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Abstract

The standard Hubbard model, while effective in describing interacting
many-body systems, has limitations in addressing long-range and complex
interparticle interactions. Specifically, the Hubbard model assumes a single-band
approximation, neglecting the role of multiple electronic bands that are often
critical in real materials. It also focuses only on local on-site Coulomb repulsion,
overlooking the longer-range interactions between electrons at different lattice
sites. Additionally, the model simplifies electron hopping by assuming uniform
tunneling between nearest neighbors, failing to capture the more intricate
tunneling processes observed in many materials. These simplifications make
the Hubbard model inadequate for describing systems exhibiting multi-orbital
effects, nonlocal interactions, or spatially varying tunneling, thus highlighting
the need for extensions that account for these complexities.

To address these limitations, nonstandard Hubbard Hamiltonians, incorporating
additional terms such as density-induced tunneling and pair tunneling, were
proposed long ago. These terms explicitly depend on Wannier functions, which
describe electron localization within the system. The standard Hubbard model
employs maximally localized Wannier functions, overlooking the full spatial
extent of these functions, particularly their tails. In contrast, we show here that
the nonstandard Hubbard terms are strongly influenced by these tails, which
play a crucial role in generating long-range interactions that significantly impact
the system’s dynamics.

In this thesis, we present a novel treatment of Wannier functions, developing
a perturbative approach that utilizes the barrier penetration coefficient as a
perturbation parameter. With these newly defined Wannier functions, we are
able to evaluate the nonstandard Hubbard terms and use them to re-derive the
nonstandard Hubbard Hamiltonian. Our results demonstrate that enhanced
long-range interparticle interactions can lead to a mechanism for repulsive
particle pairing, driven by the suppression of single-particle tunneling due to
density-induced tunneling. Contrary to predictions from the standard Hubbard
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iv ABSTRACT

model, this suppression does not lead to an insulating state. Instead, it allows the
coherent motion of correlated electron pairs via pair tunneling, with these pairs
remaining resistant to decay caused by single-electron tunneling transitions.

Using perturbative analytical approximations and extensive numerical simu-
lations, we further investigate nonstandard Hubbard terms and their impact
on many-body dynamics, with a particular focus on tunneling dynamics in
arbitrary double-well potentials. Our results show that the influence of these
nonstandard terms becomes increasingly significant as the interaction strength
grows, underscoring their role in driving novel transport behaviors in strongly
correlated systems.

These insights are particularly relevant for understanding materials like twisted
bilayer graphene and systems undergoing metal-insulator transitions, where
strongly correlated interactions are crucial. By validating our model through
extensive numerical simulations and comparisons with experimental data, such
as second-order tunneling in optical double-well potentials, we provide a more
accurate framework for analyzing strongly correlated systems. This work not
only enhances our understanding of these complex materials, but also opens
new paths for the study of many-body physics.



Sommario

Il modello di Hubbard standard, pur essendo efficace nella descrizione di sistemi
interagenti a molti corpi, presenta limitazioni nell’affrontare interazioni a lungo
raggio e interazioni interparticellari complesse. In particolare, il modello di
Hubbard assume un’approssimazione a banda singola, trascurando il ruolo delle
bande elettroniche multiple, spesso critiche nei materiali reali. Inoltre, il modello
si concentra solo sulla repulsione coulombiana locale, trascurando interazioni
a più lungo raggio tra elettroni in siti reticolari diversi. Inoltre, il modello
semplifica l’hopping elettronico ipotizzando un tunneling uniforme tra primi
vicini, non riuscendo a cogliere i processi di tunneling più intricati osservati
in molti materiali. Queste semplificazioni rendono il modello di Hubbard
inadeguato a descrivere sistemi che presentano effetti multiorbitali, interazioni
non locali o tunneling che varia nello spazio, evidenziando così la necessità di
estensioni che tengano conto di queste complessità.

Per ovviare a queste limitazioni, già da tempo sono state proposte Hamiltoniane
di Hubbard non standard, che incorporano termini aggiuntivi come il density-
induced tunneling e il pair tunneling. Questi termini dipendono esplicitamente
dalle funzioni di Wannier, che descrivono la localizzazione degli elettroni
all’interno del sistema. Il modello di Hubbard standard impiega funzioni di
Wannier massimamente localizzate, trascurando l’intera estensione spaziale di
queste funzioni, in particolare le loro code. Al contrario, questa tesi dimostra
che i termini di Hubbard non standard sono fortemente influenzati da queste
code, che svolgono un ruolo cruciale nel generare interazioni a lungo raggio che
influenzano in modo significativo la dinamica del sistema.

Questa tesi introduce un nuovo approccio alle funzioni di Wannier, sviluppando
un approccio perturbativo che utilizza il coefficiente di penetrazione della
barriera come parametro perturbativo. Con le funzioni di Wannier appena
definite, siamo in grado di valutare i termini di Hubbard non standard e di
utilizzarli per rideterminare l’Hamiltoniana di Hubbard non standard. I nostri
risultati dimostrano che l’aumento dell’intensità delle interazioni interparticellari
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a lungo raggio può portare ad un meccanismo di accoppiamento repulsivo delle
particelle, guidato dalla soppressione del tunneling di particella singola dovuto
al density-induced tunneling. Contrariamente alle previsioni del modello di
Hubbard standard, questa soppressione non porta a uno stato isolante. Al
contrario, essa consente il movimento coerente di coppie di elettroni correlati
tramite pair tunneling, con queste coppie che resistono al decadimento causato
dalle transizioni di tunneling di singolo elettrone.

Utilizzando approssimazioni analitiche perturbative e ampie simulazioni
numeriche, studiamo ulteriormente i termini di Hubbard non standard e il
loro impatto sulla dinamica a molti corpi, con particolare attenzione alla
dinamica di tunneling in potenziali arbitrari a doppia buca. I nostri risultati
mostrano che l’influenza di questi termini non standard diventa sempre più
significativa all’aumentare dell’intensità dell’interazione, sottolineando il loro
ruolo nel determinare nuovi comportamenti di trasporto in sistemi fortemente
correlati.

Queste intuizioni sono particolarmente importanti per la comprensione
di materiali come il twisted bilayer graphene e i sistemi che subiscono
transizioni metallo-isolante, dove le interazioni fortemente correlate sono cruciali.
Convalidando il nostro modello attraverso ampie simulazioni numeriche e
confronti con dati sperimentali, come il tunneling del secondo ordine in
potenziali ottici a doppia buca, forniamo un quadro più accurato per analizzare
i sistemi fortemente correlati. Questo lavoro di tesi non solo migliora la nostra
comprensione di questi materiali complessi, ma apre anche nuove strade per lo
studio della fisica a molti corpi.



Beknopte samenvatting

Het standaard Hubbard-model, hoewel effectief in het beschrijven van interacties
in veeldeeltjessystemen, beperkingen heeft bij het adresseren van langeafstands-
en complexe interacties tussen deeltjes. Het Hubbard-model gaat specifiek uit
van een enkelbandbenadering en negeert de rol van meerdere elektronische
banden, die vaak cruciaal zijn in echte materialen. Bovendien richt het
model zich alleen op lokale Coulomb-afstoting op dezelfde locatie, waarbij
de langereafstandsinteracties tussen elektronen op verschillende roosterplaatsen
worden over het hoofd gezien. Daarnaast vereenvoudigt het model het
elektronenspringen door aan te nemen dat er een uniforme tunneling is tussen
de dichtstbijzijnde buren, waardoor de meer complexe tunnelingprocessen
die in veel materialen worden waargenomen, niet worden vastgelegd. Deze
simplificaties maken het Hubbard-model ontoereikend voor het beschrijven
van systemen die multi-orbitaal effecten, niet-lokale interacties of ruimtelijk
variërende tunneling vertonen, wat de noodzaak benadrukt van uitbreidingen
die met deze complexiteiten rekening houden.

Om deze beperkingen aan te pakken, werden al lang geleden niet-standaard
Hubbard-Hamiltonianen voorgesteld, waarin extra termen zoals dichtheid-
geïnduceerde tunneling en paarvormingstunneling zijn opgenomen. Deze termen
zijn expliciet afhankelijk van Wannier-functies, die de lokalisatie van elektronen
binnen het systeem beschrijven. Het standaard Hubbard-model maakt gebruik
van maximaal gelokaliseerde Wannier-functies en negeert de volledige ruimtelijke
omvang van deze functies, met name hun uitlopers. Wij tonen echter aan dat
de niet-standaard Hubbard-termen sterk worden beïnvloed door deze uitlopers,
die een cruciale rol spelen bij het genereren van langeafstandsinteracties die de
dynamiek van het systeem aanzienlijk beïnvloeden.

In deze thesis presenteren we een nieuwe behandeling van Wannier-functies en
ontwikkelen we een perturbatieve benadering die de barrière-penetratiecoëfficiënt
gebruikt als een perturbatieparameter. Met deze nieuw gedefinieerde Wannier-
functies kunnen we de niet-standaard Hubbard-termen evalueren en ze gebruiken
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om de niet-standaard Hubbard-Hamiltoniaan opnieuw af te leiden. Onze
resultaten tonen aan dat verbeterde langeafstandsinteracties tussen deeltjes
kunnen leiden tot een mechanisme voor afstotende deeltjesparing, gedreven
door de onderdrukking van enkeldeeltjestunneling door dichtheid-geïnduceerde
tunneling. In tegenstelling tot voorspellingen van het standaard Hubbard-model
leidt deze onderdrukking niet tot een isolerende toestand. In plaats daarvan
maakt het de coherente beweging van gecorreleerde elektronenparen mogelijk
via paarvormingstunneling, waarbij deze paren bestand blijven tegen verval
veroorzaakt door enkel-elektronentunnelingovergangen.

Door gebruik te maken van perturbatieve analytische benaderingen en
uitgebreide numerieke simulaties onderzoeken we verder de niet-standaard
Hubbard-termen en hun invloed op de dynamiek van veeldeeltjessystemen,
met een bijzondere focus op tunnelingdynamiek in willekeurige dubbele-
putpotentiaalvelden. Onze resultaten tonen aan dat de invloed van deze
niet-standaard termen steeds significanter wordt naarmate de interactiesterkte
toeneemt, wat hun rol onderstreept in het aandrijven van nieuwe transportge-
dragingen in sterk gecorreleerde systemen.

Deze inzichten zijn met name relevant voor het begrijpen van materialen zoals
getwist bilayer-graphene en systemen die een metaal-isolatorovergang ondergaan,
waar sterk gecorreleerde interacties cruciaal zijn. Door ons model te valideren via
uitgebreide numerieke simulaties en vergelijkingen met experimentele gegevens,
zoals tweede-orde tunneling in optische dubbele-putpotentiaalvelden, bieden we
een nauwkeuriger kader voor de analyse van sterk gecorreleerde systemen. Dit
werk verbetert niet alleen ons begrip van deze complexe materialen, maar opent
ook nieuwe wegen voor de studie van veeldeeltjesfysica.
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Chapter 1

Introduction

The enigma of strongly correlated materials. Condensed matter physics
explores the intricate world of solid materials, whose behavior and characteristics
are ruled by the quantum properties of electrons. Among the many challenges
in this field, understanding the dynamics of strongly correlated electron systems
stands out as one of the most complex and elusive tasks [3–11]. These systems,
where electron-electron interactions are so strong that they cannot be treated
as independent entities, give rise to a rich variety of fascinating phenomena that
continue to intrigue and puzzle physicists worldwide.

Strongly correlated materials are not just an academic curiosity, but rather
they are the key to unlock some of the most intriguing mysteries of modern
physics. From high-temperature superconductivity to quantum magnetism,
metal-insulator transitions, and beyond, these materials exhibit behaviors that
challenge our understanding and push the boundaries of what we know about
the quantum world. Therefore, the study of these systems represents a journey
towards understanding the fundamental principles that rule the behavior of
matter at its most basic level. This exploration has the potential to revolutionize
technology, leading to new materials and devices that could change the way we
live and interact with the world.

High-temperature superconductivity. One of the most remarkable
phenomena observed in strongly correlated systems is high-temperature
superconductivity [12–29]. Unlike conventional superconductors, where electron
pairing is mediated by phonon interactions, high-temperature superconductors
operate at temperatures much higher than those predicted by the BCS theory.
The exact mechanism that allows these materials to conduct electricity without
resistance at such elevated temperatures remains one of the greatest unsolved
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2 INTRODUCTION

problems in condensed matter physics. Strong correlations among electrons
are believed to play a crucial role in the formation of Cooper pairs in these
materials, but the precise nature of these interactions is still a subject of intense
research and debate among physicists.

The discovery of high-temperature superconductors in the late 20th century
was a breakthrough that promised to revolutionize technology by enabling
the creation of lossless power grids, ultra-efficient magnetic levitation systems,
and even quantum computers [30]. However, despite decades of research, the
underlying principles that make high-temperature superconductivity possible
remain elusive [31]. The interplay of electron correlations, lattice vibrations, and
magnetic interactions creates a complex and delicate balance that challenges
our theoretical models and experimental techniques [32]. Understanding the
long-standing scientific puzzle of high-temperature superconductivity would
unlock the potential of these materials for practical applications. As we continue
to probe the nature of these fascinating materials, we move closer to a future
where the promise of high-temperature superconductivity can be fully realized.

Magnetism in strongly correlated systems. Quantum magnetism is
another phenomenon that has fascinated researchers since its discovery. The
interaction of electron spins leads to the emergence of various magnetic orders,
ranging from simple ferromagnetism to more exotic configurations like spin
glasses and antiferromagnetic orders [33]. These magnetic states are fundamental
to the functionality of many modern technologies, including data storage devices
and quantum computing components.

The study of quantum magnetism provides deep insights into the behavior of
strongly correlated systems. The rich variety of magnetic phases and transitions
observed in these materials reflects the complex interplay between spin, charge,
and lattice degrees of freedom. Understanding these interactions is crucial for
developing new materials with tailored magnetic properties, which could lead to
advances in memory storage, spintronics, and quantum information processing
[34].

In recent years, the exploration of quantum spin liquids (a state of matter where
spins remain disordered even at absolute zero) has opened up new research
pathways in quantum magnetism. These highly entangled states of matter could
potentially be controlled for topological quantum computation, offering a robust
platform for the development of fault-tolerant quantum computers.

Metal-insulator transitions. Metal-insulator transitions provide another
fascinating aspect of strongly correlated systems. In these transitions, a material
can switch from being a conductor to an insulator as a result of changes in
temperature, pressure, or chemical composition [35]. This transition is closely
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linked to the Mott insulator phase, where electron correlations prevent the
material from conducting, even though band theory would predict metallic
behavior.

The study of metal-insulator transitions offers a window into the complex
interplay between electron localization and delocalization. In a Mott insulator,
strong electron-electron interactions dominate, leading to a state where electrons
are localized, and the material behaves as an insulator [36]. However, by tuning
external parameters such as pressure or doping, it is possible to induce a
transition to a metallic state, where electrons are free to move and conduct
electricity [37]. This transition has practical implications for the development
of new materials and devices. For example, the ability to control the metal-
insulator transition could lead to the creation of materials with tunable electronic
properties, which could be used in sensors, switches, and other electronic devices.

Beyond these well-known phenomena, strong electron correlations can lead to
other complex behaviors such as charge and spin density waves, quantum spin
liquids, and the fractional quantum Hall effect, where strong correlations give
rise to quasiparticles with fractional charge [38]. Additionally, orbital ordering
(the spatial arrangement of electron orbitals in a material) can lead to significant
changes in its magnetic and electronic properties. This ordering often competes
with other interactions, resulting in complex phase diagrams and rich physics
that are still not fully understood.

The standard Hubbard model. To describe and predict all the fascinating
phenomena observed in strongly correlated systems, physicists have developed
various theoretical models, with the standard Hubbard model [39–42] emerging
as a fundamental framework. The standard Hubbard model is celebrated for
its simplicity and effectiveness in capturing the essence of electron correlations
within a lattice structure, making it a cornerstone in the study of strongly
correlated systems. In such systems, the interactions between electrons are so
intense that they cannot be treated as independent particles, making traditional
models inadequate.

Characterized by its simplicity and effectiveness, the standard Hubbard model
is built on two main components: the kinetic energy term (Ω0), which describes
electron hopping between adjacent lattice sites, and the on-site Coulomb
interaction term (U), which accounts for the repulsive (U > 0) or attractive
(U < 0) forces between electrons on the same site. Despite its simplicity, this
framework has proven to be remarkably powerful in explaining a wide range of
phenomena in strongly correlated systems, from metal-insulator transitions to
magnetic ordering.

In particular, the standard Hubbard model has been instrumental in
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understanding metal-insulator transitions, where a material can shift from
a conducting to an insulating state depending on electron interactions. Here,
strong Coulomb interactions localize electrons, leading to complex magnetic
and electronic behaviors. These materials, often transition metal oxides, exhibit
properties that can be accurately predicted by the standard Hubbard model,
making it an indispensable tool for researchers in the field. It also provides
valuable insights into magnetic ordering, where the interplay between electron
hopping and on-site interactions leads to the formation and alignment of
magnetic moments. Another significant application is in high-temperature
superconductors, where the model helps to explore mechanisms leading to
superconductivity at temperatures much higher than those predicted by
conventional BCS theory.

The standard Hubbard model is particularly effective for systems where electron
correlations are dominant, namely in scenarios where the on-site interaction
energy U is comparable to or greater than the kinetic energy associated with
electron hopping Ω0. In this strong-coupling regime, the standard Hubbard
model effectively captures the competition between electron delocalization (due
to hopping) and localization (due to strong interactions).

Beyond the standard Hubbard model. Despite its success and widespread
use, the standard Hubbard model has significant limitations in fully capturing
the complexities of strongly correlated systems. While it offers valuable insights
into single-particle dynamics and electron-electron interactions, it oversimplifies
many aspects of real-world systems, particularly when higher-order interaction
effects come into play [43–47]. One of its main shortcomings is its focus on
single-particle dynamics, often neglecting critical higher-order interaction effects
[2, 48, 49]. To address these limitations, extended and nonstandard versions
of the Hubbard model have been developed, offering a more comprehensive
description of many-body dynamics [43, 50–57].

The extended Hubbard model, studied extensively since the 1970s, introduces
additional terms beyond the standard nearest-neighbor hopping. These
include next-to-nearest-neighbor hopping, long-range interactions, and intersite
Coulomb repulsion. Such extensions enable the model to capture the more
complex spatial interactions and correlation effects seen in systems like transition
metals and high-temperature superconductors. By incorporating these terms,
the extended Hubbard model provides a more accurate understanding of electron
motion and interactions in these systems.

In many real-world scenarios, electron hopping is not independent of
interactions. The nonstandard Hubbard model incorporates interaction-
dependent modifications, accounting for phenomena such as density-induced
tunneling (DT) [43–45, 58–67] and pair tunneling (PT) [54, 68, 69], which are
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particularly relevant in strongly correlated systems. The DT term describes how
the presence of neighboring particles modifies the tunneling rates, suppressing
single-particle hopping in high-density regimes [70–83]. Meanwhile, the PT
term allows for the coherent tunneling of particle pairs, a process analogous
to Cooper pairing in superconductors, that can become dominant in strongly
correlated regimes.

Nonstandard Hubbard terms and Wannier functions. A critical aspect
of accurately evaluating these nonstandard terms involves the Wannier functions
(WFs), which describe the localized states of electrons within a periodic potential,
giving a real-space representation. The precise determination of WFs, including
their spatial extent and tails, is crucial for evaluating the nonstandard Hubbard
terms [50–52, 84]. Traditional methods, such as maximally localized Wannier
functions (MLWFs) [85], often fail to account for the long tails of these functions.
These tails and their overlap are essential for determining the magnitude and
sign of the nonstandard terms, and their omission can lead to incomplete or
inaccurate descriptions of the system’s dynamics.

WFs, originally introduced by Wannier in 1937, are a crucial tool in condensed
matter physics for providing a localized basis to represent electronic states in
periodic systems. These functions have been extensively applied in band theory
and the study of electron localization in crystalline solids. Traditional methods
for constructing WFs, such as the MLWFs, have proven effective for weakly
correlated systems. However, challenges arise when applying these methods
to strongly correlated materials, such as Mott insulators or high-temperature
superconductors. In such systems, the standard construction, typically based
on non-interacting band structures, often fails to accurately capture interaction
effects and may lead to incorrect descriptions of electronic states. Recent
advancements, including the inclusion of many-body effects and multiband
extensions, have sought to address these limitations. Building upon these
developments, this thesis introduces a novel treatment of WFs tailored for
nonstandard Hubbard models, improving the accuracy of interaction matrix
elements, particularly in systems where correlation effects are dominant.

In this thesis, we develop a novel method for evaluating WFs that takes into
account their complete spatial extent, including their critical tails. This method
improves the accuracy in the evaluation of the nonstandard Hubbard terms,
providing a more reliable foundation for theoretical predictions. By using these
newly evaluated WFs, we can accurately capture how the lattice structure and
interactions influence tunneling dynamics, leading to a more precise evaluations
of DT and PT terms. This approach improves our understanding of the interplay
between interactions and tunneling dynamics, crucial for modeling the behavior
of strongly correlated systems.
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Recent advancements in experimental techniques, particularly with ultra-cold
atoms in optical lattices, have revolutionized the study of strongly correlated
systems, enabling more accurate simulations [43, 45, 82, 86–95]. These
experiments have uncovered several phenomena that challenge the standard
Hubbard model. For instance, the standard Hubbard model fails to account for
the suppression of single-particle tunneling in systems with strong long-range
interactions, and it cannot describe the formation of bound states or coherent
particle pairs without leading to an insulating state. Moreover, the model is
unable to capture multi-particle dynamics and long-range correlations observed
in these systems.

To overcome these limitations, the nonstandard Hubbard model incorporates
additional terms, such as DT and PT, evaluated by considering the full spatial
extent of electron WFs, including their tails, which are crucial for describing
long-range interactions. The inclusion of these terms significantly improves
the standard Hubbard model’s ability to describe the many-body dynamics in
systems with strong correlations [1, 43, 43, 45, 53, 70, 70, 96–101]. Specifically,
the DT term modifies the effective tunneling rate of particles due to the presence
of other particles, while the PT term facilitates the coherent tunneling of particle
pairs. These terms capture interaction-driven effects that are missed by the
standard Hubbard model, making them crucial for modeling the full range of
behaviors experimentally seen in strongly correlated systems.

In particular, the DT effect can suppress single-particle tunneling in strongly
interacting systems, leading to a regime of effective particle localization. This
phenomenon reflects real experimental observations where interactions inhibit
particle mobility, an indication of strong correlations. On the other hand, the
PT term enables the formation of coherent particle pairs, similar to Cooper pairs
in superconductivity, allowing for correlated tunneling processes that would
otherwise be neglected.

As a result, the nonstandard Hubbard model offers a more comprehensive
framework for understanding strongly correlated systems, providing better
agreement with experimental observations and deeper insights into the
underlying physics. This expanded framework is promising for explaining
complex phenomena, such as superconductivity in twisted bilayer graphene
and metal-insulator transitions, further enhancing its relevance in the field of
condensed matter physics.

From theoretical models to optical lattices. This thesis focuses on
extending the standard Hubbard model to scenarios involving periodic potentials,
such as those observed in optical lattices. While this extension holds great
promise, it is essential to acknowledge its limitations. The methods developed
herein, though powerful, may not smoothly apply to more intricate or disordered
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systems without significant adaptations. Furthermore, while the new proposed
WFs’ evaluation method aims to enhance approximation accuracy, it remains
tied to the assumptions underlying the model and the type of the potential
used.

The core of this work lies in applying this theoretical framework to various
potential profiles, including square double-well and sinusoidal potentials,
which are particularly relevant for experimental setups like optical lattices.
Our findings demonstrate that the nonstandard Hubbard model provides
a more accurate description of system behavior across different interaction
regimes. Notably, the inclusion of the PT term, which allows for coherent pair
propagation, shows strong alignment with experimental observations, especially
in explaining second-order tunneling processes. This is particularly significant
in understanding the transport properties of the system, which are inadequately
captured by the standard Hubbard model alone.

The square double-well potential. The square double-well potential,
a simplified yet insightful model, provides an ideal framework for studying
tunneling dynamics in strongly correlated systems [50, 51]. Its value lies in
the fact that the potential is piecewise constant, enabling an exact solution of
the Schrödinger equation. This exact solvability allows for a precise evaluation
of nonstandard tunneling terms such as DT and PT, which can be directly
compared to the single-particle tunneling amplitude. This comparison is essential
for assessing the relevance of these nonstandard terms and understanding their
true impact on the system’s dynamics.

Furthermore, the double-well configuration offers a controlled environment
by simplifying the problem to just two sites, while still capturing essential
features of more complex lattices. By focusing on this reduced framework, we
gain significant insights into the behavior of a full lattice, typically consisting
of many sites, without the computational complexity of extensive numerical
simulations. As a result, this model serves as a powerful tool for investigating
the role of nonstandard interactions in larger, more intricate systems.

By focusing on the square double-well potential, this thesis clarifies basic
tunneling dynamics, providing a benchmark for more complex scenarios. The
simplicity of this model allows for a detailed examination of how electron pairs
behave under the influence of DT and PT terms, offering insights that can
be generalized to other potential profiles. This exploration not only validates
the nonstandard Hubbard model, but also enhances our understanding of the
fundamental processes that rule strongly correlated systems.

