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Abstract: Trauma remains one of the leading causes of death in adults despite the implementation of
preventive measures and innovations in trauma systems. The etiology of coagulopathy in trauma
patients is multifactorial and related to the kind of injury and nature of resuscitation. Trauma-induced
coagulopathy (TIC) is a biochemical response involving dysregulated coagulation, altered fibrinolysis,
systemic endothelial dysfunction, platelet dysfunction, and inflammatory responses due to trauma.
The aim of this review is to report the pathophysiology, early diagnosis and treatment of TIC. A
literature search was performed using different databases to identify relevant studies in indexed
scientific journals. We reviewed the main pathophysiological mechanisms involved in the early
development of TIC. Diagnostic methods have also been reported which allow early targeted therapy
with pharmaceutical hemostatic agents such as TEG-based goal-directed resuscitation and fibrinolysis
management. TIC is a result of a complex interaction between different pathophysiological processes.
New evidence in the field of trauma immunology can, in part, help explain the intricacy of the
processes that occur after trauma. However, although our knowledge of TIC has grown, improving
outcomes for trauma patients, many questions still need to be answered by ongoing studies.

Keywords: polytrauma physiology; blood coagulation disorders; exsanguination; hemorrhagic shock;
hemostasis; trauma

1. Introduction

Trauma remains one of the leading causes of death in adults despite the implementa-
tion of preventive measures and innovations in trauma systems [1]. As a result of growing
knowledge about the pathophysiological mechanisms that take place in trauma patients
mortality has been significantly lowered, although 25–35% of patients still develop bio-
chemically evident coagulopathy on arrival in emergency departments [2–4].

The etiology of coagulopathy in the injured patient is multifactorial [2,3], with overlap-
ping contributing factors depending on the injury and nature of resuscitation. Coagulation
is the harmonious result of two opposing processes: hemostasis and fibrinolysis, which
provide control of bleeding following mild/moderate injury (see Figure 1). In trauma,
this balance can be compromised by three main triggers, termed the “vicious triad” or
“Virchow’s triad” (see Figure 2) [5,6]: metabolic acidosis (lactic) [7] due to tissue damage,
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hypothermia due exposure to cold [7–9] during the traumatic event and further exacer-
bated by the administration of cold fluids [10,11], and coagulopathy. These three conditions
lead to systemic depletion of coagulation factors, increasing the risk of DIC (disseminated
intravascular coagulation) in the first few hours, or later during intensive care.
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Figure 2. Virchow’s triad that interfere with the clinical course.

In the trauma setting, several terms are used in the literature to refer to this condition,
including trauma-induced coagulopathy (TIC), acute traumatic coagulopathy (ATC), early-
trauma coagulopathy (ECT), and acute coagulopathy of trauma shock(ACoTS) [2,3,12–14].
Based on the terminology used by the International Society for Thrombosis and Haemosta-
sis, the term TIC will be used in this review [15].

However, trauma-induced coagulopathy (TIC) is distinct from disseminated intravas-
cular coagulation (DIC), which is defined as “an acquired syndrome characterized by the
intravascular activation of coagulation with a loss of localization arising from different
causes” [16].

TIC occurs early, long before Virchow’s triad can set in, and is due to a multifactorial
biochemical response fueled by dysregulated coagulation, altered fibrinolysis, systemic
endothelial dysfunction, inflammatory responses following trauma, and platelet dysfunc-
tion. The risk of TIC increases with prolonged hypotension, higher injury severity score,
worsening base excess (as compensation of lactate acidosis due to bleeding) and possible
concomitant brain injury [17,18], whereas irregular systemic coagulation, often powered
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by tissue factors on different cell surfaces, is observed in DIC. Eventually, the late pro-
thrombotic-antifibrinolytic TIC phenotype mirrors certain DIC phenotypes [19].

The purpose of our narrative review is to survey the most recent literature and present
the current understanding of the pathophysiology of trauma-induced coagulopathy, as
well as measures for its early diagnosis and treatment.

