreasing function on both � and � , Ehigh is an 
increasing function on � and Elow is an increasing one on � . We also observe that 
Elow ≥ 0.5.

Fig. 1   Lines in � and Δs phase space depending on the value of � (rows) and � (columns). These lines 
define the different areas of the phase space regarding which NES corresponds to the stable state of 
the dynamical system (5). The solid line represents the line Δs = � − � and the dashed one the line 
Δs = � − (1 − �) . White space is the area where L strategy is the stable NES. Dark grey is where H is the 
stable NES. The space in between (light grey) is where the mixed NES (i.e. coexistence of both species) 
is the stable state of 5
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4.2 � Total fitness maximization

Now, we will investigate under which conditions the actual total fitness that 
derives by a stable equilibrium strategy coincides with the maximum total fitness 
the two species can get. This analysis relates to the well known notion, in algo-
rithmic game theory, of price of anarchy (PoA) [4] which measures the efficiency 
of a game by comparing the social welfare of an equilibrium state with the best 
social welfare, by taking the ratio of these two values. In this work, we take the 
difference between the maximum and the actual total fitness instead of using a 
ratio, as it offers a more intuitive understanding of the results. We consider the 
total payoffs only on symmetric pairs of strategies (X,X) =

(
(x, 1 − x), (x, 1 − x)

)
 

since there is no ecological interpretation for the non symmetric pairs. Therefore, 
implementing Remark 1, the total fitness of the game (1) is given by the function 
v(x) ∶ [0, 1] ⟶ [0, 1]:

Since 𝜃 + 𝜆 − 1 < 0 , from Remark 2 the function v(x) is concave. Morevover, since 
� ≤ 0.5 and Δs > 0 , we have that Δs > 2𝜆 − 1 which is equivalent to x0 > 0 as one 
can verify in the Appendix A. The latter condition, along with the continuity of func-
tion (7), proves that the dominance of the H strategy cannot produce the maximum 
possible total fitness. For the maximum value of function (7) (denoted by Vmax ) we 
have the followings (the analytical passages can be found in the Appendices A,B):

•	 If Δs < 1 − 2 𝜃 : v(x) gets its maximum value on x0 ∈ (0, 1) where 

 and 

 Therefore, v(x) is an increasing function for x ∈ [0, x0] and a decreasing one for 
x ∈ (x0, 1] . Regardless of the game form, the maximum total fitness is given on 
the mixed state 

(
(x0, 1 − x0)

)
 and it is equal to v(x0) . This state is a stable equi-

librium iff the game has the Hawk-Dove form and additionally x0 = x∗ . That is, 
when 𝜆 − (1 − 𝜙) < Δs < 𝜙 − 𝜃 and Δs = 2� − 1.

–	 If the game is Domination with L strategy as the dominant, then the actual 
total fitness is: 

 and the fitness loss at the equilibrium is given by the equation 

(7)v(x) = 2
(
x2 (� + � − 1) + x (1 − 2 � + Δs) + � − sh)

)

(8)x0 =
1 + Δs − 2 �

2 (1 − � − �)

(9)Vmax = v(x0) =
(1 + Δs − 2 �)2

2 (1 − � − �)
+ 2 (� − sh)

Vlow = v(1) = 2 (𝜃 − sl) < v(x0)
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–	 If the game is Domination with H strategy as the dominant, then the actual 
total fitness is: 

 and the fitness loss at the equilibrium is given by the equation 

–	 If the game is Hawk-Dove and Δs ≠ 2� − 1 then the actual total fitness is: 

 and the fitness loss at the equilibrium is given by the equation 

•	 If Δs ≥ 1 − 2 � : The function v(x) is increasing in [0,1]. Hence, its maximum 
value is: 

 Therefore, the maximum total fitness is given on the state (1,0). If the game is 
Domination with L strategy as the dominant, the maximum total fitness coin-
cides with the actual one ( Vlow = v(1) ). In any other case, the actual total fitness 
is less than the maximum one and the fitness loss is given by the equations:

–	 for the Domination game with H strategy as the dominant: 

–	 for the Hawk-Dove game: 

The above results can be illustrated in Table 2 where we present a generic form of 
the concave function (7). The numerical values of Vmax,Vlow,Vhigh,Vcoex, x0 and x∗ 
vary based on the assigned values to the parameters:

4.3 � Examples

In order to make our results more intuitive, we assign the following values to our 
parameters: � = 0.3, � = 0.5,� = 0.6, sl = 0.05 . We will take different values for sh , 

(10)Vmax − Vlow =
(1 + Δs − 2 �)2

2 (1 − � − �)
+ 2 (� − � − Δs)

Vhigh = v(0) = 2 (𝜆 − sh) < v(x0)

(11)Vmax − Vhigh =
(1 + Δs − 2 �)2

2 (1 − � − �)