The sinusoidal potential in optical lattices. Moving from the simplicity
of the square double-well to the more complex sinusoidal potential, this thesis



8 INTRODUCTION

focuses on a scenario that closely mirrors experimental conditions found in
optical lattices [2]. Sinusoidal potentials, with their periodic structure, provide
a rich landscape for exploring the behavior of electrons under strong correlation
effects. This potential is particularly suited for investigating higher-order terms
and the role of multiple energy bands, aspects that are critical for understanding
the full spectrum of behaviors in strongly correlated systems.

The sinusoidal potential serves as a bridge between theoretical predictions
and experimental observations, offering a realistic platform for validating
our nonstandard Hubbard model. By aligning theoretical outcomes with
experimental data, especially from ultra-cold atom systems, this work confirms
the relevance of nonstandard terms like DT and PT in capturing complex
many-body phenomena. The sinusoidal potential’s correspondence to real-world
experimental setups ensures that the insights gained from this study are not
only theoretically significant, but also practically applicable.

Validation of the model. One of the critical aspects of this research is the
validation of theoretical predictions through comparison with experimental
data. Ultra-cold atom experiments in optical lattices provide an unparalleled
opportunity to test the accuracy of the nonstandard Hubbard model. These
experiments, with their precise control over interaction strengths and tunneling
rates, are particularly well-suited for studying effects like DT and PT, key
aspects of the nonstandard Hubbard model.

The nonstandard Hubbard model’s predictions can be tested against these
experimental results to assess the validity and accuracy of the theoretical
framework. In particular, experiments have shown that the DT effect can be
significant even at moderate interaction strengths, contrary to the predictions
of the standard Hubbard model. Similarly, the PT term has been observed to
play a crucial role in systems with strong interactions, influencing the formation
of bound states and the overall transport properties of the system [102–104].
These experimental validations not only confirm the theoretical framework
developed in this thesis, but also highlight the importance of incorporating
nonstandard terms for a more accurate and comprehensive understanding of
strongly correlated systems.

Thesis structure. This thesis is structured as follows: Ch. 2 presents an
approach for evaluating the WFs in a multiwell potential, based on the two-
potential approach (TPA) to tunneling problems, originally developed for
tunneling to the continuum [105–107], which allows for an accurate evaluation
of nonstandard Hubbard terms. Specifically, after a proper definition of the
WFs of a multiwell potential in Sec. 2.2, we present the TPA in Sec. 2.3 and
we apply it to the case of a triple-well potential in Sec. 2.4. Finally, in Sec. 2.5
we analyze the effect of the DT and PT terms, for both a contact interaction
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and a long-range constant interaction. Specifically, in Sec. 2.5.1 we analyze the
case of a square double-well potential, showing that the DT term can effectively
suppress the total single-particle tunneling amplitude only in the presence of a
long-range interaction. In Sec. 2.5.4, we study the dynamics of two electrons
with parallel spins in a square triple-well potential. In particular, we show under
which conditions the nonstandard DT and PT terms become important and
when the nonstandard Hubbard model should be used instead of the extended
Hubbard model.

Ch. 3 presents an analysis of the nonstandard Hubbard model in a double-
well potential, as well as a comparison with theoretical and experimental
literature. Specifically, after recalling the TPA discussed in Ch. 2, we accurately
define the WFs of a double-well potential in Sec. 3.3. In Sec. 3.4, we analyse
the nonstandard Hubbard model, evaluating the corresponding nonstandard
Hubbard terms through the TPA for a contact interaction in Sec. 3.5. We
compare the results with existing theoretical literature in Sec. 3.6. Finally, in
Sec. 3.7, we examine the effects of DT and PT terms on the dynamics of two
distinguishable particles in a square double-well potential. Our findings are
compared with experimental observations of Ref. [2] in Sec. 3.8, highlighting
the regimes where nonstandard DT and PT terms are particularly relevant.

Finally, Ch. 4 summarizes the key findings of our research, discussing the
implications of including nonstandard interaction terms into the standard
Hubbard model, and highlighting the significance of our novel method for
evaluating WFs. It also outlines the potential impact of these advancements on
the understanding and application of strongly correlated electron systems.

A new horizon in quantum materials. As we stand at the frontier
of condensed matter physics, the work presented in this thesis represents
a significant step further in the theoretical modeling of strongly correlated
systems. By integrating nonstandard terms into the standard Hubbard model
and refining the evaluation of the WFs, this research offers a more precise
framework for exploring the complexities of these systems. The theoretical
advancements achieved here may have real-world implications, paving the
way for future explorations into high-temperature superconductivity, quantum
magnetism, metal-insulator transitions, and other phenomena that lie at the
heart of modern physics.

Finally, the journey outlined in this thesis is far from complete. As we continue
to refine and expand our theoretical models, we move closer to a comprehensive
understanding of the quantum world. The improved models developed here
are expected to serve as a foundation for future research, enabling scientists to
probe deeper into the mysteries of strongly correlated systems. The potential
applications of this work are wide, ranging from the development of new materials
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with tailored properties to advances in quantum computing.



Chapter 2

Nonstandard Hubbard model
and electron pairing

This chapter is an adaptation of the published article [50].

In this Chapter, we present a nonstandard Hubbard model applicable to arbitrary
potential profiles and interparticle interactions. Our approach involves a novel
treatment of Wannier functions (WFs), free from the ambiguities of conventional
methods and applicable to finite systems without periodicity constraints.

To ensure a consistent evaluation of the WFs, we develop a perturbative approach,
employing the barrier penetration coefficient as a perturbation parameter. With
the newly defined WFs as a basis, we derive the Hubbard Hamiltonian, revealing
the emergence of density-induced tunneling (DT) and pair tunneling (PT) terms
alongside standard contributions.

Our investigation demonstrates that long-range interparticle interactions can
induce a mechanism for repulsive particle pairing. This mechanism relies on
the effective suppression of single-particle tunneling due to DT. Contrary to
expectations based on the standard Hubbard model, an increase in interparticle
interaction does not lead to an insulating state. Instead, our proposed mechanism
implies the coherent motion of correlated electron pairs, similar to bound states
within a multiwell system, resistant to decay from single-electron tunneling
transitions. These findings carry significant implications for various phenomena,
including the formation of flat bands, the emergence of superconductivity in
twisted bilayer graphene, and the possibility of a metal-insulator transition.

We present an approach for evaluating the WFs in a multiwell potential, based on

11
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the two-potential approach (TPA) to tunneling problems, originally developed
for tunneling to the continuum, see Refs. [105–107], which allows for an accurate
evaluation of nonstandard Hubbard terms. Specifically, after a proper definition
of the WFs of a multiwell potential in Sec. 2.2, we present the TPA in Sec. 2.3
and we apply it to the case of a triple-well potential in Sec. 2.4. Finally, in
Sec. 2.5 we analyze the effect of the PT and DT terms, for both a contact
interaction and a long-range constant interaction. Specifically, in Sec. 2.5.1 we
analyze the simple case of a square double-well potential, showing that the
DT term can effectively suppress the total single-particle tunneling amplitude
only in the presence of a long-range interaction. In Sec. 2.5.4, we study the
dynamics of two electrons with parallel spins in a square triple-well potential.
In particular, we show under which conditions the nonstandard DT and PT
terms become significant and when the nonstandard Hubbard model should
be used instead of the extended Hubbard model (which neglects DT and PT
contributions).

2.1 Beyond the standard Hubbard model

2.1.1 The cotunneling process

Electron pairing in solids has traditionally been attributed to phonon-mediated
attraction. However, a fundamental question is whether repulsive particles
can form pairs independently of the presence of phonons. To explore this
idea further, we examine two interacting electrons within the same site of a
periodic structure, as described by the Hubbard model [39]. When the on-site
two-particle repulsive energy, denoted as U , significantly exceeds the tunneling
coupling Ω, single-electron hopping to a neighboring site is strongly suppressed
due to the large energy mismatch. Concerning the tunneling of an electron pair,
the elastic two-electron hopping (known as “cotunneling”) is also suppressed in
the standard Hubbard model. Indeed, the corresponding amplitude representing
two consecutive hoppings is a second-order process that involves a large virtual
energy variation ∼ 2Ω2/U [2], which decreases with U . Even if weak, this
second-order process survives for any finite interaction U , so that the repulsive
interaction cannot completely localize the electron pair within the framework
of the standard Hubbard model.
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2.1.2 The nonstandard Hubbard terms

It is evident that the standard Hubbard Hamiltonian fails to capture all the
interaction effects [43–45]. For instance, the cotunneling process can occur
with both particles staying together, without changing their total energy, a
nonstandard Hubbard process known as PT [43]. Even with increasing U , the
latter can become a major contributor to the cotunneling process [53]. Indeed,
even in the case of single-electron tunneling coupling suppression (Ω → 0),
PT remains uninhibited, offering an effective mechanism for electron pairing,
independent of the attractive interaction. A similar idea was proposed by
Anderson in the theory of cuprate superconductivity in Ref. [69]. Inspired by
this idea, we demonstrate how this specific mechanism can be realized within
the framework of a nonstandard Hubbard model, which includes both the
pair tunneling term and the DT term, also known as bond-charge interaction
[43–45, 58–65].

While the influence of the PT term on superconductivity is rather obvious, the
effect of the DT term (with the adequate sign) also favors superconductivity.
Indeed, analytical demonstrations have highlighted the role of this term in
supporting the emergence of superconductivity within models characterized by
repulsive on-site interaction at half filling [67]. Thus, the DT and PT terms
play a crucial role in electron dynamics, both in terms of their magnitude and
sign. Specifically, we show that the DT term, in the presence of a long-range
interparticle interaction, has the ability to lower and even totally suppress the
single-particle coupling, due to an effective mean-field generated by the other
particles, thus providing stability of the electron pair.

An extension of the standard Hubbard model concerning strongly correlated
systems has been explored long ago in Ref. [70]. However, only recently has
the nonstandard Hubbard model attracted more attention, particularly due to
experimental results with ultracold atoms in optical lattices [43, 45, 96–98], as
well as because they have been shown to host many different effects, ranging
from superconducting pairing to localization [73–81]. Currently, the accurate
evaluation of nonstandard Hubbard terms and the understanding of their
influence on the dynamics of correlated systems remain open problems. Indeed,
these terms are closely related to the overlap of WFs from adjacent sites, often
accurately represented by the corresponding orbital wave functions. However,
their overlap, crucially dependent on their tails being situated in neighboring
sites, significantly affects both the magnitude and sign of nonstandard Hubbard
terms, on which consensus is yet to be reached [1, 43, 70].
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2.2 Wannier functions

2.2.1 Multiwell potential

Let us consider a particle placed in an N -site potential chain

V(x) =
N∑

j=1
Vj(x) , (2.2.1)

where V(x) → 0 as x → ±∞. The exact eigenstates are obtained from the
Schrödinger equation (we take h̄ = 1)

H |ψk⟩ ≡
(

− ∇2
x

2m + V(x)
)

|ψk⟩ = Ek |ψk⟩ , (2.2.2)

with boundary conditions at infinity (x → ±∞) given by

ψk(x) ∼ e−
√

−2mEk|x| (2.2.3)

that uniquely define the bound state energy spectrum (Ek < 0) of the exact
Hamiltonian H. We assume that the N lowest eigenstates form a band, well
separated from the other eigenstates of the spectrum.

Figure 2.1: (a) Symmetric double-well potential V(x) = V1(x) + V2(x), with
lattice depth V0. Dashed lines represent the first two lowest-band energy levels
E1,2. (b), (c) Single-well potentials V1,2(x), with classical turning points ∓x, so
that V1,2 (∓x) = E0, the single-site ground state energy. The separation point
x0 is defined so that V1(x0) = V2(x0) = 0.

We consider the corresponding tight-binding tunneling Hamiltonian HN , which
describes the lowest band of the exact Hamiltonian H, given by

HN =
N∑

j=1
Ej |Ψj⟩ ⟨Ψj | +

N−1∑
j=1

Ωj (|Ψj⟩ ⟨Ψj+1| +H.c.) , (2.2.4)
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where Ej represents the single-site energy, Ωj is the nearest neighbor tunneling
coupling, while

Ψj(x) = ⟨x|Ψj⟩

are the WFs. In order to define Ej and Ωj in a consistent way, we identify the
spectrum of the tunneling Hamiltonian in Eq. (2.2.4) with the one of the lowest
bands of the original Hamiltonian H in Eq. (2.2.2). When employing such
a procedure, unlike when solving exactly the Schrödinger Eq. (2.2.2), we are
neglecting the influence of interband transitions on electrons’ motion. Indeed,
if the lowest band is sufficiently separated from the other bands, the exact
spectrum obtained from Eq. (2.2.2) and the one of the tunneling Hamiltonian
will produce the same dynamics. Therefore, we diagonalize the Hamiltonian HN

by a unitary transformation R and then we apply the same transformation to
the lowest-band spectrum, namely Ek and |ψk⟩, to obtain the WFs. In particular,
these are uniquely defined by

|Ψk⟩ =
N∑

k′=1
Rkk′ |ψk′⟩ . (2.2.5)

Notice that the exact eigenfunctions ψk(x) do not contain uncertainty, as
belonging to the bound-state spectrum of the Schrödinger Eq. (2.2.2). In the
following, we will illustrate the unitary transformation given in Eq. (2.2.5) for
the double-well and triple-well potential cases (for further details, see Appendix
A).

2.2.2 Symmetric double-well potential

Let us exemplify this method considering the symmetric double-well potential
V(x) in Fig. 2.1(a), where the lowest band contains two eigenstates ψ1,2(x), with
corresponding eigenenergies E1,2. The tunneling Hamiltonian of this system is
given by Eq. (2.2.4) for N = 2 and can be explicitly written as

H2 = E0

2∑
j=1

|Ψj⟩ ⟨Ψj | + Ω0 (|Ψ1⟩ ⟨Ψ2| +H.c.) . (2.2.6)
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By diagonalizing H2 through the unitary transformation R in Eq. (2.2.5), and
identifying its eigenspectrum with E1,2 and ψ1,2(x), we find

E0 = 1
2 (E1 + E2) , (2.2.7a)

Ω0 = 1
2 (E1 − E2) , (2.2.7b)

Ψ1,2(x) = 1√
2

[ψ1(x) ± ψ2(x)] . (2.2.7c)

In contrast with the “extended”eigenstates ψ1,2(x), the WFs Ψ1,2(x) are localized
respectively in the left and right well, although their tails are extended to the
neighboring wells.

2.2.3 Symmetric triple-well potential

Figure 2.2: (a) First three exact eigenfunctions ψ1(x) (blue curve), ψ2(x) (red
curve) and ψ3(x) (green curve) of a square triple-well potential. (b) Symmetric
square triple-well potential. The three wells have width L and depth V0 and are
separated by barriers of width b, where x1,2 are the separation points. Dashed
colored lines represent the first three exact energy levels of the system E1,2,3,
corresponding to the eigenfunctions shown in panel (a), which read E1 = −4.171,
E2 = −3.897 and E3 = −3.545. Parameters: L = 2, b = 0.5 and V0 = 5, in
arbitrary units.

This procedure can be easily extended for the symmetric triple-well potential
(N = 3) in Fig. 2.2, where the lowest band consists of three eigenstates
ψ1,2,3(x) with energies E1 < E2 < E3. The corresponding tight-binding tunneling
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Hamiltonian, given by Eq. (2.2.4) for N = 3, can be explicitly written as

H3 = E0

3∑
j=1

|Ψj⟩ ⟨Ψj | + Ω0 (|Ψ1⟩ ⟨Ψ2| + |Ψ2⟩ ⟨Ψ3| +H.c.) . (2.2.8)

Following the same procedure, i.e., by diagonalizing H3 and identifying the
obtained spectrum with the exact lowest-band one, we obtain

E0 = 1
2 (E1 + E3) ,

Ω0 = 1
2
√

2
(E1 − E3) ,

Ψ1(x) = 1
2ψ1(x) + 1√

2
ψ2(x) + 1

2ψ3(x) ,

Ψ2(x) = 1√
2

[ψ1(x) − ψ3(x)] ,

Ψ3(x) = 1
2ψ1(x) − 1√

2
ψ2(x) + 1

2ψ3(x) .

(2.2.9)

As in the previous case, the WFs Ψ1,2,3(x) are respectively localized in the left,
middle and right well, and are uniquely defined.

2.2.4 Comments on the uniqueness of Wannier functions

Let us point out that our approach for a consistent determination of the
tunneling Hamiltonian parameters and the related WFs can be generalized for
an arbitrary number of potential wells N , regardless of the periodicity of V(x).
Additionally, we observe that, for a periodic potential V(x), in the limit N → ∞,
this procedure looks similar to the method used to derive a set of localized WFs
from the Bloch functions, subjected to periodic boundary conditions, through a
unitary transformation. However, due to the additional “gauge freedom”, the
resulting WFs become strongly nonunique, so that different choices of the gauge
correspond to different sets of WFs having different shapes and spreads.

A widely used approach to avoid the gauge freedom consists in a proper choice
of the unitary transformation of the Bloch functions that enforces the maximal
localization of the WFs (see Ref. [85] for a detailed discussion). However,
this procedure does not guarantee that the tunneling Hamiltonian dynamics
corresponds to that obtained from the exact solution of the original multiwell
Schrödinger equation.
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In contrast, our approach is based on this correspondence, which allows one to
uniquely construct the tunneling Hamiltonian and the WFs by assuming only
the single-band (SB) approximation. Notice that the resulting WFs, although
localized at the corresponding site, exhibit tails penetrating to neighboring sites.
These tails play a crucial role in the evaluation of the nonstandard Hubbard
terms, as we will show in the following. On the contrary, the condition of
maximal localization of the WFs would decrease correspondingly the contribution
from these tails and therefore the amplitude of the nonstandard Hubbard terms.
Since our approach relates the WFs to the exact Schrödinger eigenstates, in the
next Section we present a consistent perturbative approach for their evaluation
in terms of single-site orbitals.

2.3 Two-potential approach for a double-well po-
tential

2.3.1 The standard orbitals

Let us consider the symmetric double-well potential in Fig. 2.1(a), given by the
sum of two single-well potentials

V(x) = V1(x) + V2(x) ,

such that V1(x) = 0 for x ≥ x0 and V2(x) = 0 for x ≤ x0, where x0 = 0 is the
separation point; see Figs. 2.1(b) and 2.1(c). The lowest eigenstates (orbitals)
of the left- and right-well Hamiltonians are obtained from(

− ∇2
x

2m + V1,2(x)
)

Φ(1,2)
0 (x) = E0Φ(1,2)

0 (x) , (2.3.1)

with the following boundary conditions:

Φ(1)
0 (x) ∼ e

√
−2mE0x as x → −∞ ,

Φ(1)
0 (x) = Φ(1)

0 (0)e−
√

−2mE0x as x ≥ x0 ,

(2.3.2)

and similarly for Φ(2)
0 (x) = Φ(1)

0 (−x). These orbitals can be used as a basis
to obtain the eigenstates ψ1,2(x) and the WFs Ψ1,2(x) ≡ ΨL,R(x), through a
perturbative approach. For instance, we could consider the left-well orbital
Φ(1)

0 (x) as the unperturbed state and the right-well potential V2(x) as the
perturbation (or vice versa).
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However, such a perturbative approach does not include a small parameter,
which makes the corresponding expansion unusable. This issue can be solved
by employing the TPA, which uses an alternative expansion in powers of the
orbitals overlap

β ≡ ⟨Φ(1)
0 |Φ(2)

0 ⟩ , (2.3.3)

a small parameter proportional to the barrier penetration coefficient

T0 = exp

−
x∫

−x

|p(x′)| dx′

 ≪ 1 . (2.3.4)

Here, p(x) represents the (imaginary) momentum under the potential barrier
and ±x are the classical turning points, shown in Figs. 2.1(b) and 2.1(c) (for
further details, see Appendix B). Using this approach, we derive the tunneling
Hamiltonian parameters in Eq. (2.2.7a) and Eq. (2.2.7b), which read

E0 = E0 + O
(
β2) ,

Ω0 = Ω0 + O
(
β2) ,

where E0 is given by Eq. (2.3.1), and

Ω0 = −
√

2|E0|
m

[Φ0(0)]2 ∝ T0 (2.3.5)

is a simplified (1D) version of the well-known Bardeen formula [108]. Similarly,
we obtain

E1,2 = E± + O
(
β2) ,

where
E± = E0 ± Ω0 .

Consequently, all the parameters of the tunneling Hamiltonian are completely
determined by the single-well orbitals.

2.3.2 The modified orbitals

At first glance, we may expect to derive the eigenstates ψ1,2(x) ≡ ψ1,2(E±, x)
from Eq. (2.2.7c) by replacing the WFs Ψ1,2(x) with the corresponding orbitals
Φ(1,2)

0 (x) ≡ Φ(1,2)
0 (E0, x) given by Eq. (2.3.1), so that

ψ1,2(E±, x) ≃ 1√
2

[
Φ(1)

0 (E0, x) ± Φ(2)
0 (E0, x)

]
. (2.3.6)
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However, Eq. (2.3.6) exhibits an inconsistency between the energy arguments
of ψ1,2(E±, x) and Φ(1,2)

0 (E0, x). To solve this issue, we introduce an energy
shift in the orbital functions by replacing the ground state energy E0 with a
free parameter E < 0. The resulting modified orbitals Φ(1,2)(E, x) (normalized
to unity) are obtained from Eq. (2.3.1) with the substitution E0 → E and
imposing the boundary condition at infinity given in Eqs. (2.3.2). However,
unlike Φ(1,2)

0 (E0, x), the modified orbitals Φ(1,2)(E, x) are defined respectively
on two different segments

X1 = (−∞, 0) and X2 = (0,∞) ,

and vanish elsewhere. As a result, they are nonoverlapping and therefore
orthogonal. Replacing Φ(1,2)

0 (E0, x) in Eq. (2.3.6) with Φ(1,2)(E±, x), we obtain

ψ1,2(E±, x) = 1√
2

[
Φ(1)(E±, x) ± Φ(2)(E±, x)

]
, (2.3.7)

which gives the exact result for ψ1,2(E±, x), in contrast with Eq. (2.3.6). Indeed,
the exact treatment of the Schrödinger Eq. (2.2.2) involves solving it on the
two segments and combining the results by imposing the continuity condition
at the separation point. This condition is automatically satisfied if E± are the
energies of the symmetric and antisymmetric states, respectively.

Substituting Eq. (2.3.7) into Eq. (2.2.7c), we obtain the exact left- and right-well
WFs, ΨL,R(x), in terms of the modified orbitals:

ΨL(x) = 1
2

[
Φ(1)

+ (x) + Φ(2)
+ (x) + Φ(1)

− (x) − Φ(2)
− (x)

]
,

ΨR(x) = 1
2

[
Φ(1)

+ (x) + Φ(2)
+ (x) − Φ(1)

− (x) + Φ(2)
− (x)

]
,

(2.3.8)

where
Φ(1,2)

± (x) ≡ Φ(1,2)(E0 ± Ω0, x) .
Expanding the modified orbitals in powers of Ω0 and neglecting O

(
Ω2

0
)

terms
(since Ω0 ∝ β ∝ T0) we obtain

Φ(1,2)
± (x) = Φ(1,2)

0 (x) ± Ω0 ∂EΦ(1,2)
0 (x) , (2.3.9)

where

Φ(1,2)
0 (x) ≡

{
Φ(1,2)

0 (E0, x) for x ∈ X1,2

0 elsewhere
, (2.3.10)

and

∂EΦ(1,2)
0 (x) ≡

(
∂Φ(1,2)(E, x)

∂E

)
E=E0

.
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Substituting Eq. (2.3.9) into Eqs. (2.3.8), we get

ΨL(x) = Φ(1)
0 (x) + Ω0∂EΦ(2)

0 (x) ,

ΨR(x) = Φ(2)
0 (x) + Ω0∂EΦ(1)

0 (x) ,
(2.3.11)

which represents our main result for the WFs. Looking at Eqs. (2.3.11), we
can observe that each WF consists of two nonoverlapping terms, describing
respectively the WF inside the respective well (first term) and its tail penetrating
into the neighboring well (second term), which is ∝ Ω0 and therefore much
smaller than the first term. Since Φ(1,2)(E, x) are normalized to unity for any
E, we can explicitly demonstrate the orthogonality of the WFs by using

∂E

0∫
−∞

[
Φ(1)(E, x)

]2
dx = 0 ,

so that

⟨ΨL|ΨR⟩ = 2Ω0

0∫
−∞

Φ(1)
0 (x)∂EΦ(1)

0 (x) dx = 0 . (2.3.12)

Equation (2.3.12) represents the overlap of the orbital Φ(1)
0 (x), which is nodeless,

with the tail of the WF belonging to the adjacent well; see Eqs. (2.3.11). From
Eq. (2.3.12), it clearly follows that the WF tail must change its sign, deeply
affecting the amplitudes of the nonstandard Hubbard terms. Finally, we point
out that Eqs. (2.3.11) are valid for an arbitrary multiwell system. In the next
Section, we exemplify this by comparing the WFs given by Eqs. (2.3.11) with
the exact numerical results for a symmetric square triple-well potential.

