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Introduction: Gait disorders and gait-related cognitive tests were recently

linked to future Alzheimer’s Disease (AD) dementia diagnosis in amnestic Mild

Cognitive Impairment (aMCI). This study aimed to evaluate the predictive power

of gait disorders and gait-related neuropsychological performances for future

AD diagnosis in aMCI through machine learning (ML).

Methods: A sample of 253 aMCI (stable, converter) individuals were included.

We explored the predictive accuracy of four predictors (gait profile plus MMSE,

DSST, and TMT-B) previously identified as critical for the conversion from aMCI

to AD within a 36-month follow-up. Supervised ML algorithms (Support Vector

Machine [SVM], Logistic Regression, and k-Nearest Neighbors) were trained on

70% of the dataset, and feature importance was evaluated for the best algorithm.

Results: The SVM algorithm achieved the best performance. The optimized

training set performance achieved an accuracy of 0.67 (sensitivity = 0.72;

specificity = 0.60), improving to 0.70 on the test set (sensitivity = 0.79; specificity

= 0.52). Feature importance revealed MMSE as the most important predictor in

both training and testing, while gait type was important in the testing phase.

Discussion: We created a predictive ML model that is capable of identifying

aMCI at high risk of AD dementia within 36 months. Our ML model could be

used to quickly identify individuals at higher risk of AD, facilitating secondary

prevention (e.g., cognitive and/or physical training), and serving as screening for

more expansive and invasive tests. Lastly, our results point toward theoretically

and practically sound evidence of mind and body interaction in AD.

KEYWORDS

amnestic mild cognitive impairment, gait abnormalities, cognitive dysfunction,
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1 Introduction

Gait and balance are no longer considered solely as physical
activity, but rather as multifaceted complex processes involving
the integration of motor, perceptual, and cognitive functions
(Montero-Odasso et al., 2012; Ahn et al., 2023). More specifically,
executive functions, which encompass attentional control,
cognitive flexibility, psychomotor processing, inhibition, and goal
setting, share a comprehensive neural network with motor abilities
and gait control (Leisman et al., 2016). This network includes the
prefrontal cortex, medial temporal lobe, and nigrostriatal system.
Additionally, it encompasses anatomical structures like ventricles,
cerebellum, white matter tracts, and the parietal lobes (Scherder
et al., 2007; Wennberg et al., 2017; Crook et al., 2020).

In the past, healthcare professionals and researchers used to
conduct gait assessments and cognitive assessments as distinct
evaluations for older adults (Montero-Odasso et al., 2012).
However, recent findings from clinical practice, epidemiological
research, and clinical trials have provided growing evidence that
gait and cognition are interconnected in the elderly (Woollacott
and Shumway-Cook, 2002). Indeed, a substantial body of research
consistently indicates a connection between gait abnormalities
and early signs of cognitive decline, even among cognitively
healthy individuals (Mielke et al., 2013; Savica et al., 2017).
This relationship underscores the intricate interplay between
physical and cognitive health. Gait disorders include slow, unstable,
shifting, staggering, and/or asymmetrical walking as a result
of neurological, musculoskeletal, and/or other acquired medical
conditions (Verghese et al., 2008; Pirker and Katzenschlager, 2017).
For instance, it was found that Mild Parkinsonian Signs (MPS) were
a strong indicator for the development of dementia in the future. In
both unaltered and statistically adjusted examinations, individuals
exhibiting MPS were twice as prone to experiencing the onset
of dementia when compared to their counterparts who did not
exhibit these neurological indications (Louis et al., 2010). Changes
in gait can guarantee potential early indicators of underlying
cognitive issues, providing valuable insights into an individual’s
neurological well-being before more apparent cognitive decline
symptoms manifest (Ahn et al., 2023). Gait disorders can be
assessed through visual inspection or quantitatively (e.g., speed,
stride length, swing, and stance time), depending on how they
affect the observed gait abnormalities. While the latter requires
technological equipment that can be used to further differentiate
individuals based on their cognitive status, the former is a helpful
and reliable tool in routine therapeutic practice (Verghese et al.,
2008).

