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1 The world is everything that is the case.

1.1 The world is the totality of facts, not of things.

1.11 The world is determined by the facts, and by these being all the facts.

1.12 For the totality of facts determines both what is the case, and also that is not the case.

1.13 The facts in logical space are the world.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus, 1921

This dissertation is dedicated to

my mom, my dad, my sister, my grandparents, and to Marta.
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Abstract

Jihadist terrorism represents a global threat for societies and a challenge for scien-

tists interested in understanding its complexity. This complexity continuously calls

for developments in terrorism research. Enhancing the empirical knowledge on the

phenomenon can potentially contribute to developing concrete real-world applica-

tions and, ultimately, to the prevention of societal damages. In light of these aspects,

this work presents a novel methodological framework that integrates network science,

mathematical modeling, and deep learning to shed light on jihadism, both at the

explanatory and predictive levels. Specifically, this dissertation will compare and an-

alyze the world’s most active jihadist terrorist organizations (i.e. The Islamic State,

the Taliban, Al Qaeda, Boko Haram, and Al Shabaab) to investigate their behavioral

patterns and forecast their future actions. Building upon a theoretical framework

that relies on the spatial concentration of terrorist violence and the strategic perspec-

tive of terrorist behavior, this dissertation will pursue three linked tasks, employing

as many hybrid techniques. Firstly, explore the operational complexity of jihadist

organizations using stochastic transition matrices and present Normalized Transition

Similarity, a novel coefficient of pairwise similarity in terms of strategic behavior.

Secondly, investigate the presence of time-dependent dynamics in attack sequences

using Hawkes point processes. Thirdly, integrate complex meta-networks and deep

learning to rank and forecast most probable future targets attacked by the jihadist

groups. Concerning the results, stochastic transition matrices show that terrorist

groups possess a complex repertoire of combinations in the use of weapons and tar-

gets. Furthermore, Hawkes models indicate the diffused presence of self-excitability

in attack sequences. Finally, forecasting models that exploit the flexibility of graph-

derived time series and Long Short-Term Memory networks provide promising results

in terms of correct predictions of most likely terrorist targets. Overall, this research

seeks to reveal how hidden abstract connections between events can be exploited to

unveil jihadist mechanics and how memory-like processes (i.e. multiple non-random,

parallel and interconnected recurrent behaviors) might illuminate the way in which

these groups act.
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Introduction

From 2000 to 2015, the number of civilians killed due to terrorist attacks dramatically

increased by 550%, ranging from 2,000 to 12,500 deaths. In 2015, more than 60% of

the member states of the Organisation for Economic Co-operation and Development

(OECD) experienced at least one terrorist attack, accounting for a total of 577 deaths

(Institute for Economics and Peace, 2016). This represented the highest peak since

2004, the year of the Madrid bombings. In 2016, 79 countries reported at least one

death caused by terrorists (Institute for Economics and Peace, 2017). The estimated

global economic impact of terrorism (in U.S. Dollars) was 52 billion in 2017 (Institute

for Economics and Peace, 2018). These few data contribute to picture terrorism as

a global threat that has caused damages to civilians, governments, and economic

systems. Terrorism is indeed an actual and very complex issue that continuously

affects many countries in the world. While keeping in mind the existence of different

types of terrorism, jihadism has played a leading role in recent decades in terms of its

geographical scope of action, lethality, and impact. Overall data, when disaggregated,

demonstrate that jihadists are the main characters of the dramatic terrorist scenario.

The rise of jihadism as the most relevant form of terrorism worldwide has contributed

to the spread of attention over Islamist organizations in research, and the progressive

availability of data attracted the attention of scientists from different fields. Indeed,

government and institutional funding for scientific projects related to terrorism in

the last years has been increasingly directed towards applied research, calling for

technical expertise and skills that can only be achieved through the collaboration

among distinct research domains.

In parallel, in the years following the 9/11 attacks, studies tried to describe and

assess the state of the terrorism research domain, in order to detect critical issues

and positive trends. Reid and Chen (2007) were among the first to identify a shift

of perspective in research: indeed, they reported how the focus on terrorism as a

low-intensity conflict was substituted by the widespread idea that the phenomenon

assumed the connotation of an actual global threat. Soon after this study, Silke (2008)
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INTRODUCTION

pointed out how the attacks led to a substantial increase in the number of individuals

working in the field. However, the author highlighted how, albeit statistical analyses

started to become more popular (work applying inferential statistics on terrorism

data more than trebled since then), still the shift from mere literature review-based

studies was insufficient to guarantee solid and reliable findings and conclusions on the

phenomenon.

In spite of the cautious optimism that was circulating among researchers and

funding agencies, Sageman (2014) harshly criticized and contrasted the narrative of

a successful research path towards the aim of unfolding terrorism. In a largely com-

mented and debated paper, Sageman blamed the government strategies of funding

projects on terrorism without sharing primary source information with academics for

the problem of “stagnant” research on terrorism. According to the author, these

strategies avoided solving the gap between the lack of expertise of intelligence agen-

cies in terms of scientific methods and technical skills and the scarcity of relevant

and reliable data at disposal of academic researchers and scientists. His solution was

to make non-sensitive data available to academia and to inaugurate a new process

of dialogue and collaboration between the two sides. Sageman developed his thesis

starting from the fact that research is still too far away from answering the funda-

mental question “why a person should turn to terrorism?”. Critiques and comments

about his opinions were addressed to Sageman by other scholars in the field that

either contested his diagnoses or his evaluation of the results achieved by terrorism

research, besides existing failures (Taylor, 2014; Schmid, 2014).

In the last (in chronological order) attempt to assess the situation of terrorism

research, Schuurman (2018) identified encouraging improvements in the way terrorism

is investigated and studied, starting from increasing use of primary and original data

and the (although slow) diffusion of quantitative works. Notably, Schuurman also

recognized existing issues, such as the predominance of qualitative works and the

nature of many authors who are one-time contributors, failing thus to provide a

constant and significant contribution to the field. Besides these matters of concern,

however, the author in the conclusions of the works claims that research on terrorism

is flourishing, rather than stagnating. Each of the different points regarding the state

of the field contains ideas and considerations that may deserve attention. Indeed, the

lack of agreement has to be coupled to the difficulty to obtain estimates on real-world

impacts and consequences of terrorism research, therefore forcing the debate to build

upon views and opinions, rather than actual facts. In such context, where data sources

are few and still government funding are reticent in information sharing, a researcher
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should try to extract the best from the available. In spite of the popularity and great

diffusion of the existing open access databases on terrorism, my intuition is that there

is still a lot of knowledge that can be exploited for research and policy purposes, and

the only way to gather this knowledge is to invest on innovative methodologies that

go beyond the state-of-the-art. Investing in novel techniques may be risky in the first

phase: pitfalls might arise, and results may not be accurate or relevant enough to

encourage government and institutions to fund new research on terrorism. However,

my strong belief is that terrorism research needs a boost in order to attain success not

only in terms of journal articles but also in terms of real-world initiatives, and this

boost can only go through innovation and training of young researchers that shall be

highly skilled in analytical terms and have a strong knowledge of the phenomenon.

Some considerations regarding this point will be made later in the work: this belief,

however, represents the main motivation that led me to write this thesis, on this

precise topic, with this precise shape and this precise focus.

That considered, this dissertation will focus on jihadist terrorism (also called Is-

lamist) and will specifically seek to detect jihadist organizations’ behavioral patterns

and assess the predictability of their actions over time through the attempt to merge

network science and artificial intelligence. The analytic part will rely on a three-fold

structure. The main conceptual intuition behind the work is that treating multi-

dimensional event data as meta-networks that are connected through time allows de-

tecting hidden relations that traditional methodological frameworks and techniques

fail to capture. These relations, which in most cases are abstract, connect together

multiple entities that can be observed and monitored over time: this complex typol-

ogy of networks is effective in capturing recurring behaviors and detecting potential

anomalies, making it possible to conduct analyses at explanatory and predictive lev-

els. Results are encouraging and indicate that network-derived models and analysis

are able to capture inter-dependencies and to use them to enhance the knowledge

of how these organizations act in the global scenario. Moreover, time-series analy-

sis using Neural Networks indicate how terrorist organizations follows two parallel

behavioral pathways in terms of attacked targets: while some patterned dynamics

emerge, other mechanics seem to be random or extremely challenging to capture and

will require additional data or further analyses to be better depicted and understood.

This thesis develops as follows. The first chapter will illustrate the conceptual

background of the work. Specifically, it will first focus on the main contributions on

the issues of defining terrorism, also proposing a four-dimensional focus on its most

relevant dimensions. Additionally, the theoretical framework of the work is introduced
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and described. The second chapter will then explain the aims and motivations of

the work, with an additional note on the state of research in social sciences and

criminology.

The third chapter will first review the origins, history and main features of the

jihadist groups that will be analyzed throughout the dissertation, namely the Islamic

State, the Taliban, Al Qaeda, Boko Haram, and Al Shabaab. Data will be then

described, providing a general overview of the Global Terrorism Database, the source

from which all the data used in this dissertation are retrieved.

The fourth, fifth and sixth chapters will represent the core of the work. The fourth

chapter (Stochastic Matrices of Terrorism: Complexity and Heterogeneity of Jihadist

Behavior) will present the work on N -dimensional super-state transition networks

and trails of terrorist events, highlighting the complexity of terrorist patterns in their

operational choices and presenting a novel pairwise coefficient for assessing similarity

among groups.

The fifth chapter (Hawkes Processes of Jihadism) will focus on point processes of

jihadist attacks, showing the spatio-temporal clustering of events and the presence of

memory-like dynamics in attacks against specific targets.

The sixth chapter (Deep Learning and Terrorism: Long Short-Term Memory Net-

works for Jihadist Target Forecasting) will then present the framework that combines

dynamic network science and machine learning for the prediction of future terrorist

targets.

Finally, a conclusive chapter will provide a homogeneous and comprehensive overview

of the strengths and limitations of the work, highlighting the most relevant results

and the future research pathways, also proposing a broader reflection on the state of

the study of terrorism.
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1 Background

1.1 Conceptualizing Terrorism

Framing terrorism is an arduous task. Over the decades, academics with different

backgrounds have tried to develop definitions as precise as possible, nevertheless fail-

ing to produce an unambiguous and universally accepted definition of the concept.

One of the motivations is that terrorism is deeply embedded in the historical, politi-

cal and social context in which it is manifested and therefore it becomes difficult to

judge it in a totally objective way. In many cases in the past, the border between

terrorists and freedom fighters has been labile and largely dependent on the observa-

tion point of view (Laqueur, 1987). Terrorism research has exploded after the 9/11

attacks (Hoffman, 2002; Buckley and Fawn, 2003; Enders and Sandler, 2006; Simons

and Tucker, 2007), nonetheless scholars have started to attempt to frame the issue

long before that date. This paragraph will review some of these attempts.1

1.1.1 Defining Terrorism

In order to find a starting point in reviewing the debate around the concept of ter-

rorism, it is helpful to introduce the review with the work of Jongman and Schmid

(1988). The authors analyzed 109 definitions of terrorism coming from a question-

naire with the aim of systematizing the most recurring features. The outcome of the

analysis, however, did not lead to a satisfactory homogeneity of the results. Defini-

tions analyzed by the two scholars highlighted the presence of twenty-two recurring

characteristics. Similarly, Weiberg et al. (2004) sought definitions from three main

academic journals in the area of terrorism, comparing the frequencies of the twenty-

1For the purposes and nature of this thesis, this section will only refer to definitions produced by

researchers and academics, thus excluding from the review legal definitions provided by governments

and international institutions.
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two features appeared in Jongman & Schmid with the outcome frequencies of their

analysis. Table 1.1 summarizes both the outcomes. The results in the table demon-

strate the wide heterogeneity of elements that emerge from experts’ definitions of

terrorism.

N Element Jongman & Schmid Weibert et al.

1 Violence, force 83.5 71

2 Political 65 60

3 Fear, Terror emphasized 51 22

4 Threat 47 41

5 Psychological effects and (anticipated) reac-

tions

41.5 5.5

6 Victim-target differentiation 37.5 25

7 Purposive, Planned, Systematic, Organized

action

32 11

8 Method of combat, strategy, tactic 30.5 31.5

9 Extranormality, in breach of accepted rules,

without humanitarian constrains

30 0

10 Coercion, extortion, induction of compliance 28 5.5

11 Publicity aspect 21.5 18

12 Arbitrariness, impersonal, random character,

indiscrimination

21 0

13 Civilians, noncombatants, neutrals, outsiders

as victims

17.5 22

14 Intimidation 17 11

15 Innocence of victims emphasized 15.5 10

16 Group, movement, organization as perpetrator 14 29

17 Symbolic aspect, demonstration to others 13.5 5.5

18 Incalculability, unpredictability, unexpected-

ness of occurrence of violence

9 1

19 Clandestine, covert nature 9 7

20 Repetitiveness, serial or campaign character of

violence

7 0

21 Criminal 6 5.5

22 Demands made on third parties 4 1

Table 1.1: Prevalence (%) of Definitional Elements of Terrorism in Jongman & Schmid (1988) and

Weiberg et al. (2004). Source: (Weiberg, Pedahzur, and Hirsch-Hoefler 2004)

Considering the complexity of building a comprehensive definition of terrorism,

some scholars have limited their scope to a list of features that distinguish terrorism

from other forms of violence. Hoffman (1998) claims that terrorism, compared to
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other types of political violence is:

“(1) ineluctably political in aims and motives; (2) violent - or, equally im-

portant, threatens violence; (3) designed to have far-reaching psycholog-

ical repercussions beyond the immediate victim or target; (4) conducted

either by an organization with an identifiable chain of command or con-

spiratorial cell structure (whose members wear no uniform or identifying

insignia) or by individuals or a small collection of individuals directly

influenced, motivated, or inspired by the ideological aims or example of

some existent terrorist movement and/or its leaders; (5) and perpetrated

by a subnational group or nonstate entity”.

Matusitz (2012) - partially mirroring the approaches of Jongman and Schmid and

Hoffmann- has collected the most commonly cited definitions in literature, either from

academic and institutional sources. The common elements were:

1. The use of violence to create fear for political, religious or ideological reasons;

2. The civilian (and sometimes iconic) targets;

3. The spectacular nature of the actions in order to gain publicity for a cause;

4. A change in the regulatory system;

5. The concept of “asymmetric warfare”2

In addition, Ganor (2002), in an effort to separate terrorism from the concepts of

revolutionary violence, guerrilla and national liberation, proposes three fundamental

discriminating factors that qualify terrorism:

1. Violence as the very essence of terrorist activity;

2. The political aim of the activity;

3. The civilian targets

This brief review underlines the challenges in defining terrorism. To solve this

problem, several authors have tried to focus on the definition of specific types of

terrorism. Indeed, terrorism has many different faces depending on the object of the

analysis. In the last years, the impossibility to build a universal concept of terrorism

has shifted the spotlights to the different shades of the phenomenon.

2Asymmetric warfare is intended as “the use of random/unpredictable violence by a weak group

(i.e., one with a smaller force) against a stronger power (i.e., military, government, or even society

in general) to gain advantage”(Matusitz, 2012, p.4-5)
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1.1.2 A Four-Dimensional Focus on Terrorism

The review presented above demonstrates the difficulties to provide a tout-court def-

inition of terrorism. Nevertheless, to disentangle the problem, terrorism can be dis-

tinguished by many dimensions (Ganor, 2008). The present sub-section proposes a

four-dimensional focus on terrorism motives, strategies, structure and geographical

range of action as fundamental aspects for framing it under different perspectives.

1.1.2.1 The Motives and Goals of Terrorist Organizations

In the aftermath of 9/11, Rapoport published an article developing the thesis of the

“four waves of terrorism”. According to the American scholar, terrorism has evolved

in its values and motives across the centuries, stressing the radical shifting from its

positive meaning during the French Revolution to the terrible attacks occurred in the

United States (US). Even though the word “terrorism” first appeared as a product

of the French Revolution, Rapoport claimed that the first wave started around 1880

as a consequence of some economic reforms introduced by the czars in Russia. These

reforms caused political assassinations and the wave expanded across borders, con-

ducting also to the anarchist violence that invaded many countries in Europe. The

second wave started in the 1920s and lasted until the 1960s: its main feature was

national self-determination. The grievance against colonial powers led to atrocities

against police forces, making this wave an intersection between terrorism and guer-

rilla. The third wave was represented by the reaction of the Vietcong against the

US military forces. Rapoport notes that this third wave gave birth to a territorial

displacement. The violent resistance against the US showed the vulnerability of the

Western countries. Many terrorist groups emerged in Europe with the aim to fight

capitalism and the power of Western governments (e.g.: The Italian Red Brigades

or the German Red Armed Fraction). This third wave ended in the 1980s, leaving

room to the final fourth wave. Two events contributed to the starting of this new

era: the Iran Revolution in 1979 and the defeat of the Soviet Union in Afghanistan

in 1989. The most important element of this fourth wave is the role of religion and

the protagonist of this wave is Al Qaeda. In his work, Rapoport called for the pos-

sibility of a new wave, relying on the fact that terrorism can renovate its ideology

and its motives, re-emerging with new strength. In his theory, Rapoport states that

terrorism is deeply rooted in modern culture.

The use of an historical review to describe political and ideological motives of

terrorist organizations described in Rapoport’s work can be found also in other con-
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tributions. Ganor (2008) reviews the most popular terrorist motives categories and

the subsequently demonstrates that terrorism is not solely a religious business, even

though today jihadism is the protagonist of the terrorist scenario. Table 1.2 shows

these categories.

Typology Description

Revolutionary Organizations Organizations that act to change a nation’s

regime with the aspiration to bring about

a change in the government (e.g.: Nepalese

Maoists)
National Liberation Organizations Organizations that act to vanquish and expel

an occupying force and to achieve national

independence (e.g.: Palestinian Fatah organi-

zation)
Social Organizations Organizations that act to change a nation’s

socioeconomic order (e.g.: El Salvadorian

FMLN)
Separatist Organizations Organizations that advocate the territorial

separation of an ethnic minority in a multi-

ethnic state (e.g.: The Irish IRA)
Radical Ideological Organizations Organizations that act to advance extremist

ideologies. This category includes communist,

anarchist, and fascist groups (e.g.: Italian Red

Brigade)
Religious Organizations Organizations that aim to advance religious

interests or disseminate a religion via violence

while fulfilling what the organization’s mem-

bers believe is “the will of God”). At times,

such organizations’ activities stem from an

aspiration to defend a religion from hostile

sources or sources that are interpreted as such

(e.g.: Al Qaeda, IS)

Table 1.2: Classification of terrorist organizations based on their motives. Source: author’s adapta-

tion of Ganor (2008)

In the effort to describe the objectives of terrorist organizations, Kydd and Walter

(2006) detect five ultimate goals of terrorism:

1. Regime change;

2. Territorial change;

3. Policy change;
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4. Territorial control;

5. Status quo maintenance

Kydd and Walter point out that many organizations hold more than one goal

and can use one as a facilitator for another. They analyzed the Foreign Terrorist

Organizations list released by the US State Department, highlighting how most these

organizations (31 out of 42) seek regime change. Another significant part (19) seek

territorial change, while policy change and maintenance of the status quo are residual

goals. Finally, Picco (2004) notes that goals can change over time and that they can be

less important than the idea of “perpetual confrontation”. This process introduces the

confrontation between tactical and strategic terrorism, well described by the behavior

of Al Qaeda. According to the author, tactical terrorism is characterized by stable

and well-known objectives, while strategic terrorism is dynamic with respect to goals

because contraposition itself is the most important feature regardless of political

objectives.

1.1.2.2 The Strategies of Terrorism

Terrorism is often described as “senseless” or “mindless”. However, many have con-

tested this statement, proving that terrorism is the product of strategic calculations.

Strategies of terrorism are intrinsically connected with its aims, and scholars have

sought to investigate not only the “what” but also the “how”. The attempts to un-

derstand the strategies and tactics of terrorism are many and rooted in history (May,

1974; Fromkin, 1975; Price, 1977; Dobson and Payne, 1979). Due to the great num-

ber of these attempts and the multifaceted nature of terrorism, there is no universal

consensus on a universal set of strategies that comprehensively describes the “how”

used for reaching the “what”. Nevertheless, many of the conceptualizations of the

strategies of terrorism provided by scholars are similar.

Harmon (2001) enumerates five different strategies that he considers as the most

common in the behavior of terrorist organizations:

1. Creation of societal dislocation and chaos;

2. Discrediting or destroying a particular government;

3. Rendering economic and property damage;

4. “Bleeding” state security forces and doing other military damage;

5. Spreading fear for international effects
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The author indicates that all these strategies involve calculation and that an

organization can employ different strategies at different points in time to adapt to its

environmental context.

Kydd and Walter (2006) start their explanation of terrorism strategies from the

concept of uncertainty. According to the authors, the uncertainty about power, re-

solve and trustworthiness governs the process that leads a terrorist group to act

against another subject (namely a government, a community, etc.) in a certain way

at a certain time. To resolve uncertainty, terrorists use costly signaling instead of

other legal methods to convince the audience they talk to. These audiences are of

two kinds: 1. governments and 2. individuals they hope to positively influence.

Combining the three uncertainty dimensions (power, resolve and trustworthiness)

with the two audiences, Kydd and Walter develop a theoretical set of five distinct

terrorist strategies. Table 1.3 shows this classification.

Target of Persuasion

Enemy Own Population

Subject of Uncertainty

Power
Attrition

Intimidation

Resolve Outbidding

Trustworthiness Spoiling Provocation

Table 1.3: Strategies of terrorism/political violence. Source: Author’s adaptation of Kydd and

Walter (2006)

The theoretical development of objectives and strategies carried out by Kydd and

Walter started from the assumption that terrorist organizations often achieve their

goals. Abrahms (2006) largely contested this assumption, trying to demonstrate

that the literature which claims that terrorist works (Dershowitz, 2003; Pape, 2005)

is actually confined to game-theoretic models or case studies and therefore it does

not reflect the generalized reality. In fact, Abrahms tries to empirically show that

terrorism actually does not work. He analyzes the strategic effectiveness of 21 terrorist

organizations included in the list released by the US State Department. The results

corroborate the inability of terrorists to achieve their goals as posited by Schelling

(1991): indeed, Abrahms demonstrates that terrorist organizations included in his

sample have achieved their goals less than 10% of the times. The conclusion of

Abrahms is that terrorism is not solely ineffective and inefficient as an instrument

itself, but that its failures are often determined by the tactics that these terror groups

use, especially when these tactics involve deaths of civilians.

Neumann and Smith (2005) also focused on the strategies adopted by terrorist
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organizations and on their inherent limitations. The authors identify three different

modi operandi with related objectives (Table 1.4).

Modus Operandi Objectives

Disorientation To alienate the authorities from their citizens, reducing the government

to impotence in the eyes of the population

Target Response To induce a target to respond in a manner that is favorable to the insur-

gent cause

Gaining Legitimacy To exploit the emotional impact of the violence to insert an alternative

political message

Table 1.4: Modus operandi and objectives of terrorism. Source: Author’s adaptation of Neumann

and Smith (2005)

Besides this classification, the authors argue that strategic terrorism has many

limitations since it is based on wrong assumptions related to the psychological behav-

ior of individuals or institutions in critical situations. These assumptions are two:

1. The target’s group determination to hold on a particular policy or possession

will collapse once it has been exposed to terrorist violence;

2. A terrorist campaign will instill a degree of fear within the target population;

In their work, Neumann and Smith review these assumptions listing cases that

prove their weakness, concluding that strategic terrorism is intrinsically limited be-

cause it principally “relies on the exploitation of the psychological rather than the

destructive effect of armed action” (Neumann and Smith, 2005, 591).

1.1.2.3 The Organizational Structure of Terrorist Organizations

As for the concept of terrorism, many scholars have attempted to provide a com-

prehensive definition of terrorist organization. Considering the many-sided nature of

these organization, this is a hard task. Matusitz (2012) defines a terrorist organiza-

tion as “an illicit clandestine organization that generally consists of planners, trainers,

and actual bombers/killers”. For security purposes, institutions and governments are

conducting censuses of the existing terrorist organizations all over the world. The

United Nations Security Council (UNSC) has adopted two resolutions in 1999 (1267)

and 2011 (1989) for the creation of a list of “entities and other groups and under-

takings associated with al Qa’ida”. This list was intended to counter the financing

to terrorism, the transit of terrorist affiliates and the supply of arms. Moreover, in
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2001 the European Union, in the framework of the Common Foreign and Security

Policy, has published an additional list of terrorist organizations to extend the efforts

to prevent terrorist activities. This list was lastly updated in 20163

The investigation of organizational processes and dynamics of terrorist groups has

long interested academia. Many approaches have been used to describe how terrorist

organize, communicate, employ resources. Notably, Crenshaw (1987) compares the

instrumental theory with the organizational perspective, developing the “Organiza-

tional Process Theory” (Table 1.5).

Instrumental Perspective Organizational Perspective

The act of terrorism represents a strategic

choice

The act of terrorism is the outcome of internal

groups dynamics

The organization using terrorism acts as a

unit, on the basis of collective values

Individual members of an organization dis-

agree over ends and means

The means of terrorism are logically related

to ends and resources, surprise compensate for

weakness

The resort to terrorism reflects the incentives

leaders provide for followers and competition

with rivals

The purpose of terrorism is to bring about

change in an actor’s environment

The motivations for participation in terrorism

include personal needs as much as ideological

goals

The pattern of terrorism follows an action-

reaction process, terrorism responds to what

the government does

Terrorist actions often appear inconsis-

tent,erratic and unpredictable

Increasing the cost of terrorism makes it less

likely, decreasing cost or increasing reward

makes it more likely

External pressure may strengthen group co-

hesion; rewards may create incentives to leave

the group

Terrorism fails when its practitioners do not

obtain their stated political objectives

Terrorism fails when the organization disinte-

grates; achieving long-term goals may not be

desirable

Table 1.5: Assumptions of instrumental and organizational perspectives on terrorist organizations.

Source: (Crenshaw 1987, 27)

At that time, the organizational perspective was rarely used in the study of terror-

ism. After listing the founding assumptions of the two, Crenshaw claims that the final

goal of every organization is the maintenance of the organization itself, regardless of

the aim the organization had when it was created. This statement clearly divides the

individual reasons and interests of the subjects that form the group to the behavior

3After the signing of the Colombia peace agreement between the government and the Fuerzas

Armadas Revolucionarias de Colombia (FARC), the Council suspended the sanctions against the

FARC, excluding the organization from the list.
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of the group itself. The theory had the aim to explain the position of the organization

related to the use of violence and the process through which an organization decides

to shift to it.

After Crenshaw’s work, considered the historic events happened during the 1990s

and the 2000s, the organizational study of terrorist organizations gained importance

in the academic debate. Abrahms (2008) refers to the instrumental perspective call-

ing it “the strategic model”, empirically demonstrating its invalidity. Abrahams lists

seven “puzzles” that show how the strategic model has many weaknesses despite its

policy relevance in the field of counter-terrorism strategies. The “natural systems”

model proposed by the author in the final chapter of his work intersects the organiza-

tional and the motivational areas. The model states that terrorist organizations “will

routinely engage in actions to perpetuate and justify their existence, even when these

undermine their political agenda”, in a similar fashion to what Crenshaw wrote.

Focusing specifically on the structure of terrorist organizations, Ganor (2008) re-

views the most popular typologies emerged from the literature. The main distinction

is between hierarchical and network organizations. On one hand, hierarchical orga-

nizations have a clear division with authority between the leadership, officials with

specific responsibilities, activists and supporters (e.g., Hezbollah, Hamas). On the

other hand, network organizations are composed of weakly connected cells and do

not present any clear hierarchical authority (e.g., Al Qaeda). Piazza (2009) proposes

a further distinction, however focusing only on jihadist groups. Using a case study

of post-invasion in Iraq, Piazza develops two categories, merging groups’ goals and

structure. He divides jihadist organizations acting in Iraq between “strategic groups”

and “abstract/universal” groups. The former typology is composed by groups that

are similar to secular national-liberation and regime change movements, while the

latter is made of groups affiliated with the Al Qaeda network.

The organizational issue also poses relevant questions on whether the organiza-

tional structure itself has a significant impact on the lethality of attacks if compared

with other types of non-organized terrorism. Indeed, despite the historical prevalence

of organized terrorist structures (either hierarchical or network based), during the last

years, Western countries have experienced the attacks of lone-wolf terrorists. Even

though lone wolf terrorism stems its root long before these days (Malet, 2010, 2013),

the increase of their actions has marked a significant turning point. The emergence

of the Islamic State (throughout the work also referred as IS)4 has brought a wave of

4Other authors refer to the IS also as ISIS (Islamic State of Iraq and Syria) or ISIL (Islamic State

of Iraq and the Levant) or Daesh (an acronym for the Arabic phrase al-Dawla al-Islamiya al-Iraq
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violent attacks (especially in Europe) carried out by individual lone wolves (Institute

for Economics and Peace, 2016). Comparing a lone wolf with a member of a terrorist

organization, the former is a person that “act without group or organizational sup-

port” (McCauley et al., 2013). Similarly, Spaaij (2010) defines lone wolves as persons

who “(a) operate individually, (b) do not belong to an organized terrorist group or

network, and (c) whose modi operandi are conceived and directed by the individual

without any direct outside command or hierarchy”. Concentrating on more recent

dynamics, Feldman (2013) defines lone wolves terrorism as:

“self-directed political or religious violence undertaken through the “ter-

rorist attack cycle” by individuals—typically perceived by its adherents

to be an act of asymmetrical, propagandistic warfare—which derives from

a variable amount of external influence and context (notably now online),

rather than external command and control”

The definition provided by Feldman foregrounds the use of the internet. Indeed,

leaderless terrorism has exploited the role of social media and web propaganda, cre-

ating the conditions for easier radicalization processes (Aly et al., 2016).

Among OECD countries, the deadliest recent attacks from lone actors occurred

in Turkey, France and United States. Specifically, in the United States attacks from

lone actors have been estimated to account for the 98% of the total number of ter-

rorist attacks since 2006 (Institute for Economics and Peace, 2016). To testify the

criticality of this dimension, it is worth to note that the San Bernardino and the Nice

attacks have originated from the actions of lone wolf terrorists. Moreover, scholars

have tried to model recurring patterns among lone actor profiles: several studies em-

phasize the prevalence of young males, and rapid radicalization processes occurred

quite recently before the actions as important features (Spaaij, 2011; Bates, 2012;

Basra and Neumann, 2016). Nevertheless, Alakoc (2017) empirically demonstrates

that organizationally linked suicide attacks are deadlier than lone wolf attacks, sug-

gesting that the issue of lone wolves must not overshadow the power of proper terrorist

organizations.

1.1.2.4 The geographical range of action of terrorist organizations

When looking at the activities of terrorist organizations, it is necessary also to focalize

on their geographical range of action. Usually, the main distinction is between domes-

al-Sham (Islamic State of Iraq and the Levant). IS is the english translation of how the terrorist

organization calls itself. All these acronyms refer to the same terrorist organization
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tic and international (also foreign) groups. Many scholars have analyzed these two

different dimensions (Dugard, 1973, 1974; Hoffman, 1997; Kurowski and Sussman,

2011).

Simply put, Bergesen and Lizardo (2004) define international terrorism as that

kind of terrorism in which the perpetrator, the target groups or the location of the

incident involve at least two different countries. Domestic terrorism, on the other

hand, is related in its various dimensions only to a single country. Merari (1978)

proposed a bi-dimensional point of view to label terrorist organizations, based on

their target population and base of operation. The author developed four profiles:

• Domestic-based xenofighters

• Foreign-based xenofighters

• Domestic-based homofighters

• Foreign-based homofighters

Thereby, the base of operation can be either domestic or foreign and the action

can be conducted either against a foreign entity (i.e.: xenofighters) or a domestic

target (i.e.: homofighters). These four categories lead to three results:

• Xenofighters terrorist groups tend to adopt more indiscriminate tactics than

homofighters;

• Foreign-based terrorist groups tend to perpetrate international terrorism;

• Foreign-based terrorist organizations are mostly dependent upon foreign coun-

tries’ support

Drawing upon more recent patterns, the Institute for Economics and Peace (2016)

provides descriptions of the main features of domestic and international terrorist

groups. Domestic groups actions are mostly motivated by anti-government senti-

ment, nationalism, separatism, racism, bigotry or anarchy. In the OECD area, the

most prominent domestic groups are the IRA in Northern Ireland, the Euskadi Ta

Askatasuna in Spain (ETA) and the PKK in Turkey. All the three organizations are

animated by nationalist or independence ideologies. Under the category of domestic

terror, the IEP includes also the home-grown terrorism, citing the attackers of the

London bombings occurred in 2005. Data analysis included in the same report high-

lights how PKK is the deadliest domestic terrorist groups, accounting for 529 deaths
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from 2000 to 2016. The recruitment to domestic groups is mostly influenced by friend

and family ties (Institute for Economics and Peace, 2016, 48). Conversely, the re-

cruitment to international groups is driven by education and employment conditions.

IS is nowadays the most prominent international terrorist group.

1.2 Theoretical Framework

Social sciences account for a massive number of theories that aim at explaining human

nature by means of human behavior in several contexts and domains (Hull, 1943; Klein

et al., 1993; Endsley, 1995; Monroe and Maher, 1995; Hechter and Kanazawa, 1997;

Naylor et al., 2013). The study of crime and terrorism is no exception. For instance,

various theories have been developed, proposed and tested to explain why and how

individuals (or, eventually, collective organizations) engage in crime (Burgess and

Akers, 1966; Sutherland et al., 1992; Moffitt, 2003). Some of them have been partially

or completely falsified by empirical evidence (for instance the General Theory of Crime

proposed by Gottfredson and Hirschi (1990)), while others are still debated and have

not led to comprehensive agreement. The difficulty of agreeing on specific theories to

explain social phenomena is strongly connected to the inherent complexity of human

nature. Theories generally provide simplified and restricted explanations of human

decisions and actions, failing to take into account the whole set of concurring and

intervening factors that may have an impact on an agent’s thoughts and actions.

This considered, the use of a theoretical framework as the backbone of this dissertation

should not be seen as an attempt to universally explain how jihadism behave and

why it behaves in certain given ways. I am fully aware that, as a portion of reality

is captured by the selected theories, other components are missing. However, it is

useful to frame the present work in relation to established theoretical and empirical

explanations so that these theories may offer insights to interpret and read the results

of the different analyses.

This work will then rely on two theoretical components: theories aiming at explaining

the spatio-temporal clustering of terrorism, and theories aiming at explaining terrorist

decision-making.

1.2.1 The Spatio-Temporal Concentration of Terrorism

The first documented application of the idea that crime is unequally distributed

across spatial units dates back to the work of Quetelet on crime in France, Belgium
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and Holland (Quetelet, 1831). Decades after, within the School of Chicago context,

Shaw et al. (1929) showed that crime was dramatically unequally distributed across

the neighborhoods of the city.

Following these two pioneering and seminal works, criminologists have widely pro-

vided further evidence on the spatial nature of crime and, specifically, on its ten-

dency towards clustering across some given areas. This stream of research produced

the development of a subfield within criminology, the so-called “criminology of place”

(Sherman et al., 1989). Furthermore, a law, named “law of crime concentration” has

been also proposed by Weisburd (2015). The “law of crime concentration” indeed

states that crime is densely distributed in a small number of micro-places (e.g., street

segments) in a city, and that this distribution is generally stable over time. Many

studies have then tested this proposition, providing evidence of its actual meaning-

fulness in different cities and contexts (Weisburd and Amram, 2014; Wheeler et al.,

2016; Favarin, 2018).

Besides the actual empirical corroborations of this law, and even before its official

formalization, a wide number of works have reasoned around the concept of the

non-random distribution of crime across places, applying also a variety of statistical

methods that became lately more and more sophisticated (Brown, 1982; Dutt and

Venugopal, 1983; Felson, 1987; Evans and Herbert, 1989; Gorr and Olligschlaeger,

2010; Murray et al., 2001; Ackerman and Murray, 2004; Harries, 2006; Nath, 2006).

The numerous empirical evidence towards crime concentration across space (and time)

went beyond the borders of academia, inspiring a great shift also in policing practices.

The diffusion of CompStat in the late 90s first marked a change towards resource al-

location of police departments in the United States, with data-informed decisions

working on the assumption that crime does not occur the same way in the same areas

of the city (Henry, 2002; Weisburd et al., 2003).

CompStat certainly changed the policing scenario, but eventually opened the path

towards more sophisticated and algorithmic supporting systems for the law enforce-

ment. The spread of AI companies brought predictive policing software into the

market (Perry, 2013; Dunham and Alpert, 2015; Bennett Moses and Chan, 2018).

These software simply make use of machine and statistical learning algorithms that

are able to identify hot-spot areas (i.e., areas in which crime tends to concentrate

heavily) to suggest to officers where to intervene. Besides the technical aspects of

these systems, they all rely on the accepted and confirmed fact that crime (although

not all crimes follow this law) clusters in certain areas and at certain times of the day.

Different explanations have been provided to justify these findings, with scholars
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testing well-known criminological theories such as social disorganization, crime op-

portunity and rational choice.

While criminology generally focused on predatory crimes to evaluate the “spatio-

temporal clustering” hypothesis, parallel fields as political science and international

studies reached similar consensus on a tightly-related matter: the spatial and tem-

poral dynamics of violent conflicts and terrorism. Although with many differences

(regarding unit of analyses and the nature and impact of the social phenomena),

scholars have empirically showed that political violence and terrorism tend to clus-

ter in certain areas and to behave in patterned ways. This can happen by means

of contagion and diffusion processes (Midlarsky, 1978; Pitcher et al., 1978; Hamil-

ton and Hamilton, 1983; Myers, 2000) bursts and micro-cycles, within the context of

near-repeat victimization (Behlendorf et al., 2012). For instance, the seminal work of

Midlarsky et al. (1980) highlighted the presence of contagion in international terror-

ism and the existence of autocorrelation processes within and between regions.

Additionally, terrorism, as crime, not only clusters in space but also exhibit patterned

dynamics of concentration in time. Besides the theoretical explanation and descrip-

tion that one should give to its decision making (which will be covered in the next

subsection), terrorism is localized in time and behaves through non-random timings

(Enders and Sandler, 2006; Medina and Hepner, 2008; Siebeneck et al., 2009; LaFree

et al., 2012; White et al., 2013; Tench et al., 2016).

Although criminology (as the social sciences in general) are often far away from pro-

viding universally accepted answers to explanations and even descriptions of social

phenomena, the spatio-temporal concentration of crime and terrorism has been con-

firmed and proved by a wide number of studies, spread over a century of research.

This finding represent a crucial frame for my work, given the nature of the data

and analysis that will be presented later on in the manuscript. All the three ana-

lytic chapters will combine either temporal or geographic (or even both) information

on terrorist events plotted by a sample of jihadist groups, thus relying on the con-

centration of terrorism over time and space as a strong component for interpreting

real-world dynamics of terrorist groups.

1.2.2 Strategic Terrorism

The definition of terrorism has been long debated and so are its origins. However,

there has been an agreed turning point in which terrorism started to become sys-

tematically formalized as to attract, train, educate individuals. This turning point is

tightly related to the essay “Mord und Freiheit - Murder and Freedom”, written by
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Heinzen (1853). In this essay, the German revolutionary argued that murder must

be turned into a science and that revolutionaries have to overcome the asymmetry

between the State warfare and resources by means of strategies characterized by high-

profile violence (Bessner and Stauch, 2010).

This call inspired many other ideologists of terrorism and anarchists, as Bakunin,

Zaichnevski, Recluse and Romanenko. These were all central contributors to the de-

velopment of the modern doctrine of terrorism, marked by the so-called “propaganda

of the deed”, introduced by Carlo Pisacane and afterwards made popular by Carlo

Cafiero and Errico Malatesta in the declaration to the Anarchist International in 1876

(Fleming, 1980; Linse, 1982; Garrison, 2004; Kassel, 2009).

Since then, and following the advances made by technology and communication, the-

orists of terrorism have proposed philosophies and developed schools of thought with

regard to terrorist actions and behavior. The first philosophy was rationalism. Ra-

tionalism posited that violence represented a mean to an end. A second competing

philosophy was expressionism. Expressionism, in turn, considered terrorist violence as

a form of individual expression, and resorting to terrorism meant an existential choice

(McCormick, 2003). These two different approaches towards terrorism developed over

time and inspired contemporary theories of decision making. Rationalism contributed

to the formalization of the “strategic theories”, while expressionism mostly influenced

“psychological theories”. Finally, a third contemporary frame is represented by “or-

ganizational theories”.

These three approaches are not mutually exclusive, but instead provide different in-

terpretations from distinct standpoints to read and understand terrorism. Given the

nature of my work, I will solely focus on strategic theories. The whole work will

rely around data and objectives that deal with the tangible actions of a sample of

jihadist groups, namely its terrorist attacks. Attacks comprise a number of different

characteristics and features that can reasonably fall under the umbrella of strategic

choices. As McCormick (2003) explained, a group’s choice of targets, tactics and tim-

ing together defines the group’s own “operating profile”. This is the reason behind

the decision to focus solely on strategic theories, as organizational theories focus on

the internal structure and the formal symbolism of each group as a way to read their

behavior, and psychological theories are more concerned with other non-rational con-

siderations covering motivations, individual drivers and personal traits.