2.4 Two-potential approach for a triple-well poten-
tial

In this Section, we explicitly demonstrate the accuracy of our analytical approach
by analyzing the WFs of the symmetric square triple-well potential shown in
Fig. 2.2(b). Specifically, we evaluate the WFs by using the TPA and we compare
them with the exact WFs given by Eqs. (2.2.9), as well as with the corresponding
orbital functions. For simplicity, we consider a square well potential, since its
shape allows us to obtain simple analytical expressions for the WFs, which will
be used for the evaluation of the nonstandard Hubbard terms, highlighting their
explicit dependence on the quantum well parameters.
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2.4.1 The triple-well spectrum

The triple-well spectrum, namely the eigenfunctions ψk(x) ≡ ψk(Ek, x) and the
eigenvalues Ek, is obtained by solving the Schrödinger Eq. (2.2.2) with boundary
conditions given by Eq. (2.2.3). We focus on the three lowest-band eigenstates
(with k = 1, 2, 3) displayed in Fig. 2.2(a). The corresponding exact left-, middle-,
and right-well WFs ΨL,M,R(x) can be obtained from the lowest-band eigenstates
through Eqs. (2.2.9). On the other hand, we notice that the energy E0 in the
tunneling Hamiltonian in Eq. (2.2.8) corresponds to the energy of the lowest
orbital Φ0(x) given by Eq. (2.3.1) by considering the single-well potential

V(x) = −V0 for − L

2 < x <
L

2 .

Specifically, the lowest single-well orbital can be written as

Φ0(x) = N0


√

1 − |E0|
V0
eq0(x+ L

2 ) for − ∞ < x < − L
2

cos (p0x) for − L
2 < x < L

2√
1 − |E0|

V0
e−q0(x− L

2 ) for L
2 < x < ∞

, (2.4.1)

where
p0 =

√
2m(V0 + E0) ,

q0 =
√

−2mE0 ,

and
N0 =

√
2q0/(2 + Lq0)

is the normalization factor. As a result, the orbital functions for the triple-well
system (respectively for the left, middle and right well) read

Φ(1)
0 (x) ≡ Φ0(x+ L+ b) ,

Φ(2)
0 (x) ≡ Φ0(x) ,

Φ(3)
0 (x) ≡ Φ0(x− L− b) .

(2.4.2)

Substituting Φ0
(

L+b
2
)

into Eq. (2.3.5), we obtain for the tunneling energy

Ω0 = −
√

2|E0|
m

N 2
0

(
1 − |E0|

V0

)
e−q0b . (2.4.3)

For the single-well parameters used in Fig. 2.2, solving Eq. (2.3.1) and Eq. (2.4.3)
we obtain E0 = −3.8525 and Ω0 = −0.2216. These values can be compared with
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those obtained from the exact numerical solution of the Schrödinger equation
for the triple-well potential, namely E0 = −3.858 and Ω0 = −0.2215. Their
closeness confirms the high accuracy of the TPA for a consistent determination
of the tunneling Hamiltonian parameters.

2.4.2 Wannier functions for a triple-well potential

Finally, let us evaluate the corresponding WFs that can be obtained by extending
Eqs. (2.3.11) to a triple-well system. By following the same procedure of the
square double-well potential case, we construct the eigenstates ψk(x) through
the modified orbitals, with energy shift

Ek − E0 ∝ Ω0 .

We then obtain the WFs from the eigenstates ψk(x) via the unitary
transformation in Eq. (2.2.5). By expanding the resulting WFs in powers of
Ω0 up to O

(
Ω2

0
)

terms, we get a simple result representing the straightforward
extension of Eqs. (2.3.11), given by

ΨL(x) = Φ(1)
0 (x) + Ω0∂EΦ(2)

0 (x) ,

ΨM (x) = Φ(2)
0 (x) + Ω0

[
∂EΦ(1)

0 (x) + ∂EΦ(3)
0 (x)

]
,

ΨR(x) = Φ(3)
0 (x) + Ω0∂EΦ(2)

0 (x) .

(2.4.4)

As in the double-well case, Φ(1,2,3)
0 (x) denote the left-, middle-, and right-well

modified orbitals, respectively coinciding with Φ(1,2,3)
0 (x) of Eqs. (2.4.2) on

the intervals (−∞, x1), (x1, x2), and (x2,∞), and vanishing elsewhere. The
separation points x1,2 are taken at the center of the interwell barriers, as shown
in Fig. 2.2(b).

Looking at Eqs. (2.4.4), we notice that the WFs for the triple-well system
are given by the same expressions of the double-well system in Eq. (2.3.11).
Indeed, the first term representing the WF inside the respective well is given by
the orbital, while the second term (with derivatives) describing the WF tails
penetrating to neighboring wells is proportional to Ω0. Let us remark that
the latter represents the energy shift (tunneling energy) for the double-well
potential. Remarkably, even if the energy shift in the triple-well case is different
(E1 − E0 =

√
2Ω0), see Eqs. (2.2.9), the

√
2 factor cancels out during the

derivation, confirming that the WF tail is always determined by the tunneling
coupling to the neighboring well.
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Figure 2.3: Left-, middle-, and right-well WFs for the square triple-well
potential shown with dashed gray lines. Red solid curves correspond to exact
calculations in Eq. (2.2.9), blue dashed curves show our analytical results
obtained with the TPA in Eqs. (2.4.4), and black dashed curves show the orbital
functions Φ(1,2,3)

0 (x) in Eqs. (2.4.2). Parameters: L = 2, b = 0.5 and V0 = 5, in
arbitrary units.

In Fig. 2.3, we compare the WFs ΨL,M,R(x) in Eqs. (2.4.4) obtained with the
TPA (blue dashed curves) with the orbital functions Φ(1,2,3)

0 (x) in Eqs. (2.4.2)
(black dashed curves) and the exact results in Eq. (2.2.9) obtained via numerical
calculations (red solid curves). We observe that the orbitals Φ(1,2,3)

0 (x) provide a
close approximation to the corresponding exact WFs ΨL,M,R(x) within each well,
despite notable differences in their tails into neighboring wells. Furthermore,
the approximate results closely match the exact ones, even in the regions of
the tails (beyond the respective well), underscoring the precision of the TPA.
Ultimately, we notice that the tails of the WFs into the neighboring wells are
less pronounced for the left and right wells compared to the middle well, due
to the slightly different boundary conditions for the modified orbitals of the
external wells, as described in Eqs. (2.3.2).
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2.5 Nonstandard Hubbard Hamiltonian

In this Section, we derive the nonstandard Hubbard terms using our analytical
expression for the double-well WFs in Eqs. (2.3.11) and we show how these
nonstandard Hubbard terms can be used to suppress single-particle tunneling
in the presence of long-range interparticle interaction.

2.5.1 Distinguishable interacting particles in a symmetric
double-well potential

The interaction between two particles in a double-well potential can be described
by a two-body repulsive potential V (x − y) > 0. Since the many-body basis
for two distinguishable particles is given by the tensor product of the single-
particle WFs, the matrix elements of the interaction term for two distinguishable
particles in the tunneling Hamiltonian basis are given by

Vi′j′ij =
∫

Ψi′(x)Ψj′(y)V (x− y)Ψi(x)Ψj(y) dx dy . (2.5.1)

Here, Ψi(x) is the WF at site i = L,R of the symmetric double-well potential
in Fig. 2.1(a). The interaction potential in Eq. (2.5.1) can be decomposed
into standard and nonstandard Hubbard terms, corresponding respectively to
diagonal (ij = i′j′) and off-diagonal (ij ̸= i′j′) matrix elements. The Hubbard
terms can be further separated into the standard Hubbard on-site interaction
term Viiii ≡ U (for i = j) and the extended Hubbard term Vijij ≡ U (for i ̸= j)
[43], respectively defined as

U =
∫

Ψ2
L(x)V (x− y)Ψ2

L(y) dx dy , (2.5.2a)

U =
∫

Ψ2
L(x)V (x− y)Ψ2

R(y) dx dy . (2.5.2b)

Similarly, the nonstandard Hubbard terms can be separated into the DT (Ω1)
and PT (Ω2) terms, with amplitudes respectively given by

Ω1 =
∫

Ψ2
L(x)ΨL(y)V (x− y)ΨR(y) dx dy , (2.5.3a)

Ω2 =
∫

ΨL(x)ΨL(y)V (x− y)ΨR(x)ΨR(y) dx dy . (2.5.3b)

The physical interpretation of these terms is evident: the DT term (Ω1)
represents a single-particle hopping (e.g., ΨLL → ΨLR) caused by the interaction
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with the nontunneling particle, while the PT term (Ω2) describes the direct
(e.g., ΨLL → ΨRR) and exchange (e.g., ΨLR → ΨRL) two-particle hopping. In
a double-well potential, the DT term in Eq. (2.5.3a) can always be added to
the single-particle tunneling, resulting in an effective tunneling Ωeff ≡ Ω0 + Ω1
[43, 45]. Therefore, in principle, the effective tunneling can be suppressed by
the interaction when Ω1 = −Ω0.

2.5.2 Contact interaction

For a repulsive contact interaction described by

V (x− y) = Vδ δ(x− y) > 0 , (2.5.4)

the DT and PT terms can be evaluated directly by substituting Eqs. (2.3.11)
into Eqs. (2.5.3), obtaining

Ω1 = Ω0Vδ

0∫
−∞

[
Φ(1)

0 (x)
]3
∂EΦ(1)

0 (x) dx , (2.5.5a)

Ω2 = 2Ω2
0Vδ

0∫
−∞

[
Φ(1)

0 (x)∂EΦ(1)
0 (x)

]2
dx . (2.5.5b)

As expected, the DT term is proportional to Ω0, while the PT term is
proportional to Ω2

0. From Eq. (2.5.5a), we notice that, if Ω1/Ω0 < 0, the
effective tunneling coupling Ωeff could be suppressed by a sufficiently large
Vδ. However, comparing Eq. (2.3.12) with Eq. (2.5.5a), we can see that this
suppression cannot occur for a contact interaction. Although this can be easily
checked numerically, in the following we show how these results can be obtained
by a careful analysis of Eq. (2.5.5a). First, let us notice that the difference
between Eq. (2.5.5a) and the orthogonality expressed in Eq. (2.3.12) lies in the
third power of the orbital function

[
Φ(1)

0 (x)
]3

. In the latter case, the orbital

function Φ(1)
0 (0) > 0, while the WF tail Ω0∂EΦ(1)

0 (x) changes its sign inside the
integral. Since the integral of their product should be zero, both contributions
should cancel each other out. On the other hand, the negative contribution to
the integral in Eq. (2.5.5a) is amplified compared to the positive one, because
the value of the orbital Φ(1)

0 (x) decreases as x → 0, where the WF tail is positive.
This implies that Ω1 < 0, so that the DT term has always the same sign as
Ω0 and consequently it can only increase the effective single-particle tunneling
|Ωeff |.
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2.5.3 Long-range interaction

Figure 2.4: DT amplitude Ω1 (blue curve) and PT amplitude Ω2 (red curve)
as a function of the interaction range d for a symmetric square double-well
potential. Parameters: L = 2, b = 0.5, V0 = 5, and Ω0 = −0.22. Interaction
strength Vδ = 1. Energies are given in arbitrary units, where Ω0 sets the
characteristic energy scale.

This outcome undergoes a significant transformation when considering instead
of a contact interaction a long-range one

V (x− y) =
{
V for |x− y|< d

0 elsewhere
, (2.5.6)

where d denotes the interaction range. For simplicity, in the subsequent
discussion we exclusively focus on this toy-model interaction, even if similar
results can be obtained using a more physically realistic screened Coulomb
interaction, as in Ref. [109]. Moreover, this toy-model allows us to study
the general behavior of the nonstandard Hubbard terms as a function of the
system parameters. Indeed, from Eq. (2.5.3a), we notice that Ω1, as a function
of the interaction range, becomes positive for d ≃ L/2, where L is the well
width. Indeed, the main contribution to the integral in Eq. (2.5.3a) comes from
x ≃ −L/2, at the maximum of the left-orbital function. In this case,

Ω1 ∝
y2∫

y1

ΨL(y)ΨR(y) dy ,

where y1,2 = −L/2 ∓ d. As a result, Ω1 ≃ 0 for d ≃ L/2 due to orthogonality;
see Eq. (2.3.12). Subsequently, Ω1 starts to increase for d ≳ L/2, as the
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long-range interaction begins to connect the central regions of the two WFs.
This qualitative argument has been tested numerically in Fig. 2.4, where the
DT and PT terms (Ω1 and Ω2) for two distinguishable particles in a square
double-well potential with long-range interaction are shown as a function of the
rescaled interaction range d/L. For the sake of comparison with the contact
interaction in Eq. (2.5.4), in the calculations we kept Vδ = 2d V fixed. It is
clear that, in this way the results for the contact interaction are obtained in
the limit d → 0 and V → ∞. The amplitudes are evaluated by substituting
the exact WFs of Eq. (2.2.7c) in Eqs. (2.5.3), by using the long-range potential
in Eq. (2.5.6). As expected, Ω1 undergoes a sign change for d ≳ L/2. Given
that Ω0 < 0, see Eq. (2.2.7b), the effective single-particle tunneling Ωeff can be
always suppressed for some finite interaction range d ≳ L/2 and a sufficiently
large interaction strength Vδ, since Ω1 ∝ Vδ.

2.5.4 Two interacting electrons with parallel spins in a square
triple-well potential

In this Section, we show how PT is still possible even in the case of single-particle
tunneling suppression, due to a combined action of the nonstandard Hubbard
DT term and the long-range interaction. As we have discussed, the suppression
of single-particle tunneling coupling in the nonstandard Hubbard model arises
due to the interplay of long-range repulsive electron interaction and lattice
potential. In principle, we would expect that this suppression, similarly to what
happens in a flat band in twisted bilayer graphene systems [109–112], disrupts
the electron transport. However, instead of being suppressed, transport can still
occur via PT of localized electron pairs that are not subjected to “decay”through
single-electron tunneling processes [69].

One can argue that, even in the context of the standard Hubbard model,
single-electron hopping in a double-well potential is suppressed for large on-site
interaction (U). For this reason, it could be challenging to distinguish this
suppression from the one due to the nonstandard DT term. To avoid this issue,
let us consider two electrons with parallel spins so that they cannot occupy
the same well due to the Pauli principle. In this case, the contribution of
the long-range electron interaction in neighboring sites, U ≪ U , replaces the
standard on-site Hubbard term U . As a result, single-electron tunneling is
not suppressed by the on-site interaction, while the DT term can still induce
the suppression. Even in this scenario, similarly to the double-well case, the
DT term and the single-particle tunneling term sum up to give an effective
single-particle tunneling term Ωeff . Therefore, if Ω0 is exactly opposite to the
DT term Ω1, the electron pair occupying two adjacent wells becomes stable and
moves coherently due to the PT term.
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To show this mechanism explicitly, let us consider two electrons with parallel
spins in a triple-well potential, as shown in Fig. 2.5(a). The corresponding
lowest-band Hamiltonian can be written as

Ĥ = Ĥ3 + V̂ , (2.5.7)

where Ĥ3 is the noninteracting tight-binding tunneling Hamiltonian, given
by Eq. (2.2.8), while V̂ represents the interparticle interaction term. The
noninteracting Hamiltonian can be rewritten in the second quantization
formalism as

Ĥ3 = E0

3∑
j=1

n̂j + Ω0

(
â†

LâM + â†
M âR +H.c.

)
, (2.5.8)

where â(†)
j destroys (creates) an electron at site j = 1, 2, 3 ≡ L,M,R, n̂j = â†

j âj

is the number operator, E0 is the site energy, and Ω0 is the tunneling energy
given by Eq. (2.4.3). Since the Hamiltonian does not contain any spin-flip terms,
the number operators n̂j involve only parallel spins, so that the spin indices
can be omitted.

In a similar way, the interaction operator V̂ can be written in the second
quantization formalism as

V̂ = 1
2
∑

i′j′ij

Vi′j′ij â
†
i′ â

†
j′ âj âi , (2.5.9)

where Vi′j′ij is obtained by substituting in Eq. (2.5.1) the triple-well WFs

Ψj(x) ≡ ⟨x|â†
j |0⟩

given by Eqs. (2.2.9) and the long-range potential interaction of Eq. (2.5.6).
Thus, considering only parallel-spin electron motion, Eq. (2.5.9) can be explicitly
written as

V̂ = U (n̂Ln̂M + n̂M n̂R) +

+ Ω1

(
n̂Lâ

†
M âR + n̂Râ

†
M âL +H.c.

)
+

− Ω2

(
n̂M â†

LâR + n̂M â†
RâL

)
,

(2.5.10)

where U represents the nearest neighbor interaction term, obtained in the
triple-well case by replacing ΨR(x) with ΨM (x) in Eq. (2.5.2b), so that

U =
∫

Ψ2
L(x)V (x− y)Ψ2

M (y) dx dy , (2.5.11)
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while the last two terms describe respectively the DT and PT processes, with
amplitudes given by

Ω1 =
∫

Ψ2
L(x)ΨM (y)V (x− y)ΨR(y) dx dy , (2.5.12a)

Ω2 =
∫

ΨL(x)ΨM (x)V (x− y)ΨM (y)ΨR(y) dx dy , (2.5.12b)

where
Ω1 ≡ ΩM→R

1 = ΩM→L
1

and
Ω2 ≡ ΩL→M,M→R

2 = ΩR→M,M→L
2 .

Notice that, in our calculations, we have chosen the interaction range d in
Eq. (2.5.6) so that the contribution from the next-to-nearest neighbor term
can be neglected. In this way, the total Hamiltonian in Eq. (2.5.7) represents
the nonstandard Hubbard model, whereas the extended Hubbard model arises
simply by setting Ω1 = Ω2 = 0 in Eq. (2.5.10). Finally, we observe that, in the
presence of long-range interaction, the DT term Ω1 changes its sign depending
on the interaction range, as illustrated in Fig. 2.4 for the double-well system
(for the triple-well case, see Fig. A.1 in Appendix A).

2.5.5 Quantum dynamics of two interacting electrons with
parallel spins in a square triple-well potential

The effectiveness of our approach can be tested directly by studying the system’s
quantum dynamics. In particular, let us consider as initial condition two
electrons occupying two neighboring wells j̄ and j̄′. Their time-dependent wave
function can always be written as

|Ψ(j̄ j̄′)(t)⟩ =
∑
j<j′

b
(j̄ j̄′)
jj′ (t) â†

j â
†
j′ |0⟩ , (2.5.13)

where j, j′ = L,M,R, while the upper indices (j̄ j̄′) label the initial state.
Specifically, let us choose j̄ = L and j̄′ = M , so that the left and middle wells
are initially occupied. Then, Eq. (2.5.13) can be explicitly written as

|Ψ(LM)(t)⟩ =
[
b

(LM)
LM (t) â†

Lâ
†
M + b

(LM)
LR (t) â†

Lâ
†
R + b

(LM)
MR (t) â†

M â†
R

]
|0⟩ .
(2.5.14)

By substituting Eq. (2.5.14) into the time-dependent Schrödinger equation

i∂t |Ψ(j̄ j̄′)(t)⟩ =
(
Ĥ3 + V̂

)
|Ψ(j̄ j̄′)(t)⟩ , (2.5.15)
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Figure 2.5: (a) Coherent motion of two interacting electrons with parallel spins
in a symmetric square triple-well potential, corresponding to the PT process.
Black dashed lines correspond to the single-site ground state energy E0, while
d is the interaction range. (b) Occupancy probabilities PLM (t) (red curve) and
PLR(t) (blue curve) for L = 2, b = 0.5, V0 = 5, and Ω0 ≃ −0.22. (c) Occupancy
probabilities PLM (t) (red curve) and PLR(t) (blue curve) for L = 4, b = 1,
V0 = 5, and Ω0 ≃ −0.0167. Interaction strength Vδ = 3 and interaction range
d/L = 2, so that U ≃ 0.35, Ω1 ≃ 0.0125, and Ω2 ≃ 0.0012 in (b) and U ≃ 0.19,
Ω1 ≃ 0.0027, and Ω2 ≃ −6.4 · 10−6 in (c). Energies are given in arbitrary units,
where Ω0 sets the characteristic energy scale.

we obtain the following equations of motion:

iḃ
(LM)
LM (t) =

(
2E0 + U

)
b

(LM)
LM (t) + (Ω0 + Ω1) b(LM)

LR (t) + Ω2b
(LM)
MR (t) ,

iḃ
(LM)
LR (t) = 2E0b

(LM)
LR (t) + (Ω0 + Ω1)

[
b

(LM)
LM (t) + b

(LM)
MR (t)

]
,

iḃ
(LM)
MR (t) =

(
2E0 + U

)
b

(LM)
MR (t) + (Ω0 + Ω1) b(LM)

LR (t) + Ω2b
(LM)
LM (t) .

(2.5.16)

Looking at Eqs. (2.5.16), we notice that the DT term Ω1 appears only together
with the single-particle tunneling Ω0, thus giving rise to an effective single-
particle tunneling Ωeff = Ω0 +Ω1 [43–45]. Equations (2.5.16) can be integrated
numerically to obtain the occupancy probabilities for all sites of the triple-well
system as a function of time. Specifically, the probability to find the two
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electrons in the wells j, j′ is defined as

Pjj′(t) = ⟨Ψ(LM)(t)| n̂j n̂j′ |Ψ(LM)(t)⟩ =

=
∣∣∣b(LM)

jj′ (t) − b
(LM)
j′j (t)

∣∣∣2 , (2.5.17)

while the probability to find one electron occupying the well j is defined as

Pj(t) =
∑
j′ ̸=j

∣∣∣b(LM)
jj′ (t)

∣∣∣2 . (2.5.18)

In Figs. 2.5(b) and 2.5(c), we show the probabilities PLM (t) and PLR(t), derived
from Eq. (2.5.17), for two different geometries of the triple-well system at some
fixed interparticle interaction strength. Particularly, in Fig. 2.5(c), we adjust the
geometry of the system (by enlarging the well and barrier widths) to produce a
significant suppression of PLR(t), if compared with that in Fig. 2.5(b). This
suppression suggests the emergence of a propagating correlated electron pair
within the system, showing that single-particle tunneling can be suppressed
induced by modifying the well parameters. Note that a similar suppression is
also observable within the extended Hubbard model framework. Specifically, it
is easy to show that the suppression of PLR(t) in the extended Hubbard model
occurs when U ≫ Ω0 (for further details, see Appendix C).

Figure 2.6: (a) Occupancy probabilities PLM (t) and (b) occupancy
probabilities PLR(t) obtained with the nonstandard Hubbard model (red curves)
and the extended Hubbard model (green curves), for the case of complete
single-particle tunneling suppression. Parameters: L = 2, b = 0.1, V0 = 1.1 and
Ω0 ≃ −0.32. Interaction strength Vδ = 22 and interaction range d/L = 2, so
that U ≃ 1.54, Ω1 ≃ −Ω0 and Ω2 ≃ 0.22. Energies are given in arbitrary units,
where Ω0 sets the characteristic energy scale.
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Clearly, the nonstandard and extended Hubbard models diverge significantly
when complete suppression of single-particle tunneling occurs, i.e., for Ω1 = −Ω0.
To show this explicitly, we adjust the geometry of the system and the interaction
strength to achieve complete suppression of single-particle tunneling Ωeff .
Results are shown in Fig. 2.6 for both nonstandard (red curves) and extended
(green curves) Hubbard models. As one can see, notable distinctions between
the two models’ predictions exist. Specifically, the extended Hubbard model
predicts a small, but not zero, amplitude for PLR(t) [see Fig. 2.6(b)], as well as a
smaller oscillation frequency of PLM (t) compared to the nonstandard Hubbard
model [see Fig. 2.6(a)]. Given that in the nonstandard Hubbard model the single
particle tunneling is suppressed, the enhanced transport efficiency, signaled by
the high frequency of oscillations of PLM (t), is due to the presence of the PT
term.

Finally, one may wonder what is the region of parameters in which the
nonstandard and extended Hubbard models give approximately similar outcomes.
Within the validity of the SB approximation, a glance at Eq. (2.5.16) reveals
that the two Hubbard models are expected to give close results when the Ω1
and Ω2 terms become negligible compared to Ω0, namely for sufficiently weak
interaction strength. A detailed comparison between the two Hubbard models,
as well as a comparison with our analytical approach, is reported in Appendix
C.

2.6 Discussion

In conclusion, we have explored the conditions ruling the suppression of single-
particle tunneling coupling in periodic systems, within the framework of a
nonstandard Hubbard model, including density-induced tunneling and pair
tunneling terms. Our findings demonstrate that such suppression cannot occur
with a conventional contact repulsive interaction, but only in the presence of
a long-range repulsive interaction. A better understanding of the mechanism
underlying the suppression of the single-particle tunneling could be a significant
issue in the theory of quantum transport in correlated systems. Indeed, as
we have shown here, see Fig. (2.6), in the presence of single-particle tunneling
suppression the dynamics is dominated by pair tunneling, which enhances the
transport efficiency.

The consequences of these effects are far reaching, since single-particle tunneling
suppression and pair tunneling dominated dynamics may lead to transport
regimes characterized by efficient and robust electron pair transport. Indeed,
within the nonstandard Hubbard model considered here, increasing the
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interaction strength not only suppresses single-particle tunneling but also
enhances pair tunneling, introducing a competition between these two effects.
Such interplay may lead to nontrivial transport regimes that could potentially
expand the paradigm of Mott-insulator transitions [113] beyond the standard
Hubbard model. In the future, we plan to investigate the impact of the effects
shown in this manuscript in lattice models of different dimensions.