Abbreviations: AD, Alzheimer’s Disease; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; ADNI1, ADNI phase 1; aMCI, amnestic Mild
Cognitive Impairment; aMCIc, aMCI converters; aMCIs, aMCI stable; ApoE,
Apolipoprotein E; AUC-ROC, Area Under the Curve−Receiver Operating
Characteristic; CDR, Clinical Dementia Rating; DNA, DeoxyriboNucleic
Acid; DSST, Digit Symbol Substitution Test; DT, Decision Tree; GB,
Gradient Boosting; GDS, Geriatric Depression Scale; HR, Hazard Ratio;
kNN, k-Nearest Neighbors; LR, Logistic Regression; MCI, Mild Cognitive
Impairment; ML, Machine Learning; MMSE, Mini-Mental State Examination;
MPS, Mild Parkinsonian Signs; NC, Normal Cognition; PET, Positron Emission
Tomography; PFI, Permutation Feature Importance; RF, Random Forest;
ROC, Receiver Operating Characteristic; SD, Standard Deviation; MRI,
Magnetic Resonance Imaging; SVM, Support Vector Machine; TMT, Trail
Making Test; TMT-B, Trail Making Test part B.

For example, there is substantial evidence indicating that gait
irregularities have the potential to forecast a gradual deterioration
in cognitive function as assessed by the Digit Symbol Substitution
Test (DSST), which evaluates executive functions, psychomotor
speed, and attention (Kaufman, 1983), as demonstrated in
numerous studies (Rosano et al., 2005; Inzitari et al., 2007;
Mielke et al., 2013). Moreover, gait abnormalities are predictive
of a reduction in both divided attention and cognitive flexibility,
as assessed by the Trail Making Test part B (TMT-B) (Mielke
et al., 2013). Furthermore, the presence of gait abnormalities is
longitudinally linked to a decline in global cognitive assessments
(Alfaro-Acha et al., 2007; Taniguchi et al., 2012). Gait disorders
have been identified as one of the contributing factors to the
development of dementia (Verghese et al., 2008).

In recent years, there has been a growing focus on the milder
end of the cognitive staging, which encompasses the spectrum
from normal aging to Alzheimer’s Disease (AD). It is increasingly
recognized that there exists a transitional phase between normal
aging and the clinical diagnosis of very early-stage AD. This
intermediate stage has been referred to by various terms, including
Mild Cognitive Impairment (MCI) (Petersen, 2004, 2011). In recent
years, there has been a growing focus on amnestic MCI (aMCI),
which refers to individuals experiencing memory loss beyond
what is typical for their age and education. These individuals
are also at a higher risk of developing AD compared to those
with non-amnestic MCI (Petersen, 2011). Increased gait variability
was recently linked to dementia, especially AD dementia and PD
dementia, according to multisite research of 500 older persons with
various neurodegenerative diseases. Although rhythm and postural
control domains were similarly linked to dementias and MCI, only
gait variability could reliably identify and categorize people with
AD (Pieruccini-Faria et al., 2021).

Moreover, in a study (utilizing accelerometers to analyze gait
patterns in individuals with normal cognition (NC), MCI, and AD,
it was observed that the AD group exhibited significantly lower
velocity and step length compared to both MCI and NC subjects.
Notably, the inclusion of dual-task testing, where subjects were
instructed to count backward from 100 to 0 while undergoing gait
assessment, proved to be crucial in distinguishing between MCI and
NC individuals (Muurling et al., 2020). These findings underscore
the early onset of gait dysfunction in the AD spectrum and
underscore the value of gait assessments as a potential biomarker
for predicting transitions.

A recent longitudinal retrospective study underlined that the
presence or the severity of gait and/or balance disturbances was
associated with an increased risk of AD in a sample of aMCI.
Therefore, community-dwelling older adults with aMCI may need
frequent evaluation by nurses to detect possible risk factors for
cognitive decline, particularly in cases involving gait and/or balance
issues (Ahn et al., 2023). Early evidence by Tuena et al. (2023)
highlighted that gait abnormalities identified through routine
neurological gait examinations are linked to distinct trends in
cognitive test performance over time in individuals with aMCI.
Specifically, when compared to the group with normal gait,
those with abnormal gait experienced a more rapid decline in
attention (DSST) and overall cognitive function (Mini-Mental State
Examination [MMSE]) tests. Significantly, TMT parts A (TMT-A)
and TMT-B exhibited unique declines over time in the abnormal
gait group, not observed in the normal gait group. Crucially, the
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presence of gait disorders [hazard ratio (HR) = 1.70] and declines
in the performance of three gait-related cognitive tests (MMSE,
HR = 1.09; DSST, HR = 1.03; TMT-B, HR = 1.01) were significantly
associated with a higher risk of developing AD dementia in the
overall aMCI Alzheimer’s Disease Neuroimaging Initiative (ADNI)
population.