Strategic theories regarding terrorist decision-making originate in the study of con-

flicts. Schelling (1980) posited that the parties engaging in a conflict are adaptive

strategic agents. This means that the parties try to find the most suitable ways to

20



1 BACKGROUND

win, ruling out the opponent, as in a game or a contest. This simple consideration

has been widely adopted by terrorism researchers. Scholars have then formalized ter-

rorism as an instrumental type of activity carried out to achieve a given set of long-

and short-run objectives (Corsi, 1981).

As noted by McCormick (2003), terrorist groups are then organizations that aim at

maximizing their expected political returns or minimizing the expected costs related

to a set of objectives.

Besides this adaptive and adversarial characteristic, the strategic frame assumes that

terrorist groups act with a collective rationality (Crenshaw, 1987; Sandler and Lapan,

1988; Lake, 2002; Sandler, 2003): a terrorist group is therefore a unique actor, that

exist “per se”. This is certainly a simplifying assumption, as organizational theories

explain, considering that terrorist groups can be structured in very different ways and

this would impact decision making processes (Crenshaw, 1987; Ganor, 2008; Piazza,

2009; Heger et al., 2012). However, at a general level, when considering historical

events and their multidimensional characteristics, the simplifying assumption of col-

lective rationality can hold and can be useful in interpreting and framing the life-cycle

or behaviour of a group (Enders et al., 1992, 2011; Enders and Sandler, 2006; Behlen-

dorf et al., 2012; Campedelli et al., 2019a).

Two alternative views constitute the collective rationality paradigm: a strong and a

weak alternative. The strong variant, derived from neoclassical economics, assumes

that there is no asymmetry between the real world and the group’s view, while the

weaker variant (also called “procedural”) states that these actors act rationally based

on their beliefs that, however, are asymmetric and incomplete (Simon, 1987). This

latter view has certainly found much more empirical evidence in literature (Bowen,

2004; Fussey, 2011).

A number of constraints severely limit the strategic decision making of a group, even

if there is a rational way of behaving behind an organization’s actions. These aspects

have an impact on the type of attacks (as the ultimate and visible step of a decision

making process) that a terrorist group will plot. Tangible and intangible constraints

have the power to deeply influence the frequency, severity and impact of a terrorist

events.

Drake (1998b), for instance, listed and described the constraints that lead to the final

selection of a target by a terrorist group. These constraints include ideology (group

dynamics, capabilities), strategy (protective measures) and tactics, as decision mak-

ing does not occur in a vacuum. The ideology helps in defining a set of potential

targets, as also showed by Asal et al. (2009). Furthermore, the need for support,
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their own capabilities and the security environment also play a role in determining

the boundaries for strategic actions. Support is fundamental, as terrorist groups in

general wish to benefit some portion of a given society, and therefore unintentionally

harming or damaging those who might represent future recruits or support providers

could have a very negative payoff for the group itself (Schwartz et al., 2009; Byman,

2013; Benigni and Carley, 2016).

Groups capabilities are then fundamental to assess the potential outcomes of the de-

cision making process of a given organization. Material resources and individual skills

are crucial in the actual computation of potential strategies: trivially, groups with a

higher number of affiliates, with higher material and economic resources and with a

wider set of technical capabilities will have much more options compared to smaller

and less powerful organizations.

McCormick (2003) reports Schelling words in defining the strategic approach as a

“cheap theory” and notes how the simplicity of this approach is both a strength and

a weakness. Certainly, such approach completely fails in really understanding the

way in which decisions are made within a group and leaves out other important com-

ponents for fully understanding terrorism. Nevertheless, the strategic frame helps in

unfolding some of the visible dynamics that data can reveal. Variations in combi-

nations of tactics, weapons and targets, for instance, could be better understood if

assuming (even partially) rational decision making processes. Temporal information

on over-time event characteristics may reveal very much regarding the group itself

(Martin and Perliger, 2012; Gilli and Gilli, 2014; Polo and Gleditsch, 2016). Long

periods of low or no activity might imply an insufficient level of resources. Conversely,

a long series of attacks against hard targets with sophisticated weapons would imply

exactly the opposite, providing further information on the current state of a group

and on its short- and long-term goals.
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2.1 Aim of the Work

Though terrorism has not been considered a core topic in classic criminology for a

long time, scholars have lately tried to apply, tailor or test renowned criminologi-

cal theories to the problem of political and terrorist violence (LaFree and Freilich,

2016), although its mechanisms are certainly different from most ordinary and or-

ganized crimes. Terrorism has the power of affecting thousands of lives with one

single action, with its consequences spanning also to the economy and the stability

of the political process of targeted countries. That considered, within the study of

criminal and deviant processes terrorism certainly plays a role in terms of impact

on humanity. As previously said, even though terrorism is a multifold creature that

relies on different ideologies and motivations, in the last decades jihadism has become

its main protagonist. Jihadism itself is not a unique, homogeneous concept, but yet

it possesses some specific features that distinguish it from other types of terror and

represents an actual threat to peace, development and security in many regions of

the world in spite of its declining trends in many parts of the world.

For this reason, the need for accurate and useful research is of indisputable value.

Nevertheless, research in terrorism is often of little help in solving problems. Sageman

(2014) highlighted how, despite years of government funding for research in terrorism,

the research itself is still too far away from solving concrete problems.

This issue is determined by the lack of empirical data and empirical studies: the au-

thor notes how the majority of research is still (poorly) interview-based or historical-

focused. Data on terrorism have been scarce for a long time: only recently few

institutions started to provide well-built databases for conducting high-level research

in the field. Furthermore, governments and intelligence agencies usually avoid shar-

ing information with academia for privacy and political motivations. In this context,

researchers should extract the best from the available. Having these aspects in mind,
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the primary aim of this work will be to build solid knowledge on the existing oper-

ational patterns and strategic choices of jihadism, also trying to forecast the actions

of the groups under analysis. In parallel, a second aim is, as previously highlighted,

to develop and present a novel methodological framework that integrates network

science and artificial intelligence.

This framework additionally seeks to demonstrate how complex but flexible models

can benefit research on terrorism. To pursue these aims, the dissertation will try to

answer the following research questions:

1. What are the recurrent patterns in the behavior of the considered jihadist

groups?

2. What are the relevant similarities and the significant differences in how these

terrorist groups act?

3. To what extent jihadist terrorism show memory-like processes when multi-

dimensional information on attacks is considered?

4. What can be the contribution of complex networks, mathematical modeling,

and artificial intelligence to the study of terrorism?

The research problems and related questions have implications both from the aca-

demic and policy standpoints. Identifying patterns and features related to the be-

havior of different jihadist terrorist organizations and predicting their strategies can

help in advancing the knowledge on future scenarios, providing policy-makers with

concrete insights for combating terror. Investigating the concept of “memory-like”

processes in terror behaviors can enhance the knowledge on how these groups act and

plan future attacks, highlighting possible strategies or recurring patterns, contrasting

the hypothesis that terror happens randomly and is intrinsically unpredictable.

Finally, the specific attention that will be dedicated to targets throughout the work

is of particular relevance considered that analyzing what entities jihadist groups attack

can shed light on potential consequences, damages, and impacts of terror events.

While certainly predicting tactics or employed weapons might be helpful, forecasting

targets is even more important also from an intelligence perspective. Agencies and law

enforcement seek to understand what terrorism will hit in the future: they potentially

care less about what type of weapon jihadists will use, as if they cannot forecast

against whom they will be using it, the effort is almost useless. Generally, weapons

and targets are inter-related (to exemplify, we can assume that it is almost impossible

that a group will attack a government building using stones), and if resources have
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to be efficiently allocated, then a good way to understand how to manage them is to

define which are the most probable targets that have to be protected.

In light of these aspects, this dissertation will focus on the world’s five most active

jihadist organizations (namely the Islamic State, Al Qaeda, Boko Haram, Afghan

Taliban, and Al Shabaab). The analytic part will be divided into three different

dimensions:

1. Presenting a technical framework originating from Markov chains to detect the

complex behavioral structure of jihadist groups and developing a coefficient to

measure similarity in the dynamic processes of weapon and target selection by

jihadist groups;

2. Investigating memory-processes and self-excitability in terrorist events via Hawkes

processes modeling;

3. Integrating dynamic meta-networks within Long Short-Term Memory Networks

with the aim to predict the most probable targets in the future, developing the

basis for a prediction model.

The outcomes may open new pathways towards the implementation of these tech-

niques to evaluate the risk of incidents, illuminating covered patterns and decision-

making processes to design effective prevention policies aimed at countering jihadism.

2.2 On the Need for Rethinking Research in Crim-

inology and Terrorism

The focus of this dissertation is not merely criminological. This aspect has to be taken

into consideration from the very first pages. The rapid advances in computational

methods and the need for scalable and efficient solutions for complex social problems

are calling for a revolution in the way social sciences are studied and addressed. A call

to which many have recently started to respond all over the world. Many universities

have now hybrid departments of quantitative social sciences, computational sociology

and research groups in which scientists from a variety of backgrounds work together

to solve societal issues. Nevertheless, still resistance from a wide part of the sociolog-

ical and criminological community exists towards the evolution of the field. This is

especially the case concerning the rise of machine learning and Artificial Intelligence

(AI), which are going to represent the mainstream approaches in a lot of disciplines
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at the moment (including health-care, finance, and industry-oriented research), but

still lie in a primitive phase of application in social sciences.

Resistance to innovations is typical in human societies, and the research com-

munity is, indeed, a mere subset of the greater set of humans living on the planet.

We should not be surprised then to realize how slow is the process of accepting and

exploiting this massive change in academia, too. Many reasons can lie behind this

resistance: the impression that machine learning algorithms are only black boxes that

are unable to provide theoretical interpretation for results, and the discontinuity that

algorithms mark not only with qualitative social sciences but also in relation to classi-

cal quantitative approaches, are among the explanatory factors of this reaction. While

social scientists using quantitative methods generally apply these techniques to test,

verify or falsify theories (therefore tweaking the data based on the specific problem,

without letting the numbers speak), machine learning and AI algorithms explicitly

look at the performance, rather than the explanation. Resistances are physiological,

then, but unlike the past, we are now facing a key turning point in history and science

we shall carefully consider.

My deep belief is that the future of social sciences on one side, as the future of

Artificial Intelligence (AI) on the other, have both to rely on a strong interdisciplinary

dialogue to make things work. The only difference is that while AI will not disappear

if social sciences will not be able to communicate with it, for social sciences the

potential cost is radically higher. On one side, AI will continue to grow and influence

our lives and if no control will be provided, outcomes may become harmful. On

the other side, traditional social sciences as intended in the past, where works were

mainly qualitative or ethnographic or, at most, softly quantitative, face the concrete

risk of becoming completely useless for policy purposes and real-world applications.

The ultimate end of this type of vision of social sciences will be of a futile academic

exercise with no concrete impacts. In parallel, as AI starts to become prominent

in the public sphere, we - as the criminology scientific community - cannot leave

the design and implementation of algorithms in the hands of engineers and computer

scientists alone. This especially in consideration of the risk of the unequal distribution

of towards more applied research in the hand of the computer science community as a

consequence of the hype that surrounds AI worldwide. We – as humanity – will need

a deep knowledge of social processes, dynamics and phenomena to avoid the risk of

biased AI systems, unintended consequences at scale and potential massive pitfalls in

the long run.

In light of this, I have devoted my dissertation to the goal of bringing together
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network science and AI to advance the knowledge on jihadism and to design possi-

ble applications that may be useful in the future out of the pure academic debate,

relying on the idea that terrorism research can benefit from advanced computational

techniques, and that AI shall devote more resources and efforts to tackle societal

problems, such as terrorism. This vision is related to the concept of responsibility.

As I intend it, research shall not be confined to departments and laboratories and

conferences, but should instead serve as much as possible (especially in this field) to

provide tools or answers to questions that deal with the wider human community.

Additionally, scholars in areas which are changing more rapidly than in the past - as

happens to the vast realm of criminology and social sciences - should be afraid of the

consequences of this shift only if they will decide to keep themselves away from it,

without getting involved.

The prominent methodological shape of this work does not mean, of course, that

research on terrorism and criminology shall only be a matter of data and computa-

tional models. Many past attempts of applying algorithms and computational tech-

niques to terrorism and other social and criminal phenomena by computer scientists,

statisticians and mathematicians have been completely useless because of the lack

of conceptual and theoretical knowledge on the analyzed phenomenon. Integration,

interdisciplinarity, and cohesion are three keywords that shall guide the “new deal”

of social sciences.

Too many times research in criminology and terrorism has been a mere “replica-

tion” of past methodologies, without investing adequate resources in novel approaches.

This, of course, avoided to take the risk for possible failures but at the same time

prevented scholars from trying to push the border a little bit further. Furthermore, if

scholars will continue to use theories and theoretical frameworks as chains to which

the scientific community has to pay a perpetual debt, they will only limit the path

of science towards knowledge and innovation. Too many times I have seen or heard

colleagues and researchers worried about the theoretical framework to use instead

of focusing on the right research questions. This, to me, has always appeared as a

gigantic problem. Being worried about what legacy of the past should act as the

cornerstone of a new research and not investing time and resources to try to create

something new in order to respond to meaningful and relevant questions is, in my

perspective, a sign of somehow diverted research. For guaranteeing a role to social

sciences in the real world of tomorrow, I do believe this process has to be changed.

Hence, this humble work explicitly aims at pointing in that direction.
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3 Case Studies and Data

3.1 Jihadist Terrorism: Concepts and Actors

As outlined in the previous chapter, there exist different categories of terrorism. Re-

ligious terrorism in one of these categories, and within this category stands Jihadism.

There are other forms of religious terrorism (e.g. Christian or Jewish terrorism) but

it is indubitable that, in the last decades, jihadism accounts for the large majority of

attacks, deaths, damages and tangible consequences. Its existence has deeply influ-

enced the recent history and still have a dramatic impact on the security and safety

of many countries and people today. The following subparagraphs briefly overview ji-

hadism as a typology of terrorism, focusing then on the IS, Boko Haram, the Taliban,

Al Qaeda, and Al Shabaab to introduce their history, goals and nature.

3.1.1 Defining Jihadism

The prominent role acquired by jihadism is proportional to its complexity: Islamist

terrorism is rooted in history and involves a multitude of religious, social, economic

and political factors. From a philological point of view, Jihad means “to strive”

in Arabic. The word has a different origin compared to what it communicates to-

day. Jihad, indeed, has a primary spiritual meaning, while the idea of the “jihad

by the sword” was developed afterward. The concept of “jihad by the sword” was

defended by radical groups that used it as the main tool to legitimate Islamist ter-

rorism (Springer et al., 2009). In the last decades, after realizing the prominence of

Islamist terrorism, researchers and scholars have started to investigate the origins of

the contemporary jihadist ideology to understand how it changed and spread all over

the world.

The multifold and interconnected events of the Twentieth century have surely

influenced if not fueled the expansion of jihadism. Colonialism, the establishment
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of Israel in 1948, and the influence of the United States after World War II are

among the main external key factors. Besides external factors, internal factors to

the Middle East also had an impact on the evolution of the problem. Springer et al.

(2009) points out that also the presence of secular regimes (e.g. Egypt), corruption,

unemployment, failed economies and the Arab loss against Israel in 1967 have led to

the Islamist insurgency. Moreover, influencing personalities like Sayyid Qutb built

intellectual and ideological theories to support the concept of “Global Jihad” (Nettler,

1996). Original members of Al Qaeda and many leaders like al Zawahiri relied on his

theories and ideas (Perry and Negrin, 2008) and, consequently, Global Jihad became

the most relevant doctrine in Jihadist terrorism. In this context, Al Qaeda acted as

the leader of a worldwide number of Islamist networks and organizations, encouraging

all the others to embrace the idea of “holy war”. Since 9/11 and the events of Madrid

(2004) and London (2005) a lot has happened. In more than fifteen years, Jihadism

has partially changed its face, even becoming more determined and merciless. The rise

of the Islamic State and the birth and reinforcement of many other Islamist terrorist

groups have shaken the world dozens of times. Attacks in Western countries have

increased and Islamist terrorism has shifted towards a more decentralized and loose

structure. Lone wolves and self-radicalized individuals have joined the idea of jihad,

making attempts to predict and anticipate the attacks almost impossible.

In this scenario, four terrorist organizations have played a key role. In 2015,

the actions of the IS, Boko Haram, the Taliban in Afghanistan and Al Qaeda have

accounted for 17,721 deaths all over the world (Institute for Economics and Peace,

2016). Two years after, in 2017, Al Shabaab substituted Al Qaeda in the list of the

four deadliest groups worldwide provided by the Institute for Economics and Peace

(2018): the Somali group, with the Islamic State, the Taliban, and Boko Haram

were alone responsible for 10,632 deaths from terrorist events. These single aggregate

figures stress the tremendous impact that these five jihadist organizations have on

society.

3.1.2 The Islamic State

In the last years, the world has experienced the radical and dramatic actions of the

IS. While during the 2000s Al Qaeda was considered the main terrorist actor in the

global scenario, since 2007 the IS has slowly but constantly overcome all the rivals

and acquired the role of most critical terrorist threat for many countries in the world.

The origins of IS dates back to 2000 in a militant group called Jamaat al-Tawhid

wal-Jihad (JTJ), founded and led by Abu Musab al-Zarqawi (Hashim, 2014). JTJ was
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one of the groups fighting against the US invasion of Iraq in 2003. In 2004, the JTJ

joined Al Qaeda and changed its name in Al Qaeda in Iraq (AQI) (Fishman, 2016).

Hashim (2014) reports that the goals of the group were mainly focused on the removal

of the aggressor from the territories of Iraq, on waging Jihad to liberate Muslim

territories from infidels and establish a caliphate ruled by Sharia. Subsequently, in

2006, some divergences between al-Zarqawi and the central structure of Al Qaeda and

the final death of the leader of AQI, induced to the attempt to create the prototype of

the current IS. The chosen name was Islamic State of Iraq (ISI), and the organization

control was given to Abu Omar al-Baghdadi. The project failed due to the lack of

resources and by 2008 Iraq experienced a relatively peaceful period. Nevertheless,

between 2010 and 2013, the ISI came again to the attention of the world. Its leader

started to explicitly call for the creation of a caliphate, and the group changed again its

name in “Islamic State of Iraq and Syria” (ISIS). The violent victories in the territories

of Iraq and Syria gave favorable conditions to al-Baghdadi for the establishment of

the caliphate. In 2014, ISIS changes definitely its name in “Islamic State” (IS).

The anomalous nature of this terrorist organization has been emphasized by many.

Cronin (2015) sustained that the IS cannot be described as a terrorist group, stressing

the differences with Al Qaeda. It is indisputable that IS has many features that

distinguish it from all the other terrorist groups of the world. Firstly, it has established

a caliphate (Jabareen, 2015). Secondly, the IS could count on a number of members,

affiliates, and fighters much higher than any other group. Thirdly, the IS can rely

on economic, communication and military resources that no one else possesses in the

terrorism scenario (Stergiou, 2016). With regard to this, studies show how the IS

relies on the power of the internet to recruit members and to spread its propaganda

more than any other group (Farwell, 2014; Klausen, 2015; Mahood and Rane, 2017).

Data returns an impressive snapshot of the human flows that go from the Western

countries to Iraq and Syria to join the caliphate. The IS benefits from the so-called

foreign fighters too. Hegghammer (2013) defines a foreign fighter as an agent that “a.

has joined, and operates within the confines of an insurgency; b. lacks citizenship of

the conflict state or kinship links to its warring factions; c. lacks affiliation to an official

military organization; d. is unpaid”. Estimates tell that until 2015, between 27,000

and 31,000 individuals have joined the IS, traveling from 86 countries (Soufan Group,

2015). They first become human capital for terrorist groups (Benmelech and Klor,

2018). Battlefield experiences in Syria and Iraq enhance their military capabilities

and increase links and relations with other terrorists. Then, a part of these foreign

fighters, after an experience in the Middle East, goes back to the European countries.
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Sometimes, returning foreign fighters put into practice what they have learned in the

war zones, with the specific intent to carry out individual or group terrorist attacks

(Hegghammer, 2013). Vidino (2014) points out that foreign fighters that depart from

Europe have different ages, origins, social and economic backgrounds: this finding

makes it difficult to develop tailored policies since no defined profiles exist.

The IS exploited all these elements to become the world’s deadliest terrorist group.

In 2015, IS plotted attacks in 252 cities and its members were responsible for a total

of 6,141 deaths (Institute for Economics and Peace, 2016). In, 2016 the number of

casualties rose up to 9,132 (Institute for Economics and Peace, 2017). The primary

goal of the IS is to create an area of Islamic rule. Although in the last two years the

group has been almost defeated and has lost many territories, unlike all the other

groups it has succeeded in its aim. The leader is still al-Baghdadi and the group is

still considered the deadliest worldwide (Institute for Economics and Peace, 2018).

3.1.3 The Taliban

Despite Kleiner (2000) simplistically defines its members as “warriors”, the Taliban is

an Islamist fundamentalist terrorist group based in Afghanistan composed by Pashtun

tribesmen and Mujahedeen. These Mujahedeen participated in the resistance against

the Soviet Union invasion of the country in the 1980s. The group ruled Afghanistan

from 1996 to 2001. In 2001, the Taliban have been defeated by a NATO coalition

led by the US. In 2013, the NATO coalition reduced its presence in Afghanistan and

this provoked an increase in the terrorist activity of the Taliban group (Institute for

Economics and Peace, 2016). The origins of the Taliban go back to the Soviet invasion

and the subsequent fall of the pro-Soviet government in 1989 (Goodson, 2001; Barfield,

2010; Hyman, 2016). The Mujahedeen groups started to fight against each other and

the country was fragmented in many regions. In this scenario, some former fighters

formed a group led by the Mullah Omar, with the final aim to “restore peace, disarm

the population, enforce Sharia law and defend the integrity and Islamic character of

Afghanistan” (Rashid, 2002). The group was called “the Taliban” and rapidly gained

popularity and local legitimacy. This escalation led the group to conquer Kandahar

in 1994 and Kabul in 1996 (Barfield, 2010).

Besides the other historical events that brought the Taliban to re-enforce their terror

activity (which is not the very purpose of this work), analyzing their strategies and

targets is important to understand their activities. Johnson (2013) stresses how the

Taliban proved to be a highly adaptive group. Their tactics have evolved over time:

the long tradition of conflicts has helped the members of the Taliban to learn and
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employ different strategies. Despite a low technological level, their strategies are

rather sophisticated. The control of the territory through different methods (e.g.:

the institution of shadow governments in rural areas, as noted by Johnson) and the

battlefield tactical behaviors demonstrate their skills. In this scenario, the current

first aim of the Taliban is to overthrow the Afghan government. For this reason, in

the last years the Taliban have mostly targeted police forces (Institute for Economics

and Peace, 2016). Moreover, it is relevant to note how since the US invasion in

2003, the Taliban have highly increased the use of suicide bombings (Johnson, 2013).

The Taliban killed 4,502 people in 2015 (deadliest year ever, +29% if compared with

2015) and 3,583 in 2016 Institute for Economics and Peace (2016, 2017). Concerning

economy revenues, the Taliban rely on opium and heroin smuggling as the first funding

source for their activities (Thruelsen, 2010; Piazza, 2012).

3.1.4 Al Qaeda

Al Qaeda is the Islamist terrorist organization responsible for the 9/11 attacks. The

dawn of Al Qaeda dates to the Soviet invasion in Afghanistan when its founding

leader Osama bin Laden and Abdullah Azzam were collaborating in the conflict.

In 1988, while the conflict was ending, bin Laden and Azzam founded Al Qaeda in

Pakistan. After the assassination of Azzam perpetrated by bin Laden himself, the

Saudi-Arabian born terrorist became soon one of the leaders of the Global Jihad Net-

work. After the first phase where the organization strived for the internal jihad (the

attempt to conquer the countries with Muslim populations in Middle East, Central

Asia, the Indian Subcontinent, and Southeast Asia), Al Qaeda turned to the external

jihad. This shift happened across 1997 and 1998 (Gunaratna and Oreg, 2010). One

of the main motives of this strategic choice was the intent to stop the Western (and

specifically the American) influence in that area of the world (Migaux, 2007). Since

that moment, US citizens and building became the very target of the terrorist activ-

ity. Some successful attacks (among the other, the attacks against US embassies in

Nairobi and Dar es Salaam) preceded the 9/11 attacks which are considered the most

devastating and lethal terrorist actions of modern history.

After the death of bin Laden in 2013, the organization has renovated itself to better

achieve its goals. Nowadays, Al Qaeda is a global organization, decentralized and

franchised around a central control group. Currently, Al Qaeda’s main affiliates are

Al Shabaab, Al Nusrah Front, Al Qaeda in the Arabian Peninsula (AQAP), Al Qaeda

in the Islamic Maghreb, Abdullah Azzam Brigades and Al Qaeda in the Indian Con-

tinent (Byman, 2014). Zehr (2017) develops the concept of “Al Qaeda phenomenon”
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to describe that process that has led to the worldwide proliferation of terrorist orga-

nizations similar to Al Qaeda. According to the author, Al Qaeda had the power to

inspire the IS and many others to join the jihad. As mentioned, a relevant aspect of

Al Qaeda is the connection that the organization has with many other groups, relying

on the ideology of the Global Jihad. With the rise of the IS, the terrorist narrative

has mainly concentrated on these two entities to understand differences, similarities

and possible evolution in the relations between the two. Abu Musab al Zarqawi was

helped by Al Qaeda in the foundation of the JTJ, but after his death and with the

expansion of the IS, the two organizations started a feud. In fact, there have been

clashes between the IS, Al Qaeda and other groups like Al Nusrah. Holbrook (2015)

(2015) notes that Al Qaeda sought to present the group as a moderate alternative

to the IS, but the events of the last years demonstrated that the IS managed to be-

come the leading force in the Jihadist terrorist scenario. Despite the loss of power, in

2015 Al Qaeda was responsible for 1,620 deaths (-17% if compared to 2014) and 368

incidents, while in 2016 the jihadist group has killed 1,349 individuals (Institute for

Economics and Peace, 2016, 2017).

3.1.5 Boko Haram

Boko Haram is a Nigerian terrorist group which has first come to the attention of

its country chronicles in the early 2000s (Onuoha, 2010). The name means “Western

education is forbidden”. Its main goal is to establish an Islamic caliphate in Nigeria.

The group has partially succeeded in his goal, imposing the Sharia law in some of the

states of Nigeria. Its operations mainly concentrate in Nigeria - the state of Borno

is the epicenter of the terror - and in adjoining African countries like Burkina Faso

and Cameroon (Institute for Economics and Peace, 2016). Several scholars have tried

to analyze the context in which the terrorist organization has developed. The group

was born in the north of Nigeria, and it is currently the major security issue for the

Nigerian government (de Montclos, 2015; Abubakar, 2017).

Due to its limited geographical range of action, Boko Haram has not been directly

considered a priority for Western institutions and academia. Nevertheless, it poses

great challenges for the stability of the area threatened by its presence. According to

many scholars (Onuoha, 2010; Loimeier, 2012; Akinola, 2015; Iyekekpolo, 2016), the

expansion of Boko Haram in Nigeria is caused by multiple factors that are indepen-

dent of the mere religious aspect. These factors are the extreme Nigerian poverty, the

weak efforts of the government in countering the terrorist threat and the grievance

of large local areas against the institutions. According to these authors, economic
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conditions and political opportunities have fuelled the Boko Haram expansion. More-

over, Abubakar (2017) includes also the corruption of the government and the failure

of the northern elites in implementing Sharia as important causes of the rise of Boko

Haram.

Despite the first phase in which Boko Haram targeted Nigerian security forces and

mainly applied “hit and run” strategies, in the last years the group has started to

carry out attacks also against religious and educational institutions and civilians (Re-

gens et al., 2016). The strategies have also changed: the group started to act to

occupy and conquer territories, increasing the brutality of the attacks (Weeraratne,

2017). The terrorist group was responsible for 5,478 death in 2015 with an 18% de-

crease if compared with 2014 when Boko Haram was recorded as the deadliest group

of the world (Institute for Economics and Peace, 2016). In 2016 the number of deaths

continued to decrease (1,079) due to the defeats inflicted by Nigerian military forces.

Institute for Economics and Peace (2017) also reports how these military defeats led

to the separation of three factions within Boko Haram in late 2016: a violent, an

Islamic State-aligned and an Al Qaeda-aligned one.

3.1.6 Al Shabaab

Harakata al-Shabaab Mujahideen, mostly known as Al Shabaab, is a jihadist terror-

ist organization that first appeared in the area of Mogadishu, Somalia, in the early

2000s (Hansen, 2013). Initially, the group was an urban militia aiming at defend-

ing the Islamic Courts Union in the capital of Somalia. Since then, Al Shabaab has

gained importance in the country and started to control an increasing number of

rural territories and cities. In 2010, the group attracted the attention of the interna-

tional community because of the “World Cup bombings” in Kampala (Anderson and

McKnight, 2015). In the last years, the group evolved and expanded across different

territories. As noted by Mueller (2018) while the group covered a marginal role in So-

malia in the early stage of its existence, Al Shabaab is now one of the most relevant

players in the process of armed opposition against the nascent Somali government

(allies included). This transition has also affected the geographic scope of attacks,

which has been expanded in the last years, spanning over different adjoining countries.

While the political discourse tried to paint the group as in the middle of a gradual

receding process, scholars have demonstrated its resistance and resilience, claiming

that Al Shabaab benefits of more legitimization if compared to the federal government

of Somalia (Lind et al., 2017). After a longstanding informal relation, since 2012 Al

Shabaab is officially considered part of the Al Qaeda network (Joosse et al., 2015).
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The African Union Mission in Somalia (AMISOM), a regional peacekeeping mission

that is operated by the African Union under the consent of the United Nations, is

one of the actors that better contrast the role of Al Shabaab in the region. AMISOM

forces have taken over strategic locations and deprived Al Shabaab of resources and

physical territories but, as pointed out by Cannon and Ruto Pkalya (2017), the group

kept maintaining capabilities and clear strategic goals, also exploiting the absence of

a strong and effective statehood.

Cannon and Ruto Pkalya, additionally, argue that the group has evolved towards a

universal/abstract organization. This classification is based on the multi-casualty and

indiscriminate nature of its attacks. Attempts to classify the group have been done

also by other scholars. However, no universal agreement on the organizational model

or typology that Al Shabaab represents. Ingiriis (2018) tried to enhance the knowl-

edge on the group exploring the relationship between it and the twentieth-century

anti-colonial Somali movement of the Dervishes, highlighting some imitation in the

way Al Shabaab operates. Tar and Mustapha (2017) argued that the success of the

group is partially explained by the cooperation and alliances it has consolidated with

local warlords. The authors even try to categorize Al Shabaab itself as a warlord

group, due to the activities it has carried out in Somalia, including racketeering and

plundering. The group has presumably killed over 4,000 individuals since it was born

in 2006 (Institute for Economics and Peace, 2017).

3.2 Data

3.2.1 The Global Terrorism Database

The analyses in this work rely on data drawn from the Global Terrorism Database

(GTD), developed by LaFree and Dugan. The GTD is the most comprehensive and

detailed open access dataset on terrorist events at global scale.1 The GTD originates

from data collected by the Pinkerton Global Intelligence Service (PGIS): researchers

at PGIS were trained to include information on terrorist events from 1970 to 1997

and in 2006 the START Consortium received funding to continue the data collection

and update the dataset (LaFree and Dugan, 2007; LaFree, 2010).

1While writing this dissertation, the GTD manager has announced that the funding from the

State Department has been cut, as no follow-on contract has been granted after the expiration of

the previous one, in May 2018. This means that, at this moment, the START research center has

no funding to complete collection of 2018 data, nor are they able to publish data beyond 2018.
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Data collection continued to date, and START releases an updated version of the

dataset every year. The dataset includes now data on more than 180,000 events.

Information is gathered from different open sources, and events have to meet specific

criteria to be included in the database. These criteria are divided into two different

levels. The first level criteria are three and have all to be verified. These mandatory

ones are related to the intentionality and the violence (or immediate threat of violence)

of the incident and the subnational nature of terrorist actors. The second level criteria

are three and the condition is that at least two of them are respected. Second level

criteria relate to (1) the specific political, economic, religious or social goal of each

act, (2) the evidence of an intention to coerce, intimidate or convey messages to

larger audiences than the immediate victims, (3) the context of action which has to

be outside of legitimate warfare activities. Finally, although an event respects these

two levels and is included in the dataset, an additional filtering mechanism (variable

doubter) is introduced to control for conflicting information or acts that may not be

of exclusive terrorist nature (START, 2017b).

In this work, I have focused on the five most active jihadist groups in terms of

plotted attacks from 1970 to 2016. Since each event in the GTD may have up to

three perpetrators cooperating in a single attack, I have calculated the cumulative

sum of all the appearances of each group even though the attack was executed by

one actor or more. Moreover, I have decided to merge all the attacks perpetrated

by all the factions belonging to the Al Qaeda network that in the dataset were la-

beled as separate, creating a single “Al Qaeda” category. The factions that were

combined are: Al-Qaida, Al-Qaida in Iraq,2 Al-Qaida in Saudi Arabia, Al-Qaida in

the Arabian Peninsula (AQAP), Al-Qaida in Yemen, Al Qaida in Lebanon, Al-Qaida

in the Islamic Maghreb, Al-Qaida in the Indian Subcontinent, Islambouli Brigades of

al-Qaida, Secret Organization of al-Qaida in Europe, Al-Qaida Organization for Ji-

had in Sweden, Al-Qaida Network for Southwestern Khulna Division, Jadid Al-Qaida

Banglades (JAQB), Al-Qaida Kurdish Battalions.

This process identified the Taliban, IS, Boko Haram, Al Shabaab and Al Qaeda as

the most active groups present in the dataset. After group selection, I have removed

2Al Qaeda in Iraq represents the seed of the Islamic State, given that the group then evolved

changing its name in “Islamic State in Iraq”. One may thus dispute the decision to fold the group

into the broader “Al Qaeda” network. This decision, however, is motivated by two reasons. First,

Al Qaeda in Iraq has been a formal affiliate of the Al Qaeda network, and it would have then been

conceptually wrong to exclude it based on retrospective knowledge about its history. Second, the

GTD reports attacks perpetrated by the Islamic State in Iraq, thus clearly distinguishing between

the two different groups.
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all the attacks that were of labeled as of doubtful terrorist nature (relying on the

doubter variable). This led to a reduced amount of attacks for each group (Table

3.1).

Group Original N Cleaned N Attack

Freq.

First Attack Last Attack

Taliban 6,607 5,633 0.71 4/20/1995 12/31/2016

Islamic State 4,343 3,562 2.63 4/18/2013 12/31/2016

Boko Haram 2,090 1,901 0.70 7/27/2009 12/31/2016

Al Shabaab 2,689 1,695 0.50 11/2/2007 12/30/2016

Al Qaeda 2,058 1,506 0.17 12/29/1992 12/25/2016

Table 3.1: Number of attacks (original and cleaned) for each of the selected groups

Similarly to the doubtful event, for what concerns attacks for which the perpetra-

tor was not reported, I decided to exclude them avoiding heuristic techniques based

on probabilistic methods to estimate the likely perpetrator of the event. The ob-

jective was to rely solely on reliable and verified information. Estimating the likely

perpetrator is possible, however in absence of ground truth (i.e., the real perpetrator),

it would have been impossible to verify the correctness of the response. This would

have constituted a risk of bias for the whole methodological architecture of the work.

While it is reasonably possible that some attacks lack their perpetrator, I considered

safer to only use events with certified perpetrators.

Given the relevance of the temporal dimension for the aims of the analyses, I

have instead treated events with no precise date reported (at daily unit detail) in two

different ways. If the additional variable approxdate was available, I imputed data

relying on the information included there. However, if approxdate was not precise

enough to derive any type of imputation, I filled missing data using the median date

based on each month’s distribution. If, for instance, in February 2008 there were 9

attacks on days 1, 3, 3, 5, 9, 14, 23, 26, 26, then the median value for the missing

dates corresponding to that month would be 9. When the number of attacks in a

specific month is even, then I take the average of the two median ones and input

the mean value rounded up if the two dates are different, exact otherwise (e.g. if in

another month of another year there were 4 attacks on days 3, 5, 6, 8, the median

in this case will be (5+6)/2=5.5∼6) Additionally, I have employed data on attack

types (in this work referred as “tactics”), weapons, targets, and targeted countries.

In the GTD, each event may have information on multiple tactics, weapons, and

targets: in this analysis I have kept all available information, without dropping any
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variable or a specific category, not to alter the distribution of events and their specific

characteristics (Table 3.2).

Group Targeted Countries Tactics Weapons Targets

Taliban 2 (Afghanistan) 9 9 23

Islamic State 21 (Iraq) 10 8 23

Boko Haram 6 (Nigeria) 8 7 21

Al Shabaab 7 (Somalia) 9 7 22

Al Qaeda 31 (Yemen) 9 9 24

Table 3.2: Descriptive statistics of Attack Variables Per Terrorist Group 8Most targeted countries

between parentheses).

It is worth to outline that the GTD provides different levels of details for both

weapon and target features. Weapons are labeled on two different levels of detail.

Variable weaptype records the general type of weapon that terrorists used in the attack

(e.g. Firearms), while variable weapsubtype gives a more detailed and specific type

of information related to the weapons used in the event (e.g.: Automated weapon).

Targets are instead labeled on four different levels of detail. Variable targtype is

the most general one, providing a broad class to which the specific target belongs

(e.g. Government), targsubtype gives further specification, introducing additional

information (e.g. Government building/facility/office). Variable corp identifies the

corporate entity or government agency that was targeted (e.g.: Spanish government)

and variable “target” labels the specific person, building or installation that was

victimized.

In the present work, I have used in both cases the most general type of categoriza-

tion (i.e.: variables targtype and weaptype): this decision was driven by the fact that

using a finer-grained level of detail would have led to over-specification, eventually

compromising the generalization of results and models. Nonetheless, in order to build

more meaningful models, in the case of events where targtype was equal to “other”,

I have used the variable targsubtype instead. The residual label “other” includes

heterogeneous targets that become more informative if analyzed as separate objects

(examples of targsubtype variables are Fire Fighters and Ambulance).

3.2.2 Limitations

The GTD is a fundamental open access resource for researchers interested in the study

of terrorist events. Nonetheless, this work comes with several limitations intrinsically
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related to the data or to the choices made in processing the information contained in

the database.

Firstly, the GTD presents a limitation that is unsolvable: in fact, all events that

occurred in 1993 are missing. As done in previous studies (Santifort et al., 2013), I

did not estimate the number events of 1993: I have instead treated them as missing.

Albeit four of the five jihadist groups started to plot attacks long after 1993, this lack

of information might have biased the statistical analyses for the Taliban.

Secondly, another structural limitation of the dataset as a whole relates to the

potential presence of unmeasured events or attacks with no reported perpetrator that

are therefore excluded from the analyses. Given that this dataset is built on open

access data it can be that attacks, especially low magnitude ones, are not recorded

by press agencies or newspapers. Alternatively, events may not be attributed to

a specific group due to a tactical or strategical ambiguity that makes it extremely

difficult to create a link to a specific subject. These excluded attacks, that can be

labeled as “false negatives” pose the risk of constructing biased models that fail to

capture real-world dynamics. For this reason, in my future work I hope to be able

to test the goodness, fitness, and reliability of the models via statistical techniques

that would eventually overcome this inherent limitation of these data. One poten-

tial technique would involve the inclusion of random noise data generated by some

stylized probability distributions, in order to assess the magnitude of the effects of

potential biases explained by unmeasured events. For what concerns attacks with an

unattributed perpetrator that might have been instead plotted by one of the groups

under analyses, probabilistic methods derived from unsupervised learning techniques

may be a feasible way to estimate likely perpetrators. While keeping this in mind, it

is worth to point out three things. First, given the digitalization of information that

caused an increasing availability of news coming from all the corners of the planet,

it is reasonable to think that these problematic events have been reduced in the last

two decades, therefore only marginally influencing the present analyses. Second, the

groups that I have included in my sample have been under the spotlight due to their

high-frequency and high-magnitude activities worldwide. These activities have often

led to high-casualty attacks and worldwide attention. Third, jihadist groups generally

publicly claim their attacks, further reducing the risk of false negatives. For this rea-

son, it is hard to think that the number of unmeasured attacks for such organizations

is that high to disqualify the results of this thesis. Nonetheless, given my future aim

to potentially expand my work to other groups or contexts for which these two last

caveats may not hold, the problem of unmeasured attacks represents an issue to be
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tackled seriously.

Thirdly, my own decision to concentrate on countries for the geographical dimen-

sion of terrorist events might pose some serious limitations to the utility of the models

from the practical point of view. While from the research standpoint, such a macro

perspective has a respectable value, policy-makers and analysts might be interested in

finer-grained spatial configurations. In fact, countries may be too general spatial ap-

proximations and models relying on this abstraction could not provide useful insights

for intelligence purposes. A model that correctly predicts attacks in Afghanistan, for

instance, does not help suggest where to precisely allocate resources. Afghanistan is

a wide country, and data show that the distribution of terrorist events is not equal

across provinces. It is thus necessary to take into account that, from the perspective

of applied and policy-oriented research, future work will have to address this issue

and that limited inferences should be made relying on the geographical component

of the analyses. Hopefully, the database will be able to support the improvement of

the models from the geographical point of view, given that events are geocoded and

more detailed spatial resolution is available for most of the attacks.