Chapter 3

Many-body tunneling in a
double-well potential

This chapter is an adaptation of the article [51], accepted for publication.

In this Chapter, we present a novel approach for evaluating Wannier functions
(WFs), offering a new perspective on their role in many-body systems. Unlike
traditional methods, such as the maximally localized Wannier functions
(MLWFs) approach, which focuses on minimizing the function tails, our approach
emphasizes these tails.

Using perturbative analytical approximations and extensive numerical simula-
tions on an exactly solvable model, we address nonstandard Hubbard terms and
demonstrate their critical influence on many-body dynamics. Specifically, we
study tunneling dynamics in arbitrary double-well potentials, moving beyond the
standard Hubbard model to include nonstandard terms such as density-induced
tunneling (DT) and pair tunneling (PT). Our results reveal that these terms
significantly modify the dynamics predicted by the standard Hubbard model:
DT modifies the single-particle tunneling parameter Ω0, while PT enables
coherent propagation not captured by the standard model.

We show that the discrepancies between the standard and nonstandard Hubbard
models grow with increasing interaction strength, potentially leading to novel
transport behaviors. However, at lower interaction strengths, both models
converge, as nonstandard terms become negligible. These findings have
important implications for phenomena like superconductivity in twisted bilayer
graphene and metal-insulator transitions.

35
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Our model aligns well with numerical simulations of lowest-band parameters
and is strongly supported by experimental observations of second-order atom
tunneling in optical double-well potentials. This strong agreement with
experimental data highlights the accuracy and potential of our approach in
providing a more comprehensive framework for describing complex many-body
systems than the standard Hubbard model.

After recalling the two-potential approach (TPA) as discussed in Ch. 2, we
accurately define the WFs of a double-well potential in Sec. 3.3. In Sec. 3.4,
we analyse the nonstandard Hubbard model, evaluating the corresponding
nonstandard Hubbard terms through the TPA for a contact interaction in
Sec. 3.5. We compare the results with existing theoretical literature in Sec. 3.6.
Finally, in Sec. 3.7, we examine the effects of DT and PT terms on the dynamics
of two distinguishable particles in a square double-well potential. Our findings
are compared with experimental observations in Sec. 3.8, highlighting the
regimes where nonstandard DT and PT terms are particularly relevant.

3.1 Nonstandard Hubbard models

3.1.1 Nonstandard Hubbard terms and the Wannier functions

In the field of condensed matter physics, the Hubbard model [39–42] serves as a
foundational paradigm, crucial for understanding the behavior of various solid-
state systems, especially those exhibiting strong electron correlations [43]. This
model is characterized by a tight-binding Hamiltonian featuring single-particle
tunneling energy (Ω0) allowing for hopping between neighboring sites, and
an on-site two-particle interaction energy (U), which can be either attractive
(U < 0) or repulsive (U > 0). Despite its apparent simplicity, the Hubbard
model is widely believed to be instrumental in addressing the unresolved issues
of high-TC superconductivity [12–29] and strongly correlated electron systems
[3–11]. However, questions have emerged regarding the model’s effectiveness and
empirical validation, especially in the context of interacting particles (U ̸= 0).
In fact, in the noninteracting limit, the tunneling energy Ω0 accurately describes
single-particle and noninteracting many-body dynamics. However, in interacting
systems, the standard Hubbard model often fails to fully capture the effects
induced by interparticle interactions [43–47]. Specifically, crucial additional
terms such as density-induced tunneling and pair tunneling are often neglected,
limiting the model’s accuracy in describing real-world systems [43, 50, 52–57].

Recent research has therefore focused on extending the Hubbard model to include
these additional interaction terms, leading to what are known as nonstandard



NONSTANDARD HUBBARD MODELS 37

Hubbard models [43, 45, 70, 96–101]. Specifically, when interactions between
different sites of a lattice are incorporated, we refer to the extended Hubbard
model. Besides this, the DT term accounts for modifications of single-particle
tunneling energy Ω0 due to the effective mean field created by other particles
in the system, often referred to as bond-charge interaction [43–45, 58–67]. On
the other hand, the PT term, analogous to Cooper pair tunneling, plays a
crucial role in the two-particle elastic tunneling, representing a coherent process
[54, 68].

Previous studies typically describe cotunneling within the framework of the
standard Hubbard Hamiltonian [2, 48, 49], where it manifests as a second-
order process in Ω0, generated by two virtual sequential single-particle
tunnelings. Each tunneling step is characterized by a large interaction energy
|U |≫ Ω0, resulting in an O(Ω2

0/|U |) cotunneling frequency [2]. However, the
standard Hubbard model does not fully capture all relevant physical processes
in interacting many-body systems. To address these limitations, different
extensions to the standard Hubbard model have been investigated in Refs. [70–
83], incorporating DT and PT as nonstandard processes. These studies have
highlighted the crucial influence of these nonstandard Hubbard terms on the
behavior of strongly correlated systems. However, it is only in recent years that
nonstandard Hubbard models have attracted significant attention, particularly
in the context of ultracold atoms in optical lattices, where the DT phenomenon
has been experimentally observed [43, 45, 82, 86–95].

Despite these advances, fully understanding the impact of nonstandard terms on
the dynamics of correlated systems remains challenging [1, 43, 70]. In particular,
the magnitude of these terms is intricately linked to the overlap of WFs between
neighboring wells [50, 52, 84]. Current approximations often fail to account for
the tails of these functions, which are crucial for determining the value and
sign of nonstandard interaction matrix elements. State-of-the-art approaches
to WF construction, such as the theory of MLWFs [85], involve an iterative
procedure to minimize the spread of WFs, making them as localized as possible
in real space. While highly effective for many applications, such as the study of
electronic structure in crystalline solids, transport properties, and entanglement
in condensed matter systems, MLWFs’ approach often neglects the long tails
of the WFs, which are essential for accurately capturing the nonstandard
Hubbard terms. Therefore, a consistent approximation for the WFs spanning
the entire double-well region is essential for a deeper understanding of the
intricate interplay between interaction and tunneling dynamics in quantum
systems.

To address these limitations, we propose a novel method for evaluating
WFs that spans the entire double-well region, offering a more consistent
approximation. This method includes the nonstandard terms in the standard
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Hubbard Hamiltonian, thus reconsidering the two-particle tunneling process.
Our analysis suggests that the coherent PT amplitude remains significant
even when U is large, potentially dominating the cotunneling process under
specific system’s parameters and interaction strengths [53]. Therefore, in
addition to the standard Hubbard model, we introduce a single-band (SB)
nonstandard model that exactly accounts for all interaction effects, still
neglecting the effects of higher energy bands. Furthermore, we evaluate the
system’s dynamics using a multiband (MB) nonstandard model, which includes
both the nonstandard Hubbard terms and the effects of higher energy bands in
the Hubbard Hamiltonian.

3.2 Theoretical and experimental double-well po-
tentials

After proposing our novel method for the evaluation of the WFs, it is essential
to discuss the specific systems and models where this approach is applied.
Our analysis mainly focuses on two different potentials: a square double-well
potential and a sinusoidal potential. These models provide valuable insights
into the dynamics of strongly correlated systems, with each model serving a
different role in theoretical and experimental analysis.

Specifically, the square double-well potential is a toy-model, providing a
simplified yet effective framework for understanding the main aspects of
tunneling interacting dynamics, see Ch. 2. This model allows us also to explore
the basic principles without the complexities introduced by more realistic
potentials. Our analytical approximated results for this model exhibit excellent
agreement with our numerical simulations, demonstrating the consistency,
validity and reliability of our approach.

On the other hand, the sinusoidal potential represents a more realistic model
that closely mimics experimental conditions, particularly in systems such as
optical lattices. Our model’s predictions for the sinusoidal potential show
excellent agreement with experimental data in Ref. [2]. Specifically, compared
to the standard Hubbard model and the SB nonstandard model, the MB
nonstandard model, which incorporates the nonstandard Hubbard terms and
the effects of higher energy bands in the Hubbard Hamiltonian, provides a more
accurate alignment with experimental results. The MB nonstandard model
effectively describes the two-particle tunneling process, both for weakly and
strongly interacting regimes, emerging as the most accurate representation of
experimental observations.
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In general, the nonstandard Hubbard model diverges significantly from the
standard Hubbard model as the interaction strength increases, leading to
different transport regimes. In the nonstandard model, strong interactions
modify single-particle tunneling while enhancing PT, creating an interplay
between these effects and potentially leading to new transport phenomena
beyond the metal-insulator transitions [102–104]. However, at lower interaction
strengths, both models yield similar results, particularly when DT and PT
terms are negligible compared to Ω0.

Finally, our approach allows for further modifications to the potential shape,
enhancing its flexibility and applicability. Specifically, we adapt our method
to obtain analytical approximated results for a squared cosine potential, that
exhibit excellent agreement with established theoretical results available in the
literature, see Ref. [1].

In summary, our model’s ability to consistently approximate WFs across the
entire double-well region and its successful application to both toy and realistic
potentials underscore its robustness and versatility. The strong correlation
between our analytical approximated, numerical, and experimental results
confirms that our method provides a comprehensive and accurate description of
tunneling dynamics and interactions in quantum systems.

3.3 Two-potential approach and Wannier functions
for a double-well potential

In this Section, we employ an analytical approach, see Ch. 2, for the evaluation
of the WFs within the framework of a symmetric square double-well potential. It
is based on the modification of the orbital wave functions (hereinafter orbitals),
by incorporating their extensions into neighboring sites. It derives from the
two-potential approach (TPA) to tunneling problems, initially developed for
tunneling to the continuum [105–107, 114], and it has been adapted to compute
the discrete eigenspectrum of a multiwell system. The corresponding set of
eigenstates, obtained from the modified orbitals, is used to determine the
WFs through a proper unitary transformation. Consequently, this approach
avoids the ambiguities associated with approaches based on the continuous
Bloch-function spectrum [85].
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3.3.1 Generic symmetric double-well potential

For simplicity, we start presenting our method for a generic symmetric double-
well potential, although the method can straightforwardly be extended to
multiwell systems to validate its accuracy. We then compare our results for
the WFs with the orbitals and the exact solutions of the Schrödinger equation
for the case of two distinguishable particles. Finally, the resulting WFs can
be exploited to correctly evaluate the DT and PT terms of the nonstandard
Hubbard Hamiltonian.

Initially, consider a particle placed in a generic 1D double-well potential formed
by two single-well potentials V1,2(x), separated by a potential barrier. To
simplify the analytical treatment, we assume a symmetric double-well potential,
even if the procedure can be easily extended to generic asymmetric potentials.
The single-well potentials are defined such that

V1(x) = V2(−x)

for x > x0 , and
V1,2(x0) = const .

It is important to note that this procedure differs significantly from the widely
used Wigner R-matrix theory (see Ref. [115]), in which the single-well potential
is truncated, and an infinite potential barrier is placed beyond the separation
point.

By choosing the energy scale such that V(x0) = 0, we can express the potential
as

V(x) = V1(x) + V2(x) , (3.3.1)

as shown in Fig. 3.1 for x0 = 0. If V(x0) ̸= 0, then V(x0) must be subtracted
in Eq. (3.3.1) (see Ref. [106]). Importantly, the final result is independent on
the chosen energy scale. A similar construction for single-well potentials can be
applied to the extension of the TPA to the multidimensional case, see Ref. [114],
where the separation point is replaced by a separation surface, beyond which
the corresponding single-well potential becomes constant.

To simplify our analysis and in close analogy with the Hubbard model, we
employ the SB approximation, by focusing on the lowest energy band and
neglecting all the others, as well as the continuous spectrum (E ≥ 0). We then
assume that the two lowest bound states of the system (with energy E1,2 < 0)
create a band, well separated from the others. The eigenstates belonging to this
band, namely

ψ1,2(x) = ⟨x|ψ1,2⟩ ,
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Figure 3.1: (a) Symmetric double-well potential V(x), given by the sum
of two single-well potentials, with lattice depth V0. Dashed lines represent
the two lowest-band eigenstates of the system E1,2. (b), (c) Left and right
single-well potentials V1,2(x), where ∓x are the classical turning points, so
that V1,2 (∓x) = E0, and x0 is the separation point. Each of the single-well
potentials vanishes beyond the separation point (x0 = 0), defined so that
V1(x0) = V2(x0) = 0. Each of the single-well potentials contains one bound
state with energy E0 < 0.

are obtained from the exact solution of the Schrödinger equation

H |ψ1,2⟩ ≡ (K + V(x)) |ψ1,2⟩ = E1,2 |ψ1,2⟩ , (3.3.2)

where
K = −∇2

x

is the kinetic term, and V(x) the double-well potential in Eq. (3.3.1) (to simplify
the notation, we use dimensionless units, i.e. h̄ = 2m = 1, unless otherwise
specified).

The tight-binding tunneling Hamiltonian H describing this lowest band is given
by

H = E0

2∑
j=1

|Ψj⟩ ⟨Ψj | + Ω0 (|Ψ1⟩ ⟨Ψ2| +H.c.) , (3.3.3)

where E0 is the single-well energy, see Fig. 3.1, Ω0 is the nearest neighbor
tunneling coupling, while

Ψj(x) = ⟨x|Ψj⟩

is the j-th well WF. The site energies E0 and the WFs Ψj(x) can be obtained
by diagonalizing the tunneling Hamiltonian in Eq. (3.3.3). By identifying the
eigenvalues and the eigenstates of the tunneling Hamiltonian in Eq. (3.3.3)
respectively with the exact energies E1,2 and wave functions |ψ1,2⟩ of the double-
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well system obtained from Eqs. (3.3.2), we can write

E0 = (E1 + E2) /2 , (3.3.4a)

Ω0 = (E1 − E2)/2 , (3.3.4b)

ΨL,R(x) = 1√
2

[ψ1(x) ± ψ2(x)] , (3.3.4c)

where E0 and Ω0 are the tunneling Hamiltonian parameters, while

ΨL,R(x) = ⟨x|â†
1,2|0⟩

are the WFs, where â†
L,R are the creation operators for the left and right well,

respectively.

In the multiwell limit, the previous procedure resembles the standard one
for constructing WFs from the continuous spectrum of Bloch functions under
periodic boundary conditions. In that case, due to the phase indeterminacy
[85], the resulting WFs are not uniquely defined. In contrast, we impose the
boundary conditions

ψ1,2(x) ∼ e−
√

−E1,2|x|

for x → ±∞ on the eigenstates ψ1,2(x) belonging to the first band. This ensures
that the solution to the Schrödinger equation (3.3.2) is uniquely defined for
both the energies E1,2.

3.3.2 The modified orbitals

Typically, determining the spectrum of an arbitrary double-well potential system
involves exact numerical diagonalization. Consequently, many studies use an
approximate form for the WFs ΨL,R(x). In contrast, we evaluate the WFs by
modifying in a perturbative way the single-well orbitals. To do so, we define
the left- and right-well orbitals as

Φ(1,2)
0 (x) ≡ Φ(1,2)

0 (E0, x) ,

where E0 is the ground state energy of the single-well potential. Therefore, the
orbitals Φ(1,2)

0 (x) are respectively the ground states of the left- and right-well
Hamiltonian

H1,2Φ(1,2)
0 (x) = E0Φ(1,2)

0 (x) , (3.3.5)
where

H1,2 = K + V1,2(x)
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are the Hamiltonians of the left and right well, respectively. Note that

Φ(2)
0 (x) = Φ(1)

0 (−x)

due to the symmetry of the double-well system. Since each potential V1,2(x)
exactly vanishes beyond the separation point x0 = 0 (see Fig. 3.1), the orbitals
can be written as

Φ(1)
0 (x) = Φ(1)

0 (0)e−q0x for x ≥ 0 , (3.3.6a)

Φ(2)
0 (x) = Φ(2)

0 (0)eq0x for x ≤ 0 , (3.3.6b)

where
q0 =

√
−E0 .

Since V1,2(x) → 0 in the limit x → ±∞, the solution of the Schrödinger equation
within the potential barrier (E < 0) is a combination of two functions ∼ e±q0x.
Disregarding the growing solution as unphysical, the decreasing one uniquely
establishes the allowed discrete energy levels. Conversely, beyond the potential
barrier (E ≥ 0), the exponential factor q0 becomes imaginary, indicating the
presence of both the solutions and a resulting continuous spectrum.

As said, our approach consists in using the orbitals Φ(1,2)
0 (x) as a basis for

constructing the eigenstates and the corresponding WFs in a perturbative way.
A possible approach would be to consider the left-well orbital Φ(1)

0 (x) as an
unperturbed eigenstate of the Hamiltonian H1, and the right-well potential
V2(x) as the perturbation (or vice versa). However, this approach would lack
a perturbative expansion parameter. In contrast, the problem can be solved
using the TPA method, by employing the overlap

β ≡ ⟨Φ(1)
0 |Φ(2)

0 ⟩

as a perturbative expansion parameter. We note that β can be considered as a
small parameter, since it is of the order of the barrier penetration coefficient

T0 = exp
(

−
∫ x

−x

|q(x′)| dx′

)
≪ 1,

where q(x) is the (imaginary) momentum under the barrier and ±x are the
classical turning points, indicated in Fig. 3.1. Using this approach, we obtain
for the tunneling Hamiltonian parameters in Eq. (3.3.4a) and Eq. (3.3.4b):

E0 = E0 + O(β2) , (3.3.7a)

Ω0 = Ω0 + O(β2) , (3.3.7b)
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where the site energy E0 is given by Eqs. (3.3.5). Similarly,

E1,2 = E± + O(β2) ,

where
E± = E0 ± Ω0 .

Thus, the parameters of the tunneling Hamiltonian in Eq. (3.3.3) are completely
determined by the single-well orbitals in Eqs. (3.3.5). Specifically, the tunneling
coupling Ω0 is defined as

Ω0 = ⟨Φ(1)
0 |V2|Φ(2)

0 ⟩ = ⟨Φ(1)
0 |V1|Φ(2)

0 ⟩ . (3.3.8)

Note that Ω0 is proportional to the barrier tunneling penetration coefficient T0,
making it a small parameter in the corresponding perturbative expansion of
the eigenenergies. From Eq. (3.3.8), it follows that Ω0 is always negative, since
the orbitals Φ(1,2)

0 (x) correspond to the ground states of the respective wells
(and their product is positive), while the potentials V1,2(x) < 0, as shown in
Fig. 3.1. From the Schrödinger equation, Eq. (3.3.8) can be rewritten as

Ω0 = Φ(1)′
0 (0)Φ(2)

0 (0) − Φ(1)
0 (0)Φ(2)′

0 (0) . (3.3.9)

From Eqs. (3.3.6), we can evaluate the derivative of the orbitals at the separation
point x0 = 0:

Φ(1)′
0 (0) = −

√
|E0|Φ(1)

0 (0) , (3.3.10a)

Φ(2)′
0 (0) =

√
|E0|Φ(2)

0 (0) . (3.3.10b)

By substituting Eqs. (3.3.10) into Eq. (3.3.9), we derive the tunneling energy
Ω0, given by

Ω0 = −2
√

|E0|Φ(1)
0 (0)Φ(2)

0 (0) , (3.3.11)

which represents a product of neighboring orbitals evaluated at the separation
point. Examining Eq. (3.3.11), we observe that Ω0 ∝ T0 serves as a simplified
(1D) version of the well-known Bardeen formula [108].

As discussed in Ch. 2, the eigenstates

ψ±(x) ≡ ψ1,2(E±, x)

cannot be obtained from Eq. (3.3.4c) by replacing the WFs ΨL,R(x) with the
corresponding orbitals Φ(1,2)

0 (x) in Eqs. (3.3.5). In fact, by doing that, an
inconsistency between the energy arguments of the double-well wave functions
ψ±(x) and the single-well orbitals Φ(1,2)

0 (x) arises. To overcome this problem,
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we introduce an energy shift (E± − E0) in the orbitals by replacing the ground
state energy E0 with a free parameter E < 0. The resulting modified orbitals

Φ(1,2)(E, x) ≡ Φ(1,2)
0 (E0 → E, x)

(normalized to unity) are obtained from Eqs. (3.3.5) by imposing the boundary
conditions

Φ(1,2)(E, x → ∓∞) ∝ e±qx ,

where q =
√

−E (compare with Eqs. (3.3.6)). These boundary conditions
uniquely define the modified orbitals for any energy value E. Unlike Φ(1,2)

0 (x),
the modified orbitals Φ(1,2)(E, x) asymptotically diverge for any E ̸= E0. Thus,
we define them on two different segments, respectively X1 = (−∞, 0) and
X2 = (0,∞), vanishing elsewhere. As a result, they are nonoverlapping, and
therefore orthogonal. The eigenenergies E = E± are determined by enforcing
continuity conditions at the separation point (x0 = 0). The corresponding
eigenstates, ψ±(x), are expressed in terms of the modified orbitals Φ(1,2)(E, x),
which are defined within the segment of the j-th well (j = 1, 2), as follows:

ψ±(x) = 1√
2

[
Φ(1)(E±, x) ± Φ(2)(E±, x)

]
. (3.3.12)

This approach constructs the exact eigenspectrum, E1,2 ≡ E± and ψ1,2(x) ≡
ψ±(E±, x), by using the modified orbitals for different segments and imposing
continuity at the separation point (x0 = 0). This method represents the
standard procedure for solving the Schrödinger equation (3.3.2). The resulting
WFs, given by Eqs. (3.3.4c), are expressed as

ΨL,R(x) = 1√
2

[ψ+(E+, x) ± ψ−(E−, x)] =

= 1
2

[
Φ(1)(E+, x) + Φ(2)(E+, x)

]
+

± 1
2

[
Φ(1)(E−, x) − Φ(2)(E−, x)

]
.

(3.3.13)

These WFs are uniquely defined by the modified orbitals Φ(1,2)(E, x), thereby
avoiding the phase indeterminacy present in standard approaches (see Ref. [85]).
Furthermore, the electron dynamics described by the tunneling Hamiltonian
H in Eq. (3.3.3) using these WFs is equivalent to that derived from the
original Schrödinger Hamiltonian (3.3.2) in the single-band approximation.
This equivalence represents a crucial criterion for defining WFs.

It is noteworthy that ΨL,R(x) in Eq. (3.3.13) and their derivatives are continuous
over the entire interval −∞ < x < ∞ due to continuity of the eigenfunctions
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ψ±(E±, x) and their derivatives. Consequently, the representation of the WFs
in terms of the modified orbitals Φ(1,2) must also be continuous, even though
each orbital may exhibit discontinuities at the separation point x = 0.

Eqs. (3.3.13) can be significantly simplified by employing a perturbative
expansion within the TPA framework to approximate the energy spectrum
in terms of the tunneling coupling Ω0, since Ω0 ∝ β ∝ T0. By neglecting
terms involving Ω2

0, the eigenenergies can be expressed using single-well orbitals,
exploiting

E1,2 ≃ E0 ± Ω0 ,

where E0 is derived from Eqs. (3.3.5) and the energy shift Ω0 is determined
by the Bardeen formula in Eq. (3.3.11). Expanding the modified orbitals
Φ(1,2)(E, x) in Eqs. (3.3.13) in powers of E± −E0 = ±Ω0, and neglecting O(Ω2

0)
terms, the WFs can be approximated as:

ΨL(x) = Φ(1)
0 (x) + Ω0∂EΦ(2)

0 (x) , (3.3.14a)

ΨR(x) = Φ(2)
0 (x) + Ω0∂EΦ(1)

0 (x) . (3.3.14b)

This result, first derived in Ref. [50] for a triple-well potential, can be further
extended to multi-well systems. Here,

Φ(1,2)
0 (x) ≡ Φ(1,2)

0 (E0, x)

for x ∈ X1,2 (up to negligible corrections to the normalization) and vanish
elsewhere, while

∂EΦ(1,2)
0 (x) ≡ [∂Φ(1,2)(E, x)/∂E]E→E0 .

Note that, due to symmetry, Φ(2)
0 (x) = Φ(1)

0 (−x). The resulting WFs ΨL,R(x)
in Eqs. (3.3.14) are already orthogonal, so that no more orthogonalization of
the orbitals is needed. Eqs. (3.3.14) are composed of two nonoverlapping terms,
that describe the WFs within their respective wells and their tails extending into
adjacent wells. The second term, which is the contribution related to the WFs’s
tails, is proportional to Ω0, and it is significantly smaller than the first one. This
distinction highlights the close relation between the WFs’ tails and the tunneling
to neighboring sites, making them clearly different from corresponding orbitals.
We emphasize that the WFs ΨL,R(x) and their derivatives remain continuous
at x = 0, up to O(Ω2

0) terms, as implied by Eqs. (3.3.13). In fact, unlike the
nodeless orbitals, the WFs’ tails change sign, aligning with the orthogonality of
ΨL,R(x).
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Figure 3.2: Symmetric square double-well potential, consisting of two
rectangular wells of width L separated by a barrier of width b, with lattice
depth V0 > 0. Unless otherwise specified, we consider only one energy level per
each well (SB nonstandard model), discarding all the other bound states, as
well as the continuous spectrum.