In recent years, machine learning (ML) models have been
developed to make prognostic/diagnostic predictions to improve
AD clinical practice (Battista et al., 2020). Machine learning models
can be used to improve our understanding of the conversion
from MCI to AD dementia by predicting clinical progressions
and identifying individuals at risk. These models utilize different
features (clinical, biological, and neuroimaging data, biomarker
positivity, neuropsychological tests, and comorbidity information)
to estimate the probabilities of progression (Pang et al., 2023).
By incorporating longitudinal information encoded in efficient
markers, machine learning frameworks can differentiate between
progressive and non-progressive MCI subjects, aiding in
developing personalized strategies for preventing or slowing
the progression of dementia (Battista et al., 2020; Bucholc et al.,
2023). By analyzing large datasets and applying machine learning
algorithms, these models can identify patterns and relationships
that may not be apparent through traditional statistical methods.
Interpretable machine learning algorithms can also be used
to develop predictive algorithms for individual conversion
to dementia, considering complex patterns and interactions
between variables (Chun et al., 2022). These machine learning
approaches can contribute to early intervention and the selection
of appropriate treatments for individuals at high risk of developing
dementia (Dhakal et al., 2023).

Based on these premises, we further explored the predictive
value of the gait profile and gait-associated neuropsychological
measures that have been identified in previous work (Tuena et al.,
2023). The aim of this study was to evaluate the potential of
a neuropsychological assessment combined with a gait objective
exam in predicting the transition from aMCI to AD dementia
through machine learning algorithms. In the present study, we
developed an ML model to predict conversion from aMCI to AD
using relevant features (MMSE, DSST, TMT-B, and gait profile).
We investigated the role of these three neuropsychological tests
and gait profiles in the automatic classification of aMCI subjects
who converted or did not convert to AD within 36 months.
We developed an ML model to assess the accuracy of predicting
conversion by using our features.

2 Materials and methods

2.1 Study sample

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The ADNI was launched in 2003 as a public-private partnership,
led by the principal investigator, Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic

1 http://adni.loni.usc.edu/

FIGURE 1

Flowchart of patient inclusion.

resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early AD2.

We extrapolated 253 participants from the ADNI phase 1
(ADNI1) database (recruited in North America)3: 107 (42.29%)
aMCI individuals did not convert to dementia from baseline to
the last time point considered in this study (36 months, aMCI
stable [aMCIs]) and 146 (57.71%) converted to dementia (aMCI
converters [aMCIc]). The data used for this paper are a subset of the
full data set from the ADNIMERGE package (n = 2430): initially,
all subjects diagnosed with MCI at baseline and converting to AD
within 36 months (at months 6, 12, 18, 24, 36) were extrapolated
(n = 1060). This allowed the variable of final diagnosis (within
36 months) to be created. We excluded any MCI patients who
dropped out during the follow-up and included patients who
received the AD diagnosis during the five-time points or remained
stable until month 36. Thus, the data were divided into two groups,
indicating the final diagnoses. Those who received a diagnosis of
AD within 36 months were placed in class 1 (aMCIc), while the
others were placed in class 0 (aMCIs). The detailed steps of the
extrapolated sample selection are shown in Figure 1. Criteria for
ADNI eligibility and diagnostic classifications are described at

2 http://www.adni-info.org/

3 https://www.adni3.org/locations
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TABLE 1 Summary of socio-demographic and relevant clinical variables at baseline of the aMCI group by final diagnosis (within 36 months).

aMCIs = 107 aMCIc = 146

N Mean SD N Mean SD p-value

Age (years) 107 75.22 7.01 146 74.83 7.15 0.666

Gender 0.333

Female 36 33.64% 59 40.41%

Male 71 66.36% 87 59.59%

Education (years) 107 15.67 2.96 146 15.73 2.82 0.884

Gait type 1.000

Normal 96 89.72% 132 90.41%

Abnormal 11 10.28% 14 9.59%

MMSE (points) 107 27.68 1.70 146 26.66 1.72 < 0.001

DSST (points) 107 40.74 10.91 146 34.92 10.53 < 0.001

TMT-B (seconds) 107 113.97 63.76 146 146.51 79.28 < 0.001

aMCI, Amnestic Mild Cognitive Impairment; aMCIs, aMCI stable; aMCIc, aMCI converters; MMSE, Mini-Mental State Examination; DSST, Digit Symbol Substitution Test; TMT-B, Trail
Making Test part B. Mean and SD are reported. For numerical variables, a T-test is performed, while for categorical variables, a Chi-squared test is used. Bold values represent significant
p-values.

https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/
documents/clinical/ADNI-1_Protocol.pdf.