Fourthly, and related to the third point, the choice operated by me to use the

most general level of categorization for Weapons and Targets certainly preserves

the integrity of the information, avoid excessive sparsity and noise, but again lim-

its the potential application of the work for intelligence aims. Certain categories

(e.g., “Firearms” as a weapon or “Private Citizens and Property” as a target) are

too general and may hide relevant levels of information that can hide further micro-

patterns in terms of specific weapons, tactics or targets. What if, within the general

“Private Citizens and Property” category stands a certain patterned distribution of

multiple different subcategories? The reader must keep this aspect in mind when

reading the description of the methodological setup and the results of the different

analyses made throughout the work.
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4 Stochastic Matrices of

Terrorism:

Complexity and Heterogeneity

of Jihadist Behavior

Preliminary Note The present chapter reports part of the analyses of the research

article “Pairwise similarity of jihadist groups in target and weapon transitions” pub-

lished in the Journal of Computational Social Science in May 2019, with Mihovil

Bartulovic and Kathleen M. Carley as co-authors (DOI: 10.1007/s42001-019-00046-

8).

4.1 Introduction

Terrorism and its multi-fold complex dimensions are increasingly studied from differ-

ent perspectives, attracting scholars from several scientific fields. Advanced quantita-

tive techniques, derived from mathematical and statistical sciences, have been applied

to increase the knowledge of how this phenomenon evolves and occurs. Although al-

most all social phenomena spark interest in the scientific community, terrorism -

especially in the last decades - has been capable of fostering unprecedented attention

due to how it has shocked recent contemporary history. From 1970 to 2016, the Mid-

dle East, North Africa, South Asia and Western Europe were the regions with the

highest number of attacks (START, 2017a). However, data reveal the global relevance

of the issue, considering that in the last four decades terror events have occurred in

more than 200 countries in the world. Indeed, the terrorist threat has pushed scien-

tists to provide help through research to contrast the phenomenon. Complex systems,

statistics, security studies are few among the several communities from which major
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applied contributions have been made to the study of terrorism.

In the attempt to innovate and advance the knowledge on jihadist dynamics from a

network science perspective, the present study seeks to explore the behavioral dynam-

ics of the world’s most active jihadist groups to shed lights on the existing recurring

patterns in terms of operational choices and quantify the extent to which these groups

show similar or dissimilar tactical choices in their attack sequences. In light of this,

I will introduce a novel framework based on Markov chains that will use super-states

and stochastic transition matrices to analyze the complexity of jihadist event se-

quences and propose a pairwise coefficient that maps the similarity of jihadist groups

in terms of transitions between targets, weapons and targets and weapons combined.

The study will use open access data and will create transition networks and related

network trails treating attacks as ordered state sequences. The relevance of investigat-

ing the nature of state sequences is strongly related to the inherent nature of terrorism

itself. As a matter of fact, the complex changes of tactical and operational decisions

by terrorist groups makes it extremely difficult to predict and eventually prevent at-

tacks and consequent damages. While bounded by limited resources and manpower,

terrorists usually have at their disposal many potential scenarios to maximize the

utility of their actions. It is thus crucial to improve the knowledge of transitions

between different states to detect regularities and irregularities in the behavior of

jihadist groups.

This study is an exploration in this direction and opens the path for future re-

search. Concerning results, on one side, the creation of N -dimensional super-state

transition networks underlines the complex repertoire of combination and sequential

patterns existing for all the five groups in all the three scenarios. On the other side,

the stability of several pairwise similarities across different transition networks testi-

fies how certain groups actually share (or do not share at all) very common dynamic

behaviors. Furthermore, groups that are similar in terms of weapon transitions but

very dissimilar in target transitions demonstrate how there is not always a strong con-

nection between the two dimensions, and that the same terrorist goal can be reached

by different means, and vice versa.

The rest of the study is organized as follows: the next section presents the Data

and the processing techniques applied to structure the information for the purposes

of the chapter. The third section will focus on stochastic transition matrices and

their applicability to research on terrorism dynamics. It will specifically introduce

the basic concepts behind Markov chains and present the N -dimensional super-states

framework, also illustrating the quantitative results. The fourth section will instead
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present Normalized Trail Similarity. The rationale and mathematical formalization

will serve to better interpret the outcomes of the analyses commented in the same

section. Finally, the last section will provide final remarks with a focus on policy and

intelligence implications and highlight potential future research paths.

4.2 Data Processing

This section aims at presenting the data and the operations carried out to manipulate

the data for the aim of the work.

The data used in this chapter are a reduced version of the entire history of attacks

present for each group in the GTD. For Al Qaeda and the Taliban, very few attacks

were recorded from 1992 to 2001. Hence, to avoid noise and too strong assumptions on

the presence of dependencies between events years distant from each other, attacks for

Al Qaeda and the Taliban plotted prior to 2001 have been excluded. Table 4.1 shows

the descriptive statistics of the reduced data, and Figure 4.1 displays the distribution

of events at the monthly unit for all the groups.

Group Cleaned N Attack Frequency First Last

Taliban 5,629 1.04 1/7/01 12/31/16

Islamic State 3,562 2.63 4/18/13 12/31/16

Boko Haram 1,901 0.70 7/27/09 12/31/16

Al Shabaab 1,695 0.47 11/2/07 12/30/16

Al Qaeda 1,502 0.26 09/11/01 12/25/16

Table 4.1: Number of Attacks (Original and Cleaned) for Each of the Selected Groups

Formally, for each group gi is given a sequence of terror events Agi = (a1, ..., an)

and a sequence D = (d1, ..., dn), representing temporally ordered discrete days. These

two sequences are inherently related because the mapping f : A→ D, which connects

every event with a unique time-stamp, is always verified. Elements in A are ordered

based on D, therefore all the events are ordered by the time-stamp they are associated

to, and this order goes from the most distant to the least distant with reference to

the present time.1 Additionally, we define T = {t1, ..., tk} as the set of possible target

1It is worth to specify that in the analyses, events will be ordered temporally but without taking

into account the actual delta between attacks. This means that there is no difference between two

attacks plotted within a range of four days and other two attacks plotted within a range of five

months. Additionally, when two or more attacks are plotted on the same day, we order them by

the eventid variable included in the original dataset, assuming that the information coded in the
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Figure 4.1: Monthly Time Series of Attacks per Each Group (Jan 2001-Dec 2016)

types and W = {w1, ..., wl} as the set potential weapons. Within this frame, we can

thus formalize an event in the following compact format:

agi (d, t, w) 0 < t ≤ 3 ; 0 < w ≤ 4 (4.1)

The format above posits that an event plotted by group gi is abstractly defined

as a combination of three elements: the day it has occurred (temporal element), the

targets that have been attacked and the weapons that have been employed. In fact,

each event might have been directed to up to three targets simultaneously and might

variable provides a more robust ordering criterion than pure randomly distribution.
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have been carried out using up to four weapon types as denoted in Equation 4.1.

This further poses the problem of setting up the state spaces for the three classes

of analyses I am interested in, namely the analysis of weapons, targets and targets

and weapons combined. The state space of a chain, S, is defined as the set of values

each element of Xd of the process can take. To exemplify, S(Tgi) is the state space of

the existing combination of targets (i.e., states) that gi can take, and |S(Tgi)| is the

cardinality of the set, namely the number of states that it contains.

As mentioned above, the fact that each attack may include multiple targets and

weapons dramatically increases the possible combinations of selected targets and

weapons to include in the analysis. In fact, in the worst-case scenario, Al Qaeda

has attacked twenty-four types of targets during its existence and employed nine

types of weapons. To better depict the extremely wide range of possibilities arising

from this problem, it is useful to express it by applying basic combinatorics. I first

deal with the two single-entity classes, namely weapons and targets, hence excluding

for the moment the case of targets and weapons combined. In both cases, combina-

tions of multiple objects (up to three in case of targets and four in case of weapons)

are possible, repetitions are plausible (therefore have to be considered), and order

matters. This means that in a given combination of three targets, there may be two

identical targets and a third different one. Additionally, the order in which these

targets or weapons are included in the dataset is important, assuming a hierarchic

criterion (descending in terms of importance of the specific feature). Thus, two hy-

pothetical combinations of elements (x, y, z) and (y, z, x) have to be treated as

different. Applying these rules, and knowing that our combinations can lie in a finite

range, the equations that yield the theoretical cardinality of the two state spaces are

the following:

Theoretical|S(W)gi|=
4∑
r=1

wr = 9 + 92 + 93 + 94 = 7, 380 (4.2)

Theoretical|S(T)gi|=
3∑
r=1

tr = 24 + 242 + 243 = 14, 424 (4.3)

These two equations already highlight the huge amount of possible combinations

for the two simplest trails and this already showcases that we need a more practical

way to tackle such data. Additionally, the number further increases when considering

the third type of trails. Indeed, Theoretical|S(T,W)gi| aims at mapping the trajec-

tories of groups behavior when targets and weapons are considered together. In this
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particular case, we are dealing with a simpler probabilistic problem. As an example,

we should think as two sets of finite elements A = {a1, a2, a3} and B = {b1, b2}. Our

particular problem is finding the number of possible combinations of unique pairs of

elements, and each pair must contain one element from set A and one element from

set B. Thus, we are not interested in finding unique pairs such as (a2, a2) or (b1, b2).

Given these constraints, it is straightforward to verify that the number of potential

unique pairs in our ad hoc example is given by the product of the number of elements

in A and the elements in B. Therefore, going back to the main case:

Theoretical|S(T,W)gi|=

(
3∑
r=1

tr

)(
4∑
r=1

wr

)
= 14, 424× 7, 380 = 106, 449, 120

Applying the calculation to our third trail leads to multiplying 14,424 by 7,380.

The final result is 106,449,120. Considering more than 106 million combinations

would have led to a very high expense of computational resources. Additionally,

considering all potential combinations might slow down the computation of the Nor-

malized Transition Coefficient. Therefore, to simplify this task, we have coded and

considered only the combinations (for all trails) existing in the dataset. The only

existing rule, indeed, was that that specific combination of targets or weapons was

present in at least one of the events of at least one group. The decision of not con-

sidering all potential combinations might be contrasted by one’s critique, saying that

only considering recorded combinations is a way to artificially bound the extremely

wide range of options in the hand of terrorist organizations (especially if considering

that the organizations in analyses have – or had – availability of many resources in

economic and operational terms).

In spite of this, the analysis focuses on the past, hence concentrating on the uni-

verse of existing combinations without paying attention to potential future unexplored

combinations. This justifies my choice. That considered, applying this reduction led

to sensibly smaller numbers. The first state space |S(W)gi| is limited to a total of 55

states, |S(T)gi| is bounded by a total of 200 states, and |S(T,W)gi| has 703 states.

In the case of |S(W)gi| it means that only 0.71% of weapon combinations have been

found in the data, while for |S(T)gi| the percentage is 1.38%. Finally, for |S(T,W)gi|
the number reduces further sensibly: data yields the 0.0006% of total potential combi-

nations of targets and weapons. Figure 4.2 visually presents the distribution of most

common states (i.e., combinations) for target, weapons and both combined across

each group and Table 4.2 guides the reader in decoding the abbreviations used in the

plots and the text.
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Figure 4.2: Histograms of 5 Most Common States from Each of the Jihadist Groups’ Trails

Figure 4.2 shows how in terms of weapons (first column, in blue), the Islamic

State has a sensibly higher preference for the use of Explosives, Bombings, Dynamite

(E/B/D) in its attacks. E/B/D accounts for almost 60% of the weapons used in each

event. A similar finding is displayed for Al Qaeda, while the Taliban, Boko Haram

and Al Shabaab tend to diversify more and to have less stronger preferences. Notably,
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Abbreviation Type Full Name

E/B/D Weapon Explosives/Bombs/Dynamite

Fi Weapon Firearm

Un Weapon & Target Unknown

In Weapon Incendiary

Me Weapon Melee

Po Target Police

PC&P Target Private Citizen & Propriety

GG Target Government (General)

Bu Target Business

Mi Target Military

RF/I Target Religious Figures/Institutions

T/NSM Target Terrorists/Non-State Militia

Table 4.2: List of abbreviations of targets and weapons used in Figure 4.2

Boko Haram is the only group that uses more Firearms (Fi) than Explosives in its

attacks.

For what concerns targets, the Islamic State again shows a very strong preference

for a particular type (i.e., Private Citizen and Property, PC&P). This also applies to

Boko Haram. Both groups tend to hit PC&P in almost half of their events. Taliban,

Al Shabaab, and Al Qaeda exhibit less polarized distributions. It is worth to mention

how the Taliban is the only jihadist organization that prefers to target Police rather

than PC&P.

Finally, in the combined scenario, distributions of the five most common combi-

nations are more homogeneous for all groups but the Islamic State. In this last case,

the group led by al-Baghdadi further demonstrates to have a very clear tendency to

hit PC&P using E/B/D (∼ 30% of attacks). Although with different proportions,

this combination is the most common one also for Al Qaeda. Boko Haram and al

Shabaab tend instead to target PC&P using Firearms, while the Taliban use Firearms

to attack Police.

4.3 Stochastic Transition Matrices

Markov chains are stochastic classes of models named after their inventor, the Russian

mathematician Andrey Markov.2 Markov chains are designed for handling sequence

2For a comprehensive review of Markov chains see Norris (1998) and Revuz (2008).
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data, where sequences can map objects or entities as events, locations, characteris-

tics, abstract states: they are thus extremely fit for the problems of unfolding jihadist

dynamics via the analysis of sequences of terrorist attacks. These models have gained

extreme popularity during the Twentieth century, due to their applicability to a va-

riety of scientific and industrial domains. Within the realm of social sciences, for

instance, they have been employed in economics (Judge and Swanson, 1962; Bicken-

bach and Bode, 2003; Le Gallo, 2004), finance (Kijima, 2016), sociology (Sorensen,

1978; Heckathorn, 2002), political science (Martin and Quinn, 2002; Jackman, 2004)

and, also, criminology (Holland and McGarvey, 1984; Stander et al., 1989; Pettiway

et al., 1994).

To introduce the concepts that will be used for modeling terrorist activity and

behavior throughout this part of the chapter, a brief introduction to stochastic tran-

sition matrices and Markov chains is required. The following subsection will specifi-

cally deal with this task. Following, the results of the analysis will be showcased and

commented.

4.3.1 Mathematical Framework

4.3.1.1 A Very Short Introduction to Markov Chains

In this first introduction, I will use the notation used for weapons in the previous

section: the reader shall keep in mind that the same equations and formulas have

to be applied for targets and targets and weapons combined. Given a sequence of

attacks:

A0, A1, ..., Ak (4.4)

and a state space S(W) of potential values that the various Ak can take, then the

sequence is a Markov chain iff the Markov property holds.3 The Markov property is

indeed formulated in mathematical notation as follows:

P(At+1 = w|At = wt, At−1 = wt−1, ..., A0 = w0) =

P (At+1 = w|At = wt)
(4.5)

Equation 4.5 means that in a Markov process the distribution of At+1 only depends on

At only, and does not take into account previous time units. This is often referred as

3In this chapter I will refer to Markov chains limited to the discrete-time case. The data at my

disposal are, in fact, discrete and therefore I will not cover the mathematics behind continuous-time

Markov chains.
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the “memorylessness” nature of Markov processes. The property has to be valid for

all t=1,2,3 and for all states w0, w1, ..., wt. To compactly map the list of all possible

states in the state space S(W), a transition matrix P(W) = pi,j is created. P(W) is

a square matrix of dimension |S(W)|×|S(W)| and each row should sum to 1:

|S(W)|∑
j=1

pij =

|S(W)|∑
j=1

P(At+1 = j|At = i) =

|S(W)|∑
j=1

P{At=i}(At+1 = j) = 1

(4.6)

To exemplify, a hypothetical transition matrix P(W)ij where the state space |S(W)|=
{w1, w2, w3, w4, w5} = 5 is given. Visually, the matrix takes the form:

P(W)ij =


. p q . .

p q . . .

p r . . s

. . p s r

. . . p q

 (4.7)

where . denotes zero-entries for simplicity, p is the probability associated to the

entry ij, q is a probability equal to (1− p), r is a probability equal to (1− p− s) and,

trivially, s is a probability equal to (1−p−r). The case above only regards single-step

transitions between i and j, however, Markov chains allow also to formalize t-step

transitions. If, for instance, there is a need to quantitatively describe the probability

of going from state i to state j in two steps, using Partition Theorem of matrices, the

2-step transition matrix P2(W)ij is obtained via:

52



4 STOCHASTIC MATRICES OF TERRORISM

P(A2 = j|A0 = i) = P(A2 = j) =

|S(W)|∑
k=1

Pi(A2 = j|A1 = k)P(A1 = k) =

|S(W)|∑
k=1

Pi(A2 = j|A1 = k,A0 = i)P(A1 = k|A0 = i) =

|S(W)|∑
k=1

Pi(A2 = j|A1 = k)P(A1 = k|A0 = i) =

|S(W)|∑
k=1

pkjpik =

|S(W)|∑
k=1

pikpkj = P2(W)ij

(4.8)

Following this procedure, the general case to obtain a t-th step Markov chain and

create the related Pt(W)ij transition matrix is:

P(At = j|A0 = i) = P(An+t = j|An = i) = Pt(W)ij ∀(t) (4.9)

A sample transition network of weapons derived from a toy stochastic transition

matrix is depicted in Figure 4.3. It is worth to note how for any state, the sum of the

probability of the out-links is equal to 1. This brief primer on the basics of Markov

chains served to introduce further machinery behind the analyses.
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Figure 4.3: Sample Transition Network with Transition Probabilities - Weapons
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4.3.1.2 Super-States of N-Dimension

So far, only Markov chains mapping the t-step transitions between single states have

been addressed. However, for the purposes of the analysis of terrorism dynamics, it

is relevant to understand whether, within the data, typical cycles are present and, if

so, what is the knowledge associated with them. Going back to the case of the state

space seen in Equation 4.7, I now propose the matrix A(W)ij in which the entries

are not anymore probabilities but, instead, absolute values mapping the number of

times that there has been a transition from a state i to a state j:

A(W)ij =


. w1,2 w1,3 . .

w2,1 w2,2 . . .

w3,1 w3,2 . . w3,5

. . w4,3 w4,4 w4,5

. . . w5,4 w5,5

 (4.10)

where, again, . denotes zeros. At this point, to detect recurring patterns occurring

in attack sequences is it useful to create a new augmented state space S(W)2 of

dimension 2. Given that wij 6= 0, then I define a 2-dimension super-state as:

Θi→j =: (wi → wj) (4.11)

in which wi is called the “1d-sender” 1ds and wj is called the “1d-receiver” 1dr.

The new super state now incorporates the single-step transition between the previous

original state wi to wj. This gives birth to a new squared adjacency matrix A2(W)ij
of order two where the state space is equal to:

|S(W)2|=
∑

wij ∀ wij 6= 0 (4.12)

After the creation of the adjacency matrix, the related stochastic transition matrix

P2(W)ij is obtained simply by row-normalization so that the sum of the entries of each

row-vector is equal to 1. To help the reader who might not be comfortable with the

mathematics shown above, it is useful to think about the following example. Given an

existing link in the adjacency matrix A(W)ij between “Firearms” and “Explosives”,

in the augmented matrix A2(W)ij, thus there will exist a new state:

ΘFirearms→Explosives (4.13)

In the present example, “Firearms” is the sender and “Explosives” is the receiver. I

have thus now obtained a new information space with super-states of dimension 2: to
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further investigate cycles, I have iterated the operation above up to super-states of

dimension 5. The procedure is not exactly identical as we increase the dimensionality,

and needs a bit of additional explanation. Imagine a hypothetical adjacency matrix

of order 2 A2(W)ij:

A2(W)ij =

Θi→j Θi→k Θj→l Θj→j Θl→i


Θi→j . . w(Θi→j,Θj→l) w(Θi→j,Θj→j) .

Θi→k . . . . .

Θj→l . . . . w(Θj→l,Θl→i)

Θj→j . . w(Θj→j,Θj→l) w(Θj→j,Θj→j) .

Θl→i w(Θl→i,Θi→j) . . . .

(4.14)

Then, it is worth to specify that the new matrix is populated based on some con-

ditions. So, for any given pair of super-nodes Θi→ j and Θj → k, mapping the

super-states of dimension two:

w(Θi→j,Θj→k) 6= 0↔ 1dr(Θi→j) = 1ds(Θj → k)

∧ ∃ w [1ds(Θi→ j)→ [1dr(Θi→ j) = 1ds(Θj → k)] → 1dr(Θj → k)]
(4.15)

The equation means that a transition edge w between Θi→ j and Θj → k will exist

iff (1) the 1d receiver of Θi→ j is equal to the 1d sender of Θj → k and (2) there

is at least one 3-d chain that connects the 1d sender of Θi→ j, the two equal states

1drΘi→ j and 1dsΘj → k that are collapsed in a single entity, and the 1d receiver

of Θj → k. This process leads to the creation of a new adjacency matrix containing

super-states of dimension 3, A3(W)ij, from which it is easily derivable a stochastic

matrix P3(W)ij. The state space of the new matrix is given by:

|S(W)3|=
∑

w(Θi→j,Θj→k) ∀w 6= 0 (4.16)

This procedure allows us to create 3-dimensional superstates in the form Θi→j→k

where information regarding the sequence across states i, j, k is incorporated. In this

superstate, i is the 1d sender, and j and k are the 2d receivers (2dr). At the same

time, we can consider another 3-dimensional superstate Θj→k→m. If we hypothesize

the existence of a link between the two, intending to further obtain a 4-dimensional

superstate, we have to check again for the basic condition expressed in Equation

4.15. In the second sequence, j and k are called the 2d senders (2ds), and m is the
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1d receiver. This considered, as the first fundamental condition the transition may

exist if:

2dr(Θi→ j → k) = 2ds(Θj → k → m) (4.17)

Furthermore, if this is verified, there must exist at least one transition such that:

w [1ds(Θi→ j → k)→
[2dr(Θi→ j → k) = 2ds(Θj → k → m)]→

1dr(Θj → k → m)

(4.18)

This condition, if verified, lead to the creation of a new 4-dimensional superstate that,

relying on the example, takes the form:

Θi→j→k→m (4.19)

This new super-state, in a real-world case, could be seen as a chain of four weapons

taken from our original S(W), such that it would potentially look like the following:

ΘFirearms→Explosives→Chemical→Incendiary (4.20)

To obtain further augmented super-states, it is sufficient to slightly modify the con-

dition that I have described to create the matrix of order 2, in order to generalize

it to other multidimensional cases. I define Θ
′
N−1 and Θ

′′
N−1 as two arbitrary super

states of dimension |N −1|. Imagining a N -dimension matrix where N is the number

of states that we want to include in the creation of the super-state ΘN , which is to

say that N is the length of the sequence of states that we consider, then the entries

of the matrix AN(W)ij can be different from 0 if:

|N − 1|ds(Θ
′

N−1) = |N − 1|ds(Θ
′

N−1) (4.21)

and, additionally, there exist at least one transition such that:

1ds(Θ
′

N−1)→
[
|N − 1|ds(Θ

′

N−1) = |N − 1|ds(Θ
′

N−1)
]
→ 1dr(Θ

′′

N−1) (4.22)

A visual depiction of the process that lead to the creation of a 4d-super state starting

from two separate 2d super-states is provided in Figure 4.4.
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Figure 4.4: Visual Depiction of the Creation of 4-dimensional Super-states

4.3.2 Super-States and the Heterogeneity of Jihadist Behav-

ior

After the introduction of the mathematical concepts that led to the derivation of the

super-states stochastic transition matrices for each group with regards to weapons,

targets and targets and weapons combined, it is necessary to analyze and interpret

what these new sets of information tells us about how jihadist behave. As anticipated

throughout the previous subsection, the intent is to capture inherent recurring trends,

e.g. cycles, that can better picture the behavior of the groups in the sample. Hoffman

(1993) showed that, besides differences in the lethality of attacks between the 1970s

and 1980s, the majority of terrorist organizations remain stable in their operational

choices, drawing from the same consistent repertoire of weapons and tactics. Merari

(1999), comparing terrorist violence with conventional conflicts and wars, noted that

that terrorism has not changed in the course of a century in terms of weaponry and

modes of operation. This view is shared also by Dolnik (2007).

While many scholars agree on the recurrent and persistent regularity of terror-

ist behavior, Gill et al. (2013) addressed the problem focusing on the concepts of

“creativity” and “innovation”, drawing upon the existing literature on industrial psy-

chology. They have qualitatively focused on specific case studies, demonstrating how

the conversion of a new creative idea into an innovation is a process that requires

time. Authors have proposed a new framework that, according to the authors, could

better indicate to policymakers the specific innovation-drivers sub-units of a terrorist

organization.
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Data can be treacherous when trying to analyze the extent to which terrorist

groups show homo or heterogeneity of operational behavior in their attack patterns.

Aggregate descriptive statistics may reveal very strong preferences towards certain

types of weapons or targets, while obscuring other more complex patterns that can

provide much more useful insights, also from a policy point of view. With this regard,

complex networks can be of help. Imagine, for instance, the case of two attacks, A1

and A2, where the employed weapons are (Explosives, Explosives, Explosives) in one

the former, and (Explosives) in the latter case. A first superficial intuition may lead

to consider the two operational characteristics as identical and aggregate statistics

would suggest that Explosives account for the 100% of the weapons used in the

attacks. However, while in both attacks the type of weapons is the same, the first

one shows a much higher logistic capacity, and may be seen as “more complex”.

Looking for heterogeneity solely in relation to drastic changes in terms of opera-

tional choices (e.g., shift from Explosives to Chemical weapons) is a fallacy that does

not take into consideration other underlying logistic mechanisms. These mechanisms

might be the expression of the power, strength or more general goals of a group.

Furthermore, terrorists might not really need to change their operational choices if

certain stylized types of actions are part of long-range strategies or demonstrate to be

effective for the organization. The same type of reasoning can be applied to targets,

although in the literature there is a more pronounced consensus towards the idea of

higher variability of target types over time (Brandt and Sandler, 2010; Santifort et al.,

2013).

In light of this debate, what can be drawn from the construction of super-states

of weapons, targets, and both combined? What are the insights on the complexity of

jihadist behavior, when approaching the question from a complex network perspective,

taking into account the sequential nature of attacks?

Figures 4.5, 4.6, 4.7 help in picturing the evolution of the transition networks

across the different N -dimensions of super-states.4 The reader shall keep in mind the

figures previously showed in Table 3.2: the number of employed weapons for each

group oscillates from 7 to 9, while the number of targets falls in the range 21-24.

What is presented below is the product of looking at the combinations of these small

sets of features over-time.

Figure 4.5 first displays the trend in the number of states of the state space of

weapons when increasing the dimension of the super-states. The trend is positive for

all the groups, with some differences. While all groups start with a similar number of

4A Super-state of Dimension 1 is simply a single state related to a single event.
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Figure 4.5: N of States in the State Space of Weapons per Group across N-Dimension Stochastic

Matrices

states in the 1d-case (ranging from 23 to 34), the differences become more prominent

as the dimension is increased. Taliban appears to be the group that, in its history, has

experimented overall a higher number of higher-dimensional super-states of weapons.

The differences emerge quite clearly from the 4d and 5d scenarios. Conversely, Al

Qaeda shows the lowest attitude towards heterogeneity in weaponry. The picture in
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Figure 4.6: N of States in the State Space of Targets per Group across N-Dimension Stochastic

Matrices

Figure 4.6 slightly changes only when focusing on individual trends, with Boko Haram,

for instance, being the least prone to expand his repertoire of cycle-combinations.

Nonetheless, overall, the trend is still positive for all groups, with various levels of

steepness in the passage from 4d to 5d super-states, and with the Taliban again
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showing by far the widest state space.
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Figure 4.7: N of States in the State Space of Targets and Weapons per Group across N-Dimension

Stochastic Matrices

Finally, the most comprehensive scenario, namely the combined case of targets and

weapons, is visually depicted in Figure 4.7. The patterns revealed by the previous

Figures here assume more defined shapes. Each group again shows a positive trend,

while the curves tend to flatten for three groups (Al Qaeda, Boko Haram, Al Shabaab)

after the 3d dimension. The increase is less evident from the fourth to the fifth step

also for the Islamic State and the Taliban. However, the absolute differences between

the two and the rest of the sample are evident, with the Taliban dominating in terms

of heterogeneity of combinations. It is worth to note that the flattening pattern means

that, increasing the dimension of the super-states, the matrices will start to become

less populated and the conditions for the creation of super-states listed in Equations

4.21 and 4.22 become more and more challenging to be respected. In other words,

this means that the matrix will slowly become smaller and smaller: indeed, when

|D|= |A|, the matrix becomes of trivial dimension 1 × 1.

For what concerns the heterogeneity of terrorist behavior with regard to opera-

tional choices, it is worth to note that the numbers of the existing super-states are in

the order of thousands. Starting from the very few options of weapons and targets

seen in the descriptive statistics of Table 3.2, the jihadist groups demonstrate a com-

plex operational repertoire. How they select combinations of targets and weapons

over time gives much more information on their actual nature, compared mere ag-

gregate statistical distributions. While innovation may pertain to other aspects of

the operational context (Crenshaw, 2010), heterogeneity is certainly a component

of terrorism complexity that captures the not directly observable inherent nature of
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jihadism.

Another indication can be drawn from the previous plots: the higher the number

of attacks, the higher the heterogeneity in operational choices. The reader shall keep

this in mind as the difference between the absolute and the relative standpoint for

comparing sequences will be better entailed in subchapter 4.4.

However, considering only the dimension of the matrix is limiting. In fact, as the

dimension of the super-states changes, the topology of the resulting network evolves

too. Figures 4.8, 4.9, 4.10 illustrates this process in terms of density. Increasing the

dimension of the super-states leads to a dramatic decrease in network density.
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Figure 4.8: Network Density Evolution of the Stochastic Transition Matrix of Weapons Across

Groups
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Figure 4.9: Network Density Evolution of the Stochastic Transition Matrix of Targets Across Groups
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Figure 4.10: Network Density Evolution of the Stochastic Transition Matrix of Targets and Weapons

Across Groups

The differences that were displayed and commented in Figures 4.5, 4.6 and 4.7 are

attenuated when comparing the density trends. Network density is a global metric

that captures the extent to which the nodes (in this case, the super-states) in a

graph are connected. The value lies in the range 0-1, with 0 indicating a completely

disconnected network and 1 a completely connected one.

Overall, the clearest pattern regards the change between 1d and 2d super-states.

The density of the network decreases steeply and remains almost constant from the

2d to the 5d case, converging to values very close to zero for all the groups in the

sample and in relation to all the three different dimensions: weapons, targets, and

targets and weapons combined. What does this mean in practical terms? For better

understanding terrorism, this finding has to be coupled with the increasing trend

in matrix dimension when super-states are augmented. The number of super-states

becomes considerably high when the dimension is increased, but the density of the

network almost collapses right after the creation of the 2d super-states. This means

that the network becomes extremely sparse and for a given cycle it will become easier

to predict the next, as the number of transitions per super-state will be lower.

Figures 4.11 and 4.15 shows the 1d and 5d Boko Haram super-state transition

networks from a hierarchical layout standpoint for targets.5 The top node is the most

central node of the network (in binary terms, i.e., the node with the highest number

of transitions)6: it should be noted how the single-step transitions are fewer for the

5Figures A.1, A.2, A.3, A.4 and A.5 in Appendix A provide a further visual example of evolution

from 1- to 5-d super-states with a circular layout.
6For the 1d case the top node is “Firearms”, for the 5d case the top node is the super-state
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5d case, meaning that starting from the top node, a very low number of other super-

states are directly accessible, while the number is much higher in the 1d case. This

means that increasing the dimension of the super-states provides a more complex

framework in terms of the absolute number of super-states, but in the meanwhile

creates a less blurry picture.

What emerges from this analysis can enrich the debate on the stability of ter-

rorist behaviors. Notwithstanding the claims regarding the tendency of terrorists

to repeat the behaviors without changing their operational characteristics over time

and attacks, the framework of Markov chains and super-states provides insight on

inherent patterns that aggregate statistics are not able to capture. The original data

on the number of weapons employed and attacked targets described low heterogene-

ity. Nonetheless, processing the data in order to take into account combinations

of weapons and targets and, consequently, super-states, highlighted a very different

scenario. For research and policy purposes, it should be relevant to investigate how

regularities occur over time and how regularities emerge, are formed and interact with

more anomalous behaviors. In light of this, Markov chains and super-states can be

useful in detecting rich dynamics and predict potential scenarios.

Figure 4.11: Boko Haram - Transition Network Hierarchical Layout of Targets (1-dimensional Super-

States Case)

“Firearms → Firearms → Firearms → Firearms → Firearms”.
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Figure 4.12: Boko Haram - Transition Network Hierarchical Layout of Targets (2-dimensional Super-

States Case)

Figure 4.13: Boko Haram - Transition Network Hierarchical Layout of Targets (3-dimensional Super-

States Case)
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Figure 4.14: Boko Haram - Transition Network Hierarchical Layout of Targets (4-dimensional Super-

States Case)

Figure 4.15: Boko Haram - Transition Network Hierarchical Layout of Targets (5-dimensional Super-

States Case)
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In general, while the groups in the sample tend to rely consistently on the same

weapons and to constantly attack the same type of targets, their attacks demon-

strate to be particularly heterogeneous and complex when combinations and sub-

sequences are considered. Patterns exist, but they are many and, generally, relying

on 1-dimensional sources of information dramatically increases the state space and

decreases the possibility to understand what will come next. The challenge, for re-

search and intelligence purposes, would be to understand the right pay-off in terms of

super-states dimensionality. The 1d case is, as mentioned above, too fragmented to

reliably work as it involves too many transition possibilities, while 5 (or even higher)-

dimensional cases risks transforming the heterogeneity of terrorism in a trivial set

of sub-sequences that are only self-connected through self-loops. Future work will

better consider this trade-off. Furthermore, it will be interesting to replicate the

analysis using more detailed sub-categories of weapons and targets, similarly to what

Jackson and Frelinger (2008) have done, as the choice would highly likely increase

the complexity of the three scenarios. While keeping this in mind, I will next intro-

duce another alternative method to capture behavioral patterns in state transitions

in terms of pairwise similarity between groups.

4.4 Normalized Transition Similarity

4.4.1 Rationale and Formalization

From the ordinary frame of Markov chains and transition networks, we can derive the

concept of “network trail”. Network trails are two-mode directed networks in which

the behavior of source nodes is temporally ordered with respect to target nodes. Ques-

tions such as “How many times these two entities have moved in the same direction?”,

“How many times these two entities were in the same place together?”, “Is there a

mimicry dynamic between the two entities?” can be answered using trails. Trails

have been used in health care, biology and scientific co-authorship networks domains

(Vittori et al., 2006; Lee et al., 2010; Merrill et al., 2015) (Figure 4.16).
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Τ1ρ Τ2ρ Τ3ρ Τ4ρ

Figure 4.16: Two Sample Trails of Different Length

If we consider the formal definition of an event provided in Equation 4.1, the three

types of network trails ψ I will consider in the analysis are the following:

• ψgi (d, w): a time-ordered trail of weapons for group gi

• ψgi (d, t): a time-ordered trail of targets for group gi

• ψgi (d, t, w): a time-ordered trail of targets and weapons for group gi

Having set up the information framework of the work, we have developed the

Normalized Transition Similarity (NTS) coefficient. To recall, a transition is a single-

step change of state in the ordered sequence of attacks. For example, in the case of

time-ordered sequence of targets ψgi (d, t), it is a single-step change in targets group

gi selected in two sequential attacks. To start to familiarize with the concept of

transition similarity, we introduce a simple statistic that only takes into account the

absolute frequency of shared transitions between two entities g1 and g2 (i.e., groups,

in this specific experiment). This figure, for instance, is included in the dynamic

network analysis software ORA (Carley, 2014), and it is calculated as:

Trcommon =
∑
i,j

min [Φg1 (si → sj) ,Φg2 (si → sj)] (4.23)

where si and sj are two distinct generic states and Φgk denotes the number of

transitions between states si and sj in the trail of group gk. The Equation 4.23 gives us

the number of common transitions between two trails expressed as the minimum sum

of all single link paths (between hypothetical si and sj) shared by two groups. This

type of descriptive statistic can be used to evaluate the absolute frequency of shared

transitions. However, it can be highly biased when analyzing trails of significantly

different dimensions, as in this case (Table 4.3).
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Group Trail Length

Taliban 5,628

Islamic State 3,561

Al Qaeda 1,501

Al Shabaab 1,694

Boko Haram 1,900

Table 4.3: Trail Length per Jihadist Group

For instance, when calculating transitions for five groups it is expected that the

groups with very long trails will share more common transitions in absolute terms.

However, this does not mean that the highly active pair of groups share more than the

other. For this specific reason, I propose a new coefficient of transition which normal-

izes the absolute frequencies and allows us to make pairwise comparisons to evaluate

the extent to which each group is similar to another in terms of trails dynamics. This

coefficient is named Normalized Transition Similarity and it is calculated as:

NTS (g1, g2) =

∑
i,j min [Φg1 (si → sj) ,Φg2 (si → sj)]

max (|Ag1|, |Ag2|)− 1
(4.24)

NTS normalizes the number of times that each entity pair travels the same single link

by the number of links of the longest trail in each pair (which is equal to the total

number of states minus 1). Potential outcomes are synthesized in Equation 4.25.

NTS (gm, gn) :
0 if

∑
i,j min [Φg1 (si → sj) ,Φg2 (si → sj)] = 0

1 if
∑

i,j min [Φg1 (si → sj) ,Φg2 (si → sj)] = max (|Ag1|, |Ag2|)− 1

x otherwise

(4.25)

where x can be a continuous value in the range 0 < x < 1. Once this coefficient

is calculated, to actually rescale values to take into account the relative differences

between outcomes of the considered pairs, a further normalization can be performed.

So, for groups g1 and g2 the final value would be calculated as:

NTS (g1, g2)scaled =
NTS (g1, g2)

maxm,n∈GNTS (gm, gn)
(4.26)

with G representing the set of groups in analysis (five in our case). To further explain

how NTS works Figure 4.17 provides a visual representation of Equations 4.24 and

68



4 STOCHASTIC MATRICES OF TERRORISM

4.26.

It is worth mentioning that NTS, while allowing for intra-sample pairwise comparison,

cannot be used to compare pairs belonging to different samples. In the case of two

sets A and B in which an entity (e.g. a terrorist group) g ∈ A∧B, NTS(g, xA) cannot

be compared with NTS(g, xB), where xA and xB are two given entities belonging to

sets A and B.

max

Figure 4.17: Depiction of NTS Across Three Short Sequences

4.4.2 Results

This section will showcase and explain the findings of the analysis in the following

subsections: one for each trail type, with a conclusive subsection for summing up the

main results.

4.4.2.1 Trails of Weapons ψgi (d, w)

This first family of trails seeks to understand and investigate potential patterns in how

groups change their weapons for plotting terrorist attacks. Weapons can be extremely

different, and each type of weapon can denote a distinct and meaningful aspect of
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the consequences of an event and the power, strength, and resources of a group.

Data shows that the number of unique weapon combinations is similar for all groups

(ranging from a minimum of 23 to a maximum of 34 combinations). When focusing

on unique transitions, the picture slightly changes. In fact, Boko Haram shows nearly

double unique transitions compared to Al Shabaab (188 vs 99), demonstrating how the

former group seems less predictable and stable in its operational choices. Finally, the

third column further highlights evident differences between groups: the top identical

subsequence of weapons for the Islamic State is significantly longer than the longest

subsequences associated with all the other groups (Table 4.4).

N Unique

Weapons

Combinations

N Unique

Transitions

Longest Id.

Subsequence

Taliban 34 180 21

Islamic State 33 157 110

Boko Haram 29 188 15

Al Shabaab 23 99 12

Al Qaeda 25 100 30

Table 4.4: Descriptive statistics of Transition Networks of Weapons Per Terrorist Group.

Table 4.5 presents the detailed outcomes of the NTS. Al Qaeda and Al Shabaab

appear to be the most similar groups according to NTS, while their absolute number

of shared transitions was not particularly relevant when looking at the mere sum.

Al Shabaab and Boko Haram are the second-most similar pair, while in transition

count they were the third less similar pair. Interestingly, Al Shabaab demonstrates

a high degree of trail similarity with two different groups. In general, the differences

between rankings highlight how NTS calculation sensibly changes the initial results.

In terms of ranking (which is a measure that should be handled carefully because

we do not control for relative quantitative differences), only one pair remained in

the same position. Another finding is that, although they have the longest trails,

therefore increasing the relative probability of sharing transitions, the Taliban and

the Islamic State are only the fourth most similar pair (0.68).

4.4.2.2 Trails of Targets ψgi (d, t)

The second considered trail network regards selected targets. The Taliban, also due

to their longer history and sequence of events, shows the highest number of unique
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Pair

Shared

Trans

(Count)

Count

Rank
NTS

scaled

NTS

NTS

Rank

Rank

Diff

Al Qaeda & Al Shabaab 1,150 6 0.68 1.00 1 5

Al Shabaab & Boko Haram 1,022 8 0.54 0.79 2 6

Al Qaeda & Boko Haram 891 9 0.47 0.69 3 6

Taliban & IS 2,585 1 0.46 0.68 4 -3

Al Shabaab & IS 1,398 3 0.38 0.56 5 -2

Taliban & Al Shabaab 1,736 2 0.31 0.45 6 -4

Al Qaeda & IS 1,058 7 0.29 0.43 7 0

Taliban & Boko Haram 1,383 4 0.25 0.36 8 -4

Boko Haram & IS 836 10 0.23 0.34 9 1

Taliban & Al Qaeda 1,212 5 0.22 0.32 10 -5

Table 4.5: NTS Results for Weapon Trails

targets and transitions. Specifically, in terms of the unique transition case, their total

is more than three times the Al Qaeda’s one, which across all groups seems to be

more homogeneous, with the shortest event history overall (Table 4.6).