2. Materials and Methods

A literature search was performed using the following databases to identify relevant
studies in indexed scientific journals: Pubmed, MEDLINE (via Ovid), EMBASE (via Ovid),
and the Cochrane Controlled Clinical trials register, using the following terms: polytrauma
physiology, blood coagulation disorders, exsanguination, hemorrhagic shock, hemosta-
sis, and trauma, with filters for humans, language (English), and time of publication
(2002–2022). We excluded editorials, commentaries, letters to the editor, opinion articles,
meeting abstracts, and original articles lacking an abstract. We identified 502 articles, but
only 94 papers were taken into consideration in this review (Chart 1).
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Chart 1. Included and excluded articles.

3. Results

We identified 92 papers of interest to our narrative review. Research was limited to
clinical trials, meta-analysis, randomized controlled trials (RCT), review, and systematic
review.
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In order to be most clearly discuss every aspect regarding this complex disease, we
decided to subdivide the discussion into three sub-chapters: TIC pathophysiology, early
diagnosis, and treatment.

4. Discussion
4.1. TIC Pathophysiology

Coagulopathy develops not only when pro-coagulation factors are depleted or diluted,
but also when one of the control mechanisms fails. For example the quantity of prothrombin
may be insufficient, or its localization within the body may be inappropriate. Trauma is
a complex event, so it is a challenge to identify a single mechanism responsible for the
development of TIC [20].

TIC can rapidly evolve into different phenotypes, changing from a prevalently anti-
coagulant to a procoagulant state within hours or days if the patient survives the acute
event [15]. Because of the complexity and constantly evolving nature of traumatic injury
and TIC, the underlying mechanisms are not fully understood. However, several key mech-
anisms, including the dysfunction of natural anticoagulant mechanisms [21–23], platelet
dysfunction [23], fibrinogen consumption and hyperfibrinolysis [22] have been identified
as primary components of TIC [24,25].

4.1.1. Inflammatory Responses to Injury

In addition, aPC has anti-inflammatory and cytoprotective properties. In 2012, Cohen
MJ et al. published a study of 203 patients with severe trauma. The results showed that
early coagulopathy in this type of patient was related to high aPC levels and, subsequently,
protein C depletion as early as six hours after injury [26]. Patients with protein C deple-
tion had a higher risk of developing acute lung injury, ventilation-associated pneumonia,
multi-organ failure, and death [27]. In the past, experiments have been conducted to un-
derstand the role of these mechanisms [28]. Selective antibody-mediated inhibition of the
anticoagulant function of aPC reduced the rate of coagulopathy but not mortality, whereas
the inhibition of anticoagulant and cytoprotective functions increased mortality after a
challenge with trauma/hemorrhagic shock [29–33] or lipopolysaccharide injection [29].
Cytoprotective functions of aPC may also play a role in the endothelial barrier function
of pulmonary capillaries, as suggested by in vitro studies [30,31] and human studies as-
sociating persistently low levels of protein C in severely traumatized and mechanically
ventilated patients with increased rates of pneumonia [32].

4.1.2. Systemic Endothelial Dysfunction

Data from various studies have demonstrated that shock is the key factor in the
development of TIC. There is degradation of the endothelial glycocalyx, a protective
stratum, during an injury, leading to a systemic release of syndecan-1, a degradation
product of the glycocalyx [33,34]. Increased syndecan-1 levels are also associated with
worse mortality outcomes [35].

The release of endogenous heparan sulfates from the glycocalyx may also result in
self-anticoagulation by increased circulating endogenous heparinoids [20].

In addition, tissue hypoperfusion also releases damage-associated molecular patterns
(DAMPs), activates the contact pathway, and induces the expression of thrombomodulin
and endothelial protein C receptor (EPCR) on the endothelial surface to activate protein
C. The strong activation and consumption of protein C may deplete protein C stores,
potentially leading to a reduction in endothelial-protective signaling through the aPC
receptors, protease-activated receptor-1 (PAR-1) and endothelial protein C receptor (EPCR),
independently of the role of aPC as an anticoagulant, potentially exacerbating endothelial
dysfunction [36]. In 2007, Johansson et al. conducted a prospective study and observed
that protein C depletion in trauma patients correlated with elevated markers of endothelial
damage and coagulopathy and a three-fold increased risk of mortality [21].
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Furthermore, the release of microparticles and (DAMPs) has been demonstrated to
occur following direct tissue damage. Studies have shown that direct damage prompts the
release of thrombin-rich microparticles into the systemic circulation. The local effects of
these may contribute to hemostasis, whereas wider systemic release may lead to a DIC-like
phenotype and resultant coagulopathy. In the prospective observational PROMMTT study
conducted by Mtijevic et al., 180 trauma patients were observed [37]. In all of these patients,
elevated levels of endothelium-derived microparticles, erythrocytes, and leukocytes were
found in the circulation compared with the control group. Interestingly, high levels of
microparticles were also found in traumatic brain injury patients [38].