The following variables were extrapolated: baseline
demographics (age, sex, education level), neuropsychological
test scores at baseline (MMSE, DSST, and TMT-B), and gait profile
at baseline (classified as normal/abnormal). The prevalence of gait
abnormalities in the whole sample (N = 253) was 9.9%. Table 1
shows the sociodemographic and relevant clinical variables taken
into consideration in this study.

In the ADNI protocol (Mueller et al., 2005), individuals with
MCI were diagnosed according to the MCI Petersen criteria (2011).
The inclusion criteria for the aMCI ADNI group were as follows:
a memory complaint by subject or caregiver that is verified by
a study partner; abnormal memory function documented by a
score below the cut off (adjusted for instruction) on the logical
memory II sub-scale from the Wechsler memory scale−revised;
MMSE score in the range 24–30; Clinical Dementia Rating
(CDR) score of 0.5; general cognition and functional performance
were sufficiently preserved such that a diagnosis of AD was not
made at the time of the screening visit; the modified Hachinski
score ≤ 4; age in the range 55–90 years old; stable assumption
of permitted medications at least 4 weeks prior to screening;
Geriatric Depression Scale (GDS) score < 6; the presence of
adequate visual and auditory acuity to allow neuropsychological
testing and good general health with no additional diseases;
availability and ability to complete all baseline assessments and
participate in a 3-year protocol; availability to undergo MRI
1.5 Tesla neuroimaging and provide DeoxyriboNucleic Acid
(DNA) for Apolipoprotein E (ApoE) assessments and banking
as well as plasma samples at protocol specified time points;
completed 6 grades of education (or had a good work history
sufficient to exclude intellectual disability); fluent in English or
Spanish.

The exclusion criteria for the aMCI ADNI group were as
follows: any significant neurologic disease other than suspected
incipient AD or history of significant head trauma followed

by persistent neurologic defaults or known structural brain
abnormalities; evidence of infection, infarction, or other focal
lesions, multiple lacunes or lacunes in a critical memory region;
presence of pacemakers, aneurysm clips, artificial heart valves, ear
implants, metal fragments or foreign objects in the eyes, skin or
body; recent diagnosis (within the past year) of major depression
or bipolar disorder; manifestations (within the last three months)
of psychotic features, agitation or behavioral problems; history of
schizophrenia; history of alcohol or substance abuse or dependence
(within the past 2 years); any significant systemic illness or
unstable medical condition; clinically significant abnormalities
in vitamin B12, rapid plasma regain test, or thyroid function
tests; residence in skilled nursing facility; current use of specific
psychoactive medications and warfarin; participation in clinical
studies involving neuropsychological measures being collected
more than one time per year.

This information was extracted from the ADNI1 (Mueller et al.,
2005) clinical protocol section4. Ethical approval for data collection
and sharing was given by the institutional review boards of the
participating institutions in the ADNI.

2.2 Gait screening and
neuropsychological measures

At screening visits, accredited specialists performed a
neurological gait evaluation in accordance with the ADNI clinical
protocol to make sure patients were eligible before the baseline
assessment. After a visual evaluation of gait patterns (e.g., walking
for a short distance) and balance (i.e., tandem walk, Romberg test),
the ADNI specialist classified the gait as normal or abnormal. In
our study, the gait variables mentioned above were extrapolated
from the neurological examinations (NEUROEXM.csv) referring
to ADNI1 protocols.

4 https://adni.loni.usc.edu/methods/documents/
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The baseline assessment included a range of clinical and
medical information and the administration of a series of
neuropsychological tests (e.g., MMSE, DSST, and TMT). We
extrapolated neuropsychological test scores (MMSE, DSST, and
TMT-B) for the ADNI1 protocol. This information was retrieved
from the ADNI file regarding the ADNIMERGE package
(ADNIMERGE.csv).

MMSE is a brief structured screening test for global cognition.
It consists of 30 items divided into 6 areas: orientation in time
and space; memory (repetition of three words), attention and
calculation (serial subtraction or forward/backward spelling, recall
of words previously memorized); language (recognition of two
objects, repetition of a short sentence; sentence comprehension;
sentence writing), and constructional praxis (design copy). The
score is given by the number of items completed correctly (0 to
30). Lower scores indicate worse performance and greater cognitive
impairment (Folstein et al., 1975).