N Unique

Target

Combinations

N Unique

Transitions

Longest Id.

Subsequence

Taliban 118 988 26

Islamic State 91 752 99

Boko Haram 65 427 29

Al Shabaab 89 638 11

Al Qaeda 92 301 10

Table 4.6: Descriptive Statistics of Transition Networks of Targets Per Terrorist Group.

Also in the target scenario, Al Qaeda and Al Shabaab prove to be the most

similar groups (Table 4.7). Stability holds also for the less similar pair, namely

the Taliban and Al Qaeda. Conversely, while Boko Haram and the Islamic State

differed significantly in the previous analyses on weapons, here they are ranked high

(fourth position). This denotes how, actually, a certain degree of similarity in a

specific behavioral dimension does not imply automatically that groups are similar

overall. This might suggest how, although employing and applying different methods

and resources, both groups seem to have similar strategies with respect to targets.

Similarly, while the Taliban and Al Shabaab were not particularly close in terms of

single link transitions of weapons, they show high similarity in the choice of new
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targets.

Pair

Shared

Trans

(Count)

Count

Rank
NTS

scaled

NTS

NTS

Rank

Rank

Diff

Al Qaeda & Al Shabaab 1,011 8 0.60 1.00 1 7

Al Shabaab & Boko Haram 999 9 0.53 0.88 2 7

Taliban & IS 2,518 1 0.45 0.75 3 -2

Boko Haram & IS 1,555 4 0.43 0.71 4 0

Al Qaeda & Boko Haram 763 10 0.40 0.67 5 5

Al Shabaab & IS 1,360 6 0.37 0.62 6 0

Taliban & Al Shabaab 1,784 2 0.32 0.53 7 -5

Al Qaeda & IS 1,070 7 0.29 0.49 8 -1

Taliban & Boko Haram 1,601 3 0.28 0.48 9 -6

Taliban & Al Qaeda 1,363 5 0.24 0.41 10 -5

Table 4.7: NTS Results for Target Trails

4.4.2.3 Trails of Targets and Weapons ψgi (d, t, w)

The final type of trail analysis integrates both the previously considered dimensions

of terror events: weapons and targets. It relies on a much vaster quantity of possible

combinations and its nature makes it potentially more informative than the previ-

ous two. In terms of basic information, while all sequences of identical combinations

diminished in length in this case, the Islamic State is the only one that actually

shows a very long sequence (identical to the target one). Overall, conversely, groups

demonstrated their tendency to change combinations very frequently. Al Shabaab,

for instance, has the longest sequence of only four consecutive identical combinations.

The Taliban (followed by the Islamic State) is again the group with the largest be-

havioral repertoire, both in terms of unique targets and weapons states and unique

transitions (Table 4.8).

In the combined setting, the Taliban and the Islamic State are found to be the

most similar groups (Table 4.9). Al Qaeda and Al Shabaab, which were ranked first

in the previous cases, are now ranked second (yet performing a result almost identical

to the highest one). Al Shabaab appears to be very similar also to Boko Haram (third

highest NTS value), while the Nigerian group seems to be significantly dissimilar not

only to the Taliban but also to the Islamic State. It is interesting to note that the

two pairs that yielded the second and third highest results in the NTS computation

had a very low shared transition count. In terms of extreme dissimilarity, the Taliban
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N Unique

Trgt and Wpn

Combinations

N Unique

Transitions

Longest Id.

Subsequence

Taliban 363 2,102 20

Islamic State 280 1,376 99

Boko Haram 220 1,034 14

Al Shabaab 218 1,048 4

Al Qaeda 214 896 10

Table 4.8: Descriptive Statistics of Transition Networks of Weapons and Targets Per Terrorist Group.

and Al Qaeda are detected as the most dissimilar pair also when weapons and targets

are considered together.

Pair

Shared

Trans

(Count)

Count

Rank
NTS

scaled

NTS

NTS

Rank

Rank

Diff

Taliban & IS 2,037 1 0.36 1.00 1 0

Al Qaeda & Al Shabaab 604 9 0.36 0.99 2 7

Al Shabaab & Boko Haram 624 8 0.33 0.91 3 5

Taliban & Al Shabaab 1,385 2 0.25 0.68 4 -2

Al Shabaab & IS 813 5 0.22 0.62 5 0

Al Qaeda & Boko Haram 405 10 0.21 0.59 6 4

Taliban & Boko Haram 1,066 3 0.19 0.52 7 -4

Boko Haram & IS 688 6 0.19 0.52 8 -2

Al Qaeda & IS 672 7 0.18 0.51 9 -2

Taliban & Al Qaeda 999 4 0.18 0.49 10 -6

Table 4.9: NTS Results for Target—Weapons Trails

4.4.2.4 Summary of Results

NTS was developed to correct potential biases in the simple absolute count of common

transitions between two groups, controlling for the maximum probability of having

a perfect identical pattern given two state sequences. Figures ??, 4.19 and 4.19

display - for each trail - the scatter plots of the simple count of shared transitions and

the unscaled NTS. Correlation values indicate how simple count is biased and NTS

provides different outcomes. In the target+weapon scenario, only the pair with the

highest count is also the pair with the highest NTS.

The comparative analysis indicates that the results across trails are generally
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Figure 4.18: Scatter Plot: Simple Transition Count vs NTS (unscaled) for Weapon Trails (Pearson’s

correlation=0.056. Coefficient Statistically Significant at 99% Level.)
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Figure 4.19: Scatter Plot: Simple Transition Count vs NTS (unscaled) for Target Trails (Pearson’s

correlation=-0.154. Coefficient Statistically Significant at 99% Level.)
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Figure 4.20: Scatter Plot: Simple Transition Count vs NTS (unscaled) for Target - Weapon Trails

(Pearson’s correlation=0.327. Coefficient Statistically Significant at 99% Level.)
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stable. Indeed, three pairs out of ten perform standard deviation values of ranking

lower than one position, as shown by Table 4.10 and Figure 4.21. Particularly, Al

Qaeda and Al Shabaab are found to be the most similar groups overall, with a mean

rank of 1.33: it is interesting to detect this stable similarity, considered that Al

Shabaab officially became part of the Al Qaeda global network in 2012. Al Shabaab

and Boko Haram are the second most similar pair. Regarding most dissimilar groups,

a certain degree of stability is also shown, especially in the case of the Taliban and Al

Qaeda: the pair is always ranked tenth. Little variance is exhibited by the Taliban

and Boko Haram and Al Qaeda and the Islamic State. The latter pair deals with

two groups that have been referenced by many as the old and the new paradigm

of Islamic terrorism in the world. They do not show any particular evidence of

similarity. This may propose that, besides other evident differences that span from

the structural organization to the geographic scope of the operations, they also follow

distinct behavioral trajectories.

Weapon Target
Target+

Weapon
Mean

R

St.

Dev.

Pair
scaled

NTS

NTS

Rank

scaled

NTS

NTS

Rank

scaled

NTS

NTS

Rank

Al Qaeda & Al Shabaab 1.00 1 1.00 1 0.99 2 1.33 0.58

Al Shabaab & Boko Haram 0.79 2 0.88 2 0.91 3 2.33 0.58

Al Qaeda & Boko Haram 0.69 3 0.67 5 0.59 6 4.67 1.53

Taliban & IS 0.68 4 0.75 3 1.00 1 2.67 1.53

Al Shabaab & IS 0.56 5 0.62 6 0.62 5 5.33 0.58

Taliban & Al Shabaab 0.45 6 0.53 7 0.68 4 5.67 1.53

Al Qaeda & IS 0.43 7 0.49 8 0.51 9 8.00 1.00

Taliban & Boko Haram 0.36 8 0.48 9 0.52 7 8.00 1.00

Boko Haram & IS 0.34 9 0.71 4 0.52 8 7.00 2.65

Taliban & Al Qaeda 0.32 10 0.41 10 0.49 10 10.00 0.00

St. Dev. 0.22 0.19 0.20

Table 4.10: Summary of NTS Results (R indicates Ranking Position)

Another relevant case regards Boko Haram and the Islamic State: the Nigerian

organization is affiliated to the group led by Abu Bakr al-Baghdadi, but their simi-

larity scores are particularly low. In fact, in the case of weapons and weapons and

targets combined these groups rank among the last positions. However, in the target-

only case, these differences vanish. This case is further proof of the fact that similar

strategies of target selection can be coupled with distinct dynamic choices in terms

of weapons.
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Figure 4.21: 3D Scatterplot of Scaled NTS for Group Pairs (size is scaled by the inverse of the mean

R - Bigger points mean better mean ranking across trails)

Finally, to ensure that the coefficient is not biased by the skewness of the original

length of the time series and the consequent temporal distribution of events, I have

conducted a sensitivity analysis. This sensitivity analysis has been conducted creating

two shorter time series: one taking into account events that happened from January

2007 to December 2016, and the other one considering only events that happened from

January 2012 on. Pearson and Spearman correlation coefficients have been calculated

to evaluate the extent to which limiting the time span would affect both the NTS

coefficients and the related rankings. Table 4.11 shows that the results remain stable

for all trails in both scenarios, thus suggesting that the initial choice to include all

the events present in the dataset has not conducted to misleading outcomes.

Trail

2007 censoring

N=13,794

2012 censoring

N=11,743

Pearson’r

R

Spearman’s

Rho

Pearson’r

R

Spearman’s

Rho

Weapon 0.98* 0.98* 0.81* 0.86*

Target 0.89* 0.85* 0.84* 0.85*

Target+Weapon 0.99* 0.99* 0.92* 0.92*

Table 4.11: Sensitivity Test - NTS Values and Rankings Comparison Across 2007- and 2012- Cen-

sored Sequences. (*) Indicates that the Coefficient is Significant at 99.9% Level.
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4.5 Conclusions and Future Work

In this study, I have proposed a two-fold structure for the quantitative study of ter-

rorist attack sequences. First, relying on the well-established framework of Markov

chains, I have introduced the concept of “super-states” for analyzing patterns in the

sequence of jihadist attacks, focusing on three scenarios: sequences of weapons, se-

quences of targets and sequences of targets and weapons combined. The aim was

to contribute to the debate regarding the nature and complexity of terrorist oper-

ational choices. The literature is divided into two main areas: most scholars agree

upon the view of terrorists as “repetitive”, stable and consistent in their operational

processes, while others highlight their originality and diversity caused by technology

advancements and shifts in objectives over time.

Starting from simple 1-dimensional states, I have created stochastic transition

matrices up to the 5-dimensional case, to assess the general behavior of the networks

and the complexity of combinations present in the data. The results indicate that,

while drawing from relatively small sets of weapons and targets, the five groups show

a highly complex repertoire of combinations in all the three considered scenarios.

Nonetheless, as complexity in absolute terms (i.e., the number of existing super-

states) increases, the number of accessible nodes per each super-state decreases, thus

potentially reducing the challenges of predicting future behaviors. Hence, sequential

heterogeneity can be studied to gain data-driven knowledge on how terrorists behave,

going beyond the binary representation of terrorists as either repetitive or innovative.

A final result concerns the fact that data show almost identical patterns for all the

groups, potentially opening the way for generalized inferences on jihadism.

Second, I have proposed a novel coefficient, Normalized Transition Similarity

(NTS), and compared the results of the analyses across groups and trails. NTS eval-

uates the behavioral pairwise similarity of single-link transitions between different

states (again in the context of attacked targets, employed weapons and the combi-

nation of the two in each attack). It specifically uses the simple count of common

transitions controlled by the potential maximum probability of perfect similarity given

two random sequences associated with two considered jihadist organizations. The re-

sults showed that, across the three different networks, some stable similarities hold.

Particularly, Al Qaeda & Al Shabaab (which are formally affiliated, since the former

has become part of the global network in 2012) and Al Shabaab & Boko Haram are

respectively ranked as the most similar pairs in two contexts out of three. At the same

time, some other pairs confirm to be consistently dissimilar regardless of the transi-
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tion networks that are considered. This is especially the case of Al Qaeda & Taliban.

A final interesting result emerges looking at Boko Haram & Islamic State, which are

very different when weapons and targets & weapons are considered but appear to be

quite similar when only targets are included in the computation. This may suggest

that, regardless of the proposed target, two groups may try to attack it using dis-

tinct dynamic strategies (in this case intended as weapons), thus providing potential

interpretation on the scale of resources of the considered jihadist organizations.

The relevance of this exploratory analysis lies in the attempt to extract synthetic

informative indications from the complex and heterogeneous behavioral dimensions

of the most active jihadist groups in the global scenario. While detecting and as-

sessing contextual differences between terror actors is valuable, it is also relevant to

investigate how, if and to what extent they are similar to each other, especially when

considering “state changes”. Indeed, “state changes” may be fundamental sources

of information for researchers and intelligence analysts, because in the frequent and

apparently chaotic evolution of these behaviors lie the extreme difficulty of predicting,

forecasting and countering terrorism as a violent act.

Although this is an exploratory work, it poses several policy implications. From a

practical point of view, N -dimension super-states networks and similarity measures

that take into account dynamic behaviors can be used by analysts to improve profiling

of terrorist groups (especially if applying this methodology to larger samples involving

higher number of groups) going beyond more static information, regarding for instance

ideology, area of action, organizational structure. Furthermore, this general analytic

approach can help inform countering strategies based on recurring sub-sequences or

common state-changes. Terrorist events can be extremely harmful to societies, but

every attack can be very different in scale compared with a previous or future one.

For this reason, it is in the interest of institutions to understand how terrorists change

their strategies and tactics. Combining additional information on attack magnitude

or effects, transition networks and trails would be helpful in informing analysts and

policymakers on the drivers of terrorist tactical patterns, facilitating alert tools and

investigating the nature of successful (or unsuccessful) violent campaigns. With this

regard, this two-fold framework is flexible in highlighting relevant evolution in groups’

behavior, both for single groups and in a comparative fashion. This flexibility can

be exploited in different manners, focusing on specific time windows for reducing the

noisy effects of events that are distant in time or concentrating on precise dimensions

of terrorist attacks.

Besides the outcomes presented in this article, the study has certainly several
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limitations, which call for further work that can improve research and policy applica-

tions. First, the analyses do not consider the temporal delta that occurs between two

events. Given that terrorism is temporally clustered (Porter and White, 2012; White

et al., 2013), and that the considered sequences are long and unequally distributed

across time, not taking into account the delta that separates two events may lead

to biased results that overestimate transition similarity. It would be useful to break

up sequences that are more aligned to the temporal elements, considering that two

events that are consecutively ordered in the original sequence may be far apart in the

temporal scale, and it would be thus very risky to infer any kind of rational relation

between the two.

A second layer of limitations comes from the fact that the NTS only considers

single-link transitions when one-dimensional transition networks are analyzed. How-

ever, to investigate more complex patterns it would be valuable to apply the same

mathematical construction of N -dimensional super-states to transition networks to

understand if results are stable and hold when more complex information are em-

ployed.

A third layer of limitations is given by the fact that NTS can only assess pairwise

similarity, without instead providing a global coefficient that can be applied without

normalization to the whole sample, thus making it harder to interpret the results.

A fourth and final layer of limitations comes instead from the restricted sample of

groups. Although working on a limited number of entities can provide more detailed

insights, increasing the number of sequences to work with can control for false-positive

patterns that may seem similar only due to the restricted number of pairs.

All these limitations are potentially solvable in the future, and this first ex-

ploratory study aims at opening the path towards the use of transition networks

for terrorism research, showing the potential of this method that conceptually goes

beyond the ordinary use cases derived from classic social network analysis.
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5 Hawkes Processes of Jihadism

5.1 Introduction

One of the aims of this dissertation is to exploit the memory-like processes of terrorism

to set up algorithmic architectures that can learn from these dynamics and provide

reasonable and satisfactory predictions on future event characteristics. This chapter

has, therefore, the primary goal to prove the existence of memory like processes in

the considered sample of jihadist groups via the application of Hawkes processes.

Hawkes processes (Hawkes, 1971) are a specialized class of stochastic point pro-

cesses that have gained wide success in many disciplines in the last decades. Their

main feature is their self-excitability. Self-excitability posits that the occurrence of an

event has a positive impact on the probability of occurrence of future ones. Technical

details will be given in the following sections. Hawkes processes are thus a well-

established class of models to verify whether certain events naturally cluster in time

(and also space, when spatio-temporal modeling is applied) and to test the presence

of memory-like processes, especially if comparing model diagnostics with homoge-

neous Poisson processes (Daley and Vere-Jones, 2006). In fact, Poisson processes are

point processes for which the distribution of future inter-arrival times depends only

on relevant information about the current time, but not on information from further

in the past, while the self-excitability of Hawkes processes makes them intrinsically

non-Markovian, creating dependencies between the past, the present, and the future.

Given the success demonstrated by this modeling technique for both criminal and

terrorist events, I will analyze two Hawkes models for each group, taking into account

the streams of events that occurred in the two most attacked countries per each or-

ganization, filtering by the most popular target attacked in each country. Testing the

presence of memory is fundamental, considering that this is the dominating assump-

tion connected to the methodological setup of the third and last analytic chapter on

the use of deep learning architectures to predict jihadist future targets. Estimation
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diagnostics will thus be compared with baseline Homogeneous Poisson models, and

detailed comments on the outcome will be provided. The rest of the chapter is out-

lined as follows: the “Background” section will provide a review of the main literature

on the application of Hawkes process, with a focus on crime-, security- and terrorism-

related problems. The “Mathematical Framework” section will describe in detail the

mathematics behind Hawkes processes and the specific methodology applied in the

present work. The “Experiments” section will then thoroughly present the results of

the models, with a specific focus on each group. Finally, general indications arising

from these analyses, potential implications, future research paths will be presented in

the “Discussion and Future Work” section.

5.2 Related Work

The application of Hawkes processes spans across several domains. Their modeling

flexibility has captured the attention of almost all areas in which event and sequence

data are relevant sources of information for researchers and scientists. Besides research

from the foundational and theoretical standpoints (Daley and Vere-Jones, 2006; Bacry

et al., 2012; Eichler et al., 2017) , some of the fields in which Hawkes processes are

applied are finance (Chavez-Demoulin and McGill, 2012; Hawkes, 2018), geophysics

(Ogata, 1988; Türkyilmaz et al., 2013), computational social science (Kobayashi and

Lambiotte, 2016) and neuroscience (Reynaud-Bouret et al., 2013; Gerhard et al., 2017)

(for a more comprehensive review, see Reinhart (2018)). However, the progressive

and increasing use of quantitative measurements on a variety of social phenomena

in research has started to make Hawkes processes (and point processes in general)

more popular also in criminology (Mohler et al., 2011; Mohler, 2013) (Mohler 2011,

Hegemann 2012, Mohler 2013) and terrorism research (Porter and White, 2012; Lewis

et al., 2012; Tench et al., 2016) . Besides the availability of data and the shift towards

statistical approaches in the social sciences, Hawkes processes have been successful

due to the well-known clustering mechanisms of certain types of crimes and violent

phenomena in space and time: the temporal concentration of crime as a scientific

finding has indeed long preceded the diffusion and application of Hawkes models in

criminology.(Midlarsky, 1978; Midlarsky et al., 1980; Holden, 1986; Freeman et al.,

1996; Braithwaite and Li, 2007; Weisburd et al., 2009; Weisburd, 2015).

For what concerns urban crimes Mohler et al. (2011) tested the clustering dynam-

ics of crime using self-exciting point processes on residential burglary data of the city

of Los Angeles. They have considered offenses that occurred in the San Fernando
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Valley in the years 2004 and 2005 and fitted an unmarked model (i.e., a model in

which each event is considered as equal, without any qualitative information regard-

ing impact, damage, etc.) with a non-parametric estimation. Their study has been

among the first ones to introduce and present the potential of Hawkes processes for

the study and prediction of crime, emphasizing the similarities between earthquakes

and repeated offenses.

In a further attempt to advance the methodology and expand the types of criminal

phenomena to be analyzed, Mohler (2013) studied property and violent crimes in

Chicago and terrorist attacks and casualties in Northern Ireland, Israel, and Iraq.

He tested a particular type of Hawkes process with a background rate driven by a

log Gaussian Cox process, proposing a Metropolis adjusted Langevin algorithm for

learning the model parameters. The work clearly shows the number of events to be

associated with the background rate and the component connected to the Hawkes

specification, calling for additional research that may embed also spatial components.

The same author continued his research on Chicago expanding the methodological

framework via the application of Marked Hawkes processes to yield accurate hot-

spot maps to be used to tackle gun violence. The shift towards marked Hawkes

processes was performed to take into account potential triggering and precursory

offenses. The model is developed using an Expectation-Maximization algorithm (Veen

and Schoenberg, 2008) and shows better performance compared to other types of hot-

spot prediction techniques.

For what pertains terrorism, Northern Ireland and Iraq have been two countries

of particular interest for research on Hawkes processes Indeed, Tench et al. (2016)

have conducted a study using data on Improvised Explosive Devices (IED) attacks

carried out by the Provisional Irish Republican Army (PIRA) during “The Troubles”

in Northern Ireland, also integrating information on counter-attacks plotted by the

British Security Forces. The integration of these two sources of events led to the

development of a multivariate Hawkes process in the attempt to understand whether

besides past-dependencies between attacks also inter-dependencies among the two

event sequences exist. The authors showed indeed how counter-terrorism operations

lead to subsequent spikes of terrorist violence. Lewis et al. (2012) have instead focused

on reported deaths of civilians in Iraq, proposing and comparing three adjustments

for non-stationarity of the background rate. The study proved the best performance

of models including self-exciting components with respect to both stationary and

non-stationary homogeneous Poisson processes, thus demonstrating the presence of

memory dynamics and the violation of the Markovian assumption.
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Furthermore, White et al. (2013) concentrated their research on three Southeast

Asian countries, namely Indonesia, the Philippines, and Thailand. Their work aimed

at developing interpretable metrics for risk, resilience, and volatility of terrorist ac-

tivity. Through the use of self-exciting point process models, they have computed

measures of risk of daily expected terrorist attacks, additional attacks caused by

every single attack and number of days with low risk.

Maintaining the focus on Indonesia, retrieving data on the daily number of attacks

in the period 1994-2007, Porter and White (2012)formalized a dynamic model using a

shot noise process for explaining the self-excitability of terrorism. Using a power-law

distribution and a shot noise derived parameters, they achieved the best performance

in modeling the daily number of attacks. As for most of the other works described

in this section, relevant evidence is given to the promises of Hawkes and self-exciting

point processes for gaining practical and useful knowledge on terrorism, going beyond

the borders of academic research.

5.3 Mathematical Framework

5.3.1 Introducing Homogeneous Poisson and Hawkes Point

Processes

Before describing in detail the nature of Hawkes processes, it is necessary to introduce

some preliminary mathematical concepts. Given a point process (ti)i∈N∗ , then its

associated counting process is defined as:

N(t) =
∑
i∈N∗

1ti≤t (5.1)

with ti being the times in which the phenomenon under analysis occurs and 1ti being

the indicator function that is equal to 1 if ti ≤ t and 0 otherwise. Having introduced

the concept of counting process, it is worth also to provide definitions for duration

and history. The duration process associated with (ti)i∈N∗ is defined by:

∀i ∈ N∗, δti = ti − ti−1 (5.2)

while the history of events up to a given time t is given by:

H(t) =: ti|ti < t (5.3)
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At this point, the conditional intensity function λ(t) associated to the process, de-

pendent on H(t) is formalized as:

λ (t|H(t)) = lim
h→0

E(N(t+ h)−N(t)|H(t))

h
(5.4)

Following this equation, λ is the expected number of events that should occur at each

time unit t. This quantity will always depend upon H(t). The selected history will

then act as a sort of filter of each model: given a complete sequence of events and an

artificially-reduced one, the intensity will vary accordingly.

This initial background allows making the first important distinction in the realm

of point processes, namely the distinction between Homogeneous Poisson and Hawkes

processes. Understanding the difference between these two mathematical entities is

crucial to understand the implications of this work. A point process is said to be a

Homogeneous Poisson process if the intensity is positive, fixed and constant:

λ = µ (5.5)

More formally, a Poisson process with constant rate λ is a point process formalized

as:

P (N(t+ h)−N(t) = 1|H) = λh+ o(h) (5.6)

P (N(t+ h)−N(t) > 1|H) = λo(h) (5.7)

Equations 5.6 and 5.7 indicate that the intensity does not depend on the history of

the process itself, with the probability of an event happening in (t, t+h] being indeed

independent of the filtering given by H and duration δti independent and identically

distributed (i.i.d.) according to an exponential distribution parametrized by λ. In

other words, Poisson processes are memoryless: their nature is intrinsically Marko-

vian. However, in the real world, many phenomena do not respect the assumption

of constant probability in fixed time windows and independence from the past. With

this regard, a Hawkes process is an alternative class of model with different properties:

it revolves around the idea of “self-excitability”, which means that the occurrence of

an event has an impact (generally, assumed positive) on the occurrence of another

event in the future.

In light of this, given the background rate µ, which is the average rate of event

occurrence per time unit; k0 defined as the increase rate of events following a past

one (the higher the value, the more reactive the process is to future events), and

ω, the decay parameter that maps the extent to which the probability of an events

85



5 HAWKES PROCESSES OF JIHADISM

decreases after a spike, then for a given set of unique times ti, Hawkes (1971) defines

the intensity function of a self-exciting process as:

λ(t) = µ+ k0

∫ t

−∞
g(t− ti)dZ(u) = µ+ k0

∑
t>ti

g (t− ti) (5.8)

where Z is the normal counting measure and the response function g is an exponential

kernel in the form:

g(t) = ωe−ωt (5.9)

The equation of the intensity function would then read as:

λ(t) = µ+ k0

∑
t>ti

g
(
ωe−ωt

)
(5.10)

Given that ω appears in the exponent, then the higher its value, the lower the temporal

effect an event has on future ones. Additionally, Lewis et al. (2012) notes that w−1

gives the average time length over which a spike in the rate of events occur. As

pointed out by Lewis et al. (2012), a point process N(t) is said to be self-excitating

iff:

Cov [N(t1, t2), N(t2, t3)] > 0 ∀ t1 < t2 < t3 (5.11)

which means that if an event occurs, another one is more likely to happen locally in

time (but also space). In the case of homogeneous Poisson processes, in fact, this is

not true, as

Cov [N(t1, t2), N(t2, t3)] = 0 ∀ t1 < t2 < t3 (5.12)

5.3.2 Estimation of the Parameters and Model Comparison

Maximum Likelihood Estimation (MLE) has been performed to learn the parameters

µ, k0 and ω of each Hawkes process model. MLE aims at finding the parameters that

maximize the log-likelihood function. As noted by Tench (2018), for a set of event

times {ti}Ni=1, log-likelihood is calculated as:

lnL ({ti} ;µ; k0;ω) =
N∑
i=1

log(λ(ti))−
∫ T

0

λ(t)dt (5.13)

86



5 HAWKES PROCESSES OF JIHADISM

Following Tench (2018), the integral of the second term can be simplified as:∫ T

0

λ(t)dt =

∫ T

0

µ+ k0

∑
ti<t

ωe−ω(t−ti)dt

= µT + k0

∑
i

∫ T

0

ωe−ω(t−ti)1t>tidt

= µT + k0

∑
i

∫ T

ti

ωe−ω(t−ti)dt

= µT + k0

∑
i

∫ T

ti

ωe−ω(t−ti)dt

= µT + k0

∑
i

[
−e−ω(t−ti)

]T
ti

= µT + k0

∑
i

[
1− e−ω(T−ti)

]

(5.14)

Substituting this final equation in the original one, provides the complete form of the

log-likelihood computed as:

lnL =
N∑
i=1

log

µ+ k0

∑
ti>tj

ωe−ω(ti−tj)

+ k0

(
e−ω(T−ti) − 1

)− µT (5.15)

To obtain the maximization of the log-likelihood function, I relied on the Nelder-Mead

(Nelder and Mead, 1965) method available in the R package ptproc. The algorithm

in the package works to minimize the function, thus it searches for the minimization

of −lnL. The Nelder-Mead approach is a heuristic optimization technique that uses

the geometric concept of a simplex, a special case of polytop with n+1 vertices in n

dimensions. The algorithm starts generating a random simplex, and at every iteration

it proceeds to reshape and move it, iteratively one vertex at a time, trying to settle

in an optimal region of the search space. Specifically, given a n-dimensional space, a

simplex consists of n+1 points x1, x2, ..., xn+1 and the algorithm tries to minimize a

function f(x) via several steps during each iteration. During the “Ordering” phase,

all points are sorted in order to set the value of f for the first point as the lowest, and

the one of the last as the highest. The indices of the worst, second-worst and best

points be h, s, l. In the “Centroid Computation” phase, the algorithm considers all

points but the worst one (xh), and calculate their centroid as:
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c =
1

n

∑
i 6=h

xi (5.16)

After this step, comes the “Transformation” phase, which consists of Reflection, Ex-

pansion, Contraction and Shrink Contraction. During the Reflection the algorithm

computes the reflected point as:

xr = c+ α(c− xh) (5.17)

where α is the reflection parameter, and xr is a point on the line that connects c and

xh, but sufficiently away from it. This step aims at move the simplex in a direction

away from the sub-optimal region around xh. If after this step, f(xs) < f(xr) ≤ f(xl),

the algorithm substitutes xh with xr and proceeds to the Expansion step. If then the

reflected point xr is better than the current best (f(xr) > f(xl, the algorithm moves

in the direction of xr from c. The expanded point is then defined as:

xe = c+ γ(xr − c) (5.18)

where γ is here an expansion parameter (usually set at a value of 2). At this point,

the algorithm replace xh with the best point between xe and xr. In case the reflection

point was worse than xs (the second worst point), the algorithm contracts the simplex.

The contraction point is then defined as:

xc = c+ β(xh − c) (5.19)

with β being the contraction parameter. If f(xc) > f(xh), it means that the con-

tracted point is actually better than the current worst, and the algorithm then replaces

xh with xc in the simplex. In case this the relation above is not satisfied, the algo-

rithm moves to the Shrink Contraction step. During this step, the algorithm only

keeps the best point (xl and re-define the other with respect to it, so that the new

point is defined as:

xj = xl + δ(xj − xl) (5.20)

where δ is the shrinkage parameter. The algorithm finally terminates if (1) a pre-set

number of iterations is reached, or (2) the simplex reaches a limit of minimum size,

or (3) the current best solution reaches some acceptable limit. In the present work,

a default limit of 500 iterations for each model has been selected.
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Once the parameters have been estimated, it is necessary to check whether the

model actually fits the real data. Following the approaches used in other articles,

residual analysis and a consequent Kolmorogv-Smirnov test (Massey, 1951) have been

performed. Given a set of event times {ti} associated to an Hawkes point process

with intensity λ, the residuals for each i are computed through:

τi =

∫ ti

0

λ(t)dt (5.21)

Following these residuals should be distributed as a stationary process with unit rate,

therefore it can be proved that they are also exponentially distributed via:

Yi = τi − τi−1 =

∫ ti

0

λ(t)dt−
∫ ti−1

0

λ(t)dt

=

∫ ti

ti−1

λ(t)dt

=

∫ ti

ti−1

µ+ k0

∑
tj<t

ωe−ω(t−tj)dt

= µ (ti − ti−1) + k0

∫ ti

ti−1

∑
tj<t

ωe−w(t−tj)dt

= µ (ti − ti−1) + k0

i−1∑
j=1

∫ ti

ti−1

ωe−w(t−tj)dt

= µ (ti − ti−1) + k0

i−1∑
j=1

[
−e−ω(t−tj)

]ti
ti−1

= µ (ti − ti−1) + k0

i−1∑
j=1

[
e−ω(ti−1−tj) − e−ω(ti−tj)

]

(5.22)

This would thus mean that Ui are uniform random variables:

Ui = 1− exp−Yi

= 1− exp

[
−

(
µ(ti − ti−1) + k0

i−1∑
j=1

[
e−ω(ti−1−tj) − e−ω(ti−tj)

])] (5.23)

It follows that to check whether the Hawkes process fits the data, it can be verified

if Ui actually belong to a uniform distribution. Applying the same approach of
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Tench et al. (2016), I have then performed Kolmogorov-Smirnov (KS) test. This very

common test compares the value of a test statistic to a given critical value Dσ. The

KS test statistic is computed as:

Dn = max
k

(∣∣∣∣Uk −
k − 1

N
,

∣∣∣∣ kN − Uk

∣∣∣∣∣∣∣∣) (5.24)

and the model is found to be fitting to the data if Dn < Dσ. Finally, to provide

further evidence that the data under analyses are modeled correctly through a Hawkes

process, I have compared the Hawkes models with baseline Homogeneous Poisson

processes. To do so, I have compared the Akaike Information Criterion (AIC) (Akaike,

1974) value of Hawkes and homogeneous Poisson in each model. Between the two,

the best model to be chosen is the one with the lowest AIC, calculated as:

AIC = 2k − 2lnL (5.25)

with k being the number of parameters of the model and lnL being the MLE.

5.3.3 The Present Study

The present study aims at deepening the knowledge on jihadist dynamics applying

Hawkes processes to evaluate self-excitability given certain attacks characteristics,

and particularly targets. This methodological choice is motivated also by the need

for providing empirical results on memory processes that can justify the architecture

of the last analytic chapter on neural networks for predictive purposes. Showing the

presence of past-dependency in the attack sequences with specific characteristics is

a valuable way to suggest that further patterns can be learned when focusing on

historical data. In this chapter, I have decided to perform a double-filter. First,

for each group, the attacks that occurred in the two most targeted countries will be

kept. Secondly, only the attacks with the two most popular targets will be selected

(target frequency per each group and country is displayed in Tables 5.1, 5.2, 5.3, 5.4

and 5.5).1 Given the necessity to provide unique time stamps to correctly run the

models, when multiple attacks occurred in the same day, a number x sampled from

a random uniform distribution (x ∼ U(0, 1]) has been added in order to keep all the

1In this chapter, I have only taken into account the first target type, without considering also the

potential other two. This decision reduces the level of detail of the information, but still guarantees

a solid proof of concept for the aims of the work. As done in the other chapters, I have used the

most general level of information out of the four different available when considering targets.
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attacks and maintain relevant information that can better explain the intensity of a

terrorist wave of attacks. The analyses have been performed relying on R package

ptproc (Peng, 2003), and on a private Pythonanywhere website kindly provided by

Stephen Tench and originating from his doctoral dissertation work (Tench, 2018). As

anticipated above, the models work with exponential kernels and the Nelder-Mead

algorithm (Nelder and Mead, 1965) will be used for MLE optimization to learn the

parameters of each model.

Iraq Syria

Target N % Target N %

Private Citizens & Prop. 1476 49.02% Private Citizens & Prop. 202 51.53%

Police 487 16.17% Terrorists/N. St. Militia 41 10.46%

Military 223 7.41% Military 33 8.42%

Business 182 6.04% Business 27 6.89%

Terrorists/N.S.Militia 144 4.78% Journalists & Media 19 4.85%

Government (General) 126 4.18% Police 16 4.08%

Unknown 104 3.45% Religious Fig./Inst. 15 3.83%

Others 269 8.93% Others 39 9.95%

Total 3011 100% Total 392 100%

Table 5.1: Target Type Frequency (Highest in Red) for the Islamic State in Iraq and Syria

Afghanistan Pakistan

Target N % Target N %

Police 2185 39.09% Private Citizens & Prop. 23 46.94%

Private Citizens & Prop. 1238 22.15% Military 5 10.20%

Government (General) 850 15.21% Police 5 10.20%

Military 287 5.14% Educational Institution 4 8.16%

Business 201 3.60% Government (General) 3 6.12%

Unknown 184 3.29% Business 2 4.08%

Educational Institution 135 2.42% Terrorists/N. St. Militia 2 4.08%

Others 509 9.11% Unknown 2 4.08%

Total 5589 100.00% Others 3 6.20%

Total 49 100.00%

Table 5.2: Target Type Frequency (Highest in Red) for the Taliban in Afghanistan and Pakistan
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Yemen Iraq

Target N % Target N %

Government (General) 145 24.62% Private Citizens & Prop. 233 40.10%

Police 119 20.20% Police 123 21.17%

Private Citizens & Prop. 81 13.75% Government (General) 62 10.67%

Military 68 11.54% Business 46 7.92%

Terrorists/N. St. Militia 50 8.49% Terrorists/N. St. Militia 29 4.99%

Utilities 37 6.28% Military 18 3.10%

Government (Diplomatic) 20 3.40% Religious Fig./Inst. 17 2.93%

Business 19 3.23% Others 53 9.12%

Others 50 8.48% Total 581 100.00%

Total 589 100.00%

Table 5.3: Target Type Frequency (Highest in Red) for Al Qaeda in Yemen and Iraq

Nigeria Cameroon

Target N % Target N %

Private Citizens & Prop. 946 49.68% Private Citizens & Prop. 131 65.50%

Police 228 11.97% Religious Fig./Inst. 16 8.00%

Religious Fig./Inst. 152 7.98% Unknown 12 6.00%

Government (General) 138 7.25% Police 11 5.50%

Business 99 5.20% Business 8 4.00%

Educational Institution 86 4.52% Military 7 3.50%

Military 68 3.57% Others 15 7.50%

Others 187 9.82% Total 200 100%

Total 1904 100%

Table 5.4: Target Type Frequency (Highest in Red) for Boko Haram in Nigeria and Cameroon

Somalia Kenya

Target N % Target N %

Private Citizens & Prop. 427 30.48% Police 99 34.26%

Government (General) 342 24.41% Private Citizens & Prop. 55 19.03%

Military 165 11.78% Business 47 16.26%

Police 107 7.64% Religious Fig./Inst. 16 5.54%

Business 95 6.78% Government (General) 15 5.19%

Journalists & Media 44 3.14% Transportation 15 5.19%

Government (Diplomatic) 34 2.43% Military 10 3.46%

Unknown 31 2.21% NGO 8 2.77%

Airports & Aircraft 27 1.93% Others 24 8.30%

Others 129 9.20% Total 289 100.00%

Total 1401 100.00%

Table 5.5: Target Type Frequency (Highest in Red) for Al Shabaab in Somalia and Kenya
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5.4 Experiments

5.4.1 The Islamic State

The two most targeted countries from attacks carried out by the Islamic State are Iraq

and Syria. However, the comparison is disproportionate given that Iraq accounted

for more than 3,000 incidents, while Syria only accounts for less than 400. The

first attack ever recorded in the GTD and assigned to the Islamic State was dated

April 18, 2013. This testifies the extremely intense activity of the IS in the temporal

frame under analysis. Besides pure event counting, the IS has carried out attacks in

Iraq on 933 unique days, while in Syria days were 228. When focusing on the most

popular targets, the Islamic State preferred to hit Private Citizens and Property in

both countries (49.02% of all attacks in Iraq and 51.53% in Syria). The results of the

models for both countries are reported in Table 5.6.

Parameters Iraq Syria

µ 0.562 0.090

k 0.495 0.424

ω 3.908 2.497

KS Test Stat 0.035* 0.032*

KS 95% Sig. Level 0.095 0.095

KS 99% Sig. Level 0.114 0.0114

Hawkes AIC 1283.852† 934.330†

H. Poisson AIC 2634.031 1147.258

Table 5.6: Univariate Hawkes Estimates for Islamic State Models (Iraq and Syria). † Indicates which

Model Between Hawkes and H. Poisson better Explains the Process. * Indicates 95% significance of

the KS Statistic, ** Indicates 99%.

Firstly, the results of the AIC tests (values are lower for the Hawkes process

compared to the Homogeneous Poisson) suggest that a certain degree of self-excitation

is present in both the countries and that, therefore, there exist some memory-like

dynamics in the way in which the Islamic State behaves when considering Private

Citizens and Property as targets. A second order of results regards the interpretation

of the parameters. The parameter µ describes the average number of events at each

time step: Iraq has a much higher average number of attacks per day compared to

Syria. The jump factors k instead suggest that in both countries the reactivity of

the process at each event is almost similar.2 Thirdly, the inverse of the parameter ω

2k is bounded in the range (0, 1], with higher values indicating higher reactivity.
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provides information on the average length of periods in which higher rates of events

occur. In the case of Iraq, the length is shorter (0.25 days) than the length in Syria

(0.4 days), testifying the very high frequency of attacks in both geographical contexts,

which represents a distinguishing characteristic of the Islamic State. This is visually

shown also by Figures 5.5, 5.6, 5.7, 5.8, where for both groups the event streams and

the estimated conditional intensities λ are displayed.

Figure 5.1: IS KS Plot - Iraq Figure 5.2: IS KS Plot - Syria

Figure 5.3: IS Inter-arrival

Times - Iraq

Figure 5.4: IS Inter-arrival

Times - Syria

The KS test statistic gives qualitative information regarding the goodness of fit

of the models at the level of confidence of 95%. Figures 5.1 and 5.2 show that most

of the points are falling on the red solid line (Dashed lines represent 95% confidence

boundaries). Inter-arrival times are displayed in Figure 5.3 and 5.4. The first-order

differences follow an exponential decay: the model thus represents the data well.