In contrast, it has been observed that DAMPs are released because of both the active
process induced by hypoperfusive tissue hypoxia, and the passive process as the result
of cell lysis, and can directly stimulate a sterile immune or inflammatory response [39,40].
Persistent release of DAMPs can power or maintain hyperactivation of the immune system
during the active phase, which will lead to a pathway to immune dysfunction, essentially
forming a feedback loop of tissue damage leading to inflammation, which in turn leads
to further tissue damage and cellular dysfunction. This process of immune dysfunction
following traumatic injury is dominated by the pattern recognition receptors TLR2, TLR4
and TLR9.

4.1.3. Dysregulated Coagulation

In normal conditions, the coagulation process following injury involves increased
thrombin production, fibrin deposition, and clot formation through the extrinsic pathway.
Instead, systemic coagulation triggered by thrombin from the injury site is inhibited by
circulating antithrombin III, or by the binding of thrombin to constitutively expressed
thrombomodulin on nearby undamaged endothelial cells [41]. Protein C, a systemic an-
ticoagulant, is converted to activated protein C (aPC) by the thrombin complex with
thrombomodulin. aPC is a serine protease that inactivates factors Va and VIIIa and elimi-
nates plasminogen inhibitors [33]. Thus, aPC may play a protective function by inhibiting
thrombosis during periods of reduced flow. In trauma patients with hypoxic injury, a
correlation has been observed between TIC and elevated aPC level, reduced levels of
non-activated protein C, and elevated soluble thrombomodulin [31].

4.1.4. Fibrinogen Depletion and Alterations in Fibrinolysis

Fibrinogen is the most abundant coagulation factor in blood, with circulating levels
in the range of 2–4 g/L in a healthy adult and a circulating half-life of ~4 days [42].
Conversion of fibrinogen to fibrin occurs via thrombin-mediated cleavage at two sites,
exposing binding sites for other fibrin molecules, thereby giving rise to spontaneous
polymerization. However, despite a high concentration of fibrinogen in healthy blood,
it is the first clotting factor and has the lowest concentration among clotting factors in
patients with massive bleeding [43]. It has long been known that trauma and hemorrhagic
shock are associated with a hyperfibrinolytic state, occuring in the first few minutes and
sometimes persisting for hours after injury [44]. This is due to hypoperfusion-related
hypoxia combined with the negative feedback associated with prothrombin generation
stimulating the endothelial release of tissue plasminogen activator (tPA). The consumption
of endogenous plasminogen activator inhibitor-1 (PAI-1) by TIC-mediated aPC further
compromises the fibrinolytic balance, leading to uninhibited tPA-mediated conversion of
plasminogen to plasmin [45]. The transformation of thrombin to protein C activation can
also reduce thrombin-activated fibrinolysis inhibitor (TAFI) activation, further reinforcing
fibrinolytic activity [46]. These mechanisms lead to the hyperfibrinolysis observed in
trauma patients with TIC, resulting in increased tPA levels, decreased PAI-1, and increased
D-dimer [17]. Indeed, it has been shown that the lowest levels of fibrinogen may be found
in patients admitted to the ICU [47]. Moreover, fibrinogen is also an important marker of
the need for transfusion at 24 h and mortality at 28 days [48,49].
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4.1.5. Platelet Dysfunction