Vcoex = v(x∗) < v(x0)

(12)Vmax − Vcoex =
(1 + Δs − 2 �)2 − 4 (Δs − � + 1 − �)(� − �)

2 (1 − � − �)

Vmax = v(1) = 2 (� − sl)

(13)Vlow − Vhigh = 2 (� − � + Δs)

(14)Vlow − Vcoex = 2 (� − � + Δs) − 2
(1 + Δs − � − �)(� − �)

1 − � − �
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Table 2   Fucntion v(x) of total fitness as a function of the share of L strategy in the population in each 
possible case. Red dots denote the position of the maximum total fitness, while green ones denote the 
actual total fitness that derives by the stable equilibrium state
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increasing each time the sensitivities’ difference ( Δs ). Therefore, we are in the case 
of panel b in Fig. 1.

Example 1  If sh = 0.25 , then Δs = 0.2 . We are in the light grey area of panel b 
(Hawk-Dove game) and since Δs = 2� − 1 , the total fitness function can be illus-
trated by the graph (6) in Table 2. Hence, in that case the actual total fitness coin-
cides with the maximum one.

Example 2  If sh = 0.4 , then Δs = 0.35 . Increasing the sensitivities’ difference above 
the threshold � − � = 0.3 , we move to the white area of panel b (L strategy domi-
nates the competition). Since Δs < 1 − 2 𝜃 , the total fitness function’s graph is as in 
(1) in Table 2. That is, there is an unstable state (x0, 1 − x0) of a mixed population 
which creates higher total fitness than the one in which the system finally ends up in 
its stable equilibrium state (1, 0).

Example 3  If sh = 0.45 , then Δs = 0.4 . Now, the sensitivities’ difference not only 
overcomes the threshold � − � which makes L strategy to be dominant, but, moreo-
ver, reaches also the threshold 1 − 2 � . Therefore, the actual total fitness is indeed 
the maximum one as shown in graph (2) in Table 2.

In Fig. 2 below, we can see how system (5) evolves over time in each of the exam-
ples above. In the first and the 3rd plot (Examples 1 and 3) the system ends up to the 
distribution of the two strategies that maximizes the total fitness. On the other hand, 
in the second plot (Example 2) the dynamics pass from the unstable state which 
maximizes the total fitness to end up to a state of a reduced one.

For � = 0.3 and � = 0.5 (as we did for the Examples 1–3), we can reproduce 
the panel b of Fig. 1 dividing it into regions according to which graph of Table 2 
describes the total fitness function. This result is shown in Fig. 3.

Fig. 2   Evolution in time of the system (5) for the values of Examples 1–3. The grey solid line corre-
sponds to x

L
 (proportion of L strategy) and the black one to x

H
 (proportion of H strategy). The dashed 

line denotes the distribution that provides the maximum total fitness ( x
0
 ), as it is given by the equation 

(8). We have that x
0
= 0.5 , x

0
= 0.875 and x

0
= 1 for the Examples 1, 2 and 3, respectively. When x

0
 

coincides with the stable state, the dashed line is green, otherwise is red. The chosen initial conditions 
are [0.2, 0.8]
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5 � Discussion

We first need to clarify the biological meaning of the classification results pre-
sented in Sect. 4.1. We notice that the L plants start with an a priori advantage 
because of the less sensitivity to autotoxicity. In other words, if we consider just 
the sensitivities, the L plants will definitely dominate the game. This can be seen 
also in Fig.  1 where the area of L strategy domination (white area) is the big-
gest in any case of our model (i.e. Elow ≥ 0.5 ). Hence, the H strategy can only 
appear when it is highly competitive with respect to the sensitivities difference. 
The competitiveness of H strategy can be defined as the difference between the 
benefits of H and L strategies in any possible competition. For a careful and accu-
rate discussion of our results, we need to add some extra notation, defining as 
L-competitiveness and H-competitiveness the competitiveness of H in a competi-
tion against an L and an H plant, respectively. Hence, L-competitiveness equals to 
� − � since in the competition against an L plant, the benefit of H is � and of L is 
� . Analogously, H-competitiveness equals to � − (1 − �) . Having clarified these 
terms, we can say that the dominance of a monospecific population, or the coex-
istence of both species, depends on the relation between the sensitivities’ differ-
ence (i.e., Δs ) and the competitiveness of highly sensitive plants in each possible 
competition.