3.3.3 Analytical approximated and exact Wannier functions
for a double-well potential: a comparison

We exactly evaluate the WFs Ψj(x) of the square double-well potential, shown in
Fig. 3.2, comparing the results with those obtained with the TPA, and with the
corresponding orbitals. The potential V(x) consists of two coupled rectangular
potential wells, labeled by j = 1, 2 ≡ L,R, respectively denoting left and right
well, given by

V(x) = −V0 for b

2 < |x|< L+ b

2 . (3.3.15)

From Eqs. (3.3.12), we obtain the exact eigenstates in terms of the modified
orbitals Φ(1,2)(E±, x), where E± correspond to the ground state and excited
state, respectively. Since the modified orbitals Φ(1,2)(E, x) are normalized to
unity for any energy E, we can demonstrate the orthogonality of the WFs in
Eqs. (3.3.14) explicitly. Since the normalization factor of the modified orbitals
Φ(1,2)(E, x) is energy dependent, it is useful to highlight it by introducing the
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following reduced orbitals

Φ(1,2)(E±, x) ≡ N±ϕ
(1,2)(E±, x) , (3.3.16)

where N± is the normalization factor, defined as

N± ≡ N (E±) =

 0∫
−∞

[
ϕ

(1)(E±, x)
]2
dx

−1/2

, (3.3.17)

while

ϕ
(1)(E, x) =


p√
V0
eq(x+L+ b

2 ) for − ∞ < x < −L− b
2

cos
[
p
(
x+ L+b

2
)

+ φ
]

for − L− b
2 < x < − b

2
F1(E)e−q(x+ b

2 ) + F2(E)eq(x+ b
2 ) for − b

2 < x < ∞
,

(3.3.18a)

ϕ
(2)(E, x) = ϕ

(1)(E,−x) , (3.3.18b)

where
p ≡ p(E) =

√
V0 + E

and
q ≡ q(E) =

√
−E .

Here,

F1(E) = p√
V0

cos(2φ) + p2 − q2

2q
√
V0

sin(2φ) , (3.3.19a)

F2(E) = −
√
V0

2q sin(2φ) , (3.3.19b)

φ ≡ φ(E) = pL

2 − arccos p√
V0

, (3.3.19c)

with the phase φ obtained from the matching conditions at x = −L− b/2. The
eigenenergies are obtained by matching the logarithmic derivatives of ϕ(1)(E, x)
and ϕ

(2)(E, x) at x = 0. From Eqs. (3.3.18), we derive

F1(E) = ±F2(E)eqb . (3.3.20)

Solving Eq. (3.3.20) for E, we find the first two eigenenergies E± of the double-
well system. Then, substituting

Φ(1,2)(E±, x) ≡ Φ(1,2)
± (x)
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into Eqs. (3.3.12), we find the exact eigenstates for the double-well potential.

From Eqs. (3.3.16), it follows

Φ(1,2)
0 (x) = N0ϕ

(1,2)
0 (x) ,

where
ϕ

(1,2)
0 (x) ≡ ϕ

(1,2)
0 (E0, x)

and N0 ≡ N (E0) is the normalization factor, defined as:

N0 =
(
L

2 + 1
q0

)−1/2
. (3.3.21)

Expanding the term N± in Eq. (3.3.17) up to O(Ω0) terms, we obtain

N± ≃ N0 ± Ω0(∂EN0) ,

where
∂EN0 = ∂N (E)

∂E

∣∣∣∣
E→E0

=

= −N 3
0

0∫
−∞

ϕ
(1)(E, x) ∂

∂E
ϕ

(1)(E, x)
∣∣∣∣
E→E0

dx .

(3.3.22)

Substituting Φ(1,2)
0 (x) into Eqs. (3.3.14), we obtain (up to O(Ω2

0) terms)

ΨL,R(x) = N0ϕ
(1,2)
0 (x) + Ω0

[
N0∂Eϕ

(2,1)
0 (x) + ϕ

(2,1)
0 (x) (∂EN0)

]
, (3.3.23)

where
∂Eϕ0(x) ≡ [∂ϕ(E, x)/∂E]E→E0 .

From Eqs. (3.3.17) and Eq. (3.3.22), we can verify that the WFs ΨL,R(x) in
Eqs. (3.3.23) are orthogonal (up to O(Ω2

0) terms):
0∫

−∞

ΨL(x)ΨR(x) dx = Ω0N 2
0

1 − N 2
0

0∫
−∞

[
ϕ

(1)
0 (x)

]2
dx

 =

=
0∫

−∞

ϕ
(1)
0 (x)∂Eϕ

(1)
0 (x) dx = O(Ω2

0) .

(3.3.24)

Eqs. (3.3.14), or equivalently Eqs. (3.3.23), represent our main result regarding
the WFs, that can be relevant for a broad range of multiwell systems (for further
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Figure 3.3: Comparison between the left-well orbital Φ(1)
0 (x) (black dashed

curve), the exact (red solid curve) and our analytical approximated (blue
dot-dashed curve) left-well WF ΨL(x). The results are obtained considering
the double-well potential in Fig. 3.2 for V0 = 5, L = 2, and two different
barrier widths: b = 0.5 in panel (a) and b = 0.1 in panel (b). The exact
ground-state energy E0 of the single-well and the tunneling coupling Ω0
are E0 = E++E−

2 ≃ −3.866,−3.940 and Ω0 = E+−E−
2 ≃ −0.223,−0.489,

respectively. The corresponding parameters given by the TPA (single-well) are
E0 ≃ −3.867,−3.932 and Ω0 ≃ −0.224,−0.490, respectively.

details about the application of our method to different types of multiwell
systems, see Appendix D and Appendix E). In the following, we will assess these
WFs predictions by comparing them with the orbitals and the results obtained
from the exact solutions of the Schrödinger equation, considering the symmetric
double-well potential in Eq. (3.3.15). For the TPA results, the eigenenergies are
evaluated via single-well orbitals, using Eqs. (3.3.5). To make this comparison,
we consider

E = E0 ± Ω0

in Eqs. (3.3.19) and Eq. (3.3.20), together with

E0 = (E+ + E−)/2 ,

Ω0 = (E+ − E−)/2 .

We solve Eq. (3.3.20) by taking into account that the barrier penetration
coefficient e−qb ∝ Ω0, and by using

φ(E0 ± Ω0) = ±
(

1 + q0
L

2

)
Ω0

2p0q0
≡ ± Ω0

2p0N 2
0
. (3.3.25)

By expanding Eq. (3.3.19a) and Eq. (3.3.19b) in powers of Ω0, we obtain
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F1(E) ≈ p0√
V0

+ O(Ω2
0) , (3.3.26a)

F2(E) ≈ −
√
V0

q
φ+ O(Ω2

0) . (3.3.26b)

Substituting Eqs. (3.3.26) in Eq. (3.3.20), we obtain

Ω0 = −2N 2
0
q0p

2
0

V0
e−q0b , (3.3.27)

that corresponds to the Bardeen formula in Eq. (3.3.11) obtained with the TPA.

The exact WFs ΨL,R(x) are obtained expanding the modified orbitals in
Eqs. (3.3.23) up to O(Ω0) terms, where

∂Eϕ
(1)
0 (x) =


1

2
√

V0
D1(x)eq0(x+L+ b

2 ) for − ∞ < x < −L− b
2

− 1
2p0

D2(x) sin
[
p0
(
x+ L+b

2
)]

for − L− b
2 < x < − b

2
1

2
√

V0
D3(x) for − b

2 < x < ∞
,

(3.3.28a)

∂Eϕ
(2)
0 (x) = −∂Eϕ

(1)
0 (x) , (3.3.28b)

where
D1(x) ≡ 1

p0
− p0

q0

(
x+ L+ b

2

)
,

D2(x) ≡ 1
q0

+ x+ L+ b

2 ,

D3(x) ≡
[
p0

q0

(
x+ L+ b

2

)
+ p0

q2
0

− q0L

2p0

]
e−q0(x+ b

2 ) −
V0

(
1 + q0L

2

)
p0q2

0
eq0(x+ b

2 )

and
∂EN0 = −N 3

0
p2

0 −
[
q2

0 − p2
0 (1 − q0b)

] (
1 + q0

L
2
)

4p2
0q

3
0

. (3.3.29)

In Fig. 3.3, we compare the left-well WF ΨL(x) obtained from our analytical
approximated results in Eq. (3.3.14a) with the orbital Φ(1)

0 (x) from Eqs. (3.3.5)
and the exact solution obtained from the Schrödinger equation, for different
values of barrier width b. Looking at Fig. 3.3, we observe that the left-well
orbital Φ(1)

0 (x) approximates very well the corresponding WF in the left well
region, confirming the high accuracy of the TPA for the evaluation of the
tunneling Hamiltonian parameters. However, we note that Φ(1)

0 (x) has a very
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different tail into the neighboring well compared to the exact WF’s one. In
particular, the latter changes its sign in the right well, in agreement with
Eq. (3.3.24) and our general arguments. This effect has deep implications for
the evaluation of tunneling transition amplitudes in the presence of interparticle
interaction. Finally, comparing Fig. 3.3(a) with Fig. 3.3(b), we note that in
the case of narrow barrier, see Fig. 3.3(b), the tunneling energy increases (and
consequently the WF’s tail becomes more evident), so that the neglected higher
order terms become more important, and the analytical approximated results
deviate from the exact solution.

Overall, the analytical approximated solution demonstrates high accuracy in
modeling the exact WF, both in the well’s and in the tail’s regions. The exact
solution, derived from the Schrödinger equation, describes the behavior of the
system, including the modification in the WF’s tail and its behavior across the
barrier. On the other hand, the analytical approximated approach provides a
robust and efficient alternative. This analytical method works very well across
a broad range of conditions, effectively capturing the essential physics with
significantly reduced computational effort. Thus, while the exact approach is
essential for detailed studies, the analytical approximation is a powerful tool for
theoretical explorations, especially in scenarios where computational resources
are limited.

3.4 Nonstandard Hubbard terms in a double-well
potential

So far, we have considered one particle placed in a double-well potential, deriving
the corresponding WFs and comparing the analytical approximated results with
the exact results and the orbitals.

In this Section, we consider two particles placed in the same double-well
system, analysing the implications of the interparticle interaction on the total
Hamiltonian of the system. Specifically, we use the results obtained in Sec. 3.3
to derive simple analytical approximated expressions for the nonstandard DT
and PT terms, as well as the standard on-site two-particle interaction energy U ,
in order to establish their magnitude as a function of the system’s parameters.

3.4.1 Standard and nonstandard Hubbard terms

Let us consider two distinguishable particles, hereinafter referred to with the
labels (1) and (2) (e.g. two fermions with opposite spin projections), occupying
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the symmetric double-well potential of Fig. 3.2, interacting through a two-body
repulsive potential V (x− y) > 0, where x, y are the spatial coordinates of the
two particles. In the site basis, the corresponding tunneling Hamiltonian, see
Eq. (3.3.3) and Ch. 2, can be written as

Ĥ = E0

(
n̂

(1)
L + n̂

(2)
L + n̂

(1)
R + n̂

(2)
R

)
+

+ Ω0

(
â

†(1)
L â

(1)
R + â

†(2)
L â

(2)
R +H.c.

)
+ V̂ ,

(3.4.1)

where
n̂

(1,2)
L,R = â

†(1,2)
L,R â

(1,2)
L,R

are the number operators for the left and right well, E0 is the site energy and
Ω0 is the single-particle tunneling coupling. The interaction potential V̂ in
Eq. (3.4.1) is a sum of terms of form

â
†(1)
i′ â

†(2)
j′ Vi′j′,ij â

(1)
i â

(2)
j .

In the tunneling Hamiltonian basis, its matrix elements are:

Vi′j′,ij =
∫

Ψi′(x)Ψj′(y)V (x− y)Ψi(x)Ψj(y) dx dy , (3.4.2)

where Ψi(x) is the i-th site WF, and i = L,R.

The Hubbard interaction potential in second quantization formalism can be
written as

V̂H ≡ U
(
n̂

(1)
L n̂

(2)
L + n̂

(1)
R n̂

(2)
R

)
+

+ U
(
n̂

(1)
L n̂

(2)
R + n̂

(2)
L n̂

(1)
R

)
,

(3.4.3)

with
U =

∫
nL(x)nL(y)V (x− y) dx dy , (3.4.4)

and
U =

∫
nL(x)nR(y)V (x− y) dx dy , (3.4.5)

being the standard and the extended Hubbard terms, representing on-site and
nearest neighbor interaction, respectively, and

nL,R(x) = Ψ2
L,R(x) .

The second term in Eq. (3.4.3), proportional to U , is not present in the standard
Hubbard model Hamiltonian, and gives rise to the extended Hubbard model
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[43]. Similarly to the standard Hubbard term, the latter does not generate
tunneling transitions, rather it gives an extra contribution to the total energy
of the system.

In contrast, nonstandard Hubbard terms generate tunneling transitions between
left and right well. The DT and PT terms can be respectively written as

V̂DT = Ω1

[(
n̂

(1)
L + n̂

(1)
R

)(
â

†(2)
L â

(2)
R +H.c.

)
+

+
(
n̂

(2)
L + n̂

(2)
R

)(
â

†(1)
L â

(1)
R +H.c.

)]
, (3.4.6a)

V̂P T = Ω2

[
â

†(1)
R â

†(2)
R â

(1)
L â

(2)
L + â

†(1)
R â

†(2)
L â

(1)
L â

(2)
R +H.c.

]
, (3.4.6b)

with corresponding transition amplitudes given respectively by:

Ω1 =
∫

Ψ2
L(x)ΨL(y)V (x− y)ΨR(y) dx dy , (3.4.7a)

Ω2 =
∫

ΨL(x)ΨL(y)V (x− y)ΨR(x)ΨR(y) dx dy . (3.4.7b)

The first nonstandard Hubbard term DT, given by Eq. (3.4.6a), consists of
a single-particle hopping process (e.g. ΨLL → ΨLR) between the two wells
resulting from the interaction of the tunneling particle with the nontunneling one
(also known as bond-charge interaction, see Ref. [1]). Its tunneling amplitude
(Ω1) sums up with the free single-particle tunneling amplitude, given by the
tunneling energy Ω0 in the Hamiltonian in Eq. (3.4.1), resulting in an interaction-
dependent effective single-particle tunneling [43, 45], expressed as

Ω0

(
â

†(1)
R â

(1)
L +H.c.

)
→ Ω̂eff

(
â

†(1)
R â

(1)
L +H.c.

)
, (3.4.8)

where
Ω̂eff = Ω0 + Ω1

(
n̂

(2)
L + n̂

(2)
R

)
(3.4.9)

represents the effective single-particle tunneling operator, explicitly dependent
on the occupation numbers of the two wells, through the factor n̂(2)

L + n̂
(2)
R .

Particularly, in a double-well potential with constant total density, the DT
amplitude in Eq. (3.4.7a) can always be incorporated into the single-particle
tunneling amplitude, see Refs. [43, 45], yielding an effective tunneling

Ωeff ≡ Ω0 + Ω1 .

Looking at Eq. (3.4.9), it is then clear that the interaction strength can be
tuned in such a way to modify Ω1, and in turn Ωeff .
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The second nonstandard Hubbard term, given by Eq. (3.4.6b), describes a
simultaneous two-particle PT coherent hopping process, that can be both direct
(e.g. ΨLL → ΨRR) or exchange (e.g. ΨLR → ΨRL). This term, with amplitude
Ω2, arises when the interaction matrix is connecting two states where both
particles switch their site location, representing an additional nonstandard
physical process not present in the standard Hubbard Hamiltonian. Note that
both nonstandard Hubbard amplitudes in Eqs. (3.4.7) contain the overlap
between the WFs belonging to neighboring wells. For this reason, they strongly
depend not only on the shape of the interacting potential V (x− y), but also on
the WFs’ tails in the neighboring wells. Therefore, an accurate evaluation and
an analytical estimate of the WFs’ tails are crucial in the determination of the
nonstandard Hubbard terms.

3.5 Analytical approximated results with contact
interaction

3.5.1 Contact interaction

Let us consider two distinguishable particles interacting through a δ-shaped
(contact) interaction potential [116, 117]. Contrary to the results obtained in
Ch. 2, our focus here is on the analytical evaluation of all terms included in
the Hamiltonian. In fact, by employing δ-shaped interaction, we simplify the
mathematical treatment of Eq. (3.4.2), enabling a more precise and manageable
analysis of the dynamic behavior of the system. At first, we consider a repulsive
δ-shaped interaction potential between particles, defined as

V (x− y) = Vδδ(x− y) , (3.5.1)

where Vδ > 0 is the interaction strength. From Eq. (3.5.1), we can exactly
evaluate the interaction potential matrix elements in Eq. (3.4.2). Specifically,
we focus on the standard Hubbard term in Eq. (3.4.4) and the DT and PT
terms in Eqs. (3.4.7), and we compare the exact results with the analytical
approximated ones.

We start our analysis with the on-site standard Hubbard term U , given by
Eq. (3.4.4). Using Eqs. (3.3.14), and neglecting O(Ω2

0) terms, we find

U = VδN 4
0

0∫
−∞

[
ϕ

(1)
0 (x)

]4
dx = 3

4N 2
0 Vδ (1 − η) , (3.5.2)
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where N0 is the normalization factor, see Eq. (3.3.21), and

η = p2
0

3V0

(
1 + q0L

2

) .
We then evaluate the DT amplitude Ω1, given by Eq. (3.4.7a). Considering the
symmetry of the WFs, namely ΨR(x) = ΨL(−x), combined with Eqs. (3.3.14),
and neglecting O(Ω2

0) terms, we find

Ω1 = Vδ

∞∫
−∞

ΨL(x)3ΨR(x) dx = Ω0Vδ

0∫
−∞

(
Φ(1)

0 (x)
)3
∂EΦ(1)

0 (x) dx , (3.5.3)

From Eqs. (3.3.23), we can rewrite Ω1 as the sum of two components, namely

Ω1 = Ω(1)
1 + Ω(2)

1 ,

given by

Ω(1)
1 = Ω0VδN 4

0

0∫
−∞

(
ϕ

(1)
0 (x)

)3
∂Eϕ

(1)
0 (x) dx , (3.5.4a)

Ω(2)
1 = Ω0VδN 3

0 (∂EN0)
0∫

−∞

[
ϕ

(1)
0 (x)

]4
dx = Ω0U

∂EN0

N0
. (3.5.4b)

These two components come from the dimensionless reduced orbital and the
energy dependent normalization factor, respectively, see Eq. (3.3.16).

3.5.2 Single-particle tunneling amplitude renormalization due
to density-induced tunneling

Since, for contact interaction, the DT term Ω1 is proportional to Ω0, it effectively
renormalizes the tunneling coupling, see Eq. (3.4.9), so that

Ω0 → Ωeff = Ω0 + Ω1 ≡ Ω0 (1 + gVδ) . (3.5.5)

Note that, according to Eq. (3.5.5), if the ratio Ω1/Ω0 is negative, the effective
tunneling coupling Ωeff can be reduced by the interaction strength Vδ. In other
words, the DT term can either increase or decrease the single-particle tunneling
coupling Ω0, depending on the sign of the coefficient g. Specifically, in the case
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of repulsive interaction (Vδ > 0) and a negative coefficient (g < 0), the DT term
decreases the magnitude of the effective single-particle tunneling coupling Ωeff .
With a sufficiently large interaction strength Vδ, the single-particle tunneling
can eventually be completely suppressed.

Hence, the sign of the coefficient g becomes crucial to understand how the DT
term affects the system’s dynamics. At present, there is no general agreement on
the sign of the coefficient g (or even on its magnitude) [1, 43, 70]. This problem
has been investigated analytically in the framework of our simple toy-model,
that allows a precise evaluation of the WFs’ tails, in Ref. [50]. In that work, by
analysing Eq. (3.3.24) and Eq. (3.5.3), it was shown that Ω1 < 0 for contact
interaction, so that the DT term can never match Ω0 and therefore suppress
the effective single-particle tunneling Ωeff . On the other hand, only in presence
of long-range interaction, it is possible to arrange the parameters of the well
and the interparticle interaction in such a way to have Ωeff = 0.

As said, the square double-well potential system allows us to obtain a simple
analytical approximated expression for Ω1, which clearly shows the sign and the
magnitude of the DT amplitude as a function of the system’s parameters. Indeed,
by using Eq. (3.3.21), Eqs. (3.3.28), Eq. (3.3.29), Eq. (3.5.2) and Eq. (3.5.3),
we find two analytical approximated expressions for Ω1 = Ω(1)

1 + Ω(2)
1 , that read:

Ω(1)
1 = VδΩ0N 4

0

(
4p4

0 − 3q2
0V0
) (

1 + q0
L
2
)

+ p2
0
(
p2

0 + V0
)

32p2
0q

3
0V0

=

= −3VδΩ0N 2
0

32p2
0

[
1 + O

(
p2

0
V0

)]
, (3.5.6a)

Ω(2)
1 = −3VδΩ0N 2

0
N 2

0 p
2
0 −

[
q3

0 − p2
0q0 (1 − 2q0b)

]
16p2

0q
3
0

(1 − η) =

= 6VδΩ0N 2
0

32p2
0

[
1 + O

(
p2

0
V0

)]
. (3.5.6b)

In Eqs. (3.5.6), we neglect O(p2
0/V0) terms, since we deal with the SB

approximation, which considers only the lowest-band, where p0 ≪
√
V0. Note

that the previous condition means |E0|≃ V0, which implies q0 ≃
√
V0. The

expansion holds assuming also the condition 1 + q0L ≫ 1, corresponding to
the Bohr quantization rule. Looking at Eqs. (3.5.6), we find that the first
component Ω(1)

1 of the DT term, coming from the energy-dependence of the
orbital, is always positive, while the second component Ω(2)

1 , arising from a
variation of the normalization factor with energy, is twice larger and of opposite
sign (Ω(2)

1 ≃ −2Ω(1)
1 ). As a result, the coefficient g is always positive for contact
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interaction. This clearly shows the necessity of an accurate evaluation of the
WFs’ tails to determine the sign of DT term, which is hard to determine from
general arguments, since the energy dependence of the normalization factors
plays a crucial role.

3.5.3 Pair tunneling

Finally, we analyze the PT amplitude Ω2, given by Eq. (3.4.7b). Cotunneling
refers to a general phenomenon that arises from second-order terms in the
standard Hubbard model, as well as from the nonstandard PT term in the
exact model. By applying Eqs. (3.3.23) and exploiting the symmetry property
ΨR(x) = ΨL(−x) of the WFs, we can write

Ω2 = Vδ

+∞∫
−∞

Ψ2
L(x)Ψ2

R(x) dx =

= 2VδΩ2
0N 2

0

0∫
−∞

(
ϕ

(1)
0 (x)

)2 [
N0∂Eϕ

(1)
0 (x) + ϕ

(1)
0 (x)(∂EN0)

]2
dx =

= Ω(1)
2 + 2Ω0

∂EN0

N0

[
2Ω(1)

1 + Ω(2)
1

]
,

(3.5.7)

where

Ω(1)
2 = 2VδΩ2

0N 4
0

0∫
−∞

[
ϕ

(1)
0 (x)

]2 (
∂Eϕ

(1)
0 (x)

)2
dx . (3.5.8)

Since Ω(1,2)
1 are the two components of the DT term obtained in Eqs. (3.5.6),

we only need to evaluate Ω(1)
2 in Eq. (3.5.8). By substituting Eqs. (3.3.14),

Eqs. (3.3.28) and Eq. (3.3.29) into Eq. (3.5.8), the calculation can be performed
analytically. By neglecting O(Ω3

0) terms, we find

Ω(1)
2 = N 4

0 VδΩ2
0

2p2
0q

3
0

[
A0 + A1

(
q0

L
2
)

32p2
0V0q2

0
+

A2
(
q0

L
2
)2

4V0q2
0

+
(
q0

L
2
)3

3

]
, (3.5.9)

where
A0 = 43p6

0 − p4
0V0(65 − 16q0b) + 13p2

0V
2

0 − V 3
0 ,

A1 = 92p6
0 − p4

0V0(161 − 32q0b) + 34p2
0V

2
0 − V 3

0 ,

A2 = 6p4
0 − p2

0V0(13 − 2q0b) + 4V 2
0 .
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In the limit |E0|≪ V0, corresponding to the SB condition, the relation

2Ω(1)
1 + Ω(2)

1 → 0

holds. Therefore, Eq. (3.5.7) becomes Ω2 = Ω(1)
2 , which is given by a simple

analytical approximated expression:

Ω2 = 2N 4
0 VδΩ2

0
4p2

0q
3
0

[(
q0

L
2
)3

3 +
V0
(
q0

L
2
)2

q2
0

−
V 2

0
(
1 + q0

L
2
)

32p2
0q

2
0

]
. (3.5.10)

This result implies that the two-particle coherent tunneling amplitude Ω2 is
proportional to the interaction strength Vδ. Therefore, for large enough Vδ,
the PT amplitude Ω2 dominates over the corresponding cotunneling hopping
amplitude of the standard Hubbard model, given by

ω ≡ 2Ω2
0

U
,

that decreases with the interaction strength Vδ, as pointed out in the
Introduction and since U ∝ Vδ, see Eq. (3.5.2) and also Ref. [53]. As expected,
the DT term is ∝ Ω0, see Eq. (3.5.3), while the PT term is ∝ Ω2

0, see Eq. (3.5.10).