DSST is a Wechsler Adult Intelligence Scale-Revised (WAIS-
R) subtest for attention and psychomotor speed (Wechsler, 1981).
It consists of 93 small blank squares (presented in seven rows),
each of which is paired at random with one of nine numbers
(1 to 9) printed directly above it. A printed “key” that pairs the
numbers 1 through 9 with unknown symbols is located above the
row of blank squares. After a brief series of practice trials, the
subject must utilize the “key” to swiftly complete the 90-s task by
using the symbol that is paired with the number above each blank
square, working from left to right across the rows. The measure
of interest is the number of blank squares that are accurately
filled in within the allotted time (maximum raw score = 93)
(Wechsler, 1981).

Trail Making Test part B is a test of attentional set-shifting.
Subjects are given a new sheet with a scattered set of numbers (1
to 13) and letters (A to L) circled on it and are asked to connect
the numbers and letters alternately and in sequential order. The
subject’s performance is judged by the time it takes to complete
each path and the number of errors of commission and omission
(Reitan, 1958).

Based on the results of the Cox regression model obtained
by Tuena et al. (2023) regarding features with prognostic value
on conversion from aMCI to AD-dementia, we considered the
following three neuropsychological tests for our analyses: MMSE
(Folstein et al., 1975), DSST (Wechsler, 1981),and TMT-B (Reitan,
1958).

In our study, the neuropsychological test scores mentioned
above were extrapolated from the ADNI aggregated dataset
(ADNIMERGE.csv) using the terms (MMSE, DIGITSCOR,
TRABSCOR) and referring to ADNI1 protocols. See Table 1 for
descriptive statistics of neuropsychological tests at baseline in the
two populations for the final conversion class.

2.3 Machine learning

To explore the trends of neuropsychological functions over
time according to gait profiles we used ML algorithms as in a similar
study (Ghoraani et al., 2021).

The development and evaluation of the ML algorithms were
conducted in a Python 3.10.9 environment, using Anaconda

23.3.1 and Jupyter Notebook 6.5.2. The following Python packages
were used: numpy, pandas, matplotlib, and scikit-learn. The ML
framework used was scikit-learn and optuna. ML algorithms
implemented in Python were applied to identify the most
accurate models in classifying aMCI subjects into two groups:
aMCIs and aMCIc.

We used the following features to train the chosen algorithms:
neuropsychological test scores at baseline (MMSE, DSST, and
TMT-B) and the gait profile at baseline (normal/abnormal).
Imputation was performed for neuropsychological test scores
with missing values using KNNImputer. Categorical variables
were dichotomized using one-hot encoding, with 1 indicating the
occurrence of that class and 0 the occurrence of any other class of
the variable. Once the features were transformed into continuous
variables, they were standardized [mean = 0, standard deviation
(SD) = 1] using StandardScaler.

We used 6 supervised ML techniques: Decision Tree (DT),
Random Forest (RF), Gradient Boosting (GB), Support Vector
Machine (SVM), Logistic Regression (LR), k-Nearest Neighbors
(kNN). From the entire dataset, information from 70% of the
subjects was randomly extracted and used for the training phase
performed by the 6 algorithms separately. After the training
phase, the three algorithms (SVM, LR, and kNN) were chosen to
optimize the hyperparameters through the three main techniques
(Randomized Search, Bayesian Search, and Grid Search) (Yu
and Zhu, 2020). To measure the performance of the created
models, 5-fold cross-validation with 5 repeats and 10-fold cross-
validation with 5 repeats were performed at each step from which
the best-performing models were chosen. Cross-validation was
performed at 5 and 10-folds with 5 repetitions to see which of
the two we would get the best metrics. After that, the best-
performing algorithm was chosen and tested on the remaining of
the dataset.

To evaluate the importance of the predictors for the
optimized SVM algorithm in the training and testing set, we
calculated the weights associated with the SVM coefficients.
These weights indicate how much each feature contributes to
the decision-making process of the SVM algorithm. The range
of values is −1 to 1 (Bron et al., 2015). Positive weights
suggest that a feature contributes to the correct classification
of the specific class, while negative weights indicate a negative
contribution.

The following evaluation metrics were considered for each
phase of the training and test set: accuracy, precision, sensitivity (or
recall), specificity, F1 score, and Area Under the Curve - Receiver
Operating Characteristic (AUC-ROC). The Phyton ML code is
available in Supplementary material 1.