For both countries, most attacks occur within two days, further demonstrating the

extreme frequency of violence carried out by the Islamic State.
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Figure 5.5: Event Stream of Islamic State in Iraq
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Figure 5.6: Conditional Intensity λ of Islamic State Attacks in Iraq
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Figure 5.7: Event Stream of Islamic State in Syria
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Figure 5.8: Conditional Intensity λ of Islamic State Attacks in Syria
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5.4.2 The Taliban

The Taliban, during their very long history of terrorism, has only attacked two coun-

tries: Afghanistan and, marginally, Pakistan. In fact, out of a total of 5,638 attacks,

only 49 have targeted Pakistan. The first recorded event in the dataset occurred in

Afghanistan in April 1995. In terms of days, the Taliban have carried out terrorist at-

tacks in Afghanistan on 2,522 unique days and in Pakistan on 47. For what concerns

targets, in Afghanistan the Taliban has targeted Police in 39.09% of the attacks, tes-

tifying their strategy against the State and institutions. In Pakistan, instead, Private

Citizens and Property have been attacked in 46.94% of the cases. Model results are

shown in Table 5.7.

Parameters Afghanistan Pakistan

µ 0.023 0.002

k 0.942 0.615

ω 0.083 0.011

KS Test Stat 0.048 0.121*

KS 95% Sig. Level 0.029 0.283

KS 99% Sig. Level 0.034 0.339

Hawkes AIC 5325.685† 269.912

H. Poisson AIC 7915.538 265†

Table 5.7: Univariate Hawkes Estimates for Taliban Models (Afghanistan and Pakistan). † Indi-

cates which Model Between Hawkes and H. Poisson better Explains the Process. * Indicates 95%

significance of the KS Statistic, ** Indicates 99%.

The results for the Taliban are not as good as the ones obtained with the Islamic

State. While the AIC statistic indicates that, for Afghanistan, the Hawkes model

better captures the dynamics of the data, for Pakistan the Homogeneous Poisson

process seems to have a better fit (although AIC values are very similar). This can

be probably explained by the very low number of attacks considered for Pakistan (i.e.,

23) and by their distribution in the considered time frame. The KS test provides again

contrasting results: while the Pakistan model reaches a 95% significance level, the

Afghanistan one fails the test. The outcomes of the KS tests are graphically provided

in Figures 5.9 and 5.10. In the case of Afghanistan, the points remain within the

confidence boundaries except for a deviation in the bottom-left of the plot.
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Figure 5.9: Taliban KS Plot -

Afghanistan

Figure 5.10: Taliban KS Plot -

Pakistan

Figure 5.11: Taliban Inter-arrival

Times - Afghanistan

Figure 5.12: Taliban Inter-arrival

Times - Pakistan

In spite of the limitations addressed in the previous lines, it is however worth

to provide some context via parameter interpretation. Parameter µ shows that, on

average, Afghanistan tended to experience a higher number of attacks per single day

(0.023 vs 0.002). The jump factor k is very close to the limit of 1 in Afghanistan

(0.942), testifying the very high level of excitability and eventually escalation. For

the Pakistan case, the value is still high (0.615). Finally, ω−1 gives information on

the average number of days over which self-excited events persist: in the case of

Afghanistan, this time window lasts 12 days, while the period is much longer for

Pakistan (90 days): this is discrepancy in the results between the two countries is

obviously motivated by the sizeable difference in absolute numbers of attacks and

consequent distribution. These aspects can be seen in Figures 5.13, 5.14, 5.15, 5.16.
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Figure 5.13: Event Stream of Taliban in Afghanistan
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Figure 5.14: Conditional Intensity λ of Taliban Attacks in Afghanistan
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Figure 5.15: Event Stream of Taliban in Pakistan
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Figure 5.16: Conditional Intensity λ of Taliban Attacks in Pakistan
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5.4.3 Al Qaeda

Relying on the concept of “Al Qaeda Network”, as done in the other chapters of

the work, also in this section a single category for the Al Qaeda group has been

created in the first phase, merging together all the smaller groups and fraction that

constitute the network (except for Al Shabaab which constitutes a group per se).

The most targeted countries are Yemen (589) and Iraq (581). The first attack in

Yemen has been carried out in 2005, while Al Qaeda appeared in Iraq in 2004. In

Yemen, Al Qaeda in Yemen and Al Qaeda in the Arabian Peninsula are the two

organizations responsible for all the attacks, in collaboration with other terrorist

groups, as the Adan-Abyan Province of the Islamic State. In Iraq, Al Qaeda has been

present through the attacks of Al Qaeda in Iraq and Al Qaeda Kurdish Battalions.

In Yemen, from 2005 to 2016, attacks occurred in 461 unique days, while in Iraq

202. Shifting the focus on the most popular targets, Al Qaeda in Yemen mostly hit

Government (General) buildings and/or personalities (24.62% of the events), while in

Iraq the organization mainly attacked Private Citizens and Property (40.1%). Besides

descriptive statistics, the results of the Hawkes models are reported in Table 5.8.

Parameters Yemen Iraq

µ 0.032 0.024

k 0.477 0.687

ω 0.039 3.957

KS Test Stat 0.075* 0.067*

KS 95% Sig. Level 0.112 0.089

KS 99% Sig. Level 0.135 0.107

Hawkes AIC 1076.844† 552.252†

H. Poisson AIC 1091.252 1626.547

Table 5.8: Univariate Hawkes Estimates for Al Qaeda Models (Yemen and Iraq). † Indicates which

Model Between Hawkes and H. Poisson better Explains the Process. * Indicates 95% significance of

the KS Statistic, ** Indicates 99%.

For both countries, the models indicate that a self-exciting component is present

in the data under analysis. Indeed, AIC values for Yemen and Iraq are lower for

Hawkes models compared to Homogeneous Poisson. Furthermore, also the KS tests

are both significant at 95%, thus suggesting that the Hawkes specification is capable

of capturing the mechanics of terrorist attacks against Government in Yemen and

Private Citizens and Property in Iraq. The goodness derived from the KS test is

visually represented in Figure 5.17 and Figure 5.18. Additionally, Figures 5.19 and
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5.20 show that in both countries the inter-arrival times are dispersed following an

exponential distribution, further demonstrating the goodness of the Hawkes models.

The exponential decay is steeper in the Iraq case, with the majority of inter-arrival

times being between 0 and 1 day, while in Yemen the exponent is smoother.

Figure 5.17: Al Qaeda KS Plot -

Yemen

Figure 5.18: Al Qaeda KS Plot -

Iraq

Figure 5.19: Al Qaeda Inter-arrival

Times - Yemen

Figure 5.20: Al Qaeda Inter-arrival

Times - Iraq

Learned parameters provide additional information on the dynamics of terrorist

events plotted by Al Qaeda in Yemen and Syria against Government and Private

Citizens respectively. The average expected number of attacks per day (µ) is higher

in Yemen (0.032 against 0.024), while k suggests that the process is more reactive

in Iraq. Finally, the inverse of the estimated ω parameters are extremely different.

In Yemen, the average number of days in which self-excitability persists is 25, while

in Iraq it lasts for less than a day. This, also considering the graphical depiction in

Figure 5.22 and Figure 5.24, indicates that self-excitability is higher in Yemen.
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Figure 5.21: Event Stream of Al Qaeda in Yemen
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Figure 5.22: Conditional Intensity λ of Al Qaeda Attacks in Yemen
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Figure 5.23: Event Stream of Al Qaeda in Iraq
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Figure 5.24: Conditional Intensity λ of Al Qaeda Attacks in Iraq
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5.4.4 Boko Haram

The jihadist group Boko Haram’s first attack included in the GTD dates back to

2009. Since then, six countries have been targeted: Nigeria and Cameroon, with

respectively 1,904 and 200 terror events, are the most hit countries. Nigeria is the

country where the group was born and accounts for the vast majority of attacks

perpetrated by Boko Haram, with 982 days with at least one event between 2009

and 2016. The adjoining country Cameroon has been certainly affected by a smaller

number of terrorist attacks, though having experienced them for 148 unique days from

2013 to 2016. As for most of the other groups, also Boko Haram showed a preference

towards Private Citizens and Property as targets. In Nigeria and Cameroon, 49.68%

and 65.5% of attacks respectively were carried out against this category. The results

of the models are reported in Table 5.9.

Parameters Nigeria Cameroon

µ 0.037 0.075

k 0.883 0.252

ω 0.136 2.343

KS Test Stat 0.093 0.077*

KS 95% Sig. Level 0.044 0.118

KS 99% Sig. Level 0.052 0.142

Hawkes AIC 3327.452† 798.694†

H. Poisson AIC 3857.419 848.176

Table 5.9: Univariate Hawkes Estimates for Boko Haram Models (Nigeria and Cameroon). † Indi-

cates which Model Between Hawkes and H. Poisson better Explains the Process. * Indicates 95%

significance of the KS Statistic, ** Indicates 99%.

While for both models the AIC statistic suggests that the Hawkes model provides a

better fit compared against a homogeneous Poisson model, the Nigeria model fails the

KS test (the Cameroon model, instead, is accepted with 95% confidence). Inspecting

the KS plot for Nigeria (Figure 5.25, the points deviates from the 95% confidence

boundaries for a large part of the graph (it is worth to recall that a perfect fit would

imply a perfect overlap on the solid red line that has an inclination of 45). The KS

test is known to be very demanding (Lallouache and Challet, 2014), but there might

be different explanations regarding the negative result for the Nigerian case. The

most probable is that the models should be fitted using a different type of decay

kernel (e.g. Power-law, Rayleigh). Another concurrent explanation is the presence of

non-stationarity in the data.
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Figure 5.25: Boko Haram KS Plot -

Nigeria

Figure 5.26: Boko Haram KS Plot -

Cameroon

Figure 5.27: Boko Haram Inter-arrival

Times - Nigeria

Figure 5.28: Boko Haram Inter-arrival

Times - Cameroon

In spite of the limitations shown by the models, in both cases at least a certain degree

of evidence is provided for the presence of memory and self-excitability (considering

the AIC tests). In the considered time spans (which are different), µ parameter is

higher for Cameroon than for Nigeria, while the jump factor k highlights the much

higher reactivity of the self-excitation for the Nigerian model. Finally, ω−1 values

extremely differ in the two distinct scenarios: the length of self-excitation windows

lasts around 7 days in Nigeria, while in Cameroon the duration is less than a day

(0.41), showing the very different nature of the two processes.
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Figure 5.29: Event Stream of Boko Haram in Nigeria
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Figure 5.30: Conditional Intensity λ of Boko Haram Attacks in Nigeria
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Figure 5.31: Event Stream of Boko Haram in Cameroon
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Figure 5.32: Conditional Intensity λ of Boko Haram Attacks in Cameroon
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5.4.5 Al Shabaab

Back in 2007, the first attack claimed by Al Shabaab hit Somalia, which is indeed

the country of origin of the group and the most targeted one. After Somalia comes to

Kenya (that experienced the first attack only a few months after the first Al Shabaab

attack overall). Until 2016, Somalia has been hit by 1,401 attacks (in 963 unique

days), while Kenya accounted for a total of 289 (in 228 unique days). Concerning

targets, Al Shabaab mostly hit Private Citizens and Property in Somalia (30.48%)

and, similarly to the Taliban in Afghanistan, Police in Kenya (34.26% out of the total

number of events). The results of the two separate Hawkes models are showcased in

Table 5.10.

Parameters Somalia Kenya

µ 0.023 0.004

k 0.861 0.982

ω 0.041 0.005

KS Test Stat 0.479 0.134*

KS 95% Sig. Level 0.061 0.136

KS 99% Sig. Level 0.074 0.163

Hawkes AIC 2501.592† 806.725†

H. Poisson AIC 2781.596 820.594

Table 5.10: Univariate Hawkes Estimates for Al Shabaab Models (Somalia and Kenya). † Indi-

cates which Model Between Hawkes and H. Poisson better Explains the Process. * Indicates 95%

significance of the KS Statistic, ** Indicates 99%.

The models of Al Shabaab provide distinct outcomes. In the Somalian case,

in spite of the AIC statistic being preferable for the Hawkes case compared to the

Homogeneous Poisson, the KS test is largely failed. Visually, this is testified by the

KS plot in Figure 5.33. The points largely deviate from the significance boundaries.

Again, this can be explained by a wrong choice in the type of decay kernel being

non-exponential in the natural representation of the data. These results partially

confirm some of the results found in Tench (2018), where a considerable number of

models, although with different data and methodology, did not pass the KS test, yet

performing better than the Poisson baseline case.

Nonetheless, for what concerns Kenya, the Hawkes better captures the dynamics

found in the data: the KS statistic is significant at 95% confidence level, and the

distribution of inter-arrival times fits well an exponential distribution (while this was

not the case for the Somalian case, as shown in Figures 5.35 and 5.36).

109



5 HAWKES PROCESSES OF JIHADISM

Figure 5.33: Al Shabaab KS Plot -

Somalia

Figure 5.34: Al Shabaab KS Plot -

Kenya

Figure 5.35: Al Shabaab Inter-arrival

Times - Somalia

Figure 5.36: Al Shabaab Inter-arrival

Times - Kenya

Inspecting the parameters, the average expected number µ is way higher for Soma-

lia, testifying higher frequency in the number of attacks (which was indeed foreseeable

given the large difference in the absolute number of attacks and the almost similar

duration of the period under analysis). However, the k parameter shows that the

process is much more reactive in the Kenyan case. Yet, both values are very high

and quite close to the bounded limit of 1 (set to avoid the process being explosive).

Finally, the average number of days over which a series of self-exciting attacks last is

also quite different for the two scenarios: 24.39 days in Somalia, while 200 days for

the Kenyan case. This last result might be influenced by the relatively low frequency

of attacks in the first three years included in the analysis.
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Figure 5.37: Event Stream of Al Shabaab in Somalia
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Figure 5.38: Conditional Intensity λ of Al Shabaab Attacks in Somalia
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Figure 5.39: Event Stream of Al Shabaab in Kenya
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Figure 5.40: Conditional Intensity λ of Al Shabaab Attacks in Kenya
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5.4.6 Summary of the Results

To synthesize the outcomes of the ten different models (two per each terrorist group),

Table 5.11 provides a summary of the results beyond parameter estimation and in-

terpretation, to assess whether this proposed modeling technique has been suitable

for the data at my disposal.

Group
Country/Target 1 Country/Target 2

AIC selection KS Test AIC selection KS Test

Islamic State Hawkes Yes Hawkes Yes

Taliban Hawkes No Poisson Yes

Al Qaeda Hawkes Yes Hawkes Yes

Boko Haram Hawkes No Hawkes Yes

Al Shabaab Hawkes No Hawkes Yes

Table 5.11: Summary of Results for Model Selection and Goodness of Fit

The results indicate that, in nine cases out of ten, Hawkes point processes seem

to better capture the inherent nature of the data. The only case in which the Ho-

mogeneous Poisson process (considered as the null baseline alternative) has a better

AIC statistic is the model on Taliban attacks in Pakistan against Private Citizens

and Property. As explained in the dedicated subsection, this can be due to the very

low number of attacks considered (23, making it the model with the lowest number

of points under analysis) and its distribution over time, which is particularly sparse

over a long period.

When focusing on KS tests, three models have been problematic, namely the Taliban

in Afghanistan, Boko Haram in Nigeria and Al Shabaab in Somalia, while the other

seven passed the test with a 95% level of significance. It is worth to note that the mod-

els which failed the test are all referring to sequences with a relatively high number

of events (respectively 2184 for Taliban/Afghanistan, 946 for Boko Haram/Nigeria

and 485 for Somalia). As anticipated in the chapter, this can be driven by the decay

function not being exponential avoiding, therefore, an acceptable fit for the models.

Different solutions can be tested to better investigate the causes and motivations be-

hind these results, and some of them will be proposed in the last section. However,

the summary of results provides encouraging evidence that, in the vast majority of

the cases, the processes exhibit memory-dynamics, suggesting once again how jihadist

attacks do not happen at random but, instead, are clustered in time.
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5.5 Discussion and Future Work

Hawkes processes are a particular type of stochastic processes that have gained wide

success in many different research areas. Named after Alan G. Hawkes, these types of

processes have been applied in the analysis of earthquakes, financial markets, brain

activity and, lately, crime and political violence. Indeed, in the last years, several

scholars have modeled the spatio-temporal dynamics of either gang violence or terror-

ism exploiting the properties of this particular point process. The success of Hawkes

processes resides in the capability of capturing the behaviors of many real-world phe-

nomena. Earthquakes, stock selling and buying, bank defaults, crimes, and terrorist

attacks naturally cluster in time and space and, moreover, events are self-exciting,

meaning that the occurrence of an earthquake is likely to have a positive impact on

the probability of the occurrence of an aftershock in the near future: Hawkes processes

are exactly created to capture these dynamics.

Building upon the recent relevant scientific production at the intersection between

criminology and statistical modeling, in this chapter I have applied Hawkes processes

to test the presence of memory-dynamics and self-excitability in the data. Given that

Hawkes processes are a non-Markovian extension of Poisson processes (Laub et al.,

2015), they exhibit memory, which is a fundamental concept for the entire architecture

of my dissertation. Going beyond the existing literature, instead of simply analyzing

terrorist events, I have focused on a subset of events per each group, considering only

the two most attacked countries and the most popular targets for each group.

This choice is motivated by three factors. First, the desire to investigate dynamics

at a higher level of detail, discriminating events based on their characteristics, since,

as testified by the results of the previous chapter, jihadism can be extremely hetero-

geneous in its behavior. Indeed, while a process of pure events can exhibit memory

dynamics, when focusing on event characteristics via data disaggregation, these dy-

namics may vanish. Second, testing Hawkes processes on sequences of events related

to specific targets is not only relevant for the structure of this research work but can

also provide further indications in terms of counter-terrorism policies. Discriminat-

ing between attacks of different nature (or magnitude) can be of help in determining

different strategies of risk mitigation, providing guidance on resource allocation for

counter-terrorism campaigns. Third, the necessity to conceptually connect this chap-

ter with the previous one on trails and transition networks and, foremost, with the

last one on deep neural networks, relying on the concept of “memory”. While these

analyses have given insights on the behavior of jihadist groups, still many improve-
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ments can be added. There are several pathways for future work, starting from the

outcomes of this chapter.

First, to solve the issues found in the problematic models, it would be interesting

to explore Hawkes models fitted with alternative kernels. Theoretical and applied

research has been done (especially in finance, see for instance Hardiman et al. (2013)

and Zhang (2016)) as long as programming frameworks and packages have been de-

veloped (Xu, 2018) to take into account different potential modeling specifications of

kernel functions and it will thus be interesting to evaluate if these developments can

contribute to a better explanation of these data.

Second, integrating temporal information on events with further information could

enrich the models and results. To do so, Marked Hawkes processes should be de-

ployed. This particular class of Hawkes processes allows associating to each event

a particular feature (for a detailed theoretical and mathematical explanation, see

for example Daley and Vere-Jones (2006)). They have been used in several areas,

including information diffusion (Chen and Tan, 2018), finance (Lee and Seo, 2017),

energy conservation research (Li and Zha, 2015) and also crime (Mohler, 2014). Their

statistical characteristics would enable us to discriminate between different types of

events with the same characteristics (or belonging to the same filtered subset, e.g.,

the subset of attacks directed against a particular target) but with different mag-

nitude, consequences and impact. Associating a so-called “mark” to each event to

capture the damages that the attack has provoked (in terms of human losses, for

instance) could help in addressing further research questions, trying to investigate

whether high-impact attacks can lead to higher self-excitability, or not. Third, in-

vestigating the relation (possibly also in terms of causality) between multiple point

processes would be crucial in depicting the nature of more complex dynamics. Tench

et al. (2016) have already tested a multidimensional model taking into account ter-

rorist and counter-terrorist activities. For the data at my disposal, different options

could be viable. One option could be investigating the dynamics between attacks in

adjoining countries or, even better, provinces. Another option, instead, would be the

analysis of multidimensional processes of attacks directed against different types of

targets. Multivariate Hawkes processes can better explain and capture the natural

dynamics of the data: however, they can also reveal causality. Many works have de-

veloped methods to infer causality (in different terms) from multidimensional Hawkes

processes (Xu et al., 2016; Etesami et al., 2016; Achab et al., 2017): being able of dis-

covering causal structures in terrorism domain would represent a crucial advancement

both in terms of research and policy.
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6 Deep Learning and Terrorism:

Long Short-Term Memory

Networks for Jihadist

Target Forecasting

6.1 Introduction

Network science in terrorism research has been mostly applied to map the relations

between individuals belonging to the same terrorist group, to highlight their organi-

zational structure and eventually provide suggestions on how to disrupt them (Krebs,

2002; Farley, 2003; Adler, 2007; Moon and Carley, 2007; Keller et al., 2010; Gerdes,

2015; Malm et al., 2016). This work, conversely, does not deal with networks of indi-

viduals: ironically, individuals are not even included among the several entities that

will be considered. Indeed, the concept of meta-networks of terrorism which has been

fundamental also in Chapter 4, will constitute the cornerstone of this chapter too.

In this case, meta-networks will consider different dimensions of terrorist attacks and

map relations among these dimensions and consider the evolution of these relations

over-time. Specifically, given the five groups under analysis, each jihadist organiza-

tion will be associated with a meta-network, mapping the history of its attacks during

its existence in this meta-relational way. The dimensions of the meta-networks will

be locations (intended as countries in which the group operates, i.e., where it plots

attacks), employed weapons, tactics and attacked targets. My intuition is that, by

using the information retrieved from all the events perpetrated by the jihadist groups,

it will be possible to extract deep knowledge on how these terrorists behave and even

predict and forecast their future actions. Indeed, while research on terrorist events,

both at explanatory and predictive level, is of no certain novelty (meaning that re-
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search on terrorist events is not innovative per se), the innovative element here is

represented by the way in which attacks are conceptualized and treated.

Classic research on terrorist events has treated attacks as independent of one

another (with some exceptions if attacks were physically connected, as in the case

of 9/11). However, terrorist events may be connected in different ways. Besides

pure physical relations, namely attacks that were plotted together as part of a wider

strategy, as again in the case of 9/11, events can be related by hidden connections

that can be conceptualized in a network-based fashion. To exemplify, we can think

about the case of three hypothetical terrorist attacks: A, B, C. Attack A and C share

the same target type, attack B and C share the same weapon type, attack A and B

share the same location. These are all abstract relations that may be gathered from

the original information set: having extensive data of this type for long sequences

of attacks allow to re-create these hybrid meta-networks (hybrid because they map

relations that are not only of different type but also of different intrinsic nature:

physical versus abstract), and these hybrid meta-networks can monitor and possibly

detect patterns that would remain hidden if information were treated in the classic

way.

The concept of mutual dependency and the multiple inter-relations that this ap-

proach allows to consider are essential to grasp a deeper understanding of terrorism

as a complex social phenomenon. It is a conceptual mistake to think that terror

events are not connected even at this “deeper” level. In a dynamic meta-network

environment, recurring regularities are easily detectable, for instance. Additionally,

networks allow controlling for anomalies, helping to answer questions such as “how

close an organization is to change its behavior?” or “how diverse is a group’s terror

strategy?”. These are all information that can be crucial for research and policy pur-

poses. Furthermore, this approach helps in extracting new knowledge from existing

data that have been already analyzed and unfolded in many ways by scholars.

The fundamental seed of this part of the work starts from a single question. This

question is: “Does terrorism have memory?”. As it is posed the question may cause

confusion in the reader. The previous chapter already demonstrates that memory,

intended as the existing time-dependent structure between events, is found in jihadist

dynamics. This finding is in line with previous literature on the topic.

The proven fact that terrorism does not happen randomly is already an important

step towards a better understanding of the phenomenon. In fact, knowing that attacks

are clustered over time is relevant to the intelligence community to design counter-

plans or response activities after major incidents. However, still a lot is missing. This
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is why the question has to be posed again. Besides the fact that events are clustered

in time and are not independent one of another, we should investigate if some specific

dynamics show patterns and schemes which can be related to a multidimensional

concept of “memory”. The idea is that, besides the analysis of mere events, we shall

focus on specific dimensions of attacks (i.e. countries, tactics, weapons, and targets,

in this case) to understand if the analysis of how these features are distributed over

time follow specific interrelated pathways and properties.

Memory is hence defined as the situation in which, given a considerably long

sequence of events, events hold a specific interconnected temporal structure that can

be learned by a model and can be useful in predicting the future. If terrorism has a

memory, and, besides events, features hold specific interconnected behaviors, then we

can employ models that have some “memory” dimensions to make predictions about

the future. The question is relevant, and if it does not appear to be so, it is my

fault because it means I was not clear enough in explaining the whole reasoning. For

the sake of simplicity, the reader may just think about the concept of memory as a

deeper extension of the concept of spatio-temporal concentration of terrorist events.

“Deeper” means that memory will consider multiple dimensions of terrorism assuming

non-randomness across them, thus distinguishing events based on their characteristics

instead of treating them as all equal.

The whole investigation poses further interesting theoretical questions. If memory

existed, understanding why it exists would be of indisputable value. Does it exist

because terrorists are rational agents? Does it exist because each terror group has

some specific expertise and tends to demonstrate it through the repetition of certain

actions over time? I will not directly answer these questions, but the reader shall keep

them in mind as it advances in the chapter, because the dissertation will indirectly

look at them as potential future work.

The investigation on memory and interdependence will be directed towards the

integration of network science and deep learning for forecasting future terrorist tar-

gets.

The chapter develops as follows: the next section will be dedicated to the back-

ground of the analyses, presenting related work and explaining why it is relevant to

address the problem of forecasting terrorist targets.

The third section will thoroughly describe the methodological framework, starting

from the concept of “dynamic meta-network” up to the description of Long Short-

Term Memory network, a class of deep learning algorithms designed for handling

sequence and time-series data.
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The fourth section will investigate the properties of the graph-derived time series

of jihadist groups, specifically dealing with stationarity, randomness and temporal

dynamics of targets hit by the jihadist groups.

The fifth section will present the results of the model in detail, also providing a

summary of the performance of the deep learning models.1

The sixth section will deal with the problems of weak and rare signals in terrorism

research, trying to propose a potential solution to avoid the risk of missing crucial

events when applying computational methods for prediction and forecasting.

Finally, the seventh section will discuss the main results and implications of the

study, also outlining potential research directions for the future.

6.2 Background

6.2.1 Related Work

Humans have been fascinated with the idea of predicting and forecasting the future

for centuries. In Ancient Rome, haruspices2 could supposedly give instructions about

future events, gathering information from the entrails of sacrificed animals. A long

time has passed since then: during the centuries, divination has been replaced by

more empirical and scientific methods, but the attention and efforts towards the pre-

diction of the future have even increased.

Nowadays, the science of prediction covers almost every academic and scientific disci-

pline. What particularly strikes scientists is the idea of forecasting human behavior,

as a way to better understand how individuals think, act and make decisions in a

wide set of distinct realms (Pentland and Liu, 1999; Armstrong, 2001; Subrahmanian

and Kumar, 2017). Hundreds of research groups around the world are working ev-

ery day to disentangle and illuminate the mysterious nature of humans, with an eye

directed to the future, focusing on specific aspects and contexts. Scholars have tried

to predict human behavior in terms of political voting (Lewis-Beck and Rice, 1984;

Kou and Sobel, 2004; Fowler and Dawes, 2008), consumer choices (Goel et al., 2010),

social media activity (Ruths and Pfeffer, 2014) and health conditions (De Choudhury

et al., 2013; Choudhury et al., 2013).

1Further details on model results can be found in Annex B.
2An haruspex was a person trained to practice the divination activity of “haruspicy”. The concept

derives from the Etruscan religion. Forms of divination have been found even earlier in history, as

in the case of Babylonians.
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In this frame, as already noted in this dissertation, the increasing access to large

datasets and the progress made in mathematical and statistical modeling have played

a central role in the growing interest of the scientific community towards the inves-

tigation of future human dynamics. Specifically, two methodological areas (that are

getting closer every day) have gained popularity and demonstrated their potential in

the effort to better predict what humans (or communities made by humans) will likely

do in the future: network science (Börner et al., 2007; Barabási, 2011) and artificial

intelligence (Russell and Norvig, 2010; Nilsson, 2014).

However, mankind not only chooses between Republicans and Democrats, Socialists

and Conservatives, not only purchase clothes and book hotels online, and not only

post holiday pictures, romantic songs and newspaper articles on their social media

accounts. In fact, humans also commit crimes. Under the word “crime” resides a

tremendously heterogeneous world of actions that span from very low levels of sever-

ity (e.g., traffic misdemeanors) to atrocious forms of violence (e.g., genocides). It is

not within the scope of this work to dive into conceptual and theoretical discussions

regarding the limited generalizability of the definition of certain crimes, and into the

dependencies between political and social contexts and the subsequent inclusion or

exclusion of certain acts into the set of criminal activities. It is instead worth to

reason about the implications that this extreme heterogeneity of actions have for

empirical and quantitative research: the higher the complexity, the higher the diffi-

culty to extract patterns of common behaviors, the higher the need for research to

investigate the criminal behavior of members of the humankind. Also in this case,

network science and artificial intelligence have been employed - with various degrees

of intensity - as precious methodological and technical frames. The beyond-research

implications of crime prediction are intrinsically related to the pragmatic importance

of providing policy-makers with tools or instructions to eventually prevent and reduce

crime. Studying how crime occurs naturally leads to the attempt to anticipate it as

much as possible to design and deploy efficient strategies for reducing the real and

perceived insecurity of human societies.

For what concerns the study of crime, network science has on one side helped in better

understanding how criminals interact with each other, merging together the flexibility

of networks as mathematical representations of reality and well-established crimino-

logical theoretical frameworks (Papachristos, 2014). In organized crime studies, for

instance, social network analysis has proved to be able to highlight how criminal

groups work and are structured (Mainas, 2012; Calderoni et al., 2014; Smith and Pa-

pachristos, 2016; Calderoni et al., 2017) and as a tool for assisting intelligence analysts
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in tasks such as link prediction when information is noisy or incomplete (Berlusconi

et al., 2016).

On the other side, scholars in the last decades have tested the potential benefits of

statistical modeling and machine learning for predicting - among the others - future

crime locations, time, characteristics, recidivism risk (Nagin and Tremblay, 2005;

Weisburd et al., 2009; Neuilly et al., 2011; Favarin, 2018). Beyond classical quanti-

tative methods, statistical and machine learning, two interrelated dimensions within

the broader field of Artificial Intelligence, have achieved a growing popularity also due

to the public debate that has spread from the United States regarding the use - and

misuse - of mathematical and computer models for predictive policing purposes and

criminal justice risk assessment models (Shapiro, 2017; Berk, 2019). The practical

application of such models and the flaws detected within them (as low fairness, bias,

feedback loops) have called the scientific community not only to invest in the develop-

ment and deployment of sophisticated methods for predicting and forecasting criminal

activities, but even to extensively reason about the future perspectives posed by data

and algorithms for criminology (Berk, 2008; Brennan and Oliver, 2013; Ozkan, 2019)

and the ethical, legal, and political consequences of corrupted predictive systems for

human society itself (Saunders et al., 2016; Yeung, 2018; Hannah-Moffat, 2018; Berk

et al., 2018; PAI, 2019). While, on one hand, researchers have focused on the impli-

cations (both in terms of potential and threats) posed by the novel applications of

these methods within the realm of criminology, on the other hand scientists (espe-

cially coming from fields as statistics, computer science, physics and mathematics)

have either developed or tested new algorithms for the study of crime or experimented

the use of new types of data gathered from the digital footprints that every human

leaves every day on the internet.

With regard to the former aspect, machine and deep learning have experienced a

rise in their popularity and applicability on several problems as recidivism prediction

and spatio-temporal modeling (Kang and Kang, 2017; Zeng et al., 2017; Wang et al.,

2017; Aglietti et al., 2018; Stec and Klabjan, 2018; Marchant et al., 2018; Stalidis

et al., 2018; Huang et al., 2018; Balocchi and Jensen, 2019). For what concerns the

latter, instead, scientists have started to use massive information gathered from un-

conventional sources as mobile tools, social media activity and even satellite images

for predicting or forecasting future crimes (Wang et al., 2012; Bogomolov et al., 2014;

Chen et al., 2015; Najjar et al., 2018).

As a specific type of crime, terrorism is no exception in reference to the attempts of

the scientific community to predict or forecast it. All the works that are being pub-
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lished today adjacent to this topic can be somehow traced back to the seminal works

of Lewis Fry Richardson, an English mathematician, psychologist, and physicist that

made invaluable contributions to the study of meteorology and conflicts (Richardson

et al., 1960; Richardson, 1960; Hess, 1995). He is indeed considered the father of the

mathematical study of conflicts and wars. The statistical attempts to inspect the

nature of adversarial actions between countries (that are, trivially, made by humans)

still inspires scientists nowadays (Cederman, 2003; Schrodt, 2006; Clauset et al., 2007;

Clauset and Woodard, 2013; White, 2013). Conflicts and wars are different from ter-

rorism in the strict sense (in wars there can be terrorism, and terrorism is certainly a

conflictual type of behavior, but the phenomena cannot be considered as equivalent)

and the academic community has different views with regard to the strengths and the

future perspectives of mathematical modeling of conflicts and wars (Ward et al., 2013;

Cederman and Weidmann, 2017): nonetheless, the legacy of Richardson’s vision has

spread over, also inspiring and influencing the quantitative study of terrorism events.

The intersection between new data and new methods has then allowed the researcher

to concentrate not only on predicting terrorist attacks but also on studying human

relations and predicting their nature regarding terrorist violence. Social network

analysis in the first phase (Krebs, 2002; Fellman, 2008; Mainas, 2012; Fellman and

Wright, 2014; Malm et al., 2016) and consequently more sophisticated approaches

from the fields of complex networks and multi-agent systems (Latora and Marchiori,

2004; Moon and Carley, 2007; Keller et al., 2010; Desmarais and Cranmer, 2013; Fell-

man and Wright, 2014; Campedelli et al., 2019b; Skillicorn et al., 2019) have showed

promising directions and highlighted patterns that could only be discovered through

the mathematical study of physical and abstract connections between individuals,

groups, entities, countries as fundamental components for explaining terrorism.

The contributions that quantitative methods have made for studying and predict-

ing terrorism come from a variety of sub-fields related to computational sciences

(Subrahmanian, 2012), and have forced scholars to start to think about the new chal-

lenges that counter-terrorism can take, exploiting this revolution (Thuraisingham,

2003; Ganor, 2019). Particularly, in the last years, fragmented attempts have tested

the performance of machine and deep learning algorithms on issues related to terror-

ism. However, less scientific production can be found in comparison with studies that

address other types of crimes. Among the methods applied for these purposes are

Hidden Markov models, Random Forests, Artificial Neural Networks, Support Vector

Machines (Sun et al., 2003; Raghavan et al., 2013; Ding et al., 2017; Kang and Kang,

2017).
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In spite of these signs of progress, to the best of my knowledge, still no studies inves-

tigate the potential of the integration between network science and artificial intelli-

gence for the study of terrorism. While foundational research has already addressed

the problem of learning graph representations through machine or deep learning algo-

rithms (Tian et al., 2014; Henaff et al., 2015; Jain et al., 2015; Cao et al., 2016; Monti

et al., 2017; Huang and Carley, 2019), terrorism has not yet been investigated via

the exploitation of these two scientific realms for prediction or forecasting purposes.

Notably, only a recent study by Liu et al. (2016) addressed the problem of predict-

ing the next location of an attack plotted by the whole set of groups present in the

Global Terrorism Database using deep learning architectures that take into account

spatio-temporal dimensions. The authors proposed the definition of a Spatial Tempo-

ral Recurrent Neural Network (STRNN) as an alternative to classic Recurrent Neural

Networks (RNN): STRNN would be able to incorporate time interval information

via time-specific transition matrices and geographic transition matrices for mapping

distances between locations of attacks. According to the authors, this alternative ar-

chitecture was necessary to overcome the limitation of RNN in modeling continuous

time intervals. Besides the elegant and sophisticated mathematical architecture of

the model, and its ability to perform well on this problem, the authors (as typically

happens when scholars from other fields dive into the terrorism/crime realm) do not

point out how they treated and cleaned the data at their disposal. In fact, they claim

to consider all the groups included in the GTD: however, the number is on a scale

of thousands, with a vast majority of actors that have plotted either one or very few

attacks. This leaves unanswered questions about how this problem has been solved

in practice, before running the experiments.

This work, as anticipated in earlier chapters of this dissertations, aims at placing itself

in the focal point of integration between network science and deep learning, exploiting

my criminological background to set up a reasonable and grounded information space

that relies on the assumed existence of memory and interdependence between terrorist

events which, in turn, are concepts framed within the theories on the spatio-temporal

concentration of crime and violence and the rational decision-making processes of

terrorist groups.

6.2.2 Why Terrorist Targets?

Terrorist target selection has been a long-standing feature of interest for scientific

research (Sandler and Lapan, 1988; Wilkinson, 1990; Hoffman, 1993; Drake, 1998a;

Eyerman, 1998; Clarke and Newman, 2006; Krueger and Laitin, 2008; Asal et al.,
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2009; Pizam, 2010; Toft et al., 2010; Brandt and Sandler, 2010; Santifort et al., 2013;

Hastings and Chan, 2013; Asal and Hastings, 2015; Morris, 2015; Abrahms et al.,

2018). Indeed, its importance is related to the fact that shining a light on them

can help in designing prevention policies and allocating resources to protect sensible

and potential future targets (Clarke and Newman, 2006; Bier et al., 2007). Targets

have been studied from different perspectives in the literature. Among the many

approaches, Sandler and Lapan (1988) have first relied on a game-theoretic formal

model assuming rational behavior of agents to demonstrate that when intelligence

sharing is not linked to deterrence coordination between different countries, policies

for protecting likely targets become of little help or, even worst, completely useless.

Shifting from formal modeling to data-driven analyses, other scholars have applied

Bayesian models to detect dynamics and key-points of terrorist target selection pro-

cesses (Brandt and Sandler, 2010; Santifort et al., 2013). Brandt and Sandler (2010)

employed Bayesian models to detect dynamics and key-points of terrorist target se-

lection processes. They have specifically employed Bayesian Poisson changepoint

regression models to investigate how transnational terrorists adjust their selection

of targets in response to target hardening. Their study, conducted for attacks that

occurred from 1968 to 2007, identified four separate periods and three underlying

covariates that can explain this clustering over-time, namely the dominant terrorist

influence, countermeasures, and terrorist state-sponsorship considerations.

Santifort et al. (2013), instead, compared diversity in target choice among domes-

tic and transnational terrorism during a 40 years time range. Relying on the Global

Terrorism Database, they have used a Bayesian Reversible Jump Markov Chain Monte

Carlo model obtaining arrival rate changes in both types of terrorism and evaluating

the extent to which their target selection is diverse, also from a temporal standpoint.

Diversity was calculated using Herfindahl indexes for different specifications of at-

tacks. One of the main findings of the study was that bombings of private parties

have become the preferred target-attack at transnational and domestic levels dur-

ing the period taken into account, positing an improvement of homeland security

resources to counter these dynamics.

Focusing specifically on soft targets (like individuals) in the period 1998-2005,

Asal et al. (2009) have detected how ideology, and specifically religion, is the decisive

factor driving the choice to turn towards target civilians. Furthermore, they have

highlighted how there is no relation between democratic regimes and undefended

civilians, contesting a widespread assumption of political science and international

relations which posits that regime type is a relevant dimension in explaining terrorism.
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Formalizing countries as targets and starting from the assumption of regime type as

a determinant of terrorism, Ivanova and Sandler (2006) tested instead whether, based

on the regime, the likelihood of chemical, biological, radiological and nuclear incidents

increases. In their study, they have found that there seems to be a positive relation

between democracies and the risk for these attacks.

This non-exhaustive brief review of the state of the art in terrorism research

regarding targets and related dynamics demonstrates that there exists a tiny part

of the scientific community which concentrates on this dimension, and most of the

contributors point out how research in this regard can be extremely important for

real-world applications in counter-terrorism and defense programs. Furthermore, an

interesting point is that, besides differences in samples and actual research questions,

several studies highlight the existence of certain patterns over time (either cycles or

keypoints), this thus suggests that there is a degree of temporal structure in the way

in which terrorism occurs.

6.3 Methodological Framework

6.3.1 Dynamic Meta-Networks of Terrorism

This work is founded on a conceptual intuition that I believe has relevance if a re-

searcher’s desire is to rethink how terrorism happens and evolves over time. Specif-

ically, this conceptual intuition revolves around the idea of “meta-network”. A dy-

namic meta-network, as defined in this dissertation, is a complex network that is

characterized by three main aspects: 1. Multi-modality; 2. Multiplexity; 3. Dynam-

icity.

Multi-modality (also known as multi-entity) means that the networks are com-

prised of different types of nodes, representing substantially different entities. Multi-

plexity means that there are different levels of links, as we can think of a multiplex

network as the union of separated simple one-link-type networks. Finally, dynamicity

is the element that introduces a temporal and evolutionary dimension, meaning that

the meta-network is mapped across different (discrete, in most cases) timestamps

that allow the researcher to assess and analyze changes over time within the meta-

network itself. In a general way, given a temporal vector of discrete time-stamps

T = {t1, t2, ..., ti} where to each temporal element are associated |k +m| networks

that take the form of mathematical graphs G and each graph can be either one-mode

(monopartite) in the form G = 〈N,E〉 or two-mode (bipartite) in the form G =
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〈U,N,E〉 where N,U ⊂ N are two different sets nodes and E = {(i, j) : i, j ∈ N,U},
I define a meta-network a meta-network for the time unit ti as:

Mti =:
⋃ [

l⋃
k=1

Gl 〈Nl, El〉 ,
n⋃

m=1

Gl 〈Ul, Nl, El〉

]
(6.1)

therefore, a unified dynamic meta-network for a whole given temporal vector can

be defined as:

MT =:
T⋃
t=1

Mt (6.2)

This brief introduction already highlights how meta-networks are extremely differ-

ent if compared with common networks used in most SNA research. Usually, networks

in SNA studies (also in the fields of criminology and terrorism research) are one-mode

(one type of nodes) and not multiplex, with cases in which networks combine two (but

not more) types of nodes, mapping a dual entity system, thus generally defined only

as G = 〈N,E〉. Scholars in criminology have not yet exploited the whole potential

of dynamic or multi-mode techniques because they have mainly relied on networks

solely comprising individuals, and often discretizing these networks through artificial

time-stamps is not possible or too subjective. Additionally, networks of individuals in

criminology many times rely on judicial files or open-sources, therefore posing prob-

lems of certainty of network boundaries and missing information (Berlusconi, 2013;

Campana, 2016).