When the sensitivities’ difference is bigger than the L-competitiveness of H 
strategy (i.e Δs > 𝜙 − 𝜃 ), the L strategy dominates the competition (white areas 

Fig. 3   Reproduction of panel b of Fig. 1. Recall that � = 0.3, � = 0.5 , the solid black line represents the 
line Δs = � − � , the dashed black one the line Δs = � − (1 − �) and the region of stable states are as fol-
lows: For Δs > 𝜙 − 𝜃 , L is the stable strategy, for Δs < 𝜆 − (1 − 𝜙) is H and for the intermediate values, 
the coexistence mixed strategy (x∗, 1 − x

∗
) is the stable one. The different colours correspond to the seven 

different graphs as they are numbered in Table 2. The case of graph (6) is possible only along the green 
line denoting the function Δs = 2� − 1 in the coexistence region. We also indicate the specific position 
on the panel for the chosen values of Examples 1, 2 and 3 with a times symbol, a filled triangle and a 
filled circle symbol, respectively
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in Fig. 1). In that case, the total fitness the two species gain at stable state, can be 
maximum only under the additional condition Δs ≥ 1 − 2 � . This inequality can be 
rewritten as � − sl ≥ 1 − � − sh . Thus, a monospecific population consisting of L 
plants achieves maximum total fitness when each L plant has a payoff greater than or 
equal to the difference between the remaining fitness left by each plant ( 1 − � ) and 
the sensitivity of H plants.

In contrast, when the sensitivities’ difference is less than the H-competitiveness 
of H strategy (i.e Δs < 𝜆 − (1 − 𝜙) ), the cost for preventing autotoxicity does not 
outweigh the advantages of being a highly sensitive plant. Therefore, the H strategy 
dominates the competition (dark grey areas in Fig. 1). Then, the actual total fitness is 
always less than the maximum one, namely there exists an unstable population state 
that creates higher total fitness than the one that is been created by the stable popula-
tion state. This result derives directly by the mathematical analysis of the total fit-
ness’ function as it is provided in Sect. 4.2.

Finally, coexistence occurs if the sensitivities’ difference lies in intermediate val-
ues, namely, no strategy is strong enough to dominate. Now, the total fitness gets 
its maximum value only under the additional condition Δs = 2� − 1 . To reveal the 
biological meaning of this condition, we rewrite it as 1 − � − sl = � − sh . That is, 
the payoffs of the two species in the heterogeneous competition coincide. Hence, in 
a stable heterogeneous population, any small advantage for one of the two species 
creates a loss to the total fitness. This effect is similar to well known environmental 
results where different species have to share available resources equally in order to 
optimize their cumulative fitness and maximize biomass production, a phenomenon 
called over-yielding [30].

When coexistence occurs, a well-expected result can be easily seen from equation 
(6): the percentage of L strategy in a mixed stable population is an increasing func-
tion on the sensitivities’ difference and a decreasing one on the benefit of H strategy 
in mixed competition.

Regarding the results on the structure of the stable regions of the game, we 
take a deeper look at the Corollary 1. As the benefit in monospecific competitions 
increases ( � and � for L and H species, respectively), the corresponding area of 
dominance increases too. That is, the number of the cases in which a monospecific 
population dominates the competition increases. At the same time, the shape of the 
opponent dominance area does not change (since Elow and Ehigh are independent of 
� and � , respectively). On the contrary, the coexistence area decreases with the ben-
efits in monospecific competition ( Ecoex is decreasing on both � and � ); that is, the 
number of the cases in which a mixed population survives decreases as the benefit 
in monospecific competitions increases. In particular, the biggest coexistence area 
occurs when both benefits in monospecific competitions are at their minimum value 
(as in panel g in Fig. 1).

For the special case � = � = 0.5 (panel c in Fig. 1), we have that � − (1 − �) = � − � 
and therefore coexistence is not possible. In that case, the benefits � and � get the maxi-
mum value they can; therefore, both strategies can potentially dominate the competition 
(the dominant strategy derives according to the values of Δs and �).
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6 � Conclusions

In this article, we developed and analyzed an evolutionary game to describe and 
extract conclusions for the interactions among plants with different sensitivity to 
autotoxicity. Evolutionary Game Theory studies how strategies perform, in relation 
to fitness, against other interacting strategies. As a result, we delve directly into the 
essence of these interactions. Our model has a simple structure, trying to include 
into a few parameters ( �, �,�, sl, sh ) all the information about the physical process. 
This simple structure was necessary for an interpretable illustration and the utiliza-
tion of the results by different scientific fields (mathematics, plant ecology).

By the analysis of the model, we concluded under which conditions the two different 
species (of low and of high autotoxicity) dominate the competition and which condi-
tions favor the coexistence of the species. We also described the level of the coexist-
ence as the percentage of the two species in the population, by an explicit mathematical 
formula. Using our analysis, we can describe the borders between the different cases 
of the model as linear functions, and therefore properly define the space of each dif-
ferent case. Based on these results, we investigated which distribution of species in 
the population cause a maximization of the total fitness (i.e. the sum of the payoffs of 
the two players) in stable equilibrium states. We highlighted the result of total fitness 
maximization only under either coexistence conditions with equal share of the available 
resources or a strengthened dominance of the low sensitive plant. We also extracted 
explicit results about the relation between the total payoff in Nash Equilibrium Strate-
gies and the maximum total payoff of the game. The outcomes smoothly follow our 
intuition.