3 Results

At baseline, the aMCIc group already showed an initial
decline in cognitive measures, in particular, MMSE and
DSST scores were lower and the execution time for the
TMT-B was higher compared to aMCIs. In contrast, there
were no significant differences in the sociodemographic
variables and gait type.
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TABLE 2 Results of 5-fold cross-validation with 5 repeats for the six algorithms (DT, RF, GR, SVM, LR, kNN).

DT RF GR SVM LR kNN

Accuracy 0.53 (0.06) 0.58 (0.05) 0.57 (0.06) 0.63 (0.07) 0.64 (0.07) 0.59 (0.07)

AUC-ROC 0.52 (0.06) 0.60 (0.07) 0.58 (0.07) 0.65 (0.09) 0.65 (0.08) 0.60 (0.08)

Specificity 0.44 (0.11) 0.45 (0.11) 0.46 (0.12) 0.42 (0.10) 0.51 (0.10) 0.49 (0.13)

Sensitivity 0.59 (0.09) 0.68 (0.08) 0.65 (0.09) 0.80 (0.12) 0.74 (0.11) 0.67 (0.11)

Precision 0.59 (0.05) 0.63 (0.05) 0.62 (0.05) 0.63 (0.04) 0.66 (0.05) 0.63 (0.06)

F1 score 0.59 (0.06) 0.65 (0.05) 0.63 (0.06) 0.70 (0.07) 0.69 (0.07) 0.64 (0.07)

DT Decision Tree, RF Random Forest, GB Gradient Boosting, SVM Support Vector Machine, LR Logistic Regression, kNN k-Nearest Neighbors. Bold values show the best results
across the metrics.

TABLE 3 Results of 5-fold cross-validation with 5 repeats for the three algorithms chosen (SVM, LR, and kNN).

Optimized algorithms

SVM LR kNN SVM LR kNN

Accuracy 0.63 (0.07) 0.64 (0.07) 0.59 (0.07) 0.67 (0.08) 0.64 (0.06) 0.63 (0.06)

AUC-ROC 0.65 (0.09) 0.65 (0.08) 0.60 (0.08) 0.66 (0.04) 0.65 (0.05) 0.64 (0.04)

Specificity 0.42 (0.10) 0.51 (0.10) 0.49 (0.13) 0.60 (0.09) 0.40 (0.07) 0.45 (0.06)

Sensitivity 0.80 (0.12) 0.74 (0.11) 0.67 (0.11) 0.72 (0.08) 0.83 (0.11) 0.78 (0.10)

Precision 0.63 (0.04) 0.66 (0.05) 0.63 (0.06) 0.70 (0.06) 0.64 (0.03) 0.64 (0.03)

F1 score 0.70 (0.07) 0.69 (0.07) 0.64 (0.07) 0.71 (0.07) 0.72 (0.05) 0.70 (0.06)

SVM, Support Vector Machine; LR, Logistic Regression; kNN, k-Nearest Neighbors. Bold values show the best results across the metrics.

3.1 Training

Model performance evaluation measures during training and
testing were calculated for the combination of neuropsychological
features with the gait profile (normal/abnormal). Initially, a
baseline model (via Dummy Classifier) was trained to compare
the training performance of the 6 algorithms (DT, RF, GR, SVM,
LR, kNN) on 70% of the dataset. The six models were trained and
evaluated through 5/10-fold cross-validation with five repeats. The
SVM and LR algorithms were chosen as they are the two with
the values at the highest metrics. kNN was also chosen as it has
values close to SVM and LR and has the second-highest value for
specificity. See Table 2 for specific evaluation metrics.

As can be seen from Table 3 SVM and LR models were obtained
at 5-fold cross-validation with 5 repeats similar to AUC-ROC (0.66
and 0.65) and similar accuracy (0.63 and 0.64), but the lowest
values for all three models concern specificity. Figure 2 shows
the Receiver Operating Characteristic (ROC) curves for the three
algorithms (SVM, LR, and kNN). To improve the performance of
the 3 models, the best hyperparameters were searched through the
three main methods, for which cross-validation was performed and
the optimization method that improved the algorithms with the
highest metrics values (RandomizedSearchCV) was chosen. Next,
the performance of the optimized algorithms was trained on 70%
of the dataset and was evaluated by 5/10-fold cross-validation with
5 repetitions. As can be seen from Table 3, the performance of
all three algorithms improved for the evaluation metrics with the
lowest values, although specificity remained low for the LR and
kNN algorithms.