Plates play a crucial role in hemostasis after injury [50] while also regulating endothe-
lial homeostasis and the immune response [51,52]. Failure of these mechanisms contributes
to the development of TIC in more than 50% of trauma patients with major injuries [53].
Furthermore, platelet count has been shown to be inversely correlated with the need for
transfusion and early mortality [54]. Interestingly, in trauma patients, there is often a phe-
nomenon of ‘platelet exhaustion’ characterized by an altered platelet aggregation response,
despite the fact that the platelet count is in range [55,56]. Specifically, following major
trauma and subsequent shock, there is a release of TF (tissue factor), platelet-activating
factor and vWF [57], leading to platelet over-activation, thus creating a pool of activated
platelets in the circulation that are ‘depleted’ or exhausted following the release of their
procoagulant and anticoagulant factors. These platelets are rendered useless in terms of
primary hemostasis. In addition, polytrauma patients have increased sensitivity to tPA-
mediated fibrinolysis due to reduced platelet PAI-1 release [58]. Some recent studies have
reported that there are several platelet phenotypes involved in platelet dysfunction in TIC.
Primary platelet effects contribute to early TIC and, more importantly, to hemorrhage. In
contrast, the immunoregulation carried out by platelets contributes to the subsequent hy-
percoagulability of TIC [59,60]. In 2018, a study performed by Zipperle J. et al. showed that
traumatic injury stimulates platelet activation, which in turn promotes platelet–leukocyte
binding, creating platelet–leukocyte aggregates. These aggregates stimulate the systemic
release of platelet factor 4 and the expression of TF, fibrinogen, and factor Xa, leading to the
pro-coagulant state [61].

4.2. Diagnosis

All trauma patients undergo routine laboratory tests such as complete blood count,
serum electrolytes, arterial blood gas analysis, and standard coagulation tests. These tests
allow early detectection of Virchow’s triad: acidosis, hemodilution, and severity of shock
(base deficit and/or serum lactate level).

Easy-to-perform coagulation tests such as prothrombin time, international normalized
ratio and activated partial thromboplastin time are standard-of-care in the definitive diag-
nosis of coagulopathy. In addition, fibrinogen and D-dimer levels are also measured. The
latter serve as surrogate markers of coagulation factor consumption and hyperfibrinolysis
(see Figure 3).

The high levels of D-dimer, a fibrin degradation product, have been associated with the
severity of tissue damage and the state of hyperfibrinolysis, and therefore also fibrinogen
depletion, especially in the acute phase [62]. The results of a multicenter retrospective
study involving 519 adult trauma patients was published in 2016 showed that patients with
high D-dimer and low fibrinogen had the highest mortality compared with control groups.
In 2019, TACTIC, a prospective multicenter observational cohort study of 940 patients, re-
ported a 7-fold higher DD level (died vs. survived: 103,170 vs. 13,672 ng/mL, p < 0.001) [63]
in the group of severely injured patients with a preponderance for traumatic brain injury.

The quantity of fibrinogen is equally important, since acquired deficiency leads to
the worsening of hemorrhaging and increased mortality [64]. Therefore, it is necessary to
promptly correct the deficiency of this factor with cryoprecipitate or fibrinogen concentrates
on obtained laboratory findings and/or TEG/ROTEM results.

Although coagulation factors are not commonly tested in injured patients, a deficiency
of such factors following hemodilution and/or transfusion of blood products may exacer-
bate TIC. In addition to fibrinogen, described above, two other factors, V and VIII, are the
most labile and may be selectively diminished during trauma resuscitation, particularly
when the proportion of units transfused is not calibrated. Fibrinogen, thrombin, Factor V,
Factor VIII, Factor IX, Factor X, and activated Protein C levels are negative predictors of
TIC adjusted for age, injury, and shock [65].
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injury and shock 1© synergistically activate the endothelium, platelets and the immune system 2© to
generate an array of mediators that reduce fibrinogen, impair platelet function and compromise
thrombin generation 3©, ultimately resulting in inadequate clot formation for hemostasis 4©. In-
creased fibrinolysis via plasmin generation further compromises hemostatic capacity. These deficits
are accentuated by ongoing blood loss, hemodilution, metabolic acidosis and hypothermia. A colour
gradient indicates that the mechanism can result in both hypocoagulation (green) and hypercoagula-
tion (yellow). DAMPs, damage-associated molecular patterns; HMGB1, high mobility group protein
B1; PAI-1, plasminogen activator inhibitor-1; tPA, tissue plasminogen factor [62].