Autotoxicity is a specific case of Plant-Soil feedbacks (PSFs). In PSFs, the plants 
alter soil conditions, either abiotic (like self-DNA decomposition) or biotic (like myc-
corhiza’s populations), in ways that modify the growth of a plant or community sub-
sequently growing in the same soil. Hence, the competition between the plants can 
also be described implicitly through their interaction with soil for any special model 
of PSFs. In such a case, an asymmetric game between a population of different plants’ 
species and their corresponding soil conditions might be a truthful way to describe the 
model. Note that in the case of 2 × 2 asymmetric games equipped with the Replicator 
Dynamics, we can observe evolutionary oscillations rather than convergence to a stable 
point [31].

Furthermore, when it is possible to quantify accurately and on the continuoum the 
phenotypes (i.e, the strategies), either in symmetric or asymmetric games, it becomes 
worthwhile to extend the matrix (bimatrix for the asymmetric case) game to the context 
of games with continuous sets of strategies. In such a game we can also consider spatial 
effects that might affect the evolution of the competition.

In future research, we intend to merge a game theoretical framework with the tra-
ditional Ordinary Differential Equations (ODEs) [20] incorporating logistic growth. 
This integration will involve describing the interaction term between biomass and tox-
icity as a 2 × 2 bimatrix game, where each biomass considers its own toxic compound 
as well as that of the other biomass. This approach will enable us to model the dynam-
ics of species growth while considering the game-theoretic aspects of the system.
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In the present work, we made the significant assumption that the benefits for the 
two species in a mixed competition are complementary, i.e. add to 1. It is of interest 
for future work to provide results relaxing this assumption, setting � ≤ 1 − � , as we 
assumed for the benefits in monospecific competitions.

Appendix A: Extremum value of the total fitness function

On a symmetric 2 × 2 game and under a symmetric pair of strategies 
(X,X) =

(
(x, 1 − x), (x, 1 − x)

)
 , the total fitness function given by (2) gets its 

extremum value in an interior point x0 , given by (3), of [0,1] under the following 
conditions:

•	 If a11 − a12 − a21 + a22 < 0 , then x0 ∈ (0, 1) iff: 

 and 

•	 If a11 − a12 − a21 + a22 > 0 , then x0 ∈ (0, 1) iff: 

 and 

Appendix B: Conditions for maximization of total fitness in game (1)

The three symmetric Nash Equilibria which provide the possible stable Nash Equi-
librium Strategies for the game and the correspondig total fitness on them, are:

•	
(
(1, 0), (1, 0)

)
 (i.e. L dominates) with total fitness: 

•	
(
(0, 1), (0, 1)

)
 (i.e. H dominates) with total fitness: 

•	
(
(x∗, 1 − x∗), (x∗, 1 − x∗)

)
 (i.e. coexistence of both species) with total fitness: 

where x∗ as in (6) and 𝜆 − (1 − 𝜙) < Δs < 𝜙 − 𝜃 (Hawk-Dove game).

(15)a22 − a12 < a21 − a22 (for x0 > 0)

(16)a11 − a21 < a12 − a11 (for x0 < 1)

a22 − a12 > a21 − a22 (for x0 > 0)

a11 − a21 > a12 − a11 (for x0 < 1)

Vlow = v(1) = 2 (� − sl)

Vhigh = v(0) = 2 (� − sh)

Vcoex = v(x∗) = 2
(
(Δs − � + 1 − �) (� − �)

1 − � − �
+ � − sh

)
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In game (1), we have that a11 − a12 − a21 + a22 = 𝜃 + 𝜆 − 1 < 0 . There-
fore, function (7) is concave. We observe that condition (15) is always true 
for the game (1), therefore x0 given by (8) is always positive. Hence, (9) is 
the maximum value for the total fitness iff (16) holds for game (1). That is, iff 
(𝜃 − sl) − (𝜙 − 𝜃) < (1 − 𝜙 − sh) − (𝜃 − sl) ⇔ Δs < 1 − −2 𝜃.

If the game has the Hawk-Dove form and under the feasibility of x0 (that is, 
Δs < 1 − 2 𝜃 ), the actual total fitness Vcoex coincides with the maximum total fitness 
Vmax iff x∗ = x0 as they are given by (6) and (8), respectively. This equality is equiva-
lent to Δs = 2� − 1.

If Δs ≥ 1 − 2 � , then x0 ≥ 1 . Therefore, function (7) is monotone in [0,1] and 
since it is also concave, is increasing in [0,1]. Hence, if Δs ≥ 2 � − 1 , function (7) 
gets its maximum value for x = 1.
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