6.3.2 Graph-derived Multivariate Time Series

As reminded many times throughout the work, the intent is to use dynamic meta-

networks to feed multiple neural network architectures to predict future likely targets

attacked by jihadist groups. It is thus necessary to point out what are the technical

steps that will allow performing this task. Moving from the conceptualization of a

meta-network, for each terrorist group, we first define:

GN :=
〈
(V1, V2, ..., Vm) , (E1,2, ..., Em,n) ,

(
WE1,2 , ...,WEm,n

)〉
(6.3)

As a multipartite graph (also called manifold) that contains N partitions describ-

ing relations between different sets of nodes Vm and Vn. These relations are formalized

as edges Em,n that are weighted by W ∈ R>0. Within this context, a single mode
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in the multipartite graph is represented as Gm,n =
〈
Vm, Vn, Em,n,WEm,n

〉
. For each

group, the original graph has terrorist events identified as source nodes, while the

different partitions are locations of attack (intended as targeted countries), employed

weapons, tactics and targets. As already mentioned, each attack may have multiple

features within the single partition (specifically, up to three targets and tactics and up

to four weapons). Weights, within single modes, are at this point the number of times

a single feature is targeted or employed. Additionally, terrorist events A1, A2, ..., Ak
hold a temporal attribute which represents the day of the attack. Specifically, for each

Ai the relation ∀ Ai ∃ t ∈ T = (t1, ..., tn) is generally verified (where T represents a

vector of time units in daily format, t1 coincides with the first attack (the oldest) at-

tack plotted by the group, while tn coincides with the day of the last (newest) attack.

When the relation is not verified, i.e. the day is missing, I have imputed the modal

day for that month.

For the purposes of the analyses, however, I need to restructure the multipartite

graphs to aggregate time units not to end up with extremely sparse matrices, at the

same time preserving the necessary richness of the dataset without incurring in the

“curse of dimensionality”. Considering that the terrorist groups in the sample have

very different histories, compressing the temporal element in too wide time units

would have led to extremely small datasets in some cases (i.e.: the Islamic State,

which appeared only in 2013). Moreover, for intelligence and policy purposes it is

more useful to create predictive models on restricted time units. This is part of the in-

novation of this work, which tries to build a model that is not only useful for scientific

purposes but might be interesting also from practical uses. In particular, developing

three-day-based time series forecasting models seemed a good compromise between

detail, computational feasibility, and applied usefulness. Therefore, for each group, I

have aggregated the data using three-day time stamps. Doing this I have obtained

nested multipartite graphs for each group where source nodes are still events, but

nesting is performed using timestamps. This allowed me to create a dynamic multi-

partite graph for each group. Each feature within each mode associated with each

new timestamp is now simply the frequency of occurrence of that feature in the events

that in the original graph happened in days belonging to that specific three-day time

range. To obtain this, I have operated matrix algebra.

Given that Ga×n is the weighted adjacency matrix of dimension M ×N that formal-

izes the two-mode sub-graph Ga,n ∈ GN , with a indexing the source node, namely

events, I can obtain a one-mode square symmetric matrix Mn×n where the unique

existing mode is given by n, namely the feature of interest among the four considered
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via

GTG = M (6.4)

where GT is the transpose matrix. Through this operation, four one-mode matrices

associated with each nested multipartite graph are created. These matrices show

the recurrence of each feature within each mode in terms of frequency. Frequencies,

however, highly varied across different time units (since terrorist attacks are not

equally distributed over time) and especially across groups. I, therefore, had to extract

comparable knowledge both for internal and external validity. To achieve this goal,

I have computed normalized weighted total degree centrality for each mode. Total

degree centrality is the most common node-level metric used in network analysis. For

a focal node (feature) i in weighted one-mode matrices at each time unit t, the metric

is calculated as:

CW
D (i)t =

N∑
j

wMi,j (6.5)

where wMi,j a weighted adjacency matrix, where entries are greater than 0 if feature

i is connected to j, with N being the total number of features. Further, for each t,

the value has been normalized such that:

norm CW
D (i)t =

CW
D (i)t

max CW
D (N)t

(6.6)

The value of norm CW
D (i)t can only lie in the range [0, 1]: this operation allowed to

obtain scaled normalized metrics for each group, each feature and each time stamp

at the same time, in order to make data comparable over time and across features,

controlling for the variation originating from the high variance in terrorist attacks per

time unit.

The last step to create the final version of the multipartite graph was then to

collapse the nested architecture to obtain a classic time-series data structure. We

achieved this fixing time stamps as the source mode and maintaining the original

four modes as target nodes. In this final step, the entry it,n represents the centrality

of that specific feature within that specific time-frame. After all these computations,

this metric has to be interpreted as the degree to which that specific feature was

targeted or employed by a given terrorist group. High values of degree centrality

signal that a given feature was very popular during that time frame, while 0 means

that that the feature was not attacked or employed by the considered group. A short

visual explanation of this process is shown in Figure 6.1.
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Figure 6.1: Simplified Visual Depiction of Graph-Derived Time Series Extraction

This type of process and data transformation provide a framework in which actual

values are abstract representations of reality. For instance, comparing across two

quantities A and B that are also smaller than 1 in two distinct time units does not

mean anything. Even the comparison of the same two values in the same time unit

does not give any information in the absolute sense. However, the relative comparison

is important, and that is why in the models, the prediction will be evaluated in terms

of ranking. Ranking will be useful to provide risk-based outputs regardless of the

absolute centrality values which are, again, an abstraction. It will help to capture the

preferences and recurring patterns of jihadist attacks over-time, providing an easy-

to-understand and interpretable measure of risk. After having explained the steps

behind the processing and manipulation of the data, the next subsection will start to

introduce the proper algorithms that will be used for modeling purposes.

6.3.3 A Brief Introduction to Neural Networks

Machine Learning (in the work also referred to as ML) can be defined as the science of

building computer models that can learn and improve their learning capabilities over

time through the use of information and data. The expression “Machine Learning”

is supposed to be coined by Harmon (1959). ML evolved from the area of pattern

recognition in Artificial Intelligence (AI) and has seen an explosion of theoretical in-
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novations and applications in dozens of fields in the last years, spanning from pure

research to industry, intelligence and government.

The main distinction within the realm of ML is between supervised and unsuper-

vised learning. In the case of supervised learning, the computer program is provided

with inputs and outputs, and the main goal is to find a function that accurately

maps inputs to outputs. Conversely, in the case of unsupervised learning, the pro-

grammer does not provide the program with labels, therefore there is no distinction

between inputs and outputs. The aim of an unsupervised learning system is gener-

ally to discover hidden patterns in the data. Besides these two distinct tasks that

ML algorithms should solve, there is a third one (which sometimes is included in the

former category of supervised learning) that is worth to mention. This third category

is called “reinforcement learning”, and it deals with the problem of finding actions

to take in a given situation to maximize a certain reward (Bishop, 2006) Besides

the different tasks, ML algorithms can be distinguished also by their applications.

Within supervised learning, indeed, we can divide two main applications: classifica-

tion and regression problems. Classification is related to the learning problems in

which the output (also called target or response variable) is categorical. When, con-

versely, the output is real-valued or continuous, the application is called regression

(Murphy, 2012). Within unsupervised learning, two main applications are clustering,

density estimation, and visualization. Clustering aims at discovering similar groups

within the data (Xu and Wunsch, 2005), density estimation at determining the distri-

bution of data across inputs and dimensionality reduction at projecting data to a two

or three-dimensional space, starting from a high-dimensional one (Saul and Roweis,

2013).

The list of ML algorithms is extremely vast and this work does not aim at surveying

them. Instead, it specifically focuses on a particular family of algorithms: Neural

Networks (also called Artificial Neural Networks). The expression “Neural Network”

originates from the pioneering work of McCulloch and Pitts (1943). The American

scientists tried to reproduce the information processes of biological systems via mathe-

matical modeling and proposed a model to simulate how neurons behave. After them,

many others tried to refine and improve this mathematical formalization (Rosenblatt,

1958; Harmon, 1959; Widrow and Hoff, 1960; Block et al., 1962; Rumelhart et al.,

1986). Over the course of decades, scientists have found that, besides some exaggerate

claims regarding the accuracy of artificial neurons in representing the way real ones

act, these mathematical and statistical models were efficient in pattern recognition.

This finding led to the development of a myriad of different models – neural networks
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– that aimed at learning to simulate how the biological brain does.

From the definitional point of view, scholars have tried in many ways to describe

what a NN is. No way has been found to universally define what NNs consist of. A

good review of the definition has been compiled by Guresen and Kayakutlu (2011).

For the sake of simplicity, I will here adopt the definition provided by Haykin (1994).

Haykin defines NN as massively parallel combinations of simple processing units that

can acquire knowledge from the environment (data) through a learning process and

store this knowledge in its connections. This definition is extremely concise, though it

is simple enough to explain clearly what a NN fundamentally is. NNs are organized

in different layers that are made up of many interconnected nodes (i.e. neurons).

These nodes contain an activation function and existing patterns are presented to

the NN through an input layer that is connected and communicates with at least one

hidden layer. A hidden layer is where mathematical processing is done via weighted

connections. This hidden layer is also connected to the output layer, where the actual

outputs of the model are shown (Figure 6.2).

Figure 6.2: A Simple Neural Network Structure with a Single Hidden Layer

Basic research has seen the development of dozens of different neural network ar-

chitectures. The most straightforward ones are feed-forward neural networks and per-

ceptrons (Rosenblatt, 1958), while other very popular typologies are Boltzmann Ma-

chines (Ackley et al., 1985; Hinton, 2012), Convolutional Neural Networks (Lawrence

et al., 1997; Lecun et al., 1998), Generative Adversarial Networks (Goodfellow et al.,

2014) and Support Vector Machines (Cortes and Vapnik, 1995). The developments in
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this direction and the creation of neural networks with multiple (generally more than

two) hidden layers gave birth to the so-called area of deep learning. Deep learning is

indeed a sub-area of machine learning that relies on multiple levels of representation

(i.e., hidden layers) (Goodfellow et al., 2016) to find patterns and representations in

the data. In this work, I will specifically deal with the use of a specific deep class of

neural networks capable of handling sequence-shaped data, namely Long Short-Term

Memory network.

6.3.4 Long Short-Term Memory Networks: an Overview

Although several algorithms capable of handling temporally ordered or sequences data

exist (and many more are currently being developed), the most common architec-

ture in the literature is represented by Long Short-Term Memory (LSTM) networks.

LSTM has been created to improve performance and solve the issues of Simple Re-

current Neural Networks (SRNN).

Simple Recurrent Neural Networks (SRNNs) were first developed by Elman (1990).

His work started with the question of how to represent time in connectionist models,

as NNs are. Elman worked in the realm of cognitive science and computational lin-

guistics, and its architecture was first suited for lexical and textual data, specifically

dealing with the problems of words and sentence emergence. SRNNs, as anticipated

by the label, is made up of a simple architecture that basically consists of a three-

layer feed-forward backpropagation network. These networks specifically hold a time

twist. This means that they have connections through time: therefore, the order in

which a network is fed really matters. Besides their simplicity, however, they present

the so-called “vanishing (or exploding) gradient problem” (Bengio et al., 1994; Pas-

canu et al., 2012). This problem is related to RNNs iterative nature and practically

means that information gets rapidly lost over time. Thus, SRNNs are not capable

of handling very long memory processes. As pointed out by Chung et al. (2014), to

formally define a SRNN we can consider a sequence x = (x1, x2, ..., xT ): the SRNN

updates its recurrent hidden state ht as follows:

ht =

{
0 ; t = 0

φ (ht−1, xt) ; otherwise
(6.7)

where φ represents a non-linear function (e.g. a logistic sigmoid) with an affine

transformation. In the same work, Chung et al. say that the network can optionally

have an output y = (y1, y2, ..., yT ) of variable length. Usually, the update showed in

the previous equation is formalized as:
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ht = g
(
WXT

+ Uht−1

)
(6.8)

where g represents a smooth, bounded function (again, as a logistic sigmoid or a

hyperbolic tangent), W is a weight matrix and U is the hidden state-to-hidden state

matrix, which has the form of a transition matrix, similar to the one that we can find

in Markov chains. It is worth to mention that ht represents the process of carrying

“memory” in a mathematical fashion. Generative SRNNs outputs the probability

distribution over the following elements of a sequence, given its current state ht.

Indeed, the sequence probability can be decomposed applying the general product

rule of probability as follows:

p(x1, ..., xT ) = p(x1)p (x2 | x1) (x3 | x1, x2) · · · p (xT | x1, ..., xT−1) =

p

(
T−1⋂
k=1

xk

)
=

T−1∏
k=1

p

(
xk |

T−2⋂
j=1

xj

)
(6.9)

where the last element represents a special output symbol in the form of a end-of-

sequence value. Finally, we model each conditional probability distribution as follows:

p (xT | x1, ..., xT−1) = g (ht) (6.10)

Regarding applications, this architecture has been used to solve problems in which

sequence matters but not in the pure “temporal” nature, for example in computational

linguistics, where the order of words is fundamental but there is not an actual timeline

and, additionally, a researcher is not interested in the delta between two inputs or

items. Besides computational linguistics, SRNNs have been employed, among the

others, also in classic time series problems (Connor et al., 1994; Ho et al., 2002; Han

et al., 2004) and speech recognition (Graves et al., 2013).

To overcome the issues associated with SRNNs, Hochreiter and Schmidhuber

(1997) have developed Long Short-Term Memory Networks. This particular form

of RNNs was able to control the vanishing gradient problem: this improvement ex-

plains their success. The way in which these networks combat the mentioned issue is

by introducing gates and explicit memory cells. Each node (neuron) has three gates:

input, output and forget. The input gate decides the degree to which the information

coming from the previous layer gets stored in the cell. The output later, conversely,

decides how much information regarding the present cell will be passed to the next

layer. Finally, the forget gate helps in discarding information which is not useful
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and that should not be stored in the network. The flexibility of these networks and

the introduction of explicit memory cells have proved to be very powerful in learning

complex patterns and sequences. LSTM can handle and learn long-term dependencies

and this is the main reason why they can learn complex patterns better than what

can be achieved by SRNNs. This improvement marked the wide use of LSTM in a

wide range of disciplines.

Although different versions of LSTM have been proposed by researchers, a com-

monly used architecture is the one proposed by Graves (2013). In his paper, Graves

provides an LSTM where H, the hidden layer function, is implemented by a composite

function. This composite function comprises five elements: input gate, forget gate,

output gate, cell, cell input activation vectors, hidden vector. All these elements are

of the same length as the latter element. The input target it is given by:

it = σ (Wxixt + Uhiht−1 + Vcict−1 + bi) (6.11)

where σ represent a logistic sigmoid function that maps nonlinear relations, Wxi is the

weight matrix of the input, Uhi is the hidden-input gate matrix, Vci are the cell-gate

diagonal weight matrices all at the previous state, bi is the bias term of the input

gate. The forget gate ft is given by:

ft = σ
(
Wxfxt + Uhfht−1 + Vcf ct−1 + bi

)
(6.12)

withWxf representing the input-forget weight matrix, Uhf is the hidden-forget weight

matrix, Vcf is the cell-forget diagonal weight matrix all at the previous state, and bf
is the bias term of the forget gate. The cell gate ct is represented as:

ct = ftct−1 + ittanh (Wxcxt + Uhcht−1 + bc) (6.13)

where ct−1 is the old state, Wxc is the input-cell weight matrix and Uhc is the hidden-

cell weight matrix all at the previous state, and bc is the bias term of the cell. Finally,

the output (activation) function of the LSTM unit ht is defined as:

ht = ottanh (ct) (6.14)

where ot is the output gate that modulates the amount of memory that is computed

as:

ot = σ (Wxoxt + Uhoht−1 + Vcoct−1 + bo) (6.15)
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where Wxo is the input-output weight matrix, Uho is the hidden-output weight ma-

trix, Vco is the cell-output weight diagonal matrix all at previous state, and again

bo is the bias term of the output. It has to be noted that for the modelling of the

research problem, a slightly different configuration has been used in this dissertation,

as detailed in Subsection 6.3.5.

Besides time series (Gers et al., 2002), LSTM have been applied to face recognition

problems (Levada et al., 2008), emotions modelling in audiovisual settings (Wöllmer

et al., 2013), language modelling (Soutner and Müller, 2013), and medical diagnoses

(Lipton et al., 2015).

6.3.5 Deep LSTM Configuration

The multi-partite graph processing phase led to the creation of dynamic networks for

each group, with data shaped on a three-day unit basis. Since the groups cover ex-

tremely different time-spans, it is highly expectable that neural networks will operate

and perform accordingly. Indeed, while some groups have a long-standing presence

in the global scenario (e.g. Taliban), others are more recent (and far more active in

terms of attacks), thus a first hypothesis is that the algorithms hyperparameters will

have to be set depending on the dimension of the data at my disposal. Table 6.1

displays the number of time units per group, including the number of units with no

attacks.

Group N Time Units
N of Units with

No Attacks

Islamic State 453
34

(7.50%)

Taliban 1949
665

(34.12%)

Al Qaeda 1946
1284

(65.98%)

Al Shabaab 1096
411

(37.46%)

Boko Haram 905
323

(35.65%)

Table 6.1: Time Units per Group

As introduced above, the length of time-series is variable across groups. Further-

more, it is not just the length of time series which differentiates them. Looking at the

number of time units with no attack, we detect that classes are highly unbalanced.

Given its high frequency, for instance, the Islamic State has the shortest time-line,
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but the lower percentage of inactive units. Conversely, the Taliban and Al Qaeda

show longer time-lines, but the actual number of active units is extremely low. These

figures involve potential high impact differences in the way the algorithms will be set

and working. The proper modeling process involves the comparison of the perfor-

mance of different configurations of LSTM networks.3 Each configuration has been

tuned setting different numbers of batch sizes and look back. These concepts are

presented below. Additionally, a description of other relevant elements of the models

is also provided. Elements include the number of layers, number of neurons, regular-

ization, activation function, train size, and optimizer.

6.3.5.1 Architecture of the LSTM

Layers The number of layers in a neural network generally reports the actual num-

ber of hidden layers that are comprised in the model. A vivid debate in the field of

AI focused on whether neural network should have more than a single hidden layer.

Until 2006, most of the field believed that one hidden layer was sufficient due to the

Universal Approximation Theorem proposed by Cybenko (1989) and then expanded

by Hornik (1991). However, in 2006, due to the considerable shift towards more and

more complex datasets (including ones designed for time-series), Hinton et al. (2006)

posited that multiple (and eventually dense) hidden layers can improve the perfor-

mance of the algorithms. In my models, each deep neural network will comprise three

hidden layers, as preliminary testing showed little learning capacity for networks with

just one or two hidden layers. Additionally, networks of higher complexity did not

reach a statistically better performance than the three-layered architecture.

Neurons The number of neurons involves a crucial decision in the topology of the

network. Indeed, the number of neurons can highly influence the performance of the

algorithm. The decision between too few or too many neurons is tightly related to

the problems of under-fitting (for which the algorithm is not capable of detecting

patterns and signals) and over-fitting (for which the network capacity by far exceeds

the complexity of the data structure). Furthermore, neurons have an impact on the

time required to train the network: as the number increases, time does increases too

and can lead to the impossibility of proper training, therefore nullifying the utility

3The entire modelling part has been deployed via Keras (Chollet, 2015), using TensorFlow back-

end (Abadi et al., 2015).
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of the network. After extensive preliminary experiments, each network will have an

input number of neurons equal to the number of features of the whole input space,

the three hidden layers will respectively have 256, 128 and 64 neurons, and the output

layer will be again equal to the input space.

Regularization: Dropout and Early Stopping Dropout is a form of regular-

ization applied to neural networks that was introduced by Srivastava et al. (2014). It

is a technique that aims at preventing a neural network from overfitting. The idea

behind this technique is to drop units and related connections in random order while

the network is training, preventing its excessive co-adaptation. The values that can

be set for dropout fall in the range [0, 1], where 0 means no dropout at all. The

experiments have been carried out applying dropout regularization of 0.5 for each

of the three hidden layers. Extensive preliminary experiments demonstrated that

lower dropout was not able to avoid overfitting in the networks, while higher values

prevented the networks to learn efficiently. In addition, an “early stop” option is

also included. This option automatically interrupts the learning process after several

epochs (i.e., 20) with no detected change (either increase or decrease) in the chosen

loss function during testing.

Activation The activation function of a node in neural network models the output

originating from an input for that given node. There are many different activation

functions, and the most popular are the binary step, logistic sigmoid, hyperbolic

tangent (tanh), rectified linear unit (ReLu), Leaky rectified linear unit (Leaky ReLU)

and softmax. For each of the models, two different functions have been applied: the

logistic sigmoid for the input and output layers, while in the hidden ones ReLu has

been used. The logistic sigmoid is a monotonic non-linear activation function given

by the equation:

σ =
1

1 + e−x
(6.16)

This function guarantees a smooth gradient (preventing spikes in the outputs), bounded

values between 0 and 1 (which constitute a perfect fit for this specific problem, given

that all the data are within this range). Unfortunately, this function also shows

disadvantages, as the vanishing gradient that can dramatically decrease the learn-

ing procedure or severely impact the speed of the computations. For this reason, to
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avoid these risks, the hidden layers are activated via ReLu. ReLu is also a non-linear

monotonic function modeled by the equation:

f(x) =

{
0 for x < 0

x for x ≥ 0
(6.17)

or, much more simplistically, f(x) = max(x, 0). Compared to the logistic sigmoid,

ReLU is much more computationally efficient (it converges fast) and it is sparsely

activated, a characteristic that fits well with the extreme sparsity of the data used

for the analysis of this chapter. It is now very common in the deep learning literature

and the models will then exploit its strengths in the hidden layers, where the majority

of neurons is located.

Loss Function Neural networks involve an optimization process that seeks to min-

imize a given loss function. In other words, loss functions seek to minimize the

prediction error, comparing real and model-generated data. The choice of the spe-

cific loss function is dependent upon the specific problem setting but can be a priori

divided into two main families: loss functions for classification and loss functions for

regression problems. Given the original regression nature of the experiments (that

will be then transformed into a ranking problem through the introduction of two

accuracy measures), two loss functions have been monitored to evaluate the fitness

of the models and detect potential overfitting (or underfitting) issues. The first loss

function that has been monitored is Mean Squared Error (MSE). The standard form

of MSE is given by:

L =
1

n

n∑
i=1

(y(i) − ŷ(i))2 (6.18)

where (y(i)−ŷ(i)) is called residual between the actual and the predicted value of y and

the objective of the function is to minimize the residual sum of squares. Additionally,

also Mean Absolute Error (MAE) has been used to assess the performance of the

LSTM networks. MAE is calculated as:

L =
1

n

n∑
i=1

|y(i) − ŷ(i)| (6.19)

where |•| denotes the absolute difference between the actual and the predicted

value of y. MAE is less efficient than MSE in terms of computation, but it is more

robust to outliers since, compared to MSE, it does not use the square. These two
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functions then map the loss in different ways with respect to the magnitude of the

error, and this is the reason why their combined use as a choice to control either

aspect (i.e. smaller and bigger errors) of the prediction processes.

Look Back The look back is a component that has been included in the models to

set the length of the vector of inputs from which the network has to learn and fore-

cast future values. Indeed, it can be set fixing a certain number N of input vectors

(namely, time units). The name itself suggests that this hyperparameter “force” the

network to only used previous N time steps to detect patterns. This represents an

intriguing way to take memory into account. Of course, for larger N , the training will

be slower. Considered that each time unit includes data for three days, the look back

thresholds will be set accordingly to test meaningful hypotheses regarding “seasonal

pattern”. In the experiments, look back sizes of 1, 2, 3, 10, 20, 30, 50 (equivalent

to 2, 6, 9, 30, 90 and 150 days of data prior the present attack) have been considered.4

Train Set The train size is the amount of data that is fed into the network to

detect patterns before the proper test phase. Generally, the larger is the train size,

the more the network can learn from its inputs. For neural networks with no sequence

or time-dependencies, the split between train and test size is made upon percentage

thresholds off-the-shelf. However, in the case of time series, the distinction is a bit

more delicate. Indeed, fixing a % for models related to groups that have very different

lengths and dimensions has to be evaluated carefully. As a baseline approach for this

dissertation, I have used a 90/10 split. This unbalanced choice is motivated by two

main reasons. First, almost all groups exhibit very few attacks in the first part of

the temporal windows. A more balanced (e.g., 65/35) split would have potentially

posed the risk of training the network on a set of data that does not represent the

current situation highlighted in the right-end of the time-frames. Second, the time

series are not particularly long (especially in the cases of Boko Haram and the Islamic

State), thus providing more data to the networks could practically reduce the risk of

under-fitting. Table 6.2 shows the relative temporal scale of the 90/10 split for each

group.

4For the Islamic State, the maximum lag will be set to 40, as 50 would have exceeded the actual

length of the test set in terms of data points.
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Group
Total N of

Data Points

Training

Time Units

Testing

Time Units

Islamic State 453 3.35 years 4.53 months

Taliban 1949 14.41 years 1.6 years

Al Qaeda 1946 14.39 years 1.59 years

Boko Haram 905 6.69 years 9.05 months

Al Shabaab 1096 8.10 years 10.96 months

Table 6.2: Relative Temporal Scale of the 90/10 Split - per Group

Optimizer An optimization algorithm seeks to minimize (or, alternatively, maxi-

mize) an objective function (i.e. loss function) to improve the training process of a

Neural Network. There are generally two types of optimization algorithms: first-order

(that use first-order derivatives) and second-order (which use second-order deriva-

tives). The former is less expensive, while the latter is slower and costly. Generally,

the most common technique for optimizing a neural network is the so-called Gradient

Descent. Gradient Descent is based on a convex function and updates its parameters

iteratively to minimize a given function (again, loss as an example) to ist local min-

ima. There is a wide range of different gradient descent optimization algorithms. The

most common are: Adam, Adagrad, Adadelta and Nesterov Accelerated Gradient.

Although further experiments will test multiple types of optimization algorithms, my

models have been run using Adam (Kingma and Ba, 2014). Adam is a first-order

optimization algorithm that combines AdaGrad (Duchi et al., 2011) and RMSProp

(Tieleman and Hinton, 2012) and the reason behind its use as optimization algorithm

is that it works well with sparse, noisy and even non-stationary data. Technically,

given the sequence of the gradients at each timestep, g1, g2, · · · , gT it computes the

exponential average of the gradient as :

vt = β1 · v(t−1) − (1− β1) · gt (6.20)

Furthermore, it also calculates the squares of the gradient for each of the parameters

w as:

st = β2 · s(t−1) − (1− β2) · g2
t (6.21)

where g2
t is the elementwise square gt�gt. After the first steps, it chooses the learning

step through:

∆ωt = −η vt√
st + ε

· gt (6.22)
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where ω gives the model weights, η is the learning rate. The update ωt is then equal to

(ωt)+∆ωt. It is worth to mention that the authors recommend to keep β1 equal to 0.9,

β2 equal to 0.999 and ε equal to 1e-10. The learning rate is fixed at the common value

of 0.001. The learning rate of a neural network is the hyper-parameter which sets

the threshold of how much the algorithm should adjust weights with respect to loss

gradient. On one side, if the learning rate is fixed at a low level, the training phase will

be longer due to the high amount of time needed for convergence. However, training

will be more reliable. On the other side, if the learning rate is high the training will

be much faster but the network will face the risk of divergence. In the case of Adam

algorithm, for convention, in many implementations the learning rate has to be fixed

at 0.001 and kept at that level. The experiments rely on this default level.

Batch Size The batch size indicates the number of examples taken from the training

set utilized in a single iteration. There are three main distinctions in terms of batch

size: 1. batch mode, which means that the batch size is equal to the dataset; 2. mini-

batch mode, which means that the batch size is greater than one training example

but smaller than the dataset; 3. stochastic mode: where batch size is equal to one.

Research showed how mini-batch is usually preferred because of less computational

cost and better performance in gradient descent. More precisely, in a recent paper,

Masters and Luschi (2018) proved how mini-batch sizes better perform when it is

kept in the range between size 2 and 32, contrasting the idea that using very large

(also in the sizes of thousands) mini batch sizes provides better results in terms of

generalization performance. The performance is better also in terms of computation

expensiveness. The models will test performance on batch sizes respectively equal to

2, 32, 64 and 100.

Epochs An epoch indicates when the whole dataset is passed forward and backward

through the network once. In the mini-batch size, an epoch is comprised of multiple

batches. The number of epochs used to train a neural network is usually large. It is

straightforward that the higher the number, the slower the training phase. There is

no a priori rule regarding the number of epochs to set in a neural network. Given the

relatively small dimension of the dataset, and prior experiments on the data, models

with 500 epochs have been run for each group.

To sum up what written in the last paragraphs, Table 6.3 synthetizes the hyperpa-

rameter combinations that were used to run the models per each group. Overall,

multiplying the number of tested batch sizes and the number of epochs, a total of 24
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models per group have been run.

Configuration Tested

N of Hidden Layers 3

N of Neurons n of features, 256, 128

Dropout 0.5

Activation Function Sigmoid and ReLU

Batch Size 2, 32, 64, 100

Look Back 1, 2, 3, 10, 20, 30, 50

Train Size 90%

Optimizer Adam

Learning Rate 0.001

N of Epochs 500

Table 6.3: Tested Configurations for Neural Networks

6.3.5.2 An “Everything to Everything” Learning System

In these particular experiments, the LSTM will use all the variables to predict all the

variables. In a simple and general mathematical notation, this can be formalized as

Xrealt−k
7→ Ypred. In a more precise way, we can think of this type of architecture

as a set of parallel predictions that are run on the same neural network such that if

X = (x1, .., xn) is an input vector and Y = (y1, .., yn) is an output vector and both

have the same length n, the neural network will work using the whole X to predict

the whole Y at (t+ 1), and this Y will then be incorporated in X for predicting the

next step, and so on.

It can be defined, somehow, as a sort of distributed teacher-forcing (Bengio et al.,

2015; Lamb et al., 2016) system to train the network in which each output for a

given feature uses all the other features plus the same feature ground-truth value at

the previous time step (again, previous time steps can be of order higher than just

one, depending on the look back). This choice was privileged due to its flexibility for

other applications in the future (e.g., predicting tactics instead of targets via a little

modification of the code), but other alternatives that could be experimented are (in

order of ascending expected utility): 1. Targets to Targets (forecasting future targets

using only previous data points on targets); 2. Input Space to Targets (which uses

the information on hit countries, weapons, and tactics to predict future targets) and,

finally, 3. Input Space and Targets to Targets (the output prediction is done using

information on the input space and targets at previous time steps).
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6.3.6 Performance Evaluation

MSE and MAE are useful for evaluating the learning process in terms of minimiza-

tion of the error and in the attempt to diagnose potential over- and under-fitting,

considering that the behavior of the training and test curves of the loss functions

is precious in detecting flaws in the deep learning architecture, as diverging curves

indicate over-fitting, while distant parallel curves suggest that the model is actually

under-fitting. Nonetheless, these measures provide little information on the central

task of the models: predicting the correct continuous central values is not the pri-

mary scope of the statistical learning procedure. The main goal is instead to correctly

predict the most central (and therefore popular, and therefore at risk) targets at a

given time unit. To evaluate the performance of the models two metrics have been

developed ad hoc for this work, namely element-wise and set-wise accuracy.

Element-wise Accuracy Element-wise accuracy Φ is the most simple metric among

the two. Given the sequence of time units Tn6=0 = t1, t2, · · · , tk, where at least one

terrorist attack has occurred and tk represent the last (more recent) unit with attacks

in the sequence, and the sets S and Ŝ that map the actual set of most central targets

(up to three5 in each t) and the predicted set of most central targets (again, up to

three elements), I define the element-wise accuracy for t1, φti as:

φti =:

{
1 if Ŝ ∩ S 6= Ø

0 if Ŝ ∩ S = Ø
(6.23)

The Equation means that if the sets have at least one element in common, then φti
is equal to one, while if the two sets are disjoint the value will be equal to zero. For

the entire history of considered attacks Tn6=0, then, the overall EA accuracy ΦT is

computed as:

ΦT =
1

Tn6=0

T∑
i=1

φti (6.24)

with ΦT being the ratio between the sum of single unit binary accuracies φti and the

total number of time units T with at least an attack.

5When less than three targets have been hit in a given t, the set comprises either two (if present)

or one entity. When two or more targets are ex aequo ranked within the three most central targets

in the set, a random procedure select only one.

144



6 DEEP LEARNING AND TERRORISM

Set-wise Accuracy Set-wise accuracy Γ is more complicated and further tests the

ability of the deep neural networks to identify and predict the correct set S of most

central targets. Going a bit more in detail regarding S, the cardinality of the set is

bounded in the range 0 < |S| ≤ 3. Thus, for a given time unit ti, single γ is defined

as:

γti =


1 if Ŝ = S

x if Ŝ ∩ S 6= Ø

0 if Ŝ ∩ S = Ø

(6.25)

The singular γti is then equal to 1 if the two set are perfectly identical (as in any set,

it is worth to note, the order does not matter), is 0 when the two sets are disjoint

and can take a real value x when there is an intersection between S and . This value

x is calculated via:

x =
1

|S|

|S|∑
i=1

s̈∈Ŝ∧S (6.26)

where s̈ maps an element which is part of both S and Ŝ. In the case in which s̈ is

exactly equal to the cardinality |S|, the value of x becomes 1 as it would mean that

Ŝ = S. Finally, the overall metric Γ for the sequence Tn6=0 is given by:

ΓTn 6=0
=

1∑T
t=1|S|

T∑
t=1

s̈t (6.27)

ΓTn 6=0
is computed through the product of the inverse of the sum of the elements in

each |S| present in the sequence T and the sum of all elements s̈ that, in each time unit

of T , are both part of sets S and Ŝ. The metric is, as anticipated, more challenging for

the algorithm and aims at providing more comprehensive information to researchers

and - potentially - policymakers on the riskiest targets in a future time unit. The

threshold of 3 has been set arbitrarily upon previous analysis of the average number

of targets hit in each unit with at least one attack. However, it can be modified in

the future based on a particular necessity or in relation to different research problems

analyzed with different types of data (i.e., less sparse).
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6.4 On the Properties of Time Series of

Jihadist Groups

In this section, two key properties of time series are investigated (i.e., stationarity and

randomness) and additional information specifically on targets hit by terrorist groups

is provided to shed some light on how they behave over time, seeking to highlight

some patterns that might be relevant also in the actual modeling part.

6.4.1 Investigating Stationarity

Understanding the structure of the data over time is fundamental when dealing with

time series. Besides merely descriptive statistics, one of the statistical steps which

are required for assessing patterns in data and verifying assumptions in classical

statistical methods is to test for stationarity. A stationary process is defined as

a stochastic process that has unconditional joint probability distribution that does

not change when time-shifting is considered, and therefore parameters as mean and

variance remain stable over time. We could thus say that a time series is stationary

if its properties do not depend upon the time at which the series is observed. There

are two main typologies of stationarity: strict and weak (also known as covariance

stationarity or second-order stationarity, commonly used in signal processing). In

mathematical terms, a process is said to be strictly stationary if all its finite order

distributions are time-invariant, meaning the joint cumulative distribution functions

of:

X(t1), X(t2), ..., X(tk) and X(t1 + τ), X(t2 + τ), ..., X(tk + τ) (6.28)

are the same for all k, t1, t2, ..., tk and τ . Relaxing the assumptions used for defining

a strictly stationary process, the conditions for weak stationarity are three:

1. The second moment of xt is finite for all t, which means that:

E |xt| <∞ ∀ t (6.29)

2. The first moment of xt is independent of t, which means that:

E (xt) = µ ∀ t (6.30)

3. The cross moment E (xt1 , xt2) depends only on t1 − t2 that is:

cov (xt1 , xt2) = cov
(
xt1+h

, xt2+h

)
∀ t1, t2, h (6.31)
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The concept of stationarity is extremely important in statistics and econometrics

because most time series models require data to be stationary to be meaningfully

performed. Although in the case of neural networks stationarity is not strictly re-

quired, because the algorithm can handle non-linear relations and it is more flexible

in processing the data, I have checked for stationarity in the network-derived time

series for shedding some light on the shape on the potential patterns that may arise

from the analyses. To do so, I have applied one of the most common statistical tests

for stationarity checking in time series, which is the Augmented Dickey Fuller (ADF)

test (Dickey and Fuller, 1979). Given an autoregressive process of first order, AR(1),

written in the form:

yt = ρyt−1 + ut (6.32)

where yt represents the dependent variable, t is the time index, ρ is a coefficient and

ut is the related error term, we say that a unit root is present, i.e. the process is

non-stationary, iff ρ = 1. Starting from the model above, the regression model can

be then written as:

∆yt = (ρ− 1) yt−1 + ut (6.33)

where δ indicated the first difference operator. In this case, the unit root can be

tested fixing δ = 0 (where δ = ρ− 1). Considering the fact that the test is computed

over the residual term, the statistic t is characterized by a distribution known as

Dickey-Fuller table. There are three main versions of the original Dickey-Fuller test:

1. Test for a unit root with no drift and deterministic time trend:

∆yt = δyt−1 + ut (6.34)

2. Test for a unit root with drift and no deterministic time trend:

∆yt = a0 + δyt−1 + ut (6.35)

3. Test for a unit root with drift and deterministic time trend:

∆yt = a0 + a1t+ δyt−1 + ut (6.36)

The ADF test simply adds lagged dependent variables to the test equation, and

it is therefore applied to the model:
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∆yt = a0 + βt + γyt−1 + δ∆yt−1 + ...+ δk−1∆yt−k+1 + ut =

a0 + βt −
m∑
k=1

δ∆yt−k
(6.37)

with a0 representing a constant, β as the coefficient on a time trend and k is the

lag order that may allow for higher-order autoregressive processes. The unit root is

tested as the null hypothesis γ = 0 against the alternative hypothesis of γ < 0 which

would detect stationarity. The test statistic has the form:

ADF =
γ̂

SE (γ̂)
(6.38)

and if it is less than the larger negative critical value, then the null hypothesis can

be rejected, and the unit root can be excluded.

To test for stationarity of the data related to the five groups, I have therefore per-

formed the ADF test controlling for different lags. Since my data are divided into

three-days units, I have run the test for 1 ≤ k ≤ 50. Results are provided in Fig-

ure 6.3. The test, iterated through lags of different dimensions, yielded clear results.

Indeed, what is directly noticeable from the figure is that two processes remain sta-

tionary when all lag orders are tested. This is verified in the case of the Taliban and

Al Qaeda (this latter only highlights a risible fluctuation of statistical significance).

Al Shabaab, similarly, starts to highlight non-stationary time series only after k > 30.

In the case of Islamic State and Boko Haram, lags of very high order fail to reject

the null hypotheses: k=10 for the Islamic State already detects unit root processes,

the number further increases up to around 80% of the time series when k is set to

50. For what concerns Boko Haram, the tests starts to fail after k=10, and reaches a

maximum of non-stationary features around k=50, with a ratio of 0.5 over the total

number of time series.

One additional indication has to be drawn from the analysis: the lookback in the neu-

ral networks will have to consider the results of this test. Indeed, fixing a lookback

that is too large may prevent the algorithm from correct learning. As stationarity is

found for lags that do not exceed a certain threshold the interpretation of the results

will take into account this analysis.
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Figure 6.3: Ratio of Stationary Time Series per Each Group with Lag from 1 to 50

6.4.2 Investigating Randomness

After having verified the presence of stationarity in the data, it is useful to check

for another property to understand the structure of the data: this property is ran-

domness. In statistics, a “truly random” process is intended as a process that can

produce independent and identically (i.i.d.) distributed samples. This means that if

a given value in a sequence is influenced by its position, or by the prior data points,

the process is not truly random. There are many possible solutions for testing ran-

domness in time-series data (Moore and Wallis, 1943; Cox and Stuart, 1955; Mateus

and Caeiro, 2013), however I will here apply the Bartel’s Rank Test (Bartels, 1982),

which is a modified rank-based version of von Neumann’s Ratio Test for randomness

(von Neumann, 1941).

Differently from other tests, instead of comparing the magnitude of the observations

with their prior data points, Bartels’ Rank Test ranks all the observations from the

smallest to the largest. If the null hypothesis of randomness if verified, rank ar-

rangements from the whole set of n! possible combinations have the same probability.

Considered the rank R (Xi) as the sequential number of Xi, the probability for the

test statistic RVN is given by:
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RV N =

∑n−1
i=1 (Ri −Ri−1)2∑n−1

i=1 [Ri − (n+ 1) /2]2
(6.39)

It follows that RV N−2
σ

is asitomptically standard normal, where σ is the variance

and it is equal to σ =
4(n−2)(5n2−2n−9)

5n(n+1)(n−1)2
. Among the many different possibilities, this

test that uses ranks is particularly suitable for our data considered two factors. The

first factor that it is worth taking into account is related to the very nature of the

data which are – as reminded several times – abstractions of real-world dynamics.