3.5.4 Exact and analytical approximated results: a comparison

A comparison between exact and analytical approximated results for these
terms is presented in Fig. 3.4. Specifically, we evaluate the on-site standard
Hubbard term U , the noninteracting single-particle tunneling Ω0, the DT term
Ω1, the PT term Ω2 and the second-order cotunneling ω = 2Ω2

0/U as a function
of the lattice depth V0 in Fig. 3.4(a) and of the well width L in Fig. 3.4(b).
The exact results for U , Ω0, Ω1 and Ω2 are given by Eq. (3.4.4), Eq. (3.3.4b),
Eq. (3.4.7a) and Eq. (3.4.7b), respectively. In the same way, the analytical
approximated results are given by Eq. (3.5.2), Eq. (3.3.11), Eq. (3.5.6) and
Eq. (3.5.7), respectively. Looking at Fig. 3.4, our analytical approximated
results show an excellent match with numerical simulations across various
parameters, including the lattice depth V0 and the well width L. This strong
agreement between the analytical approximated and numerical results confirms
the validity and robustness of our method. In fact, it demonstrates that our
analytical approach is capable of accurately capturing the essential physics
of the system, providing a reliable alternative to computationally intensive
simulations. However, we observe that this agreement fails for low values of
V0 and L. Specifically, for such low values of these parameters, the tunneling
energy Ω0 increases. A low lattice depth V0 results in a higher Ω0, while
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Figure 3.4: Comparison of exact results (dots) and analytical approximated
results (dashed curves) for the Hubbard term U (green curve), DT amplitude
|Ω1| (blue curve), PT amplitude Ω2 (red curve), single-particle tunneling |Ω0|
(black curve) and standard Hubbard second-order cotunneling ω (purple curve).
The results are obtained considering two distinguishable particles placed in a
square double-well potential, interacting via δ-shaped interaction with Vδ = 1,
as a function of the lattice depth V0 (with L = 2 and b = 1) in panel (a) and of
the well width L (with b = 1 and V0 = 20) in panel (b).

a low well width L leads to higher energy levels and, consequently, a larger
tunneling amplitude, see Eq. (3.3.4b). For these high values of Ω0, our analytical
approximated approach fails, as the perturbation parameter is proportional to
Ω0 itself, and it cannot be used as an expansion parameter.

3.6 Comparison with existing literature

In this Section, we extend our numerical results to different shapes of double-well
potential, demonstrating the versatility of our numerical method. This expanded
analysis shows the robustness of our approach across different configurations,
underscoring its adaptability and the broader applicability of our findings beyond
the initial setup. To do so, we compare our theoretical predictions with the
results obtained in Ref. [1], where the authors focus on the DT process of bosons
in optical lattices and on how their density affects this process. Specifically,
we adapt the shape of the double-well potential, considering a 1D double-well
potential defined as

V(x) = V0 cos2
(πx
λ

)
, (3.6.1)

where V0 is the lattice depth and λ is the periodicity of the lattice. We perform
our numerical simulations by considering two bosons interacting via δ-shaped



COMPARISON WITH EXISTING LITERATURE 61

interaction. Note that our exact results obtained with distinguishable particles
can be straightforwardly generalized for bosonic particles (as well as for fermionic
particles, see Ch. 2). It is important to highlight that our approach differs
significantly in the choice of WFs used. While Ref. [1] employs the MLWFs, we
adopt our new method for generating WFs.

Specifically, in Ref. [1], the authors claim that the DT process can be relevant for
the system’s dynamics, since it can modify the free single-particle tunneling. In
general, they demonstrate how nonstandard Hubbard models can describe more
precisely the physics of bosonic atoms in lattice systems, including nonstandard
terms not accounted for in the Hubbard model. In this work, the full lowest-band
interaction Hamiltonian is defined as

Ĥint = 1
2
∑
ijkl

Vijklb̂
†
i b̂

†
j b̂k b̂l , (3.6.2)

where b̂(†)
i is the annihilation (creation) operator for a bosonic particle in the

ground state of the i-th site and

Vijkl = 8πas

∫
Ψi(x)Ψj(x)Ψk(x)Ψl(y) d3x (3.6.3)

are the interaction matrix elements, where as is the free space s-wave scattering
length, m is the mass of the bosonic particle and Ψi(x) is the lowest-band i-th
site WF. Note that Eq. (3.6.3) can be traced back to Eq. (3.4.2), considering
that the interaction strength Vδ between two particles interacting via s-wave
scattering is given by Vδ = 8πas (see Ref. [118]). Eq. (3.6.2) introduces also an
off-site interaction between neighboring sites, which leads to different physical
processes compared to the standard Hubbard model. Specifically, we focus on
the DT and PT terms.

In Fig. 3.5, we compare results presented in Ref. [1] with our model predictions.
Specifically, we analyse the on-site standard Hubbard term U , the noninteracting
single-particle tunneling Ω0, the DT term Ω1, the PT term Ω2 and the second-
order cotunneling ω = 2Ω2

0/U as a function of the lattice depth V0. All the
quantities are expressed in units of the recoil energy

Er = h2

2mλ2 ,

where m is the mass of the atoms, h is the Planck’s constant and λ = 765 nm
represents the periodicity of the lattice. Our results highlight the effectiveness of
our numerical method in accurately capturing the essential dynamics of bosonic
systems in optical lattices. The analytical predictions from our method show
a remarkable agreement with the theoretical results found in the literature,



62 MANY-BODY TUNNELING IN A DOUBLE-WELL POTENTIAL

Figure 3.5: Comparison of exact results obtained with the SB nonstandard
model (dots) and results from Ref. [1] (dashed curves) for the Hubbard term
U (green curve), DT amplitude |Ω1| (blue curve), PT amplitude Ω2 (red
curve), single-particle tunneling |Ω0| (black curve) and standard Hubbard
model second-order cotunneling ω = 2Ω2

0/U (purple curve). The results are
obtained considering two bosons placed in the double-well potential of Eq. (3.6.1),
interacting via δ-shaped interaction with Vδ = 1, as a function of the lattice
depth V0.

particularly those presented in Ref. [1]. This demonstrates not only the validity
but also the versatility and robustness of our approach. By using our novel
method for generating WFs, we are able to handle various potential shapes and
lattice configurations with high precision. This flexibility makes our method
a powerful tool for studying complex lattice systems and their interactions,
offering a reliable alternative to more traditional approaches.
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3.7 Dynamics of two distinguishable particles in a
square double-well potential

As discussed in the previous Sections, the presence of nonstandard Hubbard
terms can introduce novel effects in the dynamics of a many-body system, totally
non accounted for in the standard Hubbard model description. To analyse
these effects further, we consider here the influence of the nonstandard Hubbard
terms on the dynamics of two distinguishable particles in the symmetric square
double-well potential shown in Fig. 3.2.

3.7.1 Equations of motion and oscillation frequencies of a pair
of distinguishable particles

As a figure of merit of the system’s dynamics, we consider the oscillation
frequency of the time-dependent probability PLL(t), defined as the occupation
probability to find both particles in the left well at time t. To evaluate it, let
us consider the Hamiltonian given in Eq. (3.4.1), and the δ-shaped two-particle
interaction given in Eq. (3.5.1). The two-particle wave function, at time t, can
be written as

|Ψ(t)⟩ =
[
bLL(t)â†(1)

L â
†(2)
L + bLR(t)â†(1)

L â
†(2)
R +

+ bRL(t)â†(1)
R â

†(2)
L + bRR(t)â†(1)

R â
†(2)
R

]
|0⟩ ,

(3.7.1)

where â(†)(1,2)
L,R are the annihilation (creation) operators for the first/second

particle in the left/right well, respectively, and |0⟩ is the single-well vacuum
state. The time-evolution of the two-particle wave function in Eq. (3.7.1) is
given by the Schrödinger equation

i∂t |Ψ(t)⟩ = Ĥ |Ψ(t)⟩ .
Considering bLR(t) = bRL(t) (due to the potential symmetry), we can derive
the equations of motion for the so called SB nonstandard model, which include
all the nonstandard interaction terms, which read

iḃLL(t) = (2E0 + U) bLL(t) + ΩeffbLR(t) + Ω2bRR(t)
iḃRR(t) = (2E0 + U) bRR(t) + ΩeffbLR(t) + Ω2bLL(t)
iḃLR(t) = 2E0bLR(t) + Ωeff [bLL(t) + bRR(t)]

, (3.7.2)

where E0 is the single-well ground state energy, U is the on-site standard
Hubbard term given by Eq. (3.4.4),

Ωeff = Ω0 + Ω1
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is the effective tunneling coupling given by Eq. (3.5.5) and Ω2 is the PT
amplitude given by Eq. (3.4.7b). The equations of motion for the standard
Hubbard model can be straightforwardly obtained from Eqs. (3.7.2) by simply
setting Ω1 = Ω2 = 0:

iḃLL(t) = (2E0 + U) bLL(t) + Ω0bLR(t)
iḃRR(t) = (2E0 + U) bRR(t) + Ω0bLR(t)
iḃLR(t) = 2E0bLR(t) + Ω0 [bLL(t) + bRR(t)]

. (3.7.3)

As initial state for the dynamics, we consider both particles placed in the infinite
left-well state

⟨x|Φ(x)⟩L =
√

2
L
sin

[
π (x+ L+ b/2)

L

]
.

Therefore, the initial conditions for the equations of motion of Eqs. (3.7.2) and
Eqs. (3.7.3) are bLL(0) = 1 and bLR(0) = bRL(0) = bRR(0) = 0. Finally, we can
compute the time-dependent occupation probability PLL(t) for the state

|LL⟩ ≡ â
†(1)
L â

†(2)
L |00⟩ .

The system’s parameters have been chosen in such a way to have four bound
energies in the double-well system (for further details, see Appendix F).

3.7.2 Frequencies of dynamics processes and discussion

In Fig. 3.6, we show the probability PLL(t) to find the two particles in the
left well, for two different attractive interaction strengths, respectively in
the weakly interacting regime (Fig. 3.6(a)) and in the strongly interacting
regime (Fig. 3.6(b)). Similar results can be obtained for the case of repulsive
interaction strength and are reported in Appendix F. Specifically, we compute
the occupation probability PLL(t) by employing four different models: the
standard Hubbard model, the SB nonstandard model, the MB nonstandard
model and the no-PT model. While the standard Hubbard model serves as
a reference, the other three models include novel effects given by the exact
treatment of the interaction. In particular, the SB nonstandard model considers
only the effect of the lowest energy band, neglecting contributions from higher
energy bands. On the other hand, the MB nonstandard model fully accounts
for the influence of all energy bands, see Ch. 2. Moreover, we introduce the
no-PT model, to highlight the importance of the PT process itself, by artificially
excluding its contribution from the dynamics of the SB nonstandard model.

We note that, for both weakly and strongly interacting regimes, the expected
frequency of oscillation of PLL(t) from the standard Hubbard model (yellow



DYNAMICS OF TWO DISTINGUISHABLE PARTICLES IN A SQUARE DOUBLE-WELL POTENTIAL 65

Figure 3.6: Time-evolution of the probability PLL(t) of finding at time t
two distinguishable particles together in the left well of the symmetric square
double-well potential of Fig. 3.2. The particles are interacting via δ-shaped
interaction potential. The different models are: Hubbard model (orange curve),
MB nonstandard model (green curve), SB nonstandard model (red curve) and
no-PT model (blue curve). The double-well parameters are L = 2, b = 0.5
and V0 = 5. The attractive interaction strengths are: U/|Ω0|≃ −6 (weakly
interacting regime) in panel (a) and U/|Ω0|≃ −12 (strongly interacting regime)
in panel (b).

curve) is smaller than the one obtained from the SB and MB nonstandard
models (respectively red and green curves). This highlights the role of the exact
treatment of interaction in the system’s dynamics, justifying the inclusion of the
nonstandard terms in the system’s Hamiltonian. Specifically, we note that for
weakly interacting regime, the frequency is closer to the SB nonstandard model
one, being the nonstandard term less relevant in the dynamics, compared to
the strongly interacting regime. We also note that, for the strongly interacting
regime, see Fig. 3.6(b), the no-PT model matches quite well the Hubbard model
predictions. This puts in evidence the role (and the importance) of PT in the
strongly interacting regime. Finally, we appreciate the difference between SB
and MB nonstandard models, given by the different number of energy levels
included in the dynamics, especially in the strongly interacting regime (the
excitation probability for the higher levels is increased).

To understand how the different tunneling processes affect the global system’s
dynamics, and how the two frequencies Ωeff and Ω2 (interaction-dependent)
act on the dynamics, we extracted the dominant frequency of the probability
PLL(t) for different values of interaction strengths, both attractive and repulsive.
Specifically, this has been obtained by taking the frequency corresponding to the
largest amplitude in the Fourier spectrum of PLL(t). In Fig. 3.7, we represent
the dominant frequency of PLL(t) as a function of the interaction strength
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Figure 3.7: Frequencies of the different processes involved in the system’s
dynamics. Standard Hubbard model cotunneling ω = 2Ω2

0/|U | (orange dashed
curve), no-PT model ω′ = 2Ω2

eff/|U | (blue dashed curve), PT Ω2 (purple
curve). Orange and blue dots stand for the Hubbard model and no-PT model,
respectively, extracted from our simulations. Frequency of the SB nonstandard
model for PLL(t), computed via Fourier transform (red diamonds). Frequency
of the MB nonstandard model (four energy levels in total) for PLL(t), computed
via Fourier transform (green diamonds). Black dashed curve: Ω = ω′ + Ω2. The
parameters of the double-well system are: L = 2, b = 0.5, V0 = 5. With these
parameters, Ω0 ≃ 0.22, |Ω1/U |≃ 0.017, |Ω2/U |≃ 0.02 (DT and PT result both
relevant in the dynamics).

U/|Ω0|. Looking at Fig. 3.7, we clearly distinguish three different regimes: for
a strongly enough interacting regime |U |≫ Ω0, both attractive and repulsive,
the dynamics is completely dominated by the PT process (purple line). Indeed,
while the frequency ω = 2Ω2

0/U predicted by the standard Hubbard model
(orange curve) decreases linearly with the on-site standard Hubbard interaction
U (and consequently with Vδ), the frequency Ω2 increases linearly with it.
For this reason, in the strongly interacting regime the PT process becomes
predominant. By contrast, in the weakly interacting regime |U |≪ Ω0, the SB
nonstandard (and MB nonstandard) model dynamics is very well approximated
by the standard Hubbard model, which takes into account only single-particle
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tunneling processes. In this weakly interacting regime, the Hubbard model
proves to be a good approximation for the system’s dynamics.

Finally, we can distinguish an intermediate regime of interaction where both
processes (cotunneling and PT) are equally involved in the dynamics. We note
that the expected frequency of the SB nonstandard model corresponds to the
sum of the two contributions: Ω = ω′ + Ω2 (black dashed curve), where

ω′ = 2 (Ωeff )2

|U |
.

Finally, the vertical gray band in Fig. 3.7 corresponds to the case |U |= ∆E,
where the Hubbard term U matches the mean level spacing ∆E of the double-
well potential (taken as the distance in energy between the second excited state
and the average of the ground state and first excited state of the double-well
system). In this particular case, the interparticle interaction is strong enough
to excite the higher energy levels, making them play a relevant role in the
system’s dynamics. Therefore, the SB approximation is no more valid, and the
contribution given by the higher energy levels must be included in the physical
description through the MB nonstandard model. As clearly visible in Fig. 3.7,
near the edges of this gray band, the results obtained with the SB nonstandard
model start to deviate from the exact ones, obtained via the MB nonstandard
model. Indeed, in this case the interaction between particles is sufficiently
strong to excite the upper levels of the spectrum that cannot be neglected in
the study of the dynamics. Finally, when δ-shaped interaction is adopted in
higher dimensions, regularization is necessary, and multiband effects must be
included in the scattering process (see Refs. [119, 120].)

3.8 Comparison with experiments: two bosons in a
double-well potential

In this Section, our numerical results are compared with the experimental results
reported in Ref. [2]. In that work, second-order atom tunneling processes were
observed in an interacting ultracold bosonic gas of rubidium atoms placed in
an optical double-well potential. It was observed that, under certain conditions,
atoms undergo second-order tunneling processes in addition to the usual first-
order tunneling expected from the standard Hubbard model. The authors
identify a regime where single-particle tunneling is promoted by the presence
of other particles (via the DT mechanism) and a PT process also affects the
system’s dynamics.
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Figure 3.8: Comparison between experimental results of Ref. [2] (red dots),
and damped Hubbard model (black curve) for a single boson initially localized
in the left well. The parameters used are Along = 9.5ER, Bshort = 5.40ER,
∆ ≃ 0.17ER in panel (a) and Along = 9.5ER, Bshort = 7.92ER, ∆ ≃ 0.07ER

in panel (b). All the energies are expressed in units of the recoil energy
ER = h2/2mλ2, where h is the Planck’s constant, m ≃ 86.9u is the mass of the
87Rb atoms and λ = 765 nm is the long-lattice wavelength. The decay times of
the damped Hubbard model are: τ ≃ 4.38ms in panel (a) and τ ≃ 13ms in
panel (b).

Figure 3.9: Comparison between experimental results of Ref. [2] (red dots),
Hubbard model (orange curve), SB nonstandard model (green curve) and MB
nonstandard model (blue curve) for two bosons in the weakly interacting regime
(U/J = 0.67 in panel (a)) and strongly interacting regime (U/J = 5 in panel
(b)), after initially preparing the system with both particles localized in the
left well of the double-well system. The system’s parameters are: V0 ≃ 22.4ER,
Ω0 ≃ −0.45ER, E1 ≃ −20.3ER, E2 ≃ −19.4ER in panel (a) and V0 ≃ 26.8ER,
Ω0 ≃ −0.14ER, E1 ≃ −23.5ER, E2 ≃ −23.2ER in panel (b).

To compare the experimental outcomes with the results obtained from our
approach, we exploit its versatility and robustness, taking advantage of its
ability to handle any potential shape, and not just square potentials. This
flexibility is crucial for accurately modeling real systems, where, in general, the
potential is given by a superposition of two or more optical potentials. From
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now on, if not stated otherwise, all the energies will be expressed in units of the
recoil energy

ER = h2

2mλ2 ,

where λ represents the with of the double-well system. Here, our unit of length
a = λ/2 = L + b represents the distance between two particles placed in
neighboring lattice sites.

In Ref. [2], the authors consider the Bose-Hubbard model as the most simple
description of a set of N bosonic atoms in an optical lattice with tunneling
coupling J ≡ Ω0 between nearest neighbor sites and two-body interaction U
between particles at the same site. The Hamiltonian that describes this model,
considering a bias ∆ between neighboring wells, is given by

ĤBH = −J
∑
⟨i,j⟩

b̂†
i b̂j + U

2
∑

i

n̂i (n̂i − 1) − ∆
2
∑
⟨i,j⟩

(n̂i − n̂j) . (3.8.1)

Restricting our considerations to a double-well potential, the bosonic atoms in
a double-well potential are described in Ref. [2] by the standard Bose-Hubbard
Hamiltonian

ĤBH = − J
(
b̂†

Lb̂R + b̂†
Rb̂L

)
− ∆

2 (n̂L − n̂R) +

+ U

2 [n̂L (n̂L − 1) + n̂R (n̂R − 1)] ,
(3.8.2)

where J is the single-particle tunneling, b̂(†)
L,R are the annihilation (creation)

operators for a bosonic particle in the ground state of the left and right well,
U is the interaction energy of two particles placed in the same well and ∆ is
the bias between the potential wells. The double-well potential in Ref. [2] is
realized by superimposing two optical periodic potentials, respectively long-
lattice and short-lattice periodic potentials, with amplitudes Along and Bshort,
and corresponding wavelengths given by 765.0 nm and 382.5 nm, respectively.
The initial state for the dynamics is realized by placing one (or more) atoms in
the left well. The sudden lowering of the potential barrier depth gives rise to
the dynamics of the particle(s). As a figure of merit for the system’s dynamics,
the average position is considered:

⟨x(t)⟩ = ⟨n̂R(t)⟩ − ⟨n̂L(t)⟩
⟨n̂R(t)⟩ + ⟨n̂L(t)⟩ , (3.8.3)

where n̂L,R is the number of bosons placed in the left (L) and right (R) well,
respectively. Moreover, the dynamics of a single boson (single-particle signal)
and of a pair of bosons (double-particle signal), for different interaction regimes,
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have been experimentally measured. Specifically, weakly (U/J = 0.67) and
strongly (U/J = 5) interacting regimes have been considered. Note that, even
in the single-particle case, the ratio U/J can be defined, since the single-particle
signal is obtained by subtracting the double-particle signal from the total signal
(for further details, see Ref. [2]). One may wonder what occurs in the parameter
range between the weakly and strongly interacting regimes considered in Fig. 3.9.
According to the experimental conditions outlined in Ref. [2], increasing the
Hubbard interaction term U also increases the lattice depth V0, which in turn
reduces the relative influence of the PT term. This issue is discussed in detail
in Appendix G, where it is also shown that the DT term becomes relevant in
determining the parameter value at which the metal-insulator transition occurs.

In addition, our numerical model can be defined as a generalized lowest-band
Hubbard Hamiltonian, which reads

Ĥ = − J
(
b̂†

Lb̂R + b̂†
Rb̂L

)
− ∆

2 (n̂L − n̂R) +

+ U

2 [n̂L (n̂L − 1) + n̂R (n̂R − 1)] + U (n̂Ln̂R) +

+ Ω1

(
b̂†

L (n̂L + n̂R) b̂R + b̂†
R (n̂R + n̂L) b̂L

)
+

+ Ω2

(
b̂†2

L b̂
2
R + b̂†2

R b̂
2
L

)
,

(3.8.4)

where U represents the nearest neighbor interaction, Ω1 is the DT term and Ω2
is the PT term. For the case of single-particle dynamics, we modify both the
amplitude Bshort of the short-lattice periodic potential and the bias ∆ between
the wells, in order to adjust the single-particle tunneling Ω0. We also introduce
a phenomenological exponential damping in our model, to fit the experimental
conditions. Specifically, we fit the bare model M(t) with the function

D(t) = M(t)e−γt ,

where γ represents the inverse decay time, and it is used as a free fitting
parameter. The results for the dynamics of a single boson are presented in
Fig. 3.8, both for weakly and strongly interacting regime. Here, the damped
Hubbard model (black curve) fits very well the experimental data (red dots),
matching the single-particle oscillation frequency. Specifically, in Fig. 3.8(a),
we obtain a parameter γ = 0.2285ms−1, which corresponds to a decay time
τ ≃ 4.38ms close to the decay time τ = 3.5ms obtained in Ref. [2].

The average position of two interacting bosons, initially placed in the infinite
left-well state, respectively in the case of weakly (U/J = 0.67) and strongly
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(U/J = 5) interacting regime, is shown in Fig. 3.9. Here, we represent the
experimental data (red dots), the Hubbard model (orange curve), the SB
nonstandard model (green curve) and the MB nonstandard model (blue curve).
We note that the Hubbard model does not reproduce exactly the experimental
results, both in terms of amplitude and frequency of oscillation, for weakly
and strongly interacting regimes. Moreover, for the parameters chosen in the
experiments, also the SB nonstandard model does not agree completely with
the experimental results. On the contrary, the MB nonstandard model is able
to fit better the experimental data, both in the weakly and strongly interacting
regimes, since it considers all the possible energy levels involved in the system’s
dynamics. Comparing Fig. 3.9(a) with Fig. 3.9(b), we note that SB nonstandard
and MB nonstandard models approximate better the experimental data for
the weakly interacting regime, with respect to the strongly interacting one.
This highlights the importance of including higher energy levels for the case
of strongly interacting regime, to accurately capture the complex dynamics of
strongly interacting bosonic systems. Even if our results do not exactly match
the experimental data, they still highlight a significant improvement in the
description of the system’s dynamics compared to the standard Hubbard model.

3.9 Discussion

In conclusion, our comprehensive study of many-body tunneling dynamics in
arbitrary double-well potentials significantly advances the understanding of
interacting many-body systems beyond the conventional approximations of the
standard Hubbard model. By incorporating nonstandard Hubbard terms in the
Hamiltonian, specifically DT and PT terms, we identify crucial modifications to
the system’s behavior that are not captured by the standard Hubbard model.
Specifically, in the presence of a δ-shaped repulsive interparticle interaction, our
perturbative analytical approximations, corroborated by extensive numerical
simulations, reveal that these additional terms fundamentally modify the
single-particle tunneling parameter Ω0 and introduce new coherent propagation
mechanisms, given by the PT process. These findings may have important
implications for a broad range of physical phenomena, including high-
TC superconductivity [13–18, 109–112, 121] and metal-insulator transitions
[54, 102, 103, 113, 122].

We show that the nonstandard Hubbard model significantly deviates from
the standard Hubbard model with increasing interaction strength, resulting in
different transport behaviors. In the nonstandard model, strong interactions
modify single-particle tunneling and enhancing PT, generating an interplay
that may give rise to novel transport phenomena. However, at lower interaction
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strengths, the two models produce similar outcomes, particularly when DY and
PT terms are minimal compared to Ω0.