The best algorithm with the best hyperparameter optimization
was SVM with an average accuracy of 0.67 (SD = 0.07), an
average AUC-ROC of 0.66 (SD = 0.04), and a balance between

FIGURE 2

Roc curves of the three algorithms (SVM, LR, kNN) in 5-fold
cross-validation with 5 repeats in the training phase.

sensitivity and specificity. Figure 3 shows the ROC curves for the
three optimized algorithms. The SVM model has the highest ROC
curve, indicating a higher ability to discriminate positive cases than
the others.

3.2 Testing

The testing phase was performed only for the best performing
model, SVM, for which we evaluated its performance using an
independent set of data (30%) from the training set. The results
show an accuracy of 70%, highlighting the model’s ability to
correctly classify most of the cases in the test set (see Table 4).
AUC-ROC is 0.67, indicating a fair result (see Figure 4). The
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FIGURE 3

Roc curves of the three algorithms (SVM, LR, kNN) optimized in
5-fold cross-validation with 5 repeats in the training phase.

TABLE 4 Results of the testing set for the optimized SVM model.

Testing set

SVM

Accuracy 0.70

AUC-ROC 0.67

Specificity 0.55

Sensitivity 0.79

Precision 0.74

F1 score 0.76

SVM, Support Vector Machine.

model is able to correctly identify to make predictions about
predicted positives (precision = 74%) and correctly identify true
positives (sensitivity = 79%) but can identify true negatives less
(specificity = 55%). Overall, the testing results show that our SVM
model can provide accurate predictions, especially for cases (i.e.,
aMCIc).

3.3 Predictors importance

Importance feature is a common technique to assess the
importance of features for a model. However, this technique does
not apply to non-parametric models such as SVM.

For the evaluation of all features, we calculated the absolute
values of the coefficients of the optimized SVM algorithm to be able
to evaluate the contribution of each feature in this classification. As
can be seen in Table 5, MMSE was the neuropsychological test that
obtained the highest weight in both training and testing. The gait
type was found to have a significant weight only in the testing phase.

4 Discussion

In this paper, we sought to explore the predictive power of four
predictors: gait (assessed by visual examination during neurological
exam), MMSE, DSST, and TMT-B. These variables were previously
identified (Tuena et al., 2023) as critical for the conversion from
aMCI to AD within a follow-up period of 36 months.

FIGURE 4

Roc curves of the SVM algorithm during training and testing.

TABLE 5 Results for importance features in the training and testing set
for the optimized SVM.

Training Testing

SVM SVM

MMSE 0.37 0.61

DSST 0.03 0.04

TMT-B 0.00 0.00

GAIT 0.01 0.56

SVM Support Vector Machine. Range of values: −1 and 1.

To our knowledge, this is the first research that using previously
published results, uses ML to study the impact of gait and gait-
related cognitive measures to forecast the diagnosis of AD in aMCI.
Our results show that the best algorithm was SVM and that on
baseline assessment it was able to provide a 70% predictive accuracy
of future AD diagnosis within 36 months from the first visit. This
is true, especially for identifying cases (i.e., aMCI patients that
during the 36-month follow-up converted to AD). That is to say
that our model and best algorithm can be used as a quick, low-cost,
and preliminary assessment for aMCI individual at high risk of
developing AD, which might require more expansive and invasive
testing (e.g., neuroimaging, genetic testing, cerebrospinal fluid
testing). Additionally, this would enable to program in advance of
secondary prevention strategies and therapies. Importance variable
analysis showed that MMSE was the most important predictor
during training and testing of the model, whereas gait was crucial
for the testing phase of the model alone.

Many authors have used the ADNI database to identify
predictors to forecast AD diagnosis using ML algorithms (Massetti
et al., 2022; Rye et al., 2022; Franciotti et al., 2023; Sarica et al., 2023).