We cannot tell what a particular value for a particular feature at a given time is

specifically saying. Also, since values across timestamps are not independent, but

depend on the number of features that are also existing in a given timestamp it is

difficult to compare absolute value through time, even in the extreme case where the

same feature is equal to 1 in two consecutive points. In fact, 1 in a case may indicate

that the given feature was the only one that was employed or targeted, while in the

other case, 1 may indicate that all attacks the time unit only implied that feature.

The second factor is tightly related to the development of the model: neural networks

will process absolute values, but predictions will be evaluated on a ranking base.

Therefore, it is far more useful to evaluate potential randomness from the point of

view of ranked sequences rather than focus on their values which are less important,

considering that if there are three features that are respectively equal to 1, 0.05 and 0

we are not concerned about the differences between these features, but we are seeking

to find a perfect overlap in terms of rankings for forecasting risks.

There are three potential alternative hypotheses that one can use to run the test:

right-sided, left-sided and two-sided. When using a right-sided test, the null hypoth-

esis is confronted against the alternative of a systematic oscillation; when using the

left-sided, the alternative hypothesis regards the presence of a trend; finally, when us-

ing the two-sided specification, the alternative hypothesis is proper non-randomness.

The latter is the specification that I have used. The results of the tests are provided

in Table 6.4.

The results are of the Bartels Rank test for randomness are interesting and demon-

strates that the neural networks will deal with potentially very complex prediction

problems. Indeed, the random component of processes is widely present in each

group. The Islamic State is the jihadist organization that presents the wider random

component, with 69.35% of the features that fail to reject the null hypothesis of the

test. Conversely, Al Qaeda shows the smallest presence of randomness in its features

(13.8%).
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Group

Random

Features

(ρ>0.1)

Non-Random

(ρ<0.1)

Non-Random

(ρ<0.05)

Non-Random

(ρ<0.01)

Islamic

State

43

(69.35%)

3

(4.41%)

4

(5.88%)

12

(17.64%)

Taliban
13

(30.9%)

0

(0.00%)

1

(2.38%)

28

(66.66%)

Al Qaeda
10

(13.8%)

0

(0.00%)

0

(0.00%)

62

(86.2%)

Al Shabaab
25

(55.5%)

2

(4.44%)

5

(11.11%)

13

(37.77%)

Boko

Haram

19

(45.2%)

2

(4.76%)

4

(9.52%)

17

(40.47%)

Table 6.4: Results of Bartels Rank Test for Randomness - per Group

The presence of randomness in data can be considered an issue: indeed, how is

it possible to make good predictions out of training data that do not seem to have

any oscillatory or seasonal patterns? This is one of the most challenging points of

terrorist events forecast, especially when such a time series is processed using very

detailed time units, as in this case.

6.4.3 Temporal Dynamics of Targets

The previous paragraphs aimed at verifying stationarity and potential randomness

and served as an empirical analysis to grasp as much information as possible from the

data before properly applying algorithms and analyzing the results. What we now

know, from the macro perspective at least (i.e.: without looking at specific features)

are general properties that should be considered before and after the modeling step.

That said, it is therefore useful to focus on the micro-level. Micro-level, in this case,

is the analysis (though at a first descriptive glance) of temporal dynamics of targets,

which represents the most important and relevant portion of data at my disposal, since

models will be evaluated based on their ability to correctly forecast them. Table 6.5

provides average values for all targets that are present in the data, i.e. all targets

that have at least a mention in at least one group. Figures, in this fashion, are a

valuable instrument to understand which are the most frequent (or popular) targets

overall, without taking into account – or visualizing – trends or temporal dynamics.

Comparing across groups in terms of absolute values does not make sense, but – again

– thinking in terms of ranking is a helpful workaround to make more sense of the data.
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Target
Islamic

State
Taliban

Al

Qaeda

Al

Shabaab

Boko

Haram

Business 0.043 0.056 0.021 0.047 0.033

Government (Diplomatic) 0.033 0.019 0.024 0.012 0.003

Private Citizens 0.273 0.247 0.083 0.217 0.300

Refugee Camp 0.005 0.001 NA 0.002 0.007

Maritime 0.000 NA 0.001 0.001 NA

Private Security Company 0.003 NA NA 0.001 0.002

Police 0.113 0.243 0.006 0.068 0.085

Journalists & Media 0.011 0.008 0.003 0.022 0.001

Religious Figures/Institutions 0.017 0.017 0.007 0.016 0.050

Military 0.069 0.063 0.038 0.079 0.033

Terrorists/Non State Militia 0.078 0.012 0.021 0.008 0.009

Unknown 0.015 0.035 NA 0.008 0.016

Ambulance 0.001 0.001 0.001 0.001 NA

NGO 0.006 0.024 0.002 0.011 0.001

Transportation 0.009 0.020 0.007 0.010 0.008

Utilities 0.006 0.003 0.001 0.002 NA

Educational Institution 0.003 0.039 0.005 0.008 0.018

Violent Political Party 0.001 0.001 0.002 NA 0.001

Airports & Aircraft 0.001 0.009 0.004 0.011 0.001

Government (General) 0.033 0.167 0.069 0.130 0.045

Other 0.001 NA 0.000 NA NA

Food or Water Supply 0.001 0.002 0.001 0.003 0.001

Demilitarized Zone 0.000 0.001 0.001 NA NA

Tourists 0.000 0.001 0.005 0.001 0.001

Fire Fighters NA NA 0.001 NA 0.001

Telecommunication NA 0.006 0.001 0.002 0.002

Table 6.5: Average Centrality Values for all Targets Present in the Data - per Group

The Islamic State proves to attack more Private Citizens, Police, and Terrorists

or Non-State Militias. Taliban highlights similar preferences, but instead of targeting

terrorists or Non-State Militias, they tend to attack Government (General). Al Qaeda

has a tendency against Government (General) too, coupled with Military (and Private

Citizens), showing how their efforts have been put into actions against institutions.

Al Shabaab has a very similar profile to Al Qaeda’s one, as also detected in Chapter

4. Finally, a first look at Boko Haram’s data points out that the group plots attack

against Religious Institutions as a probable consequence of the hybrid religious setting

of the geographic area in which the organization operates. “Stock” data give a first
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summary of groups’ preferences, however much more information may be provided

visualizing and commenting proper temporal dynamics.

Islamic State Observing Figure 6.4, several things can be detected. First of all, it

is evident why for so many features (also comprising locations, tactics, and weapons)

randomness was detected. In fact, there is a consisted part of targets that seem not

to follow logical or predictable trends. This is the case of targets such as Tourists,

Airports and Aircraft, NGO, Transportation, and Utilities. In the case of Tourists,

relevance looks risible, considering the very low centrality values and frequency of

attacks against this category. Airports and Aircraft, NGOs and Transportation high-

light sudden peaks that are generally not followed by close (in time) consequent

attacks, therefore an algorithm (though powerful) might find it difficult to learn struc-

ture considered the anomaly of such events.

On the other side, other targets appear to be more patterned in time. This is espe-

cially the case for Private Citizens and Properties, Police, Terrorists and Non-State

Militias and Military. There are quite long sequences of attacks that are characterized

by continuous targeting of such categories. In some cases, we can identify very high

recurrent peaks followed by decreasing trends that tend to converge over low levels of

“popularity”. Private Citizens and Properties were particularly attacked in the first

phase of the existence of the Islamic State, probably coinciding with the expansion

strategy over physical territories. After this first phase, the Islamic State seems to

differentiate across targets (whether this is an endogenous or exogenous process re-

mains an open question) and starts to attack other Terrorists or Non-State Militias

and Military forces. One hypothesis is that these two target categories represent the

organized effort of structured or semi-structured bodies to counter the jihadist group.

It is interesting to note how Government (General) has never been a highly recurring

target in the Islamic State’s short history. This, again, might be the reflection of

the fact that the jihadist organization has been able to infiltrate, expand and spread

across territories were the institutional stability and power were weak and not suffi-

ciently present.

Finally, looking at the overall picture, it can be noticed how the most diversity and

complexity of targets (high number of high-level trends in parallel) is clustered from

2013 to half 2014, meaning that in the first years of its existence, the group was

probably able to carry out larger and heterogeneous attacks.
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The Taliban Figure 6.5 shows the trends of the different targets attacked by the

Taliban from the first recorded attack in the GTD to the last. As it will be for Al

Qaeda, during the first years (until the early 2000s) recorded attacks are very few.

Besides 1993, it would be really relevant to understand whether the groups were not

properly active or if this constitutes an additional problem of missing data in the

database compiling process.

That said, the figure seems to distinguish between extremely frequent attacked tar-

gets and other minor categories that look more like random (from a temporal point of

view). On one hand, Business, Government (General), Private Citizens and Proper-

ties, Police and lately also Military are the most recurrent targets that are persistently

present (with high centrality values) across the temporal spectrum, from 2005 circa

on (with the exception of Military, which are shown to be highly targeted from 2012

on).

On the other hand, while Telecommunication, Tourists, Food and Water Supply seem

almost randomly distributed in time, for other categories patterns are similar to mi-

crocycles or medium-term persistent shocks (namely recurrent attacks against a given

category that persists for some weeks or months). This is the case of Transportation,

with microcycles between 2010 and 2012 and persistent shocks between 2008 and

2009, NGOs (medium-term persistent shocks at the end of 2008 and 2009) and Ed-

ucational Institutions (the most evident medium-term persistent shock is at the end

of 2005).

At a first look, it seems that from 2011 on the Taliban has continuously plotted

very diverse attacks, with multiple targets, proving a capacity to handle logistical

complexity.

Al Qaeda Figure 6.6 looks in part similar to Figure 6.5 because of the absence (or

very low frequency) of attacks in the first part of the plots. It is worth to highlight that

the parallel peaks in Business, Government (General), Private Citizens and Properties

and Airports and Aircraft at the end of 2001 represent the 9/11 attacks.

The frequency of events increases especially after 2004: interestingly, we can observe

medium- and long-term persistent shocks in attacks against Police and Military, while

Private Citizens and Properties and Government (General) are quite stably present

with high levels of popularity across the last ten years spectrum.

The fact that Al Qaeda is represented here is a set of different actors (belonging to the

Al Qaeda network) that may explain the popularity that the Government (General)

category has. In fact, the ideology and final goal of the Al Qaeda Network can be
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linked to the necessity to target institutional symbols of declared enemies to obtain

enough echo and provoke potential sympathetic reactions by possible recruits.

It is furthermore worth to focus on some microcycles and medium-term recurring

shocks in attacks against utilities, which may indicate particular strategies (maybe to

illegally obtain resources) in specific geographic areas (trends should be disaggregated

by a single group to actually understand micro-dynamics, this will thus be a good

path for potential future work).

Finally, as it was found for Islamic State and Taliban, some targets do not seem to

follow any type of trend or pattern. In the case of Tourists, Food and Water Supply,

Demilitarized Zones and Fire Fighters, either events are too few or too distant in

time. This will represent a considerable challenge for the algorithms, and it has to be

taken in mind.

Boko Haram Figure 6.7 shows the target dynamics referred to attacks plotted by

the Nigerian group Boko Haram. As it was already shown for other types of analysis

(trails, for instance), Boko Haram holds several characteristics that are different from

all the other groups. This consideration can be corroborated here by two target

categories which are prominently present (though not with universal stability over-

time) in Boko Haram temporal spectrum and that are not equally important for other

groups: Religious Institutions and Educational Institutions.

The motivation behind the popularity of Religious Institutions in the Boko Haram

attack strategies lies in the fact that the region in which the group operates has a

consistent percentage of Christian population. Furthermore, it has to be noted that

Islamic communities have denounced and refused the ideology of Boko Haram as

written by Aghedo and Osumah (2012), thus Religious Institutions are enemies of

the jihadist groups on a regardless of the specific religion.

A line can be drawn which connects Religious Institutions to Educational Institutions,

a second relevant target category for Boko Haram. Indeed, Boko Haram attacks

schools, colleges and universities (Catholic and not) that are in line with the Western

idea of education completely refused and repudiated by Boko Haram. Educational

Institutions, in general, are also used by Boko Haram as effective places for kidnapping

girls and women that are used as hostages or are smuggled across adjoining African

countries, like Chad and Cameroon (Peters, 2014).

Besides Religious and Educational Institutions, Boko Haram tends to mostly attack

Private Citizens and seemed to stop targeting Police, since from late 2013 centrality

has dramatically reduced (except for certain short cycles).
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Al Shabaab Finally, figure 6.8 points out several things regarding the dynamics

of targeting conducted by Al Shabaab. In the first three subplots, it is immediately

noticeable how Business, Government (General) and Private Citizens and Properties

represent by far the most preferred (also because of permanent recurrence overtime)

targets by the Somalian group.

Looking at less persistent mechanics, Police and Military, two categories that are

generally related if not mathematically at least conceptually, present medium- and

long-term recurring shocks that are identifiable in the plots (for the former, between

2012 and 2013 and in early 2015, while for the latter a quite long term is exhibited

during 2014). These two targets hold interesting dynamics that can indicate and

highlight time windows where either countering actions forced the group to react

massively or, conversely, direct strategies of the group to reach a particular goal.

Finally, Government (Diplomatic), Transportation, Telecommunication and Terror-

ists or Non-State Militias are certainly not amongst the most frequent targets, and

the distribution may seem random if we concentrate on the whole spectrum, nonethe-

less, there are cases in which high spikes are actually followed by decreasing centrality

values, indicating that, somehow, the given category has been the subject of attacks

for a short, but detectable, period of time. This type of behavior certainly represents

a challenge for the deep learning models, but it is more solvable than pure singular

peaks that in statistical terms are defined as “outliers”.

In these three cases we have instead short cycles that might remember of the be-

haviour that can be captured by Hawkes Processes, where - as seen in Chapter 5 - a

first shock is followed by other shocks of minor intensity for a certain period of time,

until the frequency and intensity converges over 0 in a certain amount of time (Ogata,

1988, 1998).
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6.5 Results of the Models

6.5.1 The Islamic State

The Islamic State with the shortest time sequence overall: however, when taking into

account their activity, the group geographically originating in Iraq and Syria shows

the highest frequency of attacks. The feature space comprising targeted countries,

employed weapons, adopted tactics and hit targets is the less temporally sparse over-

all. Figure 6.9 provides a graphic visualization of the correlation between each column

vectors (i.e., Syria, Firearms, Government (General) and so on) to preliminarily in-

spect the existing relation between the variables. The plot shows that few features

actually show very high (either positive or negative) correlation values in the 62 × 62

matrix. This suggests that the prediction problem might be particularly challenging.

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.9: Correlation Matrix of Centrality Values (All Features) - Islamic State

To further inspect the correlations to provide more specific knowledge on the is-

sue, Table 6.6 lists the ten highest correlation values between the variables. Trivially,

the tactic “Bombing/Explosion” and weapon “Explosives/Bombs/Dynamite” almost

reach a perfect correlation of 1. Following, it is interesting to note how the territo-

ries of the West Bank/Gaza Strip are strongly related to the targeting of Diplomatic

162



6 DEEP LEARNING AND TERRORISM

Figures. Additionally, Indonesia and the Philippines also are particularly correlated,

indicating that often when one country is targeted in a given t, the other one also

experiences an attack, and vice-versa. With regards to targets, attacks in Jordan are

more likely to be directed against Tourists, Journalists/Media are targeted via Facil-

ity/Infrastructure attacks and terrorist events in Turkey are generally related to the

presence of Refugee Camps, considering that Turkey has shared borders with both

Syria and Iraq, the two most attacked countries by the Islamic State.

Feature 1 Feature 2 r

Bombing/Explosion Explosives/Bombs/Dynamite 0.911

West Bank/Gaza Strip Government (Diplomatic) 0.795

Indonesia Philippines 0.755

Armed Assault Firearms 0.726

Jordan Tourists 0.710

Facility/Infrastructure Journalists/Media 0.668

Unknown Unknown 0.571

Egypt Lybia 0.547

Turkey Refugee Camp 0.501

Melee Other 0.480

Table 6.6: Ten Highest Correlation Coefficients Between Features - Islamic State

Before commenting on the results of the models, the reader may appreciate the

information provided by Figure 6.10. The heatmap aims to visualize the patterns

of each column vector (to be read as “feature”) over time in terms of centrality.

In the case of the Islamic State, this heatmap clearly shows several things. First,

as anticipated above, the Islamic State is responsible for a dramatic frequency of

attacks over the considered period. Second, the matrix values are clustered within

a small number of vectors. Third, and related to the first point, Iraq (belonging to

the Countries dimension of the manifold) Bombing/Explosions (belonging to tactics),

Explosives/Bombs/Dynamite (weapons), and Private Citizens and Property (targets)

are the four leading vectors in terms of variance within the manifold. This can

anticipate that the prediction problem might not be extremely challenging, in the

end, at least in terms of Φ(T ) accuracy.
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Figure 6.10: Temporal Heatmap - Centrality Over Time (Islamic State). Vertical White Lines

Separate Modes

The results obtained from the models are particularly promising. Indeed, all

models (with no exception) can identify at least one of the three most central targets

in each time unit (Φ(T )). This might be due to the extreme regularity of attacks

against Private Citizens and Property that the Islamic State exhibits in the period

under observation.

Nonetheless, the results of setwise accuracy Γ(T ). As noted in the presentation of

the metric, it is much more challenging compared to Γ(T ), and this is showed by the

existing disparity between the two, for this particular jihadist group. However, the

range in which the prediction fall (∼ 0.4 - 0.75) demonstrates that the deep neural

network has considerable power in detecting and revealing the most probable future

targets, beyond the easily predictable regularity of Private Citizens and Property.
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Figure 6.11: Bivariate Relation Between Model Performance in Γ(T ) and Φ(T ) - Islamic State

Specifically focusing on the best model6, the parameters and characteristics show

that a batch size of 32 performs better than the two other bigger alternatives (64

and 100) and that, in spite of the non-stationarity of considerable number of features

around k=30 (∼ 35%), the model performs better when it is fed with data coming

from the last 30 points (∼ 3 months).

Parameter Value

Batch Size 32

Look back 30

Φ(T ) 1

Γ(T ) 0.75

MSE 0.005

MAE 0.026

Execution Time ∼ 11 min.

Table 6.7: Best Model Performance and Results - Islamic State

6For each of the jihadist groups, the best model will be selected based on the best performance

in terms of Γ(T ), as the most demanding metric.
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Furthermore, Figure 6.12 and Figure 6.13 show how the loss functions converged

quite fast and the models stopped to learn after 140 epochs due to the imposed

constraint of the “early stop” option to prevent over-fitting.
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Figure 6.12: MSE - Islamic State
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Figure 6.13: MAE - Islamic State

6.5.2 The Taliban

The visual inspection of Figure 6.14 reveals how the Taliban presents some strong

relations across the feature vectors of the 39 × 39 matrix. Overall, the Taliban

are associated with the lowest number of features to learn from and forecast, this is

partially due to the extreme concentration of attacks in Afghanistan (and, marginally,

Pakistan).
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Figure 6.14: Correlation Matrix of Centrality Values (All Features) - Taliban

In detail, the strong role of Afghanistan within the matrix is testified by the

information included in Table 6.8: out of the ten highest correlation coefficients, half

are related to it. This strong clustering dynamic might lead to two divergent results.

It could either reduce the range of information to learn from, bounding variance and

therefore posing challenging problems to the forecasting or, contrarily, mark well-

determined patterns facilitating the task of the LSTM.

Feature 1 Feature 2 r

Bombing/Explosion Explosives/Bombs/Dynamite 0.927

Armed Assault Firearms 0.834

Facility/Infrastructure Incendiary 0.822

Afghanistan Explosives/Bombs/Dynamite 0.743

Afghanistan Bombing/Explosion 0.718

Unknown Unknown.1 0.716

Afghanistan Firearms 0.671

Unarmed Assault Chemical 0.669

Afghanistan Armed Assault 0.633

Afghanistan Police 0.628

Table 6.8: Ten Highest Correlation Coefficients Between Features - Taliban

Figure 6.15 further allows noting the prominent presence of Afghanistan over time.
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The color map also shows how the country has been the most central nearly in each

unit of the sequence. Less clear patterns can be detected in the other modes, and

especially in the target dimension which accounts for half of the column vectors.

Indeed, besides the clear persistent centrality of Police and Private Citizens and

Property, other types of targets are much more sparse, volatile or clustered in limited

time frames, with high spiking centrality that vanishes after relatively short periods.

This is the case of Business-related targets or Religious Figures/Institutions. With

regards to tactics, bombing and explosions and armed assaults are stably central

over-time, in association with related weapons (i.e., Explosives, Bombs, Dynamite

and Firearms).
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Figure 6.15: Temporal Heatmap - Centrality Over Time (Taliban). Vertical White Lines Separate

Different Modes.

Also in the case of the Taliban, the results are encouraging. Figure 6.16 shows that

the performance of each model is concentrated between ∼ 0.95 and ∼ 0.98 for Φ(T )

and ∼ 0.75 and ∼ 0.76 for Γ(T ). The relation between the two metrics is positive

linear: as one metric increases in its power, so does the other.

168



6 DEEP LEARNING AND TERRORISM

0.75 0.76
(T)

0.95

0.96

0.97

0.98
(T

)

pearsonr = 0.6; p = 0.00083

Figure 6.16: Bivariate Relation Between Model Performance in Γ(T ) and Φ(T ) - Taliban

The best model and its characteristics are illustrated in Table 6.9: the deep LSTM

which achieved the highest set-wise accuracy was trained using a look back of 10:

thirty days of history are sufficient for learning patterns and forecast them in the

most accurate way across all the twenty-eight networks. The implication of this

result is that Taliban hold medium-range dependencies between the present and the

past: the Taliban seem to be consistent and homogeneous in their behaviour for some

weeks.

Parameter Value

Batch Size 32

Look back 10

Φ(T ) 0.758

Γ(T ) 0.973

MSE 0.053

MAE 0.126

Execution Time ∼ 15 min.

Table 6.9: Best Model Performance and Results - Taliban

The behavior of the loss functions shows no particular sign of over-fitting. Con-
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trarily, the performance of MAE might even suggest that there is still room for im-

provement since the curves are parallel and do not converge over the epochs, as early

stop parameters stopped the process after only 80 epochs.
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Figure 6.17: MSE - Taliban
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Figure 6.18: MAE - Taliban

6.5.3 Al Qaeda

Al Qaeda has demonstrated to be the most challenging group overall in terms of

forecasts. The 72 × 72 matrix is the most sparse and the one with most features

among all the considered groups: the dimensionality of the data certainly played a

role in the performance of the models. Figure 6.19 shows how most of the vectors

do not show any relation. Notably, very few pairwise relations show values higher

than 0.5. The upper left region of the matrix is almost perfectly uncorrelated. This

introductory description already anticipates some of the challenges that the models

had to face in reaching their goals.
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Figure 6.19: Correlation Matrix of Centrality Values (All Features) - Al Qaeda

Focusing on the highest correlations (Table 6.10, and going beyond the most trivial

and expectable relations, among the top ten ones only one actually refers to a specific

target. Indeed, Airports and Aircraft are highly associated with the United Kingdom

(r=0.495). It is also interesting to note that when information on tactics is not

available for an attack, generally the same applies to information on weapons. Data

also show a prominent tendency of Al Qaeda to plot facility/infrastructure attack by

means of incendiary tactics.

Feature 1 Feature 2 r

France Unarmed Assault 0.957

Bombing/Explosion Explosives/Bombs/Dynamite 0.909

International Maritime 0.857

Armed Assault Firearms 0.718

Facility/Infrastructure Incendiary 0.659

Unknown Tactic Unknown Weapon 0.608

United Kingdom Vehicle 0.567

Yemen Firearms 0.509

United Kingdom Airports and Aircraft 0.495

United States Vehicle 0.491

Table 6.10: Ten Highest Correlation Coefficients Between Features - Al Qaeda
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Figure 6.20 shows how that, in spite of the dimension of the matrix, the majority

of information is clustered around a relatively small number of feature vectors. In

fact, the first mode of the manifold, which includes countries, is scarcely populated

(with the most attacks plotted in Iraq and Yemen). More heterogeneity can be found

in the mode containing tactics and weapons. However, the information might not

be sufficiently rich to meaningfully infer patterns within the target mode, which is

instead more diverse (at least, from a visual inspection of the heatmap).
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Figure 6.20: Temporal Heatmap - Centrality Over Time (Al Qaeda). Vertical White Lines Separate

Different Modes.

Figure 6.21 shows the bivariate relation between the two different types of accu-

racy metrics used to assess the model predictive ability. It is worth to note how there

is a small number of models that perform poorly in both measures. However, much of

the models get results that are clustered in the upper region of the plot. Nonetheless,

the forecasting models for Al Qaeda are certainly the most problematic ones. Both

Γ(T ) and Φ(T ), also when only considering the best model, have the lowest values

across all groups. A connection might be drawn from this findings to the conclusion

of Moghadam (2013), who claims that the more decentralized a group is, the more it

innovates in terms of actions and attacks: Al Qaeda is certainly the most decentral-

ized group in this analysis (as it contains several sub-groups), and innovation might

172



6 DEEP LEARNING AND TERRORISM

be here seen as the degree of sparsity and low-correlation between feature vectors.

Furthermore, as noted by Pham (2011), the Al Qaeda in the Islamic Maghreb faction

has become over time more pragmatic also in terms of attack planning (and not only

in relation to its geographical scope of action), and this aspect also can be reflected

in the data.
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Figure 6.21: Bivariate Relation Between Model Performance in Γ(T ) and Φ(T ) - Al Qaeda

The best model for Al Qaeda is obtained via a minibatch size of 32, as seen with

the Islamic State and the Taliban (Table 6.11). The deep LSTM achieves the highest

result in Γ(T ) when using a wide time range to infer future behaviors: the look

back is equal to 50 (150 past days), meaning that the network is more efficient when

can access information on quite long past sequences. This result may suggest how

Al Qaeda tends to frequently change its behavior (mapped by the 72 multivariate

times series) over time, preventing the network to learn efficiently on short windows.

Figures 6.22 and 6.23 interestingly show a fast convergence towards a minima after

very few epochs. In the MAE plot, it can be noted of the curves started to diverge

after 45 epochs, however, the early stop parameter stopped the learning process after

80 epochs, avoiding further risks of over-fitting.
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Parameter Value

Batch Size 32

Look Back 50

Φ(T ) 0.508

Γ(T ) 0.404

MSE 0.020

MAE 0.044

Execution Time ∼ 11 min.

Table 6.11: Best Model Performance and Results - Al Qaeda
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Figure 6.22: MSE - Al Qaeda
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Figure 6.23: MAE - Al Qaeda

6.5.4 Boko Haram

The introductory graphic visualization of the correlation between the feature vector

comprised in the 42 × 42 matrix of Boko Haram illustrates how, in spite of the vast

majority of vectors not showing any correlation, there exist some regions in which a

relatively strong relation holds for certain variables (see, for instance, the bottom left

or the top right of the matrix). On the contrary, the bottom right of the lower triangle,

where targets are located, is almost completely uncorrelated: this may suggest how,

in any given time unit, Boko tend not to combine different types of targets for their

terrorist attacks.

174



6 DEEP LEARNING AND TERRORISM

0.00

0.25

0.50

0.75

1.00

Figure 6.24: Correlation Matrix of Centrality Values (All Features) - Boko Haram

Nigeria - the country that was most affected by the attacks of Boko Haram - is

strongly related to events against Private Citizens and Property. This target is also

connected to the use of firearms through armed assault tactics. (Table 6.12).

Feature 1 Feature 2 r

Bombing/Explosion Explosives/Bombs/Dynamite 0.957

Armed Assault Firearms 0.909

Facility/Infrastructure Incendiary 0.857

Nigeria Firearms 0.718

Unknown Tactic Unknown Weapon 0.659

Nigeria Armed Assault 0.608

Nigeria Private Citizens and Property 0.567

Nigeria Explosives/Bombs/Dynamite 0.509

Armed Assault Private Citizens and Property 0.495

Firearms Private Citizens and Property 0.491

Table 6.12: Ten Highest Correlation Coefficients Between Features - Boko Haram

The temporal heatmap in Figure 6.25 indeed shows the consistent high centrality

of Nigeria: other countries started to appear later (more than one year after the first

attack in Nigeria). The attacks of Boko Haram are carried out using a variety of

tactics, as visible in the second mode of the manifold: besides armed assault and
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bombings or explosions, which are common to most groups, many time units experi-

ence significant centrality of tactics such as Hostage Taking, Incendiary attacks and

also Facility/Infrastructure. The heterogeneity of tactics does not reflect into the

heterogeneity of weapons: Boko Haram consistently oscillates between Firearms, Ex-

plosives, and Melee. Private Citizens and Property dominates in the mode of targets.

The mode also shows sparse and rare signals on several targets, with apparently no

evident time clustering.
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Figure 6.25: Temporal Heatmap - Centrality Over Time (Boko Haram). Vertical White Lines

Separate Modes

Concentrating on the models, their behavior seems promising in spite of the prob-

lems with stationarity failing fastly when wider lags are introduced. Nevertheless,

the relation between Φ(T ) and Γ(T ) is anomalous: in the two-dimensional space,

the points representing the models almost form a circle: the relation is not certainly

linear. As a matter of fact, the detected Pearson coefficient is not statistically sig-

nificant. Those models that perform better in terms of Φ(T ) are not automatically

among the subset of those that also perform better in Γ(T ).

176



6 DEEP LEARNING AND TERRORISM

0.550 0.575 0.600 0.625
(T)

0.78

0.80

0.82

0.84

0.86
(T

)
pearsonr = 0.21; p = 0.29

Figure 6.26: Bivariate Relation Between Model Performance in Γ(T ) and Φ(T ) - Boko Haram

The model with the best performance in Γ(T ) has different characteristics from

the other best models commented for the other groups. First, its batch size is equal

to 64, going against the results of the other models and the suggestions contained in

the paper by Masters and Luschi (2018).

In addition, it relied on a short look back: this might suggest that Boko Haram

changes frequently its behavior that might have a microcycle-shaped nature. For this

reason, the LSTM only needs data from the past 6 days to infer the future targets,

as then more distant information in time could not be relevant or even noisy and

disruptive of the learning process.
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Parameter Value

Batch Size 64

Look back 2

Φ(T ) 0.839

Γ(T ) 0.601

MSE 0.046

MAE 0.103

Execution Time ∼ 5 min.

Table 6.13: Best Model Performance and Results - Boko Haram

The MAE loss function decay (Figure 6.28 again testifies the important role of

the “early stop” option to avoid overfitting: 100 epochs are sufficient to the LSTM

to achieve the results. In the case of MSE (Figure 6.27, the learning curves are

overlapping up to epoch 20, and then separate and remain in parallel, with the same

trend.
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Figure 6.27: MSE - Boko Haram
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Figure 6.28: MAE - Boko Haram

6.5.5 Al Shabaab

Al Shabaab is the last group of the sample. The correlation plot between the feature

vectors that make up the 45 × 45 matrix shows more clear correlated sub-regions

than the previous ones: though the extremely high values seem not so frequent, there

are several clustered areas where the coefficient floats around 0.25-0.5 (Figure 6.29).
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Figure 6.29: Correlation Matrix of Centrality Values (All Features) - Al Shabaab

The list of the highest correlation coefficients within the matrix shows how, in

terms of targets, Somalia (which is the country that accounts for the most attacks

plotted by Al Shabaab) is strongly related to events against Private Citizens and

governmental entities (Government (General)). Indeed, the first column vector in

the lower triangle of Figure 6.29 maps the relation of Somalia with other variables

and it clearly shows how the country accounts for a large number of positive strong

associations. Another strong pairwise connection is the one between the Hijacking

tactic and Ambulance targets (Table 6.14).
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Feature 1 Feature 2 r

Bombing/Explosives Explosives 0.844

Incendiary Facility/Infrastructure 0.740

Armed Assault Firearms 0.732

Hostage Taking Unknown Weapon 0.578

Hijacking Ambulance 0.539

Unknown Tactic Unknown Weapon 0.533

Private Citizens and Property Somalia 0.481

Explosives/Bombs/Dynamite Somalia 0.426

Bombing/Explosives Somalia 0.389

Government (General) Somalia 0.382

Table 6.14: Ten Highest Correlation Coefficients Between Features - Al Shabaab

The temporal heatmap below (Figure 6.30) has similarities with the Boko Haram

one: indeed, almost half of the manifold is occupied by targets, as a consequence

of the actions of a group that shows no particular variety of adopted tactics and

weapons and that act on a regional scale. Somalia again demonstrates its consistent

stability in the time series, with a marginal role of Kenya, especially in the second half

of the considered period. Two tactics are prominently present: armed assaults and

bombing/explosions, but it is worth to note how Al Shabaab seems to plan attacks

or short campaigns that combine more than one tactic, as testified by the color of the

temporal units of tactics: many are darker colors, indicating lower centrality values

and, therefore, a non unitary behavior. The same, similarly, can be said for Firearms

and Explosives. The mode occupied by targets, instead, is less patterned. In spite

of the recurrent centrality of Military, Government (General) and Private Citizens,

Al Shabaab also directed its attack to other types of targets that, although sparsely,

were noticeably central in certain time windows.
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Figure 6.30: Temporal Heatmap - Centrality Over Time (Al Shabaab). Vertical White Lines Sepa-

rate Modes

The behavior of the models in terms of Φ(T ) and Γ(T ) is showcased in the regres-

sion scatter plot in Figure 6.31. Besides an outlier model that performed significantly

worse than all the others in both metrics, most of the models are tightly clustered

in the upper right region. The values of Φ(T ) fall within the 0.8-0.9 range, demon-

strating a very high capacity of forecasting at least one of the most central targets

in the next time unit. In terms of Γ(T ), the LSTM show even small variance: most

points are centered around ∼ 0.6, which is also a promising outcome considering the

challenging construction of the metric.
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Figure 6.31: Bivariate Relation Between Model Performance in Γ(T ) and Φ(T ) - Al Shabaab

In spite of the similarities detected comparing Al Shabaab’s and Boko Haram’s

temporal heatmaps, the best model for the Somali jihadist organization has differ-

ent characteristics (though the performance is similar between the two groups). Al

Shabaab is the group that achieved the best result through the smallest batch size

overall (2): this result justifies the longest execution time (∼ 49 minutes). Further-

more, the best look back is the same as the Taliban: the last month of data is the

right trade-off for the LSTM to obtain the most accurate predictions.

Finally, Figures 6.32 and 6.33 reports the learning process behaviour through the

Parameter Value

Batch Size 2

Look back 10

Φ(T ) 0.859

Γ(T ) 0.617

MSE 0.026

MAE 0.081

Execution Time ∼ 49 min.

Table 6.15: Best Model Performance and Results - Al Shabaab
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trend of MSE and MAE: the deep neural networks converge on a very low local min-

ima after one epoch for train set, while it takes about 10 epochs in the MSE case for

the test set: the training curve then continues to decrease, while the learning process

of train set curves almost stops or deteriorates over time. The test curve in the Figure

6.33 displays an anomalous trend, since it starts very low, increasing then the error

around epoch 10, and subsequently improving its performance up to the final epoch.

The “early stop” option prevents over-fitting by stopping the process around epoch

50.
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Figure 6.32: MSE - Al Shabaab
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Figure 6.33: MAE - Al Shabaab

6.5.6 Performance Summary

This last subsection aims at summarizing the results across the models, to more

comprehensively show the performance of the models (with a special focus on Look

Back) and to possibly anticipate future directions.

Figure 6.34 provides a 2d Kernel Density Estimation plot to show how, regardless

of the group, the models performed overall to understand if there exists a general

underlying pattern in terms of Φ(T ) and Γ(T ). The plot displays the presence of

a positive linear relationship: while some models performed poorly (bottom left),

most data point concentrates in the upper-right region, falling in the ∼ 0.5-0.6 range

for Γ(T ) and 0.8-1 for Φ(T ). While this result has been partially introduced in the

previous subsections specifically dedicated to each group, it is worth to note that,

at a more aggregated level, this finding supports the optimistic nature of the LSTM

networks for target forecasting.
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Figure 6.34: Two-dimensional Kernel Density Estimation of Φ(T ) and Γ(T ) Across All Models

Finally, Figures 6.35 and 6.36 report the distribution of each look back size (re-

gardless of the jihadist group) across models. Interestingly, the distributions for Φ(T )

look very similar from a look back equal to 1 up to 30. The 40 case is specifically

dedicated to the Islamic State since due to the small size of the test set I could not

rely on the ordinary maximum look back of 50. This latter look back indeed shows the

lowest median value overall, while 30 slightly outperforms all the others. This finding

might suggest that, when only accounting for one out of three most central targets,

there is no necessary need to consider long past sequences. Instead, the pay-off of

choosing a small portion of the group’s behavioral history is sufficient to achieve very

good results.

The situation for what concerns Γ(T ) is, instead, less clear, probably due to the fact

that the challenging nature of the metric does not lead to a “one size fits all” result,

making it highly dependent upon each group’s history. Overall, what emerges is that

look back of 1 and 2 have significantly more compressed distributions, and that the

median value is almost identical across all configurations. What changes is the range

between lowest and highest performances: 3, 30 and 50, in this case, reach the highest

peaks of Γ(T ), but at the same time their worst results are the worst overall. This

may indicate that the bigger the look back, the higher the risk of noisy variability

that may affect the learning process.
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Figure 6.35: Box Plot of Look Back Performance in Relation to Φ(T ) Across all Models and Groups
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Figure 6.36: Box Plot of Look Back Performance in Relation to Γ(T ) Across all Models and Groups
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6.6 Overcoming Issues on Weak and Rare Signals

There are opposing views about the ability of predictive analytics to prevent terrorism.

When discussing about predictive analytics we can include all those mathematical or

computer models that try to predict or forecast terrorist events, perpetrators, dynam-

ics. Scholars are divided into different factions: some are more optimistic (with vari-

ous degree of cautiousness) (Chen et al., 2008; Haberman and Ratcliffe, 2012; Siegel,

2016), while others have less positive expectations on the power of these computa-

tional instruments to actually help the fight against terrorism (and, more generally,

crime) (Weber and Bowling, 2014; Bouchard, 2017; Hälterlein and Ostermeier, 2018).

It is not just a matter of the debate fostered around the unethical behavior of certain

algorithms and the damages that these instruments can pose to certain parts of the

societies (Berk et al., 2018; Hannah-Moffat, 2018; PAI, 2019). It is, instead, a debate

that revolves around some reasoning on the statistical power of these models. The

negative opinions are generally centered around three critical points: (1) the lack of

meaningful and solid data to be used by the scientific community (Sageman, 2014),

(2) the insufficient training or computational skills of intelligence analysts training or

skills of intelligence analysts (Sageman, 2014; Britten, 2018) and, finally, (3) the in-

trinsic and non-solvable problems of forecasting things that are simply unpredictable.

Specifically, concerning the latter, Munk (2017) claimed that the quality of the data

and other statistical problems make it very difficult to develop and deploy reliable

models for predicting, for instance, potential terrorist actors within a population.

The author estimates a potential cost of 100,000 false positives per every real ter-

rorist found by an algorithm. While this estimate should be carefully verified, and

predicting terrorism is not just about “predicting” the next lone-wolf or the next

radicalized individual, it is surely true that the scientific community should invest

much more on researching ways to reduce the cost of false positives (and even false

negatives) and, in general, should focus on finding ways to detect those events, people

or entities that, in the strict statistical sense, we call “outliers”.

In my experiments, the risk of losing outliers is high. I will focus on the shortcomings

of my analyses in the next section, but this consideration led me to reason about how

to frame, evaluate and potentially solve this issue in the future. The data that I use

only map the centrality of entities over time, starting from the single event as the

original bit of information. As a recap, an event can be abstractly and compactly

defined as a combination of (1) a certain group responsible for the attack, (2) a cer-

tain country that was hit by the event, (3) an employed tactic (up to three) to carry
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out the attack, (4) a weapon (up to four) used in the tactical plan and (5) a target

(up to three), against which the event is directed. This is a flexible and meaningful

way to define an attack: it potentially incorporates rich features that - as seen by the

model results - can be learned by an algorithm to make inferences about the future.

Nonetheless, criminologists and terrorist researchers might reasonably raise a crucial

point, and tightly connected to the issue of outliers. I am referring to the absence

of any information regarding the impact of the attack. In fact, in the time series,

every attack is only distinguishable based on the abovementioned features, but no

distinction is made based upon the number of fatalities, casualties or the economic

damages that follows a violent event.

This is extremely relevant: leaving that kind of information out of the picture poses

the risk of losing large-scale attacks in the stream of data that are fed into the models.

Figure 6.37 helps illustrate the problem.

���

���

���
���!����	���#����������"

���

���

���
������

���

���

���
�� ��������������

���
�

���
�

���
�

���
�

���������

���

���

���


�

Figure 6.37: Islamic State Sample Comparison of Two High-Frequency and Two Weak Signals

The two top subplots (Private Citizens and Property and Police) are examples of

strong signals that are persistently present across the whole time frame. The other
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two subplots, instead, describe a very different situation. The case of Journalists and

Media can be defined as an example of a “weak” signal: the signal, in fact, is not

as persistent as the previous two and, additionally, its centrality tends to be very

low in magnitude also in those periods where the specific target category raises in

popularity (e.g., second semester of 2015). Finally, NGO is a perfect example of a

“rare” signal. Over the years, very few time units experience attacks against non-

governmental organizations, and the distribution of the centrality values is too sparse

to reasonably expect meaningful inferences.