Our theoretical framework has been also validated by experimental observations
of second-order atom tunneling in optical double-well arrays, demonstrating
the practical relevance and applicability of our model. The excellent agreement
between our numerical simulations and the computed lowest-band parameters
further underscores the robustness and accuracy of our approach. Overall, this
work not only highlights the necessity of considering nonstandard Hubbard
terms in the study of many-body systems, but also provides insights into the
complex interplay between interaction and tunneling processes in quantum
systems. These findings pave the way for future investigations into complex
quantum behaviour and emergent phenomena in controlled experimental setups.

From a broader perspective, the results of this study open new paths for
exploring exotic quantum states and novel phases of matter in various physical
systems. By challenging and extending the boundaries of the Hubbard model,
our work suggests a re-evaluation of theoretical frameworks that describe strongly
correlated materials. This can potentially lead to the discovery of new materials
with unique properties, thereby impacting the fields of condensed matter
physics. Additionally, the methods developed here could inspire advancements in
quantum simulation and computation, where precise control and understanding
of tunneling dynamics are crucial. As such, our findings not only improve the
theoretical understanding of many-body quantum systems, but also have far-
reaching implications for future experimental and technological developments.



Chapter 4

Conclusions and outlook

The journey through this thesis has been a rigorous and comprehensive
exploration of both the limitations and extensions of the Hubbard model
in describing strongly correlated electron systems. Our primary focus was
to develop a comprehensive framework that addresses the shortcomings of
the standard Hubbard model, particularly its inability to account for certain
interaction-induced phenomena observed in experiments, such as those in ultra-
cold atom systems and condensed matter systems like twisted bilayer graphene.

To this end, we extended the traditional Hubbard model by incorporating
crucial interaction terms, resulting in both single-band (SB) and multiband
(MB) nonstandard Hubbard models. These models include essential terms such
as density-induced tunneling (DT) and pair tunneling (PT), offering a significant
improvement in the theoretical understanding of strongly correlated systems.

A major innovation in our approach was the development of a novel method
for evaluating Wannier functions (WFs). Unlike traditional approaches that
often overlook the tails of WFs, our method accounts for their full spatial
extent, significantly improing the accuracy of interaction matrix elements. This
was achieved through a perturbative approach, using the barrier penetration
coefficient as a perturbation parameter, overcoming the limitations of the widely
used maximally localized Wannier functions (MLWFs). Our method allows a
more precise determination of the nonstandard interaction terms in the Hubbard
Hamiltonian.

Applying this improved evaluation of WFs, we derived a nonstandard Hubbard
Hamiltonian that includes not only the standard kinetic and on-site interaction
terms, but also the additional DT and PT terms. Our analysis revealed that
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these nonstandard terms lead to significant deviations from the predictions of the
standard Hubbard model. For example, long-range interparticle interactions can
suppress single-particle tunneling, countering the insulating behavior predicted
by the standard model. This suppression allows for the coherent motion of
particle pairs, even in the absence of attractive interactions, suggesting a
mechanism for repulsive particle pairing that resists decay from single-electron
tunneling transitions.

We tested our theoretical model using potential profiles like square double-
well and sinusoidal potentials, which reflect experimental conditions in optical
lattices. The predictions of our nonstandard Hubbard model matched well with
experimental data, confirming the model’s accuracy and robustness.

The insights gained from this work have far-reaching implications for
understanding and controlling complex quantum materials with unique electronic
properties. DT and PT mechanisms could play critical roles in developing
superconducting materials, particularly in unconventional systems like twisted
bilayer graphene. The nonstandard Hubbard model, incorporating DT and
PT, provides a powerful tool for investigating new material properties and
electronic behaviors, shedding light on phenomena like superconductivity and
metal-insulator transitions. These findings also suggest new pathways for
manipulating metal-insulator transitions in correlated systems, with potential
technological applications.

Beyond the systems analyzed here, our work has broader implications in the field
of quantum transport. Many-body tunneling processes, such as those governed
by DT and PT, could significantly improve quantum transport of electrons,
especially in one-dimensional systems like atomic chains or quantum wires. In
these low-dimensional systems, where interactions are amplified, many-body
tunneling can promote more coherent charge transport by reducing dissipation
and suppressing single-electron tunneling. This could lead to controlled electron
flow with unprecedented precision, paving the way for developing materials
with tailored electronic properties for high-performance quantum transport
applications.

In summary, this thesis has advanced the understanding of many-body systems
by addressing the limitations of the standard Hubbard model and proposing
an extended and robust framework. The development of the nonstandard
Hubbard model, supported by our novel WFs evaluation method, provides a
more accurate description of interacting many-body systems. This work offers
a solid foundation for future research into complex quantum phenomena and
serves as a useful tool for both theoretical and experimental investigations in
condensed matter physics. The successful alignment of theoretical predictions
with experimental data highlights the robustness of this approach, marking a



CONCLUSIONS AND OUTLOOK 75

significant contribution to the field.

Looking beyond the systems studied here, this thesis opens new pathways for
exploring and controlling quantum materials. By bridging the gap between
theory and experiment, it contributes to a more unified understanding of
condensed matter systems, with potential applications in materials science,
quantum computing, and beyond.





Appendix A

Exact equations of motion of
two electrons in a symmetric
triple-well potential

A.1 Wannier functions of a symmetric triple-well
potential

In this Appendix, we consider the triple-well potential V(x) depicted in
Fig. 2.2(b), where the lowest band is composed of three eigenstates ψk(x),
indexed by k = 1, 2, 3 as described in Eq. (2.2.2). These eigenstates correspond
to energies Ek, with E1 < E2 < E3 < 0. We derive the tunneling Hamiltonian Ĥ3
for this band, expressed in the basis of Wannier functions |Ψj⟩, with j = 1, 2, 3
denoting the left, middle, and right wells, respectively. Accounting for the
symmetry of V(x), the tunneling Hamiltonian is given by

Ĥ3 = E0

(
â†

LâL + â†
M âM + â†

RâR

)
+

+ Ω0

(
â†

LâM + â†
M âR +H.c.

)
+

+ Ω′
0

(
â†

LâR +H.c.
)
,

(A.1.1)

where E0 represents the single-site energy, Ω0 denotes nearest neighbor hopping,
and Ω′

0 accounts for next-to-nearest neighbor hopping (which is usually
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disregarded, since it is a higher-order term in the penetration coefficient).
In particular, Eq. (A.1.1) constitutes a more general form than the nearest-
neighbor Hamiltonian discussed in Eq. (2.2.8). The unitary matrix R, defined
up to O

(
Ω′

0/Ω0

)2
terms as

R =


1
2

(
1√
2 − Ω′

0
4Ω0

)
1
2

1√
2 0 − 1√

2
1
2 −

(
1√
2 + Ω′

0
4Ω0

)
1
2

 , (A.1.2)

diagonalizes Ĥ3, yielding eigenstates that can be identified with the exact
solutions of the Schrödinger equation described in Eq. (2.2.2). Expressing the
energies Ek in terms of E0, Ω0 and Ω′

0, we get

E1,3 = E0 ∓

√√√√2Ω2
0 +

(
Ω′

0
2

)2

+ Ω′
0

2 ,

E2 = E0 − Ω′
0 .

(A.1.3)

From Eqs. (A.1.3), up to O
(

Ω′
0/Ω0

)2
terms, we get

E0 = E1 + E2 + E3

3 ,

Ω0 = E1 − E3

2
√

2
,

Ω′
0 = E1 − 2E2 + E3

3 .

(A.1.4)

Furthermore, the corresponding WFs Ψj(x), expressed in terms of the
lowest-band eigenstates ψk(x) through the unitary transformation detailed
in Eq. (A.1.2), are explicitly given by

ΨL(x) = 1
2ψ1(x) +

(
1√
2

− Ω′
0

4Ω0

)
ψ2(x) + 1

2ψ3(x) ,

ΨM (x) = 1√
2

[ψ1(x) − ψ3(x)] ,

ΨR(x) = 1
2ψ1(x) −

(
1√
2

+ Ω′
0

4Ω0

)
ψ2(x) + 1

2ψ3(x) .

(A.1.5)
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By neglecting O
(

Ω′
0/Ω0

)
terms, Eqs. (A.1.4) and (A.1.5) coincide with

Eqs. (2.2.9).

A.2 Two electrons with parallel spins in a triple-well
potential

Moving on, the two-electron interacting term V̂ , described in Eq. (2.5.1), is
expressed in second quantization formalism as

V̂ = U (n̂Ln̂M + n̂M n̂R) + U
′
n̂Ln̂R+

+ Ω1

(
n̂Lâ

†
M âR + n̂Râ

†
M âL +H.c.

)
+

− Ω2

(
n̂M â†

LâR +H.c.
)
,

(A.2.1)

where U denotes interaction between nearest neighbor sites, see Eq. (2.5.11),
U

′ represents interaction between next-to-nearest neighbor sites, defined as

U
′ =

∫
Ψ2

L(x)V (x− y)Ψ2
R(y) dx dy , (A.2.2)

and Ω1 and Ω2 characterize the DT and PT processes, respectively, see
Eqs. (2.5.12).

Now, considering two electrons with parallel spins in the triple-well system, the
total time-dependent wave function |Ψ(j̄j̄′)(t)⟩ can be written as

|Ψ⟩ =
[
bLM â†

Lâ
†
M + bLRâ

†
Lâ

†
R + bMRâ

†
M â†

R

]
|0⟩ , (A.2.3)

omitting both the upper indices (LM), which denote the initial occupation
of the system, and the time dependency. Substituting Eq. (A.2.3) into the
time-dependent Schrödinger Eq. (2.5.15), considering Ĥ3 and V̂ as described in
Eqs. (A.1.1) and (A.2.1), and applying the anti-commutation relations for the
Fermi operators

{â†
j âj′} = δjj′ , {â†

j â
†
j′} = {âj âj′} = 0 ,
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we derive

Ĥ3 |Ψ⟩ = Ĥ3

[
bLM â†

Lâ
†
M + bLRâ

†
Lâ

†
R + bMRâ

†
M â†

R

]
|0⟩ =

= 2E0

[
bLM â†

Lâ
†
M + bLRâ

†
Lâ

†
R + bMRâ

†
M â†

R

]
|0⟩ +

+ Ω0

[
bLM â†

Lâ
†
R + bLR

(
â†

Lâ
†
M + â†

M â†
R

)
+ bMRâ

†
Lâ

†
R

]
|0⟩ +

− Ω′
0

[
bLM â†

M â†
R + bMRâ

†
Lâ

†
M

]
|0⟩ ,

(A.2.4)

as well as

V̂ |Ψ⟩ = V̂
[
bLM â†

Lâ
†
M + bLRâ

†
Lâ

†
R + bMRâ

†
M â†

R

]
|0⟩ =

= U
[
bLM â†

Lâ
†
M + b

(LR)
MR â†

M â†
R

]
|0⟩ + U

′ [
bLRâ

†
Lâ

†
R

]
|0⟩ +

+ Ω1

[
bLM â†

Lâ
†
R + bLR

(
â†

Lâ
†
M + â†

M â†
R

)
+

+ bMRâ
†
Lâ

†
R

]
|0⟩ + Ω2

[
bLM â†

M â†
R + bMRâ

†
Lâ

†
M

]
|0⟩ .

(A.2.5)

Therefore, the resulting equations of motion are:

iḃLM (t) =
(
2E0 + U

)
bLM (t)+

+
(
Ω0 + Ω1

)
bLR(t) +

(
−Ω′

0 + Ω2

)
bMR(t) ,

iḃLR(t) =
(

2E0 + U
′)
bLR(t)+

+
(
Ω0 + Ω1

)
[bLM (t) + bMR(t)] ,

iḃMR(t) =
(
2E0 + U

)
bMR(t)+

+
(
Ω0 + Ω1

)
bLR(t) +

(
−Ω′

0 + Ω2

)
bLM (t) .

(A.2.6)

Notably, neglecting O
(

Ω′
0/Ω0

)
and O

(
U

′
/U
)

terms, which are respectively
next-to-nearest neighbor contributions to free and interacting dynamics,
Eqs. (A.2.6) coincide with Eqs. (2.5.16). Finally, we investigate the effect
of the interaction range d on the three terms U ′, Ω1, and Ω2 in Fig. A.1.
Here, we keep the same geometries and interactions of Figs. 2.5(b) and 2.5(c)
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Figure A.1: Next-to-nearest neighbor interaction normalized by the nearest
neighbor interaction U

′
/U (green curves), DT amplitude normalized by the

single-particle tunneling Ω1/|Ω0| (blue curves) and PT amplitude normalized by
the single-particle tunneling Ω2/|Ω0| (red curves) as a function of the interaction
range d, for the three different geometries of the square triple-well potential
presented in Figs. 2.5(b) and 2.5(c) and Fig. 2.6, respectively. (a) Parameters:
L = 2, b = 0.5, V0 = 5 and Ω0 ≃ −0.22. Interaction strength Vδ = 3. (b)
Parameters: L = 4, b = 1, V0 = 5 and Ω0 ≃ −0.0167. Interaction strength
Vδ = 3. (c) Parameters: L = 2, b = 0.1, V0 = 1.1 and Ω0 ≃ −0.32. Interaction
strength Vδ = 22. Energies are given in arbitrary units, where Ω0 sets the
characteristic energy scale. Vertical dashed lines represent the interaction range
d/L = 2, common to all panels.

and Fig. 2.6, respectively. It is evident that in Figs. A.1(a) and A.1(b) the
term U

′
/U is negligible, while in Fig. A.1(c) it starts to be relevant for the

chosen interaction range. Despite that, it does not qualitatively affects the
dynamics of the probabilities, confirming the validity of our approximation for
the parameters considered in Fig. (2.6). Finally, the behavior of the DT and
PT amplitudes, denoted as Ω1 and Ω2 respectively, mirrors that observed in the
double-well scenario illustrated in Fig. 2.4. Specifically, the DT term becomes
positive for a sufficiently large interaction range, such that the chosen interaction
strength makes Ω1 ≃ −Ω0, confirming our hypothesis of single-particle tunneling
suppression.





Appendix B

Two-potential approach to the
bound-state spectrum and the
Bardeen formula

B.1 The two-potential approach

The standard perturbation approach consists in separating the total Hamiltonian
H of an entire system into an “unperturbed”Hamiltonian and a “perturbation”.
In this Appendix, we consider the symmetric double-well potential in Fig. 2.1(a),
choosing

H = H1 + V2 ,

where
H1 = K + V1

is the left-well Hamiltonian and

V2(x) = V1(−x)

is the right-well potential (K = −∇2/2m is the kinetic part). Such a separation
implies that the spectrum of the unperturbed left-well Hamiltonian,

H1 |Φ(1)
n ⟩ = E(1)

n |Φ(1)
n ⟩ , (B.1.1)

must be known (here E(1)
n denotes discrete and continuum spectrum states).

The total Hamiltonian spectrum

H |ψn⟩ = En |ψn⟩
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can be obtained by solving the following equations [123]

En = E(1)
n + ⟨Φ(1)

n |V2|Φ(1)
n ⟩ + ⟨Φ(1)

n |V2 G̃(En) V2|Φ(1)
n ⟩ , (B.1.2a)

|ψn⟩ = |Φ(1)
n ⟩ + G̃(En) V2 |Φ(1)

n ⟩ , (B.1.2b)

where
G̃(En) =

(
1 − Λ(1)

n

)
(En − H)−1

represents the total Green’s function and

Λ(1)
n = |Φ(1)

n ⟩ ⟨Φ(1)
n |

is a projection operator on the state En of the Hamiltonian H1. For simplicity,
in the following we will consider the ground state (n = 0) of the potential V1.

The Green’s function G̃(E) can be obtained directly from the Lippmann-
Schwinger equation

G̃(E) =
[
1 + G̃(E) V2

]
G̃1(E) , (B.1.3)

where

G̃1(E) =
(

1 − Λ(1)
0

) 1
E −H1

=
∑
n ̸=0

|Φ(1)
n ⟩ ⟨Φ(1)

n |
E − E

(1)
n

. (B.1.4)

By solving Eq. (B.1.2a) with respect to En, we find the energy spectrum of the
system, while the corresponding eigenstates |ψn⟩ are obtained from Eq. (B.1.2b).
For the treatment of Eqs. (B.1.2), we use the perturbative expansion obtained
by iterating the Lippmann-Schwinger equation in Eq. (B.1.3), namely

G̃(E) = G̃1 + G̃1 V2 G̃1 + G̃1 V2 G̃1 V2 G̃1 + . . . . (B.1.5)

Substituting Eq. (B.1.5) into Eqs. (B.1.2), we find the Brillouin-Wigner
perturbation series [123] for the energy spectrum of the Hamiltonian H in
powers of the perturbation V2. In particular, Eq. (B.1.2a) at the second order
in V2, is given by

E = E
(1)
0 +⟨Φ(1)

0 |V2|Φ(1)
0 ⟩+⟨Φ(1)

0 |
∑
n ̸=0

V2
|Φ(1)

n ⟩ ⟨Φ(1)
n |

E − E
(1)
n

V2|Φ(1)
0 ⟩+O

(
V3

2
)
. (B.1.6)

Looking at Eqs. (B.1.2) and (B.1.5), we notice that the main problem with the
perturbative treatment is the absence of a small parameter in the corresponding
expansions. At first sight, we could consider the second order perturbation
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term in V2, see Eq. (B.1.6), as a small parameter. This term is suppressed
because the wave function Φ(1)

0 (x) decreases exponentially for x > 0, where
V2(x) is large, see Fig. 2.1(c). However, the higher order terms of the expansion
include an overlap of the potential V2(x) with the wave functions Φ(1)

n (x) of the
continuum spectrum, which are not suppressed at all for large |x|. This makes
the expansion in Eq. (B.1.6) not applicable for evaluating the eigenspectrum of
the double-well potential. In general, this is not surprising, since any problem
related to tunneling is usually a nonperturbative one.

However, we can use a different treatment of the Green’s function G̃(E),
which leads to a perturbative series in powers of an effectively small expansion
parameter. Such a two potential approach was originally developed for tunneling
to the continuum in [53, 105–107], and we have extended it to bound-state
problems.

Consider the total Green’s function G(E) of the double-well system in Fig. 2.1(a).
It contains two poles for E = E1,2, corresponding to the two eigenstates of the
system with energies close to E0. Comparing G(E) with

G̃(E) =
(

1 − Λ(1)
0

)
G(E) ,

we observe that the two Green’s functions are indeed very similar. The only
difference is related to the projection operator

(
1 − Λ(1)

0

)
, which excludes the

ground state |Φ(1)
0 ⟩ from the spectral representation. However, the ground state

|Φ(2)
0 ⟩ of the right well is not excluded by the projection operator. This state

would dominate the Green’s function behavior at E ≃ E0, making it close to
the Green’s function

G2(E) = (E −H2)−1

of the second well, which is given by

G2(E) = |Φ(2)
0 ⟩ ⟨Φ(2)

0 |
E − E0

+
∑
n̸=0

|Φ(2)
n ⟩ ⟨Φ(2)

n |
E − E

(2)
n

. (B.1.7)

This suggests a new expansion of the Green’s function G̃(E) in terms of G2(E).
To find it, we multiply the Lippmann-Schwinger equation (B.1.3) by (E −H1),
thus obtaining

G̃(E)(E −H1) =
[
1 + G̃(E) V2

] (
1 − Λ(1)

0

)
.

Using
E −H1 ≡ E −H2 + V2 − V1 ,
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we can write

G̃(E)(E −H2) = G̃(E) (V1 − V2) +
[
1 + G̃(E) V2

] (
1 − Λ(1)

0

)
. (B.1.8)

Multiplying Eq. (B.1.8) by G2(E), we obtain

G̃(E) =
[
1 + G̃(E) V1

]
G2(E) −

[
1 + G̃(E) V2

]
Λ(1)

0 G2(E) . (B.1.9)

Eq. (B.1.9) shows the exact relation between the Green’s function G̃(E) and
the Green’s function of the second well G2(E) of Eq. (B.1.7). Notice that, in
the limit E → E0,

Λ(1)
0 G2(E) E→E0=⇒ β

|Φ(1)
0 ⟩ ⟨Φ(2)

0 |
E − E0

, (B.1.10)

where
β = ⟨Φ(1)

0 |Φ(2)
0 ⟩

represents the overlap of the two (nonorthogonal) wave functions of neighboring
sites. Since the site wave functions are mainly localized in the respective wells,
their overlap β ≪ 1, as can be explicitly shown in the semi-classical limit.
Indeed, the left-well orbital function can be written as

Φ(1)
0 (x) =

Φ(1)
0 (−x) e

−
x∫

−x

p(x′) dx′

for − x < x ≤ 0
Φ(1)

0 (0) e−p(0)x for x > 0
, (B.1.11)

where
p(x) =

√
2m (V1(x) − E0)

is the (imaginary) momentum under the barrier, so that

p(0) =
√

−2mE0 ,

and −x is the classical turning point, with V1,2(∓x) = E0, see Figs. 2.1(b) and
2.1(c). We obtain the same expression for the right-well orbital function Φ(2)

0 (x),
under the substitution x → −x and x → −x. Therefore, we obtain

β = 2
0∫

−∞

Φ(1)
0 (x)Φ(2)

0 (x) dx ≃

≃
[
Φ(1)

0 (−x)
]2
e

−
x∫

0

p(x′) dx′ 0∫
−x

e

−
x∫

−x

p(x′) dx′+p(0)x

dx ,

(B.1.12)
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where we have neglected the integration region (−∞,−x), whose contribution
is exponentially small. To perform the integration in Eq. (B.1.12), we apply
the stationary phase approximation. The stationary point of the variable x is
obtained by differentiating the exponential factor, so that

−p(x) + p(0) = 0.

Solving this equation, we find that the stationary point corresponds to x = 0.
As a result, the integral over x in Eq. (B.1.12) is given by

C exp

−
0∫

−x

p(x′) dx′

 ,

where C is a pre-exponential factor of the stationary phase approximation.
Finally, we obtain from Eq. (B.1.12):

β ≃ 2C
[
Φ(1)

0 (−x)
]2
e

−
x∫

−x

p(x′) dx′

∝ T0 , (B.1.13)

where T0 is the barrier penetration coefficient in Eq. (2.3.4). Considering
Eq. (B.1.9) in the limit E → E0, and using Eq. (B.1.7), G̃(E) can be written as

G̃(E) =
(

1 + G̃(E) V1

) |Φ(2)
0 ⟩ ⟨Φ(2)

0 |
E − E0

+

− β
(

1 + G̃(E)V2

) |Φ(1)
0 ⟩ ⟨Φ(2)

0 |
E − E0

.

(B.1.14)

Eq. (B.1.14) can be easily solved for the zero-order term in β, obtaining

G̃(E) ≃ |Φ(2)
0 ⟩ ⟨Φ(2)

0 |
E − E0 − Ω

+ O (β) , (B.1.15)

where

Ω = ⟨Φ(1)
0 |V2|Φ(1)

0 ⟩ = ⟨Φ(2)
0 |V1|Φ(2)

0 ⟩ =
∞∫

−∞

[
Φ(1)

0 (x)
]2

V2(x) dx (B.1.16)

is the diagonal energy shift. Since the potential V2(x) overlaps with the orbital
function tail, see Eq. (B.1.11), Ω ∝ T 2

0 ∝ β2 (c.f. with Eqs. (B.1.12) and
(B.1.13)) and therefore it can be neglected.
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B.2 The Bardeen formula

Substituting Eq. (B.1.15) into Eq. (B.1.2a), we find that the eigenstate energies
of the system E± (up to the O

(
β2) terms) are obtained from the equation

E − E0 = Ω2
0/(E − E0) ,

giving E± = E0 ± Ω0, where

Ω0 = ⟨Φ(1)
0 | V2 |Φ(2)

0 ⟩ =
∞∫

0

Φ(1)
0 (x) V2(x) Φ(2)

0 (x) dx (B.2.1)

is the off-diagonal energy shift, corresponding to the energy split between the
two lowest eigenstates,

Ω0 = (E+ − E−)/2 ,

and represents the tunneling coupling energy. Notice that Ω0 < 0, since
V2(x) < 0, see Fig. 2.1. Using the Schrödinger equation

V2 |Φ(2)
0 ⟩ = (E0 − K) |Φ(2)

0 ⟩ ,

and
Φ(1)

0 (x) = Φ(1)
0 (0)e−

√
−2mE0x

for x ≥ 0, we can evaluate the integral in Eq. (B.2.1) by integrating by parts,
obtaining

Ω0 =
∞∫

0

Φ(1)
0 (x)

(
E0 + 1

2m
d2

dx2

)
Φ(2)

0 (x) =

= 1
2m

[
Φ(1)′

0 (0)Φ(2)
0 (0) − Φ(1)

0 (0)Φ(2)′
0 (0)

]
,

(B.2.2)

where
Φ(1,2)′

0 (0) = d

dx
Φ(1,2)

0 (x)
∣∣∣∣
x→0

.