The PROMMTT study involving 165 severe trauma patients demonstrated deficits
in laboratory results, and biomedical research has led to the development of laboratory
tests such as TEG (Thromboelastography) and rotational thromboelastometry (ROTEM),
which are widely used viscoelastic assays employed to assess and manage TIC [66,67] (see
Figure 4). Both techniques help to identify alterations in normal fibrinolysis early in severe
trauma, allowing rapid diagnosis and early treatment of acute hemorrhage.

TEG and ROTEM measure the speed of thrombin generation as measured by clot
firmness of 2 mm (reaction time (R) in TEG and clotting time (CT) in ROTEM); the speed of
clot formation, which includes the contribution of fibrinogen (α angle in both assays); the
maximum clot strength (maximal amplitude (MA) in TEG and maximal clot firmness (MCF)
in ROTEM); and the magnitude of fibrinolysis (LY30; that is, the percentage reduction in
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the area under the curve at 30 min after MA in TEG, and LY30, the residual clot firmness
at 30 min after CT in ROTEM) (see Figure 4) [20]. TEG stands for thromboelastography;
ROTEM stands for rotational thromboelastometry; MA stands for maximal amplitude;
MCF stands for maximal clot firmness; and LY30- stands for the amplitude at 30 min.
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4.3. Treatment

The early recognition and prompt management of TIC (see Figure 5) can reduce mor-
tality in patients with severe injuries from trauma. Over time, increased understanding of
the pathophysiology of TIC and biotechnological and therapeutic innovations have allowed
rapid intervention and a reduction in short- and long-term complications. Damage control
resuscitation consists of permissive hypotension, the avoidance of excessive crystalloids,
hypothermia, and acidosis, rapid surgical correction of hemorrhages, and early transfusion.
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The goal of any hemostatic therapy is to minimize blood loss and transfusion re-
quirements; increased transfusion demands are recognized to increase the morbidity and
mortality in trauma patients. Among patients with similar injury severity scores (ISS), mor-
tality is about four times higher in case of coagulopathy Massive hemorrhage and massive
transfusion in patients with multiple injuries are associated with impaired coagulation.
Indeed, sufficient thrombin and coagulation substrates are required to achieve adequate
hemostasis. In addition to platelets, on whose surface most thrombin is formed, fibrinogen
can be considered a primary coagulation substrate. If sufficient thrombin is produced, it
transforms fibrinogen into stable fibrin, which leads to the clot compactness that develops
in the presence of factor XIII.

It is important to maintain euvolemia after a traumatic injury and massive hemor-
rhage to prevent the development of shock and acidosis, which are directly related to
coagulopathy and worse outcomes. The optimal choice of volume expanding fluid remains
controversial in this context [17]. Crystalloids impair the coagulation system, mostly due to
their diluting effect. Ringer’s lactate fluid therapy reduces indices of tissue hypoxia but does
not influence the alterations in fibrinogen metabolism resulting from hemorrhage [68]. In
adults, a bolus of 1 L of isotonic solution may be necessary to obtain a congruous response.
If the patient does not respond to the initial bolus of crystalloids, then hemotransfusion
should be started. Gelatin solutions also cause a diluting effect while compromising fibrin
polymerization. They can also lead to a decrease in clot elasticity, and a reduction in clot
weight [69]. Hydroxyethyl starch solutions (HES) can increase hemorrhagic tendencies.
HES causes hypocalcemia, inhibition of the fibrinogen receptor (GPIIb-IIIa), and a disorder
of fibrin polymerization that can overcome the anticoagulant effect of gelatin [70].

Tranexamic acid (TXA) is the most widely studied antifibrinolytic agent in the trauma
setting. A lysine analog that blocks the lysine binding site on the fibrinolytic enzyme
plasmin, it is essential for plasmin binding to fibrin. Thus, the regular plasmin effect,
fibrinolysis of the blood clot, is blocked. At low doses, tranexamic acid acts as a competitive
inhibitor of plasmin, while at high doses it is a non-competitive inhibitor.

The studies reported below identify a subgroup of trauma patients who are expected
to benefit from timely and proper treatment with TXA. In 2011, the results of the CRASH-
2 study were published reporting reduced all-cause mortality in adult trauma patients
treated with tranexamic acid [71]. Thereafter, this study demonstrated that TXA, when
administered more than 3 h after the acute event, leads to an increased risk of venous
thromboembolism [71,72] and risk of hemorrhage-related death [73]. International guide-
lines support the hypothesis that TXA should be administered early, within 3 h after a
traumatic event [74].