The features that have been used in the literature in this
classification can be clustered into four groups: neuropsychological
measures only (Battista et al., 2020; Massetti et al., 2022),
neuropsychological measures and biomarkers (Chun et al.,
2022; Massetti et al., 2022), neuropsychological measures and
neuroimaging (Rye et al., 2022; Franciotti et al., 2023), and finally
neuropsychological measures, biomarkers, and neuroimaging
(Sarica et al., 2023). The study (Massetti et al., 2022) used all
ADNI stages for training and compared the combination of various
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features to find the best performing model also stratifying it
by age range, specifically for the 75–78 range and relying only
on the neuropsychological assessment they obtained an accuracy
of 0.72 at testing. Our accuracy score (0.70) in testing is in
line with them; in particular, we demonstrate that is possible
to obtain good results with a restricted set of predictors linked
to AD development. Indeed, the sensitivity of our models (see
Tables 2, 3) is higher than the one reported (0.5) by Masetti
and co-authors for neuropsychology tests alone (Massetti et al.,
2022). It is important to note that multidimensional features
datasets yield higher accuracies (e.g., 0.87; Sarica et al., 2023)
and should be preferred. Yet, a meta-analysis (Battista et al.,
2020) that evaluated ML approaches used in AD illustrated
the ranges of performance metrics of studies that predicted
conversion from MCI to AD based on neuropsychological tests:
accuracy = 0.61–0.85, sensitivity = 0.50–0.91, specificity = 0.48–
0.91, AUC-ROC = 0.67–0.93. Moreover, the work by Battista et al.
(2020) found that the best tests to predict the conversion to AD
in MCI included MMSE and TMT-B in addition to memory tests.
However, as found in a study (Tuena et al., 2023) memory tests
are not affected by gait, and we preferred to focus on the cognitive
measures linked to gait. Our results show that it is possible to have
comparable accuracy, sensitivity, and specificity using a restricted
set of neuropsychological gait-related predictors that are linked to
the condition of interest. Nevertheless, a great challenge of ML
research is to improve specificity parameter for aMCIc and aMCIs.
This was noted in our results and also in the meta-analytic work by
Battista and co-authors (Battista et al., 2020).

Feature weights in an SVM model indicate the relative
importance of distinctive features in ML model decision making.
Although these weights are not statistically significant values in
the traditional sense, nevertheless they are valuable tools for model
interpretation. For example, in neuroimaging studies, features are
often considered as brain voxels to identify the brain regions
that contribute most to the diagnosis or course of a disease (e.g.,
AD-dementia) and show them graphically by weight-map (Bron
et al., 2015). Our analysis of the SVM model weights shows that
MMSE was the predictor that contributed most positively to our
classification problem and that gait contributed only to the testing
phase. Because the test set represents a different portion of the
data (30%) than the training set, it is possible that features take
on different importance in the testing phase. This suggests that
gait type might play an important role in the conversion phase
on a different sample than the one used for training the model.
In line with the previous study (Tuena et al., 2023), we found
that the most important predictor was MMSE in the training and
testing phase and that the type of gait, within this feature cluster,
contributes to the prediction of conversion. One longitudinal study
(Chun et al., 2022) used ML to forecast dementia diagnosis in aMCI
using sociodemographic, neuropsychological, and APOE variables
as features. Among the features they found important for their
best algorithm was MMSE. We showed that gait could be a critical
predictor to improve ML performance for future AD diagnosis.
This finding is also in line with embodiment theories in aging,
which suggest that sensorimotor and perceptual impairments
could hamper higher-order cognitive functions and be linked to
neurodegenerative processes (Kuehn et al., 2018).

ML techniques can be a powerful method to overcome the
limits of classic statistical approaches (Tuena et al., 2020). Indeed,

despite p-value being a widely used and consolidated parameter,
it lacks predictive information; crucially, ML methods enable to
generalize findings of diagnostic, prognostic, and predictive studies
to new observations and inform theory and practice (Dwyer
et al., 2018). Therefore, it is suggested to validate research studies
with both classical and ML statistical approaches. Following this
line of reasoning, we provided scientific evidence that previously
identified predictors of AD diagnosis can have promising predictive
diagnostic value.

However, our study has some limitations that we must
acknowledge. First, the results can be only generalized to aMCI
patients with inclusion/exclusion criteria of the ADNI1 cohort.
Second, the performance of the classification accuracy is still not
high enough, nevertheless considering that we used only four
quick-to-administer predictors to forecast AD diagnosis within
36 months from the first visit, our results are encouraging. Third,
regarding the classification of gait type is numerically unbalanced,
within aMCI, and this may have negatively affected the evaluation
of permutation importance. Fourth, the categorization of the gait
type from the ADNI database is dichotomous categorical. Future
research could improve these results by adopting quantitative (e.g.,
accelerometer) gait measures to provide ML with numeric patterns.
Then, the model could be tested on other public and private
MCI databases to assess its generalizability. Lastly, more complex
algorithms such as neural networks and deep learning algorithms
could be tested to improve accuracy performance.

To conclude, in this ML study we provided additional
evidence that previously identified predictors with classic statistical
approaches can have promising and encouraging results using
artificial intelligence. Moreover, we showed that in addition
to established neuropsychological tests, gait, and in general
the motor system, could contribute to cognitive deterioration
and AD diagnosis, endorsing theories that suggest a link
between mind and body.
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