As anticipated, being a weak or rare signal can hide numerous and serious pit-

falls. What if the constant and persistent signals are associated with small-scale and

low-impact attacks, while events belonging to rare signals are correlated with massive

and high-impact plots? (Martens et al., 2014). The algorithms, fed only with the

information I have described earlier in the chapter, cannot capture the underlying

dynamics that govern such hidden bits of information.

As a matter of fact, 9/11 belongs to this latter family of signals: here resides the

importance of putting efforts and attention to address this problem. Interesting and

very well-grounded research exist in terms of estimating the probability of rare events

(Glasserman et al., 1999; Haan and Sinha, 1999; King and Zeng, 2001; Reijsbergen

et al., 2013), also in terrorism (with a specific attention also to sever ones) (Clauset

et al., 2007, 2010; Johnson et al., 2011; Clauset and Woodard, 2013), as well as

extensive research on outlier detection and modelling (Rousseeuw and Leroy, 1987;

Hodge and Austin, 2004; Ben-Gal, 2005; Campos et al., 2016). Nonetheless, I am

here proposing a heuristic method that might serve as a baseline for future work on

weak and rare signals in temporal dynamics within the realm of terrorism research.

This method is inspired by how humans memorize and learn how to deal with rare

but impactful events. Though in the context of artificial intelligence the expression

“memorizing is not learning” resonates, memorizing can be a crucial first step for se-

lecting meaningful information that should then be learned subsequently by a model.

Going back to humans, we are generally particularly good at memorizing the effect

that impactful rare events may have on our lives, as to modify our future behaviors.

This may happen with rare diseases: once an individual gets curated, it will always

remember how that disease changed his or her existence. Lotteries are another ex-

ample: the winner of a monetary prize (a reasonably high prize) will always carry

memory about the happiness and excitation felt after the announcement.

These are extremely rare events that are likely not to get repeated over one’s life.

However, there are other types of events - such as winning sports competitions, get-
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ting job promotions, falling in love - that can occur rarely but more than once in

our lives. These might belong to the class of “weak” signals, and nonetheless we,

as humans, are able to memorize the event, its consequences, our feelings so that,

eventually, we may adapt our behaviour in the future according to that experience

(e.g., a soccer player that wins a Champions League with a non-top tier team will not

only memorize the glory and joy of the moment but also all those behaviors and facts

that, according to his/her vision, led to the final result). This process can be associ-

ated with the so-called “attentional boost effect” found in psychology and cognition

experiments (Swallow and Jiang, 2012).

In light of this, a terrorist attack i should be evaluated based on two components:

(1) its rarity and (2) its impact. Not all rare events are impactful (many terrorist

attacks that follow no historical patterns end up with no physical damages to the

selected human targets, for instance), and not all impactful events are rare (as there

exist, in certain regions of the world, very long sequences of attacks associated to very

high number of deaths), this is the reason behind the necessity to incorporate both

information in the evaluation. This conceptualization can lead to the formalization

of a measure that provides a numerical quantification of the rarity and impact of an

event.

Given x which captures the number of classes to which events i belongs (in the

case of our manifold, a single target (e.g., NGO) belongs to a set of x classes, where

(x-1) are the other types of targets in the mode), N which is the total number of

sampled events (do we want to evaluate rarity over the entire history of a single group?

Or do we want to evaluate rarity over the entire history of attacks plotted against a

specific location?), n which is the total number of events in which the considered x

has happened, and, finally, (α)i, which is the impact of the given event, that can be

formalized as an arbitrary multivariate function of k variables, as:

αi = f(d, c, e, · · · , k) (6.40)

with d, c and e mapping, to exemplify, the number of deaths, the number of in-

jured people and the economic loss or damage, then the rarity/impact indicator Ωi is

computed as:

Ωi = ln

[
x−1
i

(
N

ni

)]ln(αi)

(6.41)

The equation multiplies the reciprocal of the number of classes to which the event

belongs (so that the wider the set of classes, the smaller the quantity) by the ratio
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between the total number of sampled events and the actual number of attacks be-

longing to that class (e.g., attacks against NGO). This quantity is then raised to the

power of the natural logarithm of α, the impact of the event.

Three simulations on mock data have been run to picture the behavior of Ω. I have

let vary the three key components of the equation, namely n (Figure 6.38), x (Figure

6.39) and α (Figure 6.40).

The three different plots indicate that Ω reports three well-patterned behaviors.

Firstly, and trivially, the equation let rare events to be weighted more: this is visible

from Figure 6.38. In a sequence with a total of 3000 sampled events, when n is set

to a very small quantity Ω increases fastly, and vice-versa.

Secondly, rare events raise Ω when the number of classes is lower. This means that if

we are analyzing the history of a certain group and our data space divides targets into

three classes then a rare event falling in one of those three classes will be weighted

more than a rare event belonging to a class out of potentially hundreds. This is to

capture a form of relative rarity in terms of the likelihood of an event: given that we

know the set of all potential outcomes (e.g., classes) a priori, the rarity in a binary-

space is more important than the rarity in multidimensional one.

Thirdly, rare events with high impact α are weighted exponentially, as visible in Figure

6.40. This allows distinguishing between rare events that have not had a considerable

impact and all those attacks that have had large-scale consequences (it is worth to

note that the composition of α function may depend upon the specific problem and

research or policy setting).
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Figure 6.38: Ω Trend With Different n (N=3000)
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Figure 6.39: Ω Trend With Different Number of Potential Classes (Max=250)
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Figure 6.40: Ω Trend With Impact Levels (ln α)

Once the metric has been calculated for a single event, it has to be incorporated

into the models and distributed over-time. From the theoretical point of view, Ω

should act as a sort of memory-keeper such that its permanence into the data space

T (M) is proportional to its own value:

T (M)i ∝ Ωi (6.42)

The proper kernel to be used for the decay has to be empirically tested and may

be subjected to the particular problem to be investigated, however, this construction
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allows to introduce a mathematical quantity potentially able to reduce the risk of

missing relevant rare patterns that cannot be captured solely looking at strict and

static event characteristics.

Further work will certainly test the performance of Ω on real-datasets such as the

GTD: in the meanwhile, this section aimed at theoretically introducing the whole

concept drawing a line that connects human behavior, outlier detection, and data

science. It may sound or seem a naive approach to some readers, but, in my humble

opinion, this section addresses a crucial problem that still prevents researchers and

policymakers to obtain meaningful predictions in a large number of sub-domains

falling within intelligence analysis. In a field such as terrorism, where weak and

rare signals may hide thousands of human losses, outliers are never solely statistical

constructs.

6.7 What is This All About? Notes to Potential

Critiques

After having read this chapter, a person who is not familiar with network science,

machine learning and mathematics might be asking what is this all about and what

would be - in the end - the added value of the whole machinery for the field of

criminology, and terrorism research more precisely. The concerns are, in principle,

more than reasonable, and this section will try to clarify different aspects of this work.

Indeed, I will try to anticipate and answer two possible critical questions posed by

readers and potential reviewers.

What is the criminological contribution of this work? The strong method-

ological accent of this work has been mentioned many times throughout the previous

sections. However, I am convinced that this work has not only relevance because it

tries to merge network science and artificial intelligence, proposing a possible model-

ing framework derived from these two fields, but also because it tries to advance the

knowledge on terror dynamics, specifically. My sensation is that it can contribute to

the field investigating two interrelated concepts that link all the parts of this work:

interdependence and memory.

Interdependence represents the foundation of some of the intuitions that allowed

me to think about the benefits of using the science of complex networks as the first

basis for the present dissertation. Indeed, the physical and abstract interdependence
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between terrorism features in a complex setting that involves multiple distinct di-

mensions guided the creation of dynamic meta-networks of jihadist groups and the

fostered the idea that hidden knowledge can be extracted from data, stepping out of

the comfort zone of purely physical relations, that is the core of social network anal-

ysis. In criminology, researchers tend to limit their analyses to certain common types

of interdependencies (e.g. spatial ones and autocorrelations), without considering also

other types of relations that might not be always self-evident and naturally visible.

This work thus seeks to provide new insights into the benefits of deeply looking at

interdependencies between distinct entities that are part of the same evolving phe-

nomenon to highlight hidden schemes that may better explain strategic and rational

dynamics.

Although the concept of “memory” cannot be explicitly found in criminological

studies on terrorism, a variation of this concept is intrinsically connected to the studies

that investigate the distribution of terror events over time and the strategic behavior

of terrorist groups. However, in the present thesis, memory has to be considered not

only as a proof of the spatio-temporal concentration of attacks but also as a more

complex concept. Indeed, when discussing about memory I also intend to deal with

the non-random recurrence of multi-dimensional patterns over time (e.g., a group

attack a target y in a country c, with a tactic x and a weapon z for a certain length

of time t, and then changes its behavior modifying the characteristics of the events

according to new campaigns and aims). This leads to the hypothesis that sequence-

handling algorithms can be trained to infer and detect patterns to forecast feature

behaviors, assuming that not only events themselves do not behave randomly, but

also locations, tactics, weapons, and targets follow some specific schemes that are

interdependent and recur in time. Memory, in this fashion, goes in parallel with

the concept of interdependence, and a further hypothesis is that only by looking

at the whole realm of interconnections between event characteristics we can search

for meaningful memory like-processes. Thought it is not certainly a proof of these

ideas, data in Section 4.2 demonstrate how, out of the infinite possible combinations

in which terrorism could happen, only a minimal part actually takes place. This is

somehow a suggestion that some regularities exist, and that we should focus on them

to build informative models.

The criminological relevance lies, indeed, in the combination of the strategic per-

spective and the spatio-temporal patterns of concentration of terrorist violence which,

combined in such a novel methodological framework, can help in enhancing the knowl-

edge on the violent histories of these groups.
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Why using network science and machine learning instead of classic time

series analysis? A question that might be posed regards the motivation behind

the use of this specific methodological framework instead of the application of more

traditional techniques. The analysis of time series is one of the most developed and

longstanding fields in statistical sciences. Applications of time series analysis vary

across a wide number of disciplines and sciences. Within this frame, there exist

some very common techniques: autoregressive (AR) models, moving average (MA)

models, integrated (I) models, autoregressive moving average (ARMA) models, au-

toregressive integrated moving average (ARIMA) models, autoregressive fractionally

integrated moving average (ARFIMA) models. Besides these, others exist for deal-

ing with multivariate analysis, as vector autoregression models (VAR) and Hidden

Markov models (HMM).

All these different modeling techniques are solidly grounded in literature and have

been used also in criminological or terrorism studies (Enders et al., 1992; Li and

Schaub, 2004; Brandt and Sandler, 2010). However, in this work, I have not applied

any of the abovementioned ones for two main reasons. The first one is related to

some general advantages that machine and deep learning have over classic statistical

methods. The second one is related to the specific use case of my application.

Regarding the first one, I have chosen LSTM because DL models are generally

more flexible and can handle nonlinear relations between variables, while classic time-

series models require more assumptions on data to be made. The ability to find non-

linear relations (which theoretically increases when data increases, though requiring

a relatively high number of observations) is indeed one of the main advantages of

LSTM networks in general (Giles et al., 2001; Bontempi et al., 2013).

Concerning the second motivation, the specific application required a flexible algo-

rithm able to perform sequence modeling on many multivariate time-series. This can

be technically defined as a multi-label prediction learning problem (Zhang and Zhou,

2014), meaning that for each time unit, given a certain definition of the feature space,

we want our algorithm to be trained to obtain different output prediction, terrorist

targets in our case, via real-values assignment representing the forecasted centrality

values. In notational terms, given a feature space X = Rd which is d-dimensional

and an output space Y = (y1, ..., yq) that includes q possible labels, the task that it is

required to a multi-label learning algorithm is to find and learn a function h : X 7→ 2Y

from the multi-label training set D = {(xi, Yi) |1 ≤ i ≤ m}. This type of complex pre-

diction problem can be more easily achieved using algorithms such as LSTM, while

classic time-series methods are usually used for predicting single outputs y. However,
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though the forecasting task has not relied on classic time-series techniques, prelimi-

nary analyses have been run via popular stationarity and randomness tests that are

valid across the whole spectrum of modeling techniques.

6.8 Discussion and Future Work

The pervasiveness of artificial intelligence has contaminated a huge number of scien-

tific fields. This is no surprise, considering the incredible results that methods coming

from machine, deep and reinforcement learning have reached on practical problems

(Weiss et al., 2012; Jean et al., 2016; Xie et al., 2016; Silver et al., 2016; Krittanawong

et al., 2017; Brown and Sandholm, 2018; Fang et al., 2019). Nonetheless, criminol-

ogy and terrorism research still struggle in finding appropriate ways to exploit the

strength of intelligent algorithms for the study of criminal human behavior (poten-

tially, this also holds for the exploitation of traditional statistical methods, as noted

by LaFree and Freilich (2012)). This is due to a variety of reasons, as the lower avail-

ability of data compared to other disciplines and the lack of sufficient quantitative

and computational training of scholars belonging to the field.

With the aim to accelerate the process of bridging AI and criminology, this chapter

has presented a methodological framework that combines the science of complex net-

works and deep learning to forecast future most likely targets hit in attacks plotted by

five jihadist groups, namely the Islamic State, the Taliban, Al Qaeda, Boko Haram

and Al Shabaab. Beyond the technical aspects, the work has been founded on a

two-fold theoretical framework. This theoretical framework relied on (1) the theories

on the spatio-temporal concentration of crime and (2) the strategic perspective of

terrorism decision-making.

The spatio-temporal concentration of crime has been largely investigated with re-

gard to several crimes and offenses. Terrorist violence is no exception. Many studies

(Porter and White, 2012; Braithwaite and Johnson, 2012; Tench et al., 2016), starting

from the seminal work of Midlarsky et al. (1980), have analyzed how terrorism clusters

in time and in space, leading for instance to diffusion, contagion and microcycles dy-

namics (Midlarsky, 1978; Behlendorf et al., 2012). Terrorism is a patterned criminal

phenomenon: its apparent chaotic and random nature hides, instead, schemes that

can be captured by mathematical and statistical modeling, especially when terrorism

is studied in terms of its temporal and geographic components.

Many theories have been developed and proposed to explain how terrorists decide to

act. Studies on the decision-making processes of terrorist organizations have formal-
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ized different explanations that many times are incomplete pictures of a multi-faceted

phenomenon. This is also the case of the strategic theories on terrorism, which are

built on some assumptions (such as rationality) that may exclude other relevant com-

ponents of terrorist dynamics, as the psychological or purely organizational sides of

the phenomenon. Nonetheless, for the aims of this study, the strategic explanations

fit the problem to describe how jihadist groups recursively combine sets of tactics and

weapons to hit some specific countries and targets.

The present chapter, indeed, extracts graph-derived time-series for each group from

the GTD, mapping the over-time centrality of each feature comprised into the four

modes of the manifold (i.e., Countries, Tactics, Weapons and Targets) and feed LSTM

networks - algorithms specifically designed to handle sequence-dependent data - to

provide forecasts of targets at highest risk of being hit in the future. The mathemati-

cal abstraction of the jihadist behavior relies in the first phase on the construction of

meta-networks that aggregate terrorist attacks based on three-day time units via the

creation of connections that map relations between events. This allows taking into

consideration hidden relations that may not be captured using models that work on

the assumption of i.i.d. data.

In the second phase, the models rely on the existence of memory-like processes and on

the assumption of the strategic behavior of the jihadists to evaluate the performance

of a very popular class of algorithms for the abovementioned forecasting purposes.

In spite of the promising results of the models, this work is just a very first ex-

ploratory step towards more meaningful and accurate models. The actual strength

of this chapter actually resides in its incompleteness. The vibrant community of AI

is continuously working on developing new ideas and methods, with an increasing

interest in the area of social good (i.e., all those fields of application that address

social and societal problems): this is encouraging. Besides the technical reasoning

that led to the creation of graph-derived time series, the employed algorithms have

nothing really innovative and, additionally, not all the potential configurations have

been run due to computational expensiveness and time constraints (the models in-

cluded in this thesis have run on my personal computer for sessions of 11, 9 and 7

days respectively). This indicates that there is potentially much more to explore.

Furthermore, this chapter only deals with a very restricted and particular sample of

jihadist groups. It could be plausible that, applying the same framework to groups

belonging to other ideologies and fighting for other motivations, the results might

be different not only numerically but also conceptually (e.g., which type, if any, of

memory does an Asian nationalist group have?). The choice beyond this restricted
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sample was to center the focus on jihadism, in the first place and was also related to

the necessity of having a sufficient amount of data to use to train the algorithms.

Data are crucial. Not only with regards to their quality (Sageman, 2014), but also in

relation to their quantity, especially in AI. These algorithms work better when they

can dive in and explore massive amounts of information. This is certainly a limita-

tion of my study: I am using what are nowadays called “small data” since events are

tracked by day and many groups do not have a longstanding history. What if we can

apply the same framework to more detailed, precise and vast data? This question

remains now open, but the hope is to have the chance to answer to it, one day.

There are potentially hundreds of pathways for future work, starting from this chap-

ter: the integration of socioeconomic and political contextual data to control for

exogenous components that may impact terrorist behavior and the disaggregation of

information at a lower level (e.g., from weapons categories to weapons subcategories,

from countries to provinces) are just two of the most promising directions. However,

what really needs to be taken away from this work is that AI can help in the study of

terrorism, and might provide really interesting insights and suggestions also in terms

of practical applicability.
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7 Concluding Remarks

There is something strikingly fascinating associated with apparently chaotic, random,

unpredictable phenomena. The human history is full of scientists that have tried to

capture a sort of order behind the visible layer of chaos using models and numbers to

characterize phenomena that generally escape from our understanding. This addicting

fascination is what brought me here, today, as a computational criminologist. After

three years of research, there are many more unsolved questions on my table rather

than answers. Three years ago I was naively thinking that ending a Ph.D. would have

instead provided me with much stronger conclusions and certainties. I was wrong,

and I have realized it as getting closer to grasp the inherent order of terrorism. There

have been answers to some of my questions, but these answers fatally generated

further questions, which grew exponentially over time, until today. In spite of the

disorienting distance between my curiosity and what I was able to understand, an even

stronger fascination now dwells in me. The hypothesis that even the most terrible

actions of humans on this planet can be modeled and described through the use of

numbers and mathematics is not only captivating but also, in a way, heartening. I

do not believe in the perspective of a future in which we will be able to completely

understand how every component of human behavior works, and why, but I am fully

confident that many signs of progress will be made in order to unveil many of the

obscure dynamics that daily governs our world. Since the second part of the Twentieth

century, enlightened scholars have chased the order behind the chaos in the study of

terrorism, and many are still doing it now.

This doctoral dissertation, entitled On Meta-Networks, Deep Learning, Time and

Jihadism is my humble attempt to contribute to the cause and marks my efforts

to highlight the potential connected to the combination of complex networks and

artificial intelligence for the study of the behavior of jihadist groups.

The first chapter illustrates the challenges of the conceptualization of terrorism,

proposing a focus on four specific dimensions of terrorism to overcome the issues
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with its unitary definition. Furthermore, it also presents the two-fold theoretical

framework of the dissertation: the spatio-temporal concentration of crime and the

theories of strategic terrorism as the backbones.

The second chapter outlines an overview of the aims of the work at a general

level. It also proposes a reflection on the need to rethink research in criminology and

terrorism in light of the spread of novel available computational methods, following

the massive popularity gained by Artificial Intelligence in many academic disciplines.

The third chapter describes the origins and main characteristics of the jihadist

groups taken into consideration in the thesis, namely the Islamic State, the Taliban,

Al Qaeda, Boko Haram and Al Shabaab and it also provides details on the Global

Terrorism Database, the dataset used in the analyses. Besides the first introductory

ones, the dissertation comprises three analytic chapters.

The fourth chapter, entitled Stochastic Matrices of Terrorism: Complexity and

Heterogeneity of Jihadist Behavior, is indeed a study on the use of stochastic transition

matrices and trail networks to compare jihadist groups in terms of their strategic

behavior. The chapter develops a two-fold analysis. First, it assesses the complexity

in the combination of weapons, targets and targets and weapons together through

a novel approach based on N -dimensional super-states: the approach allows us to

consider cycles and sub-sequences of attacks as a new tool for highlighting terrorist

dynamics. Second, it develops a coefficient that maps the pairwise similarity between

each pair of groups considering their transitions between different types of weapons,

targets and weapons and targets combined. With regard to the first part, the results

of the study shows that all the terrorist groups have a very complex repertoire of

combinations and configurations in the use of the same weapons and targets and that,

as the dimension of the transition matrices is increased, clearer patterns emerge, as

each sub-sequence (defined by super-states) is connected to few others only.

For what concerns the second part, Al Qaeda and Al Shabaab are found to be the

most similar groups overall, while, on the contrary, the Taliban and Al Qaeda are the

least similar. Another interesting finding is that, while groups can be similar when

only targets are considered, they can show distinct strategic behavior with regard to

weapons and vice-versa, suggesting how there exist different ways to reach a certain

terrorist goal and that relying solely on one source of information can be misleading.

The work, which has also been published in a shorter version as a research article

in the Journal of Computational Social Science, is a first exploratory study in the

use of N -dimensional chains and trails as meta-networks for the analysis of sequential

patterns and call for further work in the direction of integrating multiple data sources
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to extrapolate additional knowledge.

The fifth chapter, entitled Hawkes Processes of Jihadism, explicitly aims at inves-

tigating the presence of memory-like processes in the temporal patterns of jihadist

attacks. For each group, two models are developed using data sequences on the two

most attacked countries per each group, limiting further the scope to the most pop-

ular target category hit. Building upon the blooming literature on point processes in

terrorism research and criminology, Hawkes models are used to detect the presence

of memory in terrorist patterns. Hawkes models are a particular class of stochastic

processes that are characterized by the presence of self-excitability. Self-excitability

captures the extent to which a certain event can increase (or even decrease) the

probability of the future occurrence of another event. Contrarily to ordinary Pois-

son processes, Hawkes processes are not randomly distributed. They hold memory

properties meaning that the present is generally dependent upon the past. This type

of analysis is innovative in the sense that, contrarily to most literature, does not

treat all events as equal but, instead, disaggregates by country and target to control

for memory-like processes also at a finer-grained level. Comparing the performance

of each Hawkes process against a Homogeneous Poisson model, statistical outcomes

show how most of the sequences actually hold memory-like processes (nine out of

ten). The finding goes against the cornerstone concept of “asymmetric warfare” as

random and unpredictable violence as posited by Matusitz (2012) in its definition of

terrorism.

Terrorist attacks against most popular targets are thus clustered in time and not

randomly distributed, meaning that there is a time-dependent structure that can be

captured and analyzed to characterize the behavior of each jihadist organization. The

results are in line with previous research on terrorist events and, also in this case, call

for future work. The field of point processes is vibrant and developments are continu-

ously made also from the theoretical and foundational points of view: there are dozens

of potential new directions to take, starting from multivariate modeling for studying

Granger causality between multiple time-series and the use of marked-Hawkes pro-

cesses to further distinguish between events of different magnitude and impact. At a

general level, this chapter preciously corroborated the presence of memory, which is

a fundamental concept for the third and last analytic chapter.

The sixth chapter, Deep Learning and Terrorism: Long Short-Term Memory Net-

works for Target Forecasting, is the last and the longest of the entire dissertation. It

specifically proposes a methodological framework that combines the science of com-

plex meta-networks with deep learning to unfold the temporal patterns of jihadist
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groups. From a dynamic manifold, I have extracted multivariate time-series mapping

the centrality of attacked countries, tactics, weapons and targets for each group and

then fed Long Short-Term Memory deep neural networks with the time-series. The

deep learning algorithms are hence employed to learn the existing time-dependent

structure in the data based on the inter-dependence among event characteristics and

the presence of memory in terrorist behavior.

Following the definition of two measures of accuracy, the performance of the algo-

rithms is evaluated based on their ability to correctly rank the most central - and thus

probable - target in each future time-step. The quantitative results are encouraging

and highlight different levels of predictability for each group, providing insights also

on the evolution of their behavior over time. A potential solution against the problem

of rare and weak signals is also proposed. This first theoretical step towards a more

efficient and effective combination of complex networks and artificial intelligence au-

tomatically poses new challenges and perspectives for future research, including the

test of less conventional algorithms for time-dependent data or the integration of con-

textual socioeconomic and political data to control for external sources of variation

and influence in jihadist behavior.

This work inspired in me also general consideration regarding the current and

future perspectives in terrorism research. When I started my doctorate, back in 2016,

the world was just stepping out from very hard times in terms of terrorist activity.

Most of the resonance of terrorism worldwide was caused by the actions of jihadist

groups that, operating in different regions and by means of different tactics, diffused

violence systematically. The peak of deaths reached in 2014 has been followed by a

decline that still persists: data shows how this decline is associated with the battle-

ground defeats of the Islamic State (Institute for Economics and Peace, 2018). The

Islamist group which once governed over many areas of Iraq and Syria has now lost

all its outposts and many of its resources and militant fighters (Tønnessen, 2019).

However, as noted by Ineichen (2018) and Dawson (2018), it would be an error to

simplistically consider the Islamic State threat as solved, since many issues are still in

place in the global scenario, including the displacement of the group in smaller units

and dispersal of the remaining Western foreign fighters.

The Islamic State is capable of driving alone most of the aggregated statistics on

terrorism, especially when concentrating on the European situation. In fact, in the

last two years, Europe has experienced a significant reduction in terms of fatalities,

as a positive byproduct of the deteriorated strength of ISIS. In this statistic breathes
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and lives a dangerous trap.

Research survives thanks to grants, private and public funding and scholarships,

which are many times driven by the policy-agenda of institutions and governments

of the Western countries. As jihadism started to become less present in the daily

chronicles due to the decrease of large-scale and fatal attacks in Western countries,

suddenly the availability of resources to conduct research on this type of terrorism

almost vanished, too. The last two years have seen the rise of other types of priorities

for policy-makers, including the study of how social media can modify, influence or

distort political opinions, fueling extremism and misinformation (Del Vicario et al.,

2016; Vosoughi et al., 2018; Wu and Liu, 2018; Carley et al., 2018) and the renovated

attention towards political terrorism, with a special mention to far-right and racist

ideologies (Freilich et al., 2018; Ravndal, 2018; Fahey and Simi, 2019). It goes without

saying that these topics are extremely relevant and that I am not claiming that there

might be an intrinsic moral superiority associated with the study of jihadism. What I

am suggesting is, instead, that relegating jihadism in the list of the marginal priorities

of today might pose serious consequences for tomorrow.

Schuurman (2019) claims that the over-representation of jihadism in terrorism

studies is not only incorrect but rather dangerous and the process underestimates

the threats posed by other types of terrorism. The assumption of a sort of mutually

exclusive allocation of attention is wrong and the reasoning misses a focal point:

jihadist terrorism has been studied more than other types of terrorism because it has

posed much bigger threats and inflicted much more damages than all the other types

of political or religious violence, in the last twenty years. This, again, should not

be reflected in a sort of “monopoly” in research. Nonetheless, certain comparisons

should be carefully made based on historical facts.

Terrorism research has received massive funding after the 9/11 attacks and the

European events of Madrid and London: more than ten years of research have, ac-

cording to many, produced very little knowledge and responded to very few crucial

questions regarding jihadism. Agreeing with this position or not, suspending or inter-

rupting research in this area is certainly the best way to slow down the progress that

has been made and that still could be made in the attempt to better understand ji-

hadist terrorism and to provide policy-makers and institutions with meaningful tools,

suggestions, guidelines to mitigate the problem.

Furthermore, we all risk falling into an overly Western-centered vision, where the

ranking of priorities is tailored solely upon the necessities and issues experienced by

developed countries. This is not political speculation (I am a researcher dedicated to
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science): it is, instead, a fact.

While Europe has experienced a decrease in the number of fatal attacks, there

are many areas in the world in which jihadist groups still organize and plot terrible

attacks that are capable of killing hundreds of people at a time. Regional groups such

as Boko Haram and Al Shabaab attract less attention in the Western world because

their actions are confined to specific regions of the African continent, and do not,

therefore, pose any risk to the security of European, American, Australian borders.

However, terrorism should not be a strict matter of physical borders. History has

taught us that the globalized world is a powerful weapon also for terrorists, and

treating regional groups as if they were only an issue of those African countries is not

only partially immoral and hypocrite, it is also a good way to underestimate the risks

associated to these groups. The Islamic State has shown how it is not necessary to be

trained or officially affiliated to the group to act in its name. Why should it be different

for other groups that are not acting (so far, at least) on a global scale? Another point

that should be considered is that, even hypothesizing a complete defeat of the most

important jihadist groups that are still operating nowadays, jihadist terrorism may

strike back in the future years under different symbols, flags, and acronyms. Why,

then, should we stop or cut research in terrorism?

The exact point is that we should not. This dissertation is, indeed, a modest

attempt to show that there is a tremendous need for data, resources, training, and

cross-disciplinary collaboration and that these elements combined can play a funda-

mental role in advancing our understanding of the phenomenon. This understanding

is not solely confined to academia and scientific research, it can be, instead, directly

applicable for policy or counter-terrorism intelligence purposes.

My thesis has dealt with a small region of the overwhelmingly vast complexity of

jihadist terrorism. It has focused on a small sample of jihadist groups, and it has

focused on events, not on people, individuals, organizational structures and psycholog-

ical motives. It has treated every group as an entity, without considering the internal

components that drive the decision-making process of each organization, it has only

focused on general event characteristics, without going too much in depth in terms

of geographic profiling, for instance. It has addressed some precise research questions

that, in turn, leave out many other relevant ones, as “what drives jihadism?”, or “why

do individuals resort to jihadist terrorist violence?”.

This is to say that this work does not aim to be comprehensive and universal.

It has, indeed, many limitations. It is only the first incomplete step towards a long

path of further research. It, however, poses the basis for the integration of two fields
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- network science and artificial intelligence - for the study of jihadism, exploiting the

strength of both fields. The ability of network science to map, detect, recognize,

interpret the complex underlying physical and abstract relations between events and

the power of artificial intelligence to flexibly handle multidimensional and non-linear

data, going beyond the strong assumptions required by ordinary statistical models.

This dissertation is an attempt to show that these two fields can be meaningfully

combined to highlight patterns, motifs and recurrent behaviors and that the research

community should not be worried about opening its doors to a new idea of contami-

nation.

Terrorist research has, over the years, benefited from the dialogue between distinct

disciplines (Ross, 2006; Richardson, 2013). While first originating from international

relations and political science (Jenkins, 1974; Jongman, 2017), it has then attracted

the interest of psychology (Silke, 2003; Horgan, 2005; Bongar et al., 2006), sociol-

ogy (Turk, 2004; Tilly, 2004), economics (Lakdawalla and Zanjani, 2005; Llusa and

Tavares, 2007; Berman, 2011) and, lately, criminology (LaFree and Freilich, 2016).

This process led to a hybrid debate which certainly brought new ideas, perspectives

and answers to a dimension of human behavior that, in the last decades, has af-

fected the entire world in dramatic and horrific ways. Opening the doors towards

further contamination from fields such as complex networks, artificial intelligence,

and computer science could bring added values to the community itself and, in turn,

to research on the phenomenon.

Schuurman (2018) found that the prevalence of “one-time” contributors is one of

the most relevant issues of the terrorist research community. This is exactly one of

the negative loops that can arise in the absence of a well-structured, defined and solid

multidisciplinary community. On one hand, computer scientists, statisticians and

scholars from the field of complexity science address the problem of terrorism as a

laboratory where to experiment new algorithms and techniques, without posing any

attention over the real implications of certain results or without carefully evaluate

assumptions or data limitations, giving birth to sophisticated and yet sterile forms

of science. On the other hand, terrorist researchers struggle to explore the landscape

of state-of-the-art computational methods because they lack technical expertise and

training. This process leads to sparse research, which is not followed up during the

years and cannot meaningfully address the crucial points that are still without an

answer, avoiding solid theoretical explanations and extensive reasoning on. Further-

more, the hype around artificial intelligence poses the virtual risk of future funding

allocation exclusively to data scientists, engineers, computer scientists, ruling out
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social scientists from the policy-oriented research arena.

This perspective is alarming. The power of data and the revolution of artificial in-

telligence have started to change the world, and the benefits experienced by every one

of us every day are uncountable. But this revolution also calls for new responsibilities,

opening ethical and moral debates on the role that machines have in impacting our

future. The exclusive allocation of power, funding and resources to algorithmic sys-

tems to predict crime or recidivist behavior has already shown its tremendous flaws

and drawbacks. This is why criminologists and social scientists in general cannot

be excluded by this progress, as they can act as guarantors and barriers against the

misuse of data and computational methods in such critical areas. Terrorism research

should proactively behave for its renovation in light of these aspects because wasting

the opportunities of this new era would be not only mindless, but even dangerous.
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“The time is gone, the song is over

thought I’d something more to say”

Pink Floyd, “Time”



This page intentionally left blank



References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
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A TRANSITION NETWORKS

Figure A.1: Example Transition Graph - 1-Dimensional Super-States for Islamic State Targets

Transitions (Nodes Sized by In-Degree Centrality)
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A TRANSITION NETWORKS

Figure A.2: Example Transition Graph - 2-Dimensional Super-States for Islamic State Targets

Transitions (Nodes Sized by In-Degree Centrality)
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A TRANSITION NETWORKS

Figure A.3: Example Transition Graph - 3-Dimensional Super-States for Islamic State Targets

Transitions (Nodes Sized by In-Degree Centrality)
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A TRANSITION NETWORKS

Figure A.4: Example Transition Graph - 4-Dimensional Super-States for Islamic State Targets

Transitions (Nodes Sized by In-Degree Centrality)
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A TRANSITION NETWORKS

Figure A.5: Example Transition Graph - 5-Dimensional Super-States for Islamic State Targets

Transitions (Nodes Sized by In-Degree Centrality)
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B Additional Results of LSTM
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B ADDITIONAL RESULTS OF LSTM

Layer (Type) Output Shape N of Parameters

LSTM (None, 62) 31,000

Dropout 1 (None, 62) 0

Dense 1 (None, 256) 16,128

Dropout 2 (None, 256) 0

Dense 2 (None, 128) 32,896

Dropout 2 (None, 128) 0

Dense 3 (None, 64) 8,256

Dense 4 (None, 62) 4,030

Total Parameters: 92,310

Trainable Parameters: 92,310

Non-trainable Parameters: 0

Table B.1: Best Model Summary - Layers and Parameters (Islamic State)

Layer (Type) Output Shape N of Parameters

LSTM (None, 62) 12,324

Dropout 1 (None, 62) 0

Dense 1 (None, 256) 10,240

Dropout 2 (None, 256) 0

Dense 2 (None, 128) 32,896

Dropout 2 (None, 128) 0

Dense 3 (None, 64) 8,256

Dense 4 (None, 62) 2,535

Total Parameters: 66,251

Trainable Parameters: 66,251

Non-trainable Parameters: 0

Table B.2: Best Model Summary - Layers and Parameters (Taliban)

Layer (Type) Output Shape N of Parameters

LSTM (None, 62) 42,924

Dropout 1 (None, 62) 0

Dense 1 (None, 256) 18,944

Dropout 2 (None, 256) 0

Dense 2 (None, 128) 32,896

Dropout 2 (None, 128) 0

Dense 3 (None, 64) 8,256

Dense 4 (None, 62) 4,745

Total Parameters: 107,765

Trainable Parameters: 107,765

Non-trainable Parameters: 0

Table B.3: Best Model Summary - Layers and Parameters (Al Qaeda)

255



B ADDITIONAL RESULTS OF LSTM

Layer (Type) Output Shape N of Parameters

LSTM (None, 62) 14,280

Dropout 1 (None, 62) 0

Dense 1 (None, 256) 11,008

Dropout 2 (None, 256) 0

Dense 2 (None, 128) 32,896

Dropout 2 (None, 128) 0

Dense 3 (None, 64) 8,256

Dense 4 (None, 62) 2,730

Total Parameters: 69,170

Trainable Parameters: 69,170

Non-trainable Parameters: 0

Table B.4: Best Model Summary - Layers and Parameters (Boko Haram)

Layer (Type) Output Shape N of Parameters

LSTM (None, 45) 16,380

Dropout 1 (None, 45) 0

Dense 1 (None, 256) 11,776

Dropout 2 (None, 256) 0

Dense 2 (None, 128) 32,896

Dropout 2 (None, 128) 0

Dense 3 (None, 64) 8,256

Dense 4 (None, 45) 2,925

Total Parameters: 72,233

Trainable Parameters: 72,233

Non-trainable Parameters: 0

Table B.5: Best Model Summary - Layers and Parameters (Al Shabaab)
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B ADDITIONAL RESULTS OF LSTM

Batch Look Back Γ(T ) Φ(T )

32 30 0.750 1

32 10 0.663 1

2 30 0.636 1

64 30 0.636 1

100 1 0.626 1

2 20 0.611 1

32 20 0.611 1

64 20 0.611 1

100 20 0.611 1

2 10 0.602 1

64 10 0.602 1

100 10 0.602 1

2 40 0.600 1

32 40 0.600 1

100 40 0.600 1

2 3 0.598 1

32 3 0.598 1

64 3 0.598 1

100 3 0.598 1

2 2 0.592 1

32 2 0.592 1

64 2 0.592 1

100 2 0.592 1

2 1 0.585 1

32 1 0.585 1

64 1 0.585 1

64 40 0.400 1

100 30 0.386 1

Table B.6: Deep Neural Network Models - Results Ordered by Descending Γ(T ) (Islamic State)
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B ADDITIONAL RESULTS OF LSTM

Batch Look Back Γ(T ) Φ(T )

32 10 0.758 0.973

64 10 0.758 0.973

100 10 0.758 0.973

2 20 0.757 0.977

64 20 0.757 0.977

100 20 0.757 0.977

2 3 0.756 0.968

32 3 0.756 0.968

64 3 0.756 0.968

100 3 0.756 0.968

100 2 0.755 0.974

32 20 0.755 0.971

2 10 0.754 0.967

2 50 0.753 0.972

32 50 0.753 0.972

64 50 0.753 0.972

100 50 0.753 0.972

2 1 0.753 0.969

2 30 0.752 0.975

32 30 0.752 0.975

64 30 0.752 0.975

100 30 0.752 0.975

32 2 0.751 0.963

64 2 0.751 0.963

32 1 0.751 0.964

64 1 0.751 0.964

100 1 0.749 0.953

2 2 0.748 0.963

Table B.7: Deep Neural Network Models - Results Ordered by Descending Γ(T ) (Taliban)
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B ADDITIONAL RESULTS OF LSTM

Batch Look Back Γ(T ) Φ(T )

32 50 0.404 0.508

32 2 0.402 0.493

32 1 0.398 0.487

2 3 0.396 0.486

2 50 0.393 0.475

64 20 0.390 0.478

2 30 0.390 0.470

100 30 0.390 0.470

64 1 0.389 0.474

100 1 0.389 0.474

32 3 0.387 0.459

2 10 0.383 0.465

32 30 0.380 0.455

64 3 0.378 0.446

100 3 0.378 0.473

100 2 0.375 0.453

64 2 0.366 0.440

64 30 0.360 0.470

32 10 0.346 0.465

2 20 0.343 0.406

2 2 0.339 0.400

32 20 0.333 0.362

2 1 0.319 0.368

100 10 0.299 0.408

64 50 0.247 0.322

100 50 0.124 0.169

100 20 0.086 0.130

64 10 0.047 0.070

Table B.8: Deep Neural Network Models - Results Ordered by Descending Γ(T ) (Al Qaeda)
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B ADDITIONAL RESULTS OF LSTM

Batch Look Back Γ(T ) Φ(T )

64 2 0.602 0.839

2 30 0.596 0.820

2 10 0.595 0.837

2 2 0.593 0.839

2 50 0.592 0.806

2 1 0.590 0.848

2 20 0.587 0.833

2 3 0.587 0.838

16 50 0.585 0.796

16 10 0.581 0.829

16 2 0.580 0.847

16 3 0.578 0.846

64 3 0.578 0.838

32 50 0.577 0.796

64 1 0.576 0.848

32 2 0.575 0.847

32 3 0.573 0.838

16 1 0.572 0.848

32 1 0.572 0.848

64 30 0.567 0.811

32 10 0.567 0.837

64 10 0.567 0.837

64 20 0.566 0.817

64 50 0.563 0.796

16 30 0.562 0.811

16 20 0.561 0.825

32 20 0.561 0.825

32 30 0.556 0.820

Table B.9: Deep Neural Network Models - Results Ordered by Descending Γ(T ) (Boko Haram)
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B ADDITIONAL RESULTS OF LSTM

Batch Look Back Γ(T ) Φ(T )

2 10 0.617 0.859

64 10 0.617 0.870

2 3 0.608 0.848

32 3 0.608 0.848

2 50 0.608 0.875

32 50 0.608 0.875

64 50 0.608 0.875

100 50 0.608 0.875

32 10 0.607 0.859

100 30 0.605 0.880

2 2 0.603 0.840

32 2 0.603 0.840

64 2 0.603 0.840

100 2 0.603 0.840

100 1 0.600 0.832

2 30 0.599 0.880

32 30 0.599 0.880

64 30 0.599 0.880

2 20 0.596 0.845

32 20 0.596 0.845

64 20 0.596 0.845

100 20 0.596 0.845

2 1 0.591 0.832

32 1 0.591 0.832

64 1 0.591 0.832

100 3 0.542 0.848

100 10 0.500 0.859

64 3 0.348 0.768

Table B.10: Deep Neural Network Models - Results Ordered by Descending Γ(T ) (Al Shabaab)
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