A recent meta-analysis evaluated the incidence of thrombotic events associated with
the administration of TXA to patients with trauma-induced hemorrhage, as well as sur-
gical and medical hemorrhage, and found no significant increase in thrombotic events
associated with any dose of TXA [75]. However, patients with the more common fibri-
nolytic ‘shutdown’ phenotype seem to have a higher risk of thromboembolic complications
and long-term organ failure, and therefore may be at increased risk of damage from TXA
treatment. Therefore, in clinical settings where immediate access to TEG allows the early
determination of the fibrinolytic phenotype, it is strongly recommended that an empirical
bolus of TXA be administered as soon as possible (within three hours of injury) and that
TEG be used to assess whether additional doses of TXA are required.

The current guidelines recommend administering an initial 1 g bolus of tranexamic
acid infused over 10 min at the trauma scene, followed by an infusion over 8 h.

4.3.1. Goal-Directed Transfusion

Massive blood transfusion is one of the primary strategies in the treatment of hemor-
rhagic shock in trauma patients. Blood product transfusions are known to improve tissue
perfusion and increase oxygen transport capacity to tissues. However, despite this advan-
tage, it has been shown that transfusions can trigger or worsen TIC. Massive transfusion
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protocols vary among different centers around the world, and ratios of plasma to packed
red blood cells range from 1:1 to 1:10. Three clinical trials (PROMMTT [76], PROPPR [77]
and COMBAT [78]) have shown that patients at high risk of developing TIC can benefit
in terms of survival from transfusion a protocol involving plasma, packed red blood cells,
and platelets in equal ratios (1:1:1).

Notably, in the PROMMTT (PRospective, Observational, Multicenter, Major Trauma
Transfusion) study, the authors found that “early” transfusion of plasma was associated
with reduced 24 h (odds ratio [OR] 0.47, 95% CI 0.27–0.84) and 30-day (OR 0.44, 95% CI
0.27–0.73) mortality compared with patients who received lower plasma/RBC ratios or
who did not receive early plasma but “caught up” to ratios approaching 1:1 by 24 h [79].

The PROPPR study published in 2015 reported no difference in survival at 24 h and
30 days in two groups of patients (1:1:1 ratio versus a 1:1:2 ratio of plasma to platelets to
RBCs in a transfusion). However, the first group (1:1:1 ratio) was less likely to die from a
hemorrhage [77].

4.3.2. Thromboelastography-Based Transfusion

The fast and simple method of thromboelastography (TEG) may help to predict the
need for blood transfusions in severely injured trauma patients. Going forward, resuscita-
tion protocols guided by the results obtained from TEG may become the gold standard.
In 2016, a prospective randomized controlled trial conducted by Gonzalez et al. reported
lower mortality inpatients transfused based on the resultsof TEG with results obtained
from laboratory testing [80] (19.6% vs. 36.4%, respectively).

4.3.3. Fibrinogen Concentrates

Fibrinogen plays an important role in hemostasis during the early phases of trauma,
and low fibrinogen levels after severe trauma are associated with hemostatic impairment,
massive bleeding, and poor outcomes. Early administration leads to the prevention of
TIC and consequently, less need for blood product transfusions as demonstrated in the
randomized controlled “FiiRST” (Fibrinogen in the initial resuscitation of severe trauma)
trial [81] published in 2016 in which the timely infusion of concentrated fibrinogen was
shown to reduce TIC-related complications by maintaining a high fibrinogen level in
trauma patients. Current guidelines recommend fibrinogen replacement during major
bleeding when fibrinogen levels drop below 1.5 mg/mL. Cryoprecipitate, a pooled blood
product derived from fresh frozen plasma, is commonly used to increase fibrinogen levels
in the acute setting.

4.3.4. Pharmaceutical Hemostatic Agents

The available hemostatic drugs used as adjuvants for the management of severe
coagulopathy in the bleeding patient include recombinant factor VIIa, prothrombin complex
concentrate, antifibrinolytic agents and desmopressin.