This equation represents the Bardeen formula [108], although we use different
orbital potentials, namely V1,2(x) = 0 beyond the separation point, see
Figs. 2.1(b) and 2.1(c) (c.f. [105–107]). The latter gives us

Φ(1,2)
0 (x) = Φ(1,2)

0 (0) e∓
√

−2mE0x

for x ≷ 0, so that
Φ(1,2)′

0 (0) = ∓
√

−2mE0Φ(1,2)
0 (0) .
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Substituting this result into Eq. (B.2.2), we obtain the following simple
expression for the tunneling energy:

Ω0 = −
√

2|E0|
m

Φ(1)
0 (0)Φ(2)

0 (0) . (B.2.3)

Evaluating Eq. (B.2.3) in the semiclassical limit, using Eq. (B.1.11) for the
orbital functions, we obtain (c.f. with Eq. (B.1.13))

Ω0 ≃ −
√

2|E0|
m

[
Φ(1)

0 (−x)
]2
e

−
x∫

−x

p(x′) dx′

∝ β ∝ T0 . (B.2.4)

Therefore, similarly to the overlap integral β, the tunneling coupling Ω0 is also
proportional to the penetration coefficient T0. Notice that Eq. (B.2.4) for the
tunneling energy Ω0 was obtained by keeping the first (zero order) term in the
expansion of G̃(E) in powers of β. The accuracy of Eqs. (B.2.2) and (B.2.3) is
therefore up to the terms O

(
β2).





Appendix C

Comparison between the
extended and the single-band
nonstandard Hubbard model

C.1 Analytical calculations

In this Appendix, we compare the coherent dynamics of two interacting electrons
with parallel spins within the symmetric square triple-well potential V(x) shown
in Fig. 2.2(b), using both the extended and the single-band (SB) nonstandard
Hubbard model.

For the extended Hubbard model, an analytical expression for the probability
PLR(t) can be easily derived. Indeed, from Eqs. (2.5.16) and (2.5.17), setting
Ω1 = Ω2 = 0, we obtain:

PLR(t) = 4Ω2
0

8Ω2
0 + U

2 sin2


√

8Ω2
0 + U

2

2 t

 . (C.1.1)

In Fig. C.1, we illustrate the occupancy probabilities PLM (t) and PLR(t) for
the same data as Figs. 2.5(b) and 2.5(c). Each panel in Fig. C.1 shows the
dynamics obtained from the SB nonstandard Hubbard model (red curves), the
extended Hubbard model (green curves), alongside the analytical results from
the TPA (blue curves).
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It is evident from Eq. C.1.1 that when U ≫ |Ω0|, single-particle tunneling
suppression occurs, as shown in Fig. C.1(d). Conversely, for U ∼ Ω0, as clearly
shown in Fig. C.1(b), no suppression is observed. Actually, the SB nonstandard
model and extended Hubbard model display significant discrepancies. For
instance, analyzing the corresponding probability PLM (t) reveals that while they
provide comparable results for the first geometry, see Fig. C.1(a), a significant
frequency shift arises for the second one, see Fig. C.1(c), due to the presence of
the term Ω1, which becomes comparable with Ω0. More precisely, Ω1/|Ω0|= 0.06
for the first geometry in Figs. C.1(a) and C.1(b), while Ω1/|Ω0|= 0.16 for the
second one in Figs. C.1(c) and C.1(d).

C.2 Discussion

Looking at Figs. C.1(b) and C.1(d), one may have the impression that the
predictions concerning the PLR(t) for the two Hubbard models are quite similar.
To show that this is not always the case, let us consider the scenario where
there is exact cancellation (Ω1 = −Ω0), as shown in Figs. C.2(c) and C.2(d)
and Fig. 2.6. Looking at Fig. C.2(d), one can see that the extended Hubbard
model produces oscillations with a significant amplitude of ≈ 0.13, while the
SB nonstandard Hubbard model yields exactly PLR(t) = 0. Moreover, the
frequency of oscillations of PLM (t) differ notably between the two models, see
Fig. C.2(c). Specifically, in the extended Hubbard model, the frequency is
approximately given by Ω2

0/U when U ≫ Ω0, whereas in the SB nonstandard
Hubbard model, the frequency of oscillations is given by Ω2.

As the interaction strength decreases, the similarity between the SB nonstandard
model and extended Hubbard model is recovered, as shown in Figs. C.2(a) and
C.2(b). In such cases, there is no more single-particle tunneling cancellation,
and the ratio Ω1/|Ω0| diminishes significantly (from 1 to 0.02).

Finally, comparing the results obtained with the SB nonstandard Hubbard
model to our analytical predictions, we find agreement only when Ω0 ∝ β ≪ 1,
where β represents the orbital overlap, see Figs. C.2(a) and C.2(b). Vice versa,
discrepancies between the results arise for large Ω0, due to the neglected terms
of order Ω2

0 in our analytical approximation, see Figs. C.2(c) and C.2(d).
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Figure C.1: Occupancy probabilities PLM (t) (left panels) and PLR(t) (right
panels) for two electrons with parallel spins in a triple-well potential, when the
left and middle well are initially occupied. The different Hamiltonian models
are: extended Hubbard model (green curves), SB nonstandard Hubbard model
(red curves), analytical results from TPA (blue curves). (a), (b) Same geometry
of Fig. 2.5(b), i.e., L = 2, b = 0.5, V0 = 5 and Ω0 ≃ −0.22. (c), (d) Same
geometry of Fig. 2.5(c), i.e., L = 4, b = 1, V0 = 5 and Ω0 ≃ −0.0167. Interaction
strength Vδ = 3 and interaction range d/L = 2, so that U ≃ 0.35, Ω1 ≃ 0.0125
and Ω2 ≃ 0.0012 in (a), (b) and U ≃ 0.19, Ω1 ≃ 0.0027 and Ω2 ≃ −6.4 · 10−6 in
(c), (d). Energies are given in arbitrary units, where Ω0 sets the characteristic
energy scale.
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Figure C.2: Occupancy probabilities PLM (t) (left panels) and PLR(t) (right
panels) for two electrons with parallel spins in a triple-well potential, when the
left and middle well are initially occupied. The different Hamiltonian models
are: extended Hubbard model (green curves), SB nonstandard Hubbard model
(red curves), analytical results from TPA (blue curves). Same geometry of
Fig. 2.6, i.e., L = 2, b = 0.1, V0 = 1.1 and Ω0 ≃ −0.32. (a), (b) Interaction
strength Vδ = 0.5 and interaction range d/L = 2, so that U ≃ 0.035, Ω1 ≃ 0.007
and Ω2 ≃ 0.005. (c), (d) Interaction strength Vδ = 22 and interaction range
d/L = 2, so that U ≃ 1.54, Ω1 ≃ −Ω0 and Ω2 ≃ 0.22 (complete single-particle
tunneling suppression case), in arbitrary units.



Appendix D

Squared sine double-well
potential

In this Appendix, we compare the results of our analytical approximated
approach (TPA) with the exact numerical evaluation of the WFs Ψj(x) for the
following squared sine double-well potential, shown in Fig. D.1(a):

V(x) =
{

−V0 sin2(x) for |x|≤ π

0 for |x|> π
, (D.0.1)

where V0 > 0 is the potential depth. The potential in Eq. (D.0.1) can be seen
as a sum of two single-well potentials, namely

V(x) = V1(x) + V2(x) ,

where

V1(x) =
{

−V0 sin2(x) for − π ≤ x ≤ 0
0 for x < −π ∨ x > 0

, (D.0.2)

while
V2(x) = V1(−x) .

To simplify the notation, in the following we will use dimensionless units, i.e.
h̄ = 2m = 1, unless otherwise specified. First, we consider the exact numerical
solution for E± and the wave functions ψ±(E±, x), given by Eqs. (2.3.7), where
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Φ(1)(E, x) is obtained from the numerical solution of the Schrödinger equation

−Φ(1)′′(E, x) =
(
E −

(
V0 cos2(x) − V0

))
Φ(1)(E, x) for − π ≤ x ≤ 0 ,

Φ(1)(E, x) = eq(x+π) for x ≤ −π ,
(D.0.3)

where q =
√

−E. The eigenenergies are obtained from the matching conditions,
namely Φ(1)′(E+, 0) = 0 for the symmetric state ψ+(E+, x) and Φ(1)(E−, 0) = 0
for the antisymmetric state ψ−(E−, x). Using Eqs. (2.3.11), we then obtain the
exact WFs ΨL,R(x). The eigenenergy levels

E± = E1,2 + O(β2)

are denoted by dashed black lines in Fig. D.1(a), while the exact left-well WF
ΨL(x) is displayed in Fig. D.1(b) (red solid curve) for lattice depth V0 = 4.5.
The corresponding left-well orbital Φ(1)

0 (x), defined in Eqs. (3.3.5), is also shown
(black dashed curve). We note that the WF almost corresponds to the respective

Figure D.1: (a) Symmetric double-well potential with first two exact
eigenenergies E1,2 (black dashed lines). The bound states energies are:
E1 ≃ −2.75 and E2 ≃ −2.60, respectively. (b) Comparison between the orbital
Φ(1)

0 (x) (black dashed curve), the exact left-well WF ΨL(x) (red solid curve)
and the analytical approximated (neglecting O(Ω2

0) terms) left-well WF (blue
dot-dashed curve) for lattice depth V0 = 4.5. The exact ground-state energy and
tunneling coupling are E0 ≃ −2.672 and Ω0 ≃ −0.075, respectively, while the
corresponding parameters given by the TPA are E0 ≃ −2.672 and Ω0 ≃ −0.075.

orbital inside the respective well, while its tail in the other well differs from the
orbital’s one, as expected from our previous analysis. To compare these results
with our approximation in Eqs. (2.3.11), we consider the tunneling Hamiltonian
in Eq. (3.4.1), whose parameters E0 and Ω0 are directly related to E± via
Eq. (3.3.4a) and Eq. (3.3.4b), see also Eqs. (3.3.7). Using Ω0 as energy shift
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in the orbital, we can evaluate the corresponding WF by using Eqs. (2.3.11),
or equivalently Eqs. (3.3.23). The resulting analytical approximated WF is
represented in Fig. D.1(b) (blue dot-dashed curve). For this set of parameters,
our analytical approximated approach produces a result which is very close to
the exact one. We expect our approach to be the more accurate the more the
barrier height ensures a good localization of the left and right states in the
respective well.





Appendix E

Sinusoidal double-well
potential

In this Appendix, we compare the results of our analytical approximated
approach (TPA) with the exact numerical evaluation of the WFs Ψj(x) for the
following sinusoidal double-well potential, shown in Fig. E.1(a):

V(x) =
{

−V0 sin|x| for |x|≤ π

0 for |x|> π
, (E.0.1)

where V0 > 0 is the potential depth. The potential in Eq. (E.0.1) can be seen
as a sum of two single-well potentials, namely

V(x) = V1(x) + V2(x) ,

where

V1(x) =
{

−V0 sin|x| for − π ≤ x ≤ 0
0 for x < −π ∨ x > 0

, (E.0.2)

while V2(x) = V1(−x). To simplify the notation, in the following we will use
dimensionless units, i.e. h̄ = 2m = 1, unless otherwise specified. First, we
consider the exact numerical solution for E± and the wave functions ψ±(E±, x),
given by Eqs. (2.3.7), where Φ(1)(E, x) is obtained from the numerical solution
of the Schrödinger equation

−Φ(1)′′(E, x) = (E − V0 sin|x|) Φ(1)(E, x) for − π ≤ x ≤ 0 ,

Φ(1)(E, x) = eq(x+π) for x ≤ −π ,
(E.0.3)
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where q =
√

−E. The eigenenergies are obtained from the matching conditions,
namely Φ(1)′(E+, 0) = 0 for the symmetric state ψ+(E+, x) and Φ(1)(E−, 0) = 0
for the antisymmetric state ψ−(E−, x). Using Eqs. (2.3.11), we then obtain the
exact WFs ΨL,R(x). The eigenenergy levels

E± = E1,2 + O(β2)

are denoted by dashed black lines in Fig. E.1(a), while the exact left-well WF
ΨL(x) is displayed in Fig. E.1(b) (red solid curve) for lattice depth V0 = 4.5.
The corresponding left-well orbital Φ(1)

0 (x), defined in Eqs. (3.3.5), is also shown
(black dashed curve). We note that the WF almost corresponds to the respective

Figure E.1: (a) Symmetric double-well potential with first two exact
eigenenergies E1,2 (black dashed lines). The bound states energies are: E1 ≃ −3.2
and E2 ≃ −3.0, respectively. (b) Comparison between the orbital Φ(1)

0 (x) (black
dashed curve), the exact left-well WF ΨL(x) (red solid curve) and the analytical
approximated (neglecting O(Ω2

0) terms) left-well WF (blue dot-dashed curve)
for lattice depth V0 = 4.5. The exact ground-state energy and tunneling
coupling are E0 ≃ −3.1 and Ω0 ≃ −0.094, respectively, while the corresponding
parameters given by the TPA are E0 ≃ −3.08, Ω0 ≃ −0.094.

orbital inside the respective well, while its tail in the other well differs from the
orbital’s one, as expected from our previous analysis. To compare these results
with our approximation in Eqs. (2.3.11), we consider the tunneling Hamiltonian
in Eq. (3.4.1), whose parameters E0 and Ω0 are directly related to E± via
Eq. (3.3.4a) and Eq. (3.3.4b), see also Eqs. (3.3.7). Using Ω0 as energy shift
in the orbital, we can evaluate the corresponding WF by using Eqs. (2.3.11),
or equivalently Eqs. (3.3.23). The resulting analytical approximated WF is
represented in Fig. E.1(b) (blue dot-dashed curve). For this set of parameters,
our analytical approximated approach produces a result which is very close to
the exact one. We expect our approach to be the more accurate the more the
barrier height ensures a good localization of the left and right states in the
respective well.



Appendix F

Dynamics of two
distinguishable particles in a
double-well potential

In this Appendix, we consider the effects of the nonstandard Hubbard terms on
the dynamics of two distinguishable particles in the symmetric square double-
well potential shown in Fig. 3.2. As a figure of merit of the system’s dynamics,
we consider the oscillation frequency of the time-dependent probability PLL(t),
defined as the occupation probability to find both particles in the left well at
time t. As initial state for the dynamics, we consider both particles placed
in the infinite left-well state, and we compute the time-dependent occupation
probability PLL(t) for the state

|LL⟩ ≡ â
†(1)
L â

†(2)
L |00⟩ .

The system’s parameters have been chosen in such a way to have four bound
energies in the double-well system, as shown in Fig. F.1. We compute the
dynamics of the two particles by employing the single-band (SB) nonstandard
model, where only one energy level per each well is considered, and the multiband
(MB) nonstandard model, where all the energy levels (inside the potential well)
are taken into account. In Fig. F.2, we show the probability PLL(t) to find the
two particles in the left well, for two different repulsive interaction strengths,
respectively in the weakly interacting regime in Fig. F.2(a) and in the strongly
interacting regime in in Fig. F.2(b). Note that similar results were obtained for
the case of attractive interaction strength in Fig. 3.6.
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Figure F.1: Left (blue curve) and right (red curve) exact WFs for the symmetric
square double-well system shown in Fig. 3.2. Parameters are L = 2, b = 0.5
and V0 = 5. The eigenvalues (gray dashed lines, from bottom to top) are:
E0 ≃ −4.089, E1 ≃ −3.644, E2 ≃ −1.308, E3 ≃ −0.169. |Φ(x)⟩L (green dashed
curve) is the symmetric ground state of the infinite left-well potential considered
as initial state for the system’s dynamics.

Specifically, we compute PLL(t) by using the standard Hubbard model, the SB
nonstandard model and the MB nonstandard model, the last two including
novel effects given by the exact treatment of the interaction. In order to stress
the importance of the PT process, we also include the no-PT model, obtained
discarding artificially the effect of the PT process itself on the system’s dynamics
from the SB nonstandard model.

Looking at Fig. F.2, we note that the oscillation frequency of PLL(t) expected
from the Hubbard model (yellow curve) is smaller than the one obtained from the
SB and MB nonstandard models (respectively red and green curves), for both
weakly and strongly repulsive interacting regimes. This highlights the role of the
exact treatment of interaction in the system’s dynamics, justifying the inclusion
of the nonstandard terms in the Hamiltonian of the system. Specifically, we note
that for weakly interacting regime, the frequency is closer to the SB nonstandard
model one, being the nonstandard term less relevant in the dynamics, compared
to the strongly interacting regime. Finally, we appreciate the difference between
SB and MB nonstandard models, given by the different number of energy levels
included in the dynamics, especially in the strongly interacting regime (the
excitation probability for the higher levels is increased).
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Figure F.2: Time-evolution of the probability PLL(t) of finding at time t
two distinguishable particles together in the left well of the symmetric square
double-well potential of Fig. 3.2. The particles are interacting via δ-shaped
interaction potential of Eq. (3.5.1). The different models are: standard Hubbard
model (orange curve), MB nonstandard model (green curve), SB nonstandard
model (red curve) and no-PT model (blue curve). The double-well parameters
are L = 2, b = 0.5 and V0 = 5. The interaction strengths are: U/|Ω0|≃ 6
(weakly interacting regime) in panel (a) and U/|Ω0|≃ 12 (strongly interacting
regime) in panel (b).





Appendix G

Dynamics of two bosons in a
sinusoidal double-well
potential: numerical analysis
and experimental comparisons

G.1 Dynamics of two bosons in a sinusoidal double-
well potential

In this Appendix, we analyze the dynamics of two bosons in a sinusoidal double-
well potential in the parameter range between weakly and strongly interacting
regimes, see Ref. [2]. Using our numerical simulations, and exploiting the
versatility of our numerical method, which allows us to solve the dynamics for
different potential shapes, we investigate regions of parameters relevant to the
experimental results reported in Ref. [2]. Unless stated otherwise, all energies
are expressed in units of the recoil energy

ER = h2

2mλ2 ,

where λ = 765 nm represents the periodicity of the lattice, and m is the mass
of the atoms (see Sec. 3.8).
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Restricting our considerations to a non-tilted double-well potential, the bosonic
atoms are described by the standard Bose-Hubbard Hamiltonian, see Ref. [2]:

ĤBH = −J
(
b̂†

Lb̂R + b̂†
Rb̂L

)
+ U

2 [n̂L (n̂L − 1) + n̂R (n̂R − 1)] , (G.1.1)

where J ≡ Ω0 is the single-particle tunneling rate, b̂(†)
L,R are the annihilation

(creation) operators for a bosonic particle in the ground state of the left and
right wells, and U represents the interaction energy between two particles within
the same well. The experimental sinusoidal double-well potential in Ref. [2] is
achieved by superimposing two optical lattices with different periodic potentials:
a long-lattice potential with amplitude Along and wavelength 765.0 nm, and a
short-lattice potential with amplitude Bshort and wavelength 382.5 nm. The
dynamics is initiated with both bosons placed in the left well, and a sudden
decrease in the potential barrier depth triggers their motion. The system’s
dynamics is characterized by the average position

⟨x(t)⟩ = ⟨n̂R(t)⟩ − ⟨n̂L(t)⟩
⟨n̂R(t)⟩ + ⟨n̂L(t)⟩ , (G.1.2)

where n̂L,R denotes the number of bosons in the left (L) and right (R) wells,
respectively. We consider regions of parameters near to the experimental results
reported in Ref. [2], namely both weakly (U/J = 0.67) and strongly (U/J = 5)
interacting regimes. Our numerical model extends the standard Bose-Hubbard
Hamiltonian to a single-band (SB) nonstandard Hubbard Hamiltonian, described
as:

Ĥ = − J
(
b̂†

Lb̂R + b̂†
Rb̂L

)
+ U

2 [n̂L (n̂L − 1) + n̂R (n̂R − 1)] + U (n̂Ln̂R) +

+ Ω1

[
b̂†

L (n̂L + n̂R) b̂R + b̂†
R (n̂R + n̂L) b̂L

]
+

+ Ω2

(
b̂†2

L b̂
2
R + b̂†2

R b̂
2
L

)
,

(G.1.3)
where U represents the nearest-neighbor interaction, Ω1 denotes the density-
induced tunneling (DT) term, and Ω2 represents the pair tunneling (PT) term.

To simulate experimental conditions, we vary the ratio U/J as a function of
the lattice depth V0. From Ref. [86], we know that the ratio U/J increases
exponentially with the lattice depth V0, as follows:

U

J
∼ a

d
exp

(√
4V0/ER

)
, (G.1.4)
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Figure G.1: Panel (a): exponential relation between the interaction-to-
tunneling ratio U/J and the lattice depth V0/ER as described by Eq. (G.1.4).
Red dots: parameter regimes for weakly (U/J = 0.67) and strongly (U/J = 5)
interacting bosons, as taken from Ref. [2]. Green dots: data utilized in
our numerical simulations (U/J = 3.19, 8.27, 12.94, 16.78, 19.24, 45.04) and
(V0/ER = 25, 30, 32.5, 34, 34.8, 40). Panel (b): relation between the lattice
depth V0 and the short-lattice amplitude Bshort. The short-lattice amplitude
Bshort is varied to mimic experimental conditions using two superimposed
optical periodic potentials.

where a is the scattering length and d = λ/2 is the lattice spacing (see Sec. 3.8).
Fig. G.1(a) illustrates the relation in Eq. (G.1.4), highlighting both the weakly
and strongly interacting regimes from Ref. [2] (red dots) and our analyzed data
(green dots). Fig. G.1(b) shows the relation between lattice depth V0 and the
short-lattice amplitude Bshort.

The average position of two interacting bosons, initially placed in the infinite
left-well state, for various values of U/J and corresponding lattice depths
V0, spanning regions near to weakly (U/J = 0.67) and strongly (U/J = 5)
interacting regimes, is shown in Fig. G.2. We compare the standard Hubbard
model (orange curve) with the SB nonstandard model (red curve). For further
comparison, we also include the multiband (MB) nonstandard model (green
curve, obtained numerically) to highlight the region where the SB approximation
holds. As one can see, the nonstandard model predicts significantly different
average positions compared to the standard Hubbard model, both in amplitude
and frequency, underscoring the importance of nonstandard terms in capturing
the system’s dynamics. Moreover, in all panels of Fig. G.2, it is clear that
the SB approximation is quite accurate for the interaction values considered.
Nevertheless, it is important to observe that the SB nonstandard model closely
approximates the MB nonstandard model when U ≪ ∆E (i.e., when the
interaction energy U does not exceed ∆E, ensuring that the energy levels are
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Figure G.2: Average position of two interacting bosons as a function of time.
The dynamics of two bosons initially placed in the left well are simulated for
different interaction regimes, with varying U/J ratios (from Fig. G.1). The plot
compares the average position predicted by the standard Hubbard model (orange
curve), the SB nonstandard model (red curve), and the MB nonstandard model
(green curve). Panel (a): |Ω1/Ω0|= 0.13, |Ω2/Ω0|= 0.04, U/∆E = 0.15. Panel
(b): |Ω1/Ω0|= 0.12, |Ω2/Ω0|= 6 ·10−3, U/∆E = 0.08. Panel (c): |Ω1/Ω0|= 0.17,
|Ω2/Ω0|= 3 · 10−3, U/∆E = 0.06. Panel (d): |Ω1/Ω0|= 0.08, |Ω2/Ω0|= 2 · 10−3,
U/∆E = 0.05. Panel (e): |Ω1/Ω0|= 0.08, |Ω2/Ω0|= 2 · 10−3, U/∆E = 0.04.
Panel (f): |Ω1/Ω0|= 3.23, |Ω2/Ω0|= 0.12, U/∆E = 0.03.

not widely spaced).
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Figure G.3: Frequency spectrum of the dynamics of two bosons for different
models, as a function of the interaction-to-hopping parameter U/J . The plot
shows the frequencies of oscillation for the system as predicted by the standard
Hubbard model, the SB nonstandard model, and the MB nonstandard model.
The density-induced tunneling (DT) term Ω1 and the pair tunneling (PT) term
Ω2 are also displayed.

G.2 Metal-insulator phase transition

A sharp transition from low to high U/J values is evident in Fig. G.2. Specifically,
at low U/J values, the bosons tunnel between wells (metallic phase), while for
large enough U/J , they remain localized in the initial well (insulating phase).
This transition occurs in both the standard Bose-Hubbard model and the
nonstandard models, but at considerably larger U/J values. As U/J increases,
both the oscillation frequency and the amplitude of oscillation of the average
position decrease (see the yellow curve for the Hubbard model), highlighting
the emergence of an insulating phase.

In the SB and MB nonstandard models, the metal-insulator transition still
occurs (see the red and green curves, respectively), but at a lower “critical”U/J
value compared to the standard Hubbard model. This shift is primarly due to
the effect of DT on the single-particle tunneling. An effective single-particle
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tunneling amplitude, Ωeff = Ω0 + Ω1, arises, which is interaction-dependent, as
detailed in Refs. [43, 45]. For repulsive interaction, Ω0 is reduced by Ω1, resulting
in a lower Ωeff and, consequently, a shifted phase transition with respect to U/J .
To confirm such a view, Fig. G.3 shows the dynamical frequencies predicted by
the standard Hubbard model and both the SB and MB nonstandard models,
along with the DT term Ω1 and PT term Ω2. Notably, the latter is largely
irrelevant in the transition to the localized phase.

In conclusion, under the given experimental conditions, it is challenging to find
interesting experimental parameter regions where the PT term is significant.
This is because increasing U also necessitates increasing V0, at variance with
the theoretical case discussed. Despite this limitation, the presence of DT term
requires a significant modification of the critical interaction strength at which
the insulating phase appears. This suggests that the metal-insulator transition
could be highly sensitive to the additional nonstandard terms considered in this
work. On the other hand, alternative experimental setups may be needed to
explore the relevance of the PT term further.
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