While recombinant human factor VIIa is an adjunctive treatment for trauma-associated
coagulopathy, it should be reserved for life-saving treatment. When used, it is important
to first correct acidosis, hypothermia, thrombocytopenia, and hypofibrinogenemia The
rationale for use is that this factor binds to the tissue factor exposed as a result of trauma.
The complex that is subsequently created stimulates clot formation at the site [82].

Prothrombin complex concentrate (PCC) is a concentrate enriched in factors II, VII,
IX and X. Only a few trauma centers have used PCC in the treatment of TIC [83]; the
results obtained seem excellent but further clinical studies are needed to better understand
the mechanism of activity. The clinical use of PCC has been widely studied in counter-
acting warfarin-induced anticoagulation, as PCC contains vitamin K-dependent clotting
factors [84].

Coagulopathy is routinely corrected with the use of fresh-frozen plasma (FFP), be-
cause it provides volume support to reverse hypoperfusion and also replaces coagulation
factors [85,86].
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Tissue hypoperfusion occurring in the first moments in trauma patients is one of
the main factors responsible for the development of coagulopathy. To counteract this
mechanism, resuscitation with high volumes of crystalloids is used; however, this further
worsens the coagulopathy due to the dilution of clotting factors. Moreover, the severity of
tissue injury is associated with the consumption of clotting factors, which leads to further
worsening of coagulopathy. Studies in the past have recommended the use of FFP in the
treatment of TIC, since FFP not only provides the necessary volemic support but also
coagulation factors [87,88]. Unfortunately, FFP is not so readily available, since it requires
cross-matching and thawing before administration.

FFP therapy is also associated with a delay in the reversal of coagulopathy [85,86].
Recently, there has been increased use of PCCs as an alternative to fresh-frozen plasma.
It has been observed that the administration of PCC in a concentrate form provides an
advantage in overcoming early coagulopathic effects of large-volume fluid resuscitation in
trauma patients [85,86]. The major concerns about the clinical use of PCC have been the
development of thromboembolic complications and the higher cost of therapy compared to
FFP [85,86].

In the retrospective analysis of a prospectively maintained database of all coagulo-
pathic (INR ≥ 1.5) trauma patients presenting to level I trauma centers, conducted by
Joseph B. et al. [89], the effect of PCC + FFP therapy (n = 63 patients) vs. FFP alone (n = 189
patients) was studied. The results revealed that use of PCC helps to restore INR to normal
values faster (394 vs. 1050 min; p = 0.001), leading to less demand for concentrated blood
units (6.6 vs. 10 units; p = 0.001) and, most importantly, reduced mortality rates (23 vs. 28%;
p = 0.04). In fact, the authors demonstrated a survival difference in patients who received
PCC + FFP therapy compared to patients who received FFP therapy alone. This difference
in mortality may be attributed to the rapid reversal of coagulopathy and factor replacement
in patients who received PCC together with FFP [89].

There is insufficient clinical evidence regarding desmopressin to support its use in the
trauma population, except in patients with preexisting bleeding diathesis [90]. Preliminary
results from animal studies conducted in 2008 and 2010 showed an improvement, but not
complete correction of platelet dysfunction induced by hypothermia or acidosis [91–93].

Instead, ketamine can prevent indirectly acidosis because acts both as sedative and
good inotropic on trauma, but its effect is very unclear in trauma induced coagulopathy. If
on the one hand some studies demonstrate an inhibitory activity on platelets on the other
hand it is an excellent drug for maintaining good hemodynamics and indirectly avoiding
acidosis which in turn inhibits platelet function [94].

5. Conclusions

As described in this narrative review, TIC is a result of a complex mechanism of inter-
actions of different pathophysiological processes such as altered coagulation, inflammation,
and cellular dysfunction. New evidence in the field of trauma immunology can partly
explain the complexity of the processes that occur after trauma. However, even though our
knowledge of TIC has increased, improving outcomes of trauma patients, many questions
remain that will hopefully be clearly answered by ongoing and future studies.

6. Future Perspectives

Ongoing trials are currently investigating the early use of fibrinogen or cryoprecipitate
and the administration of specific coagulation factors to correct TIC. Further investigations
are needed into the role of inflammation and the mechanisms of hypercoagulability and
organ dysfunction during late TIC. A better understanding of the complex and dynamic
pathophysiology of TIC may help to reduce preventable deaths due to trauma-induced
shock and organ dysfunction in the